
Semantic Photo Manipulation with a Generative Image Prior

DAVID BAU,MIT CSAIL and MIT-IBM Watson AI Lab

HENDRIK STROBELT, IBM Research and MIT-IBM Watson AI Lab

WILLIAM PEEBLES,MIT CSAIL

JONAS WULFF,MIT CSAIL

BOLEI ZHOU, The Chinese University of Hong Kong

JUN-YAN ZHU,MIT CSAIL

ANTONIO TORRALBA,MIT CSAIL and MIT-IBM Watson AI Lab

Input photo Change rooftops Output result

Input photo Remove chairs Output result Input photo Add windows Output result

Input photo Restyle trees for spring Restyle trees for autumn

Fig. 1. Our proposed method enables several new interactive photo manipulations in which a user edits a photo with high-level concepts rather than pixel

colors. Our deep generative model can synthesize new content that follows both the user’s intention and the natural image statistics. Top: Given simple user

strokes, our method can automatically synthesize and manipulate di�erent objects while adjusting the surrounding context to match. Bo�om: Our users can

edit the visual appearance of objects directly, such as changing the appearance of roo�ops or trees. Photos from the LSUN dataset [Yu et al. 2015].

Despite the recent success of GANs in synthesizing images conditioned on
inputs such as a user sketch, text, or semantic labels, manipulating the high-
level attributes of an existing natural photograph with GANs is challenging
for two reasons. First, it is hard for GANs to precisely reproduce an input
image. Second, after manipulation, the newly synthesized pixels often do
not �t the original image. In this paper, we address these issues by adapt-
ing the image prior learned by GANs to image statistics of an individual
image. Our method can accurately reconstruct the input image and synthe-
size new content, consistent with the appearance of the input image. We
demonstrate our interactive system on several semantic image editing tasks,

Authors’ addresses: David Bau, MIT CSAIL and MIT-IBM Watson AI Lab, davidbau@
csail.mit.edu; Hendrik Strobelt, IBM Research and MIT-IBM Watson AI Lab, hendrik.
strobelt@ibm.com; William Peebles, MIT CSAIL, wisp@csail.mit.edu; Jonas Wul�,
MIT CSAIL, jwul�@csail.mit.edu; Bolei Zhou, The Chinese University of Hong Kong,
bzhou@ie.cuhk.edu.hk; Jun-Yan Zhu, MIT CSAIL, junyanz@csail.mit.edu; Antonio
Torralba, MIT CSAIL and MIT-IBM Watson AI Lab, torralba@csail.mit.edu.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2019 Copyright held by the owner/author(s).
0730-0301/2019/7-ART59
https://doi.org/10.1145/3306346.3323023

including synthesizing new objects consistent with background, removing
unwanted objects, and changing the appearance of an object. Quantitative
and qualitative comparisons against several existing methods demonstrate
the e�ectiveness of our method.

CCS Concepts: •Computingmethodologies→ Image representations;
Neural networks; Image manipulation.

Additional Key Words and Phrases: image editing, generative adversarial

networks, deep learning, vision for graphics

ACM Reference Format:

David Bau, Hendrik Strobelt, William Peebles, Jonas Wul�, Bolei Zhou, Jun-
Yan Zhu, and Antonio Torralba. 2019. Semantic Photo Manipulation with
a Generative Image Prior. ACM Trans. Graph. 38, 4, Article 59 (July 2019),
11 pages. https://doi.org/10.1145/3306346.3323023

1 INTRODUCTION

The whirlwind of progress in deep learning has produced a steady
stream of promising generative models [Goodfellow et al. 2014;
Karras et al. 2018] that render natural scenes increasingly indis-
tinguishable from reality and provide an intuitive way to generate
realistic imagery given high-level user inputs [Bau et al. 2019; Wang
et al. 2018].

ACM Trans. Graph., Vol. 38, No. 4, Article 59. Publication date: July 2019.

https://doi.org/10.1145/3306346.3323023
https://doi.org/10.1145/3306346.3323023

59:2 • David Bau, Hendrik Strobelt, William Peebles, Jonas Wul�, Bolei Zhou, Jun-Yan Zhu, and Antonio Torralba

E z ze G’edit

G G

1 2 3

(a) Original image

x

(b) Reconstruction

G(z)
(c) Generated edited image

G(ze)

(d) Image-matched

generator with ze

G’(ze)

Inversion User editing Generation

Fig. 2. Overview. To perform a semantic edit on an image x, we take three steps. (1) We first compute a latent vector z = E(x) representing x. (2) We then apply

a semantic vector space operation ze = edit(z) in the latent space; this could add, remove, or alter a semantic concept in the image. (3) Finally, we regenerate

the image from the modified ze . Unfortunately, as can be seen in (b), usually the input image x cannot be precisely generated by the generator G , so (c) using

the generator G to create the edited image G(xe) will result in the loss of many a�ributes and details of the original image (a). Therefore to generate the

image we propose a new last step: (d) We learn an image-specific generator G′ which can produce x′e = G
′(ze) that is faithful to the original image x in the

unedited regions. Photo from the LSUN dataset [Yu et al. 2015].

We seem to be on the verge of using these generative models for
semantic manipulation of natural photographs, which will combine
the simplicity of pixel-level editing with �exible semantic manip-
ulations of a scene. The role of deep generative models will be to
provide latent semantic representations in which concepts can be
directly manipulated and then to preserve image realism when se-
mantic changes are made. This editing scheme will allow users to
manipulate a photograph not with physical colors, but with abstract
concepts such as object types and visual attributes. For example,
a user can add a lit lamp into a bedroom (Figure 1 bottom left) or
change the color of a tree’s leaves (Figure 1 bottom right) with a
few scribbles.
Despite the promise of this approach, two technical challenges

have prevented these generative models from being applied to natu-
ral photograph manipulation. First, it is extremely di�cult to �nd a
latent code z to reproduce a given photograph x with a deep gener-
ative model G: x ≈ G(z). As shown in Figure 2b, the reconstructed
image G(z) roughly captures the visual content of the input image
x , but visual details are obviously di�erent from the original photo.
Second, after manipulation, the newly synthesized pixels from gen-
erative models are often incompatible with the existing content
from the real image, which makes stitching the new content into
the context of the original image challenging (Figure 2c).
In this paper, we address the above two issues using an image-

speci�c adaptationmethod. Our key idea is to learn an image-speci�c

generative model G ′ ≈ G , that produces a near-exact solution for our
input image x, so that x ≈ G ′(z) outside the edited region of the im-
age. We construct our image-speci�cG ′ to share the same semantic
representations as of the originalG . Importantly, our image-speci�c
G ′ produces new visual content, consistent with the original photo
while re�ecting semantic manipulations (Figure 2d).

We build GANPaint editor, an interactive interface that supports
a wide range of editing tasks, from inserting new objects into a
natural photo (Figure 1 top) to changing the attributes of existing
objects (Figure 1 bottom). We show that our general-purpose editing
method outperforms compositing-based methods as measured in
human perception studies. Finally, we perform an ablation study
demonstrating the importance of our image-speci�c adaptation
method compared to previous reconstruction methods. Our code,
models, and data are available at our website ganpaint.csail.mit.edu.

2 RELATED WORK

Generative Adversarial Networks . (GANs) [Goodfellow et al. 2014]
learn to automatically synthesize realistic image samples [Karras
et al. 2018; Miyato et al. 2018]. GANs have enabled several user-
guided image synthesis tasks such as generating images from user
sketches [Isola et al. 2017; Sangkloy et al. 2017], creating face ani-
mation [Geng et al. 2018; Nagano et al. 2018], synthesizing photos
from language description [Zhang et al. 2017a], and interactively
manipulating objects in a generated scene [Bau et al. 2019; Park et al.

ACM Trans. Graph., Vol. 38, No. 4, Article 59. Publication date: July 2019.

ganpaint.csail.mit.edu

Semantic Photo Manipulation with a Generative Image Prior • 59:3

2019]. While most of the prior work focuses on generating a new
image from scratch given user controls, little work has used GANs
for interactively manipulating an existing natural photograph. The
key challenge is the mismatch between the GAN-generated content
and existing content in the image. Several lines of work [Brock et al.
2017; Perarnau et al. 2016; Zhu et al. 2016] propose to manipulate a
photo using GANs but only work with a single object (e.g., handbag)
at low resolutions (64x64) and often involve post-processing steps.
In this work, our method can directly generate a �nal result and
allow semantic manipulations of an entire natural scene.

Interactive Photo Manipulation. Manipulating a natural photo-
graph is a central problem in computer graphics and computational
photography, where a piece of software manipulates an image to
achieve a user-speci�ed goal while keeping the result photorealistic.
Example applications include color adjustment [An and Pellacini
2008; Levin et al. 2004; Reinhard et al. 2001; Xue et al. 2012], tone
mapping [Durand and Dorsey 2002], image warping [Avidan and
Shamir 2007], image blending [Pérez et al. 2003; Tao et al. 2010],
or image reshu�ing [Barnes et al. 2009], to name just a few. These
editing tools can modify the low-level features of an image with
simple interactions (e.g. scribbles) and work well without external
knowledge. On the contrary, to edit the high-level semantics of an
image such as the presence and appearance of objects, prior work
often demands manual annotations of the object geometry [Khol-
gade et al. 2014] and scene layout [Karsch et al. 2011], choice of an
appropriate object [Lalonde et al. 2007; Pérez et al. 2003], or RGBD
data [Zhang et al. 2016a]. Di�erent from those systems, our method
allows complex high-level semantic manipulations of natural pho-
tos with a simple brush-based user interface. We use natural image
statistics learned by a deep generative model to connect simple user
interaction to the complex visual world.

Deep ImageManipulation. Deep learning has achieved compelling
results in many image editing tasks. Recent examples include image
inpainting [Iizuka et al. 2017; Pathak et al. 2016; Yu et al. 2018],
image colorization [Iizuka et al. 2016; Zhang et al. 2016b], photo
stylization [Gatys et al. 2016; Li et al. 2018; Zhu et al. 2017] and photo
enhancement [Gharbi et al. 2017; Kim and Park 2018]. Learning-
based systems allow real-time computation and require no hand-
crafted heuristics. Recent work further integrates user interaction
into end-to-end learning systems, enabling interactive applications
such as user-guided colorization [Zhang et al. 2017b] and sketch-
based face editing [Portenier et al. 2018]. These methods can achieve
high-quality results, but the editing task is �xed at training time
and requires speci�c training data. In this work, we propose an
alternative, task-agnostic approach. We learn the natural image
statistics using a generative model and allow many di�erent editing
applications in the same framework. This enables new visual e�ects
where training data is not available, such as adding objects and
changing the appearance of objects.

3 METHOD

Overview: We propose a general-purpose semantic photo manip-
ulation method that integrates the natural image prior captured by
a GAN generator. Figure 2 shows our image editing pipeline. Given

z GFGH

ẟh+1…ẟn-1

R

G’(ze)

Fig. 3. Image-specific model adaptation through training a small network R

that produces perturbations δi that influence the later, fine-grained layers

GF of the GAN.We add a regularization term to encourage the perturbations

to be small.

a natural photograph as input, we �rst re-render the image using
an image generator. More concretely, to precisely reconstruct the
input image, our method not only optimizes the latent representa-
tion but also adapts the generator. The user then manipulates the
photo using our interactive interface, such as by adding or removing
speci�c objects or changing their appearances. Our method updates
the latent representation according to each edit and renders the
�nal result given the modi�ed representation. Our results look both
realistic and visually similar to the input natural photograph.

Below, we �rst review recent GAN-based methods for generating
visual content given semantic user inputs in Section 3.1. In theory,
we could apply these methods to edit an existing photo as long
as we can reproduce an image using a learned GAN generator. In
Section 3.2, we show that a rough reconstruction is possible, but a
precise reconstruction is challenging and has eluded prior work. In
Section 3.3, we present our new image-speci�c adaptation method
to bridge the gap between the original photo and generated content.
Finally, we describe several image manipulation operations powered
by our algorithm in Section 3.4.

3.1 Controllable Image Synthesis with GANs

Deep generativemodels [Goodfellow et al. 2014; Kingma andWelling
2014] are pro�cient at learning meaningful latent representation
spaces. An encoder-based generative model is a function G : z → x
that generates an image x ∈ RH×W ×3 from a latent representation
z ∈ Rh×w×|z | . This representation can be a low-dimensional vector
from a Gaussian distribution (i.e., 1× 1× |z |) or an intermediate
feature representation in the generator. In this work, we use the
intermediate representation for �exible spatial control.

Using a generative modelG for photo editing is powerful for two
reasons. First, arithmetic vector operations in the latent representa-
tion space often result in interesting semantic manipulations. For
example, given a generated image from the modelG(z), latent vector
operations ze = edit(z) can adjust the species of an animal [Miyato
et al. 2018], the orientation of an object [Chen et al. 2016], or the
appearance [Zhu et al. 2016] or presence [Bau et al. 2019] of objects
in a scene. Second, the edited image G (edit(z)) will still lie on the
natural image manifold as G is trained to produce a natural image
given any latent code.

ACM Trans. Graph., Vol. 38, No. 4, Article 59. Publication date: July 2019.

59:4 • David Bau, Hendrik Strobelt, William Peebles, Jonas Wul�, Bolei Zhou, Jun-Yan Zhu, and Antonio Torralba

Fig. 4. GANBrush user interface. A new image is first uploaded and in-

verted. The toolbar (le� of image) then allows users to select the mode of

operation (draw or erase), select the semantic feature, and select brush-size

and feature strength (low, med, high). The history panel (right of image)

shows a stack of modifications in chronological order. The corresponding

edits are highlighted in the image when users hover over previous edits.

Each edit can also be removed from the list. Photo being edited is of St

Luke the Evangelist, Cwmbwrla, Swansea courtesy Jaggery, via Geograph

(cc-by-sa/2.0).

Our method can be applied to various generative models and
di�erent latent representation editing methods. In this work, we
focus on manipulating semantic object-centric representations that
can add, remove, and alter objects such as trees and doors within
a natural scene. For that, we build our work on a state-of-the-art
model, progressive GANs [Karras et al. 2018], and a recent latent
representation editing method [Bau et al. 2019]. Figure 1 shows
several editing examples on real input images. The details of these
latent space edits are discussed in Section 3.4.

3.2 Reproducing a Natural Image with a Generator

Applying a semantic edit as described above on a natural image
requires reconstructing the input image x in the latent space (i.e. �nd-
ing a z so that x ≈ G(z)), applying the semantic manipulation
ze = edit(z) in that space, and then using the generator xe = G(ze)
to render the modi�ed image (Figure 2). Formally, we seek for a
latent code z that minimizes the reconstruction loss Lr (x,G(z))
between the input image x and generated image G(z):

Lr (x,G(z)) = ∥x −G(z)∥1 + λVGG

N∑

i=1

1

Mi
∥F (i)(x) − F (i)(G(z))∥1,

(1)

where we use both color pixel loss and perceptual loss, similar
to prior image reconstruction work [Dosovitskiy and Brox 2016;
Zhu et al. 2016]. Here λVGG = 10 and F (i) is the i-th layer with
Mi features in the VGG network [Simonyan and Zisserman 2015].
To speed up the reconstruction, we follow the prior work [Zhu
et al. 2016] and train an encoder E : x → z that predicts the la-
tent code directly from the image. We use a similar training loss
argminE Ex∼pdata (x)Lr (x,G(E(x))). During test time, we use E(x)
as the initialization for the optimization of Eqn. 1.
Unfortunately, this method fails to produce visually appealing

edits whenG is not able to generate images resembling x. Finding a

latent code z that can reproduce an arbitrary image x is hard because,
for many images, the range of the generatorG does not include any
image su�ciently similar to x in appearance. As shown in Figure 2,
existing reconstruction methods [Dosovitskiy and Brox 2016; Zhu
et al. 2016] can only roughly re-generate the color and shape of
objects in the scene and fail to reproduce the visual details of input
images faithfully. Given an inaccurate reconstruction, subsequent
edits introduce further artifacts. Besides, the unedited regions of
the �nal result may look di�erent from the input photo due to the
reconstruction error.

3.3 Image-Specific Adaptation

The image reconstruction problem is hard as it would require the
same generatorG to be able to reproduce every single detail of every
possible input image. And to be useful for incremental editing, new
results G(edit(z)) need to be compatible with the input image x as
well. To address these issues, we propose to use an image-speci�c
generator G ′ that can adapt itself to a particular image. First, this
image-speci�c generative modelG ′ can produce a near-exact match
for our input image x. Second, our image-speci�c G ′ should be
close toG so that they share an underlying semantic representation.
Learned with the above two objectives, G ′ can preserve the visual
details of the original photo during semantic manipulations.

More precisely, to perform a successful edit,G ′ does not strictly
need to have x itself in its range; rather, we �nd G ′ to exactly re-
produce only the unedited regions of the input image. Given a user
stroke binary mask, maske :

maske =

{

1 where the stroke is present

0 outside the stroke
(2)

When adapting G ′, this constraint can be approximated by mini-
mizing a simple di�erence between the input image x and those
generated by G ′(ze), summed over the image regions outide of the
strokes.

Lmatch ≡ ||(G ′(ze) − x) ⊙ (1 − maske)| |1, (3)

where we set ze = edit(z), and ⊙ is the elementwise Hadamard
product. The operation edit(z) expresses the user’s intent to apply
a particular semantic manipulation on the deep latent structure of
G; it assumes that we can �nd aG ′ with a similar latent structure
as G. Otherwise, the editing operation edit(z) may not work well
for newly constructed G ′.

Preserving Semantic Representation. To ensure that the image-
speci�c generator G ′ has a similar latent space structure as the
original generator G, we construct G ′ by preserving all the early
layers ofG precisely and applying perturbations only at the layers
of the network that determine the �ne-grained details.

This is done by exploiting the internal structure of modern image
generator networks: a generatorG has a layered structure consisting
of a series of convolutions at increasing resolutions, where the �nal
layerдn is close to pixels and captures the �ne-grained details, while
the �rst layer д1 is closest to the latent representation z and captures
high-level information:

G(z) = дn (дn−1(· · · (д1(z)). · · ·)) (4)

ACM Trans. Graph., Vol. 38, No. 4, Article 59. Publication date: July 2019.

https://www.geograph.org.uk/photo/3670928

Semantic Photo Manipulation with a Generative Image Prior • 59:5

The early layers of a generator represent high-level semantics such
as the presence and layout of objects, while later layers encode
lower-level pixel information such as edges and colors, as observed
by Bau et al. [2019]. Therefore, to leave the semantic structure
of G unchanged, we divide it into a group of high-level layers GH

containing layers 1 through h and �ne-grained layersGF containing
layers h + 1 through n, so that G(z) ≡ GF (GH (z)). This division is
illustrated in Figure 3. Only GF are adjusted when creating G ′. The
early layers GH that decode the high-level structure of the image
remain unchanged. In detail, we de�ne GH and GF as:

zh ≡ GH (z) ≡ дh (дh−1(· · ·д1(z) · · ·))

GF (zh) ≡ дn (дn−1(· · · (дh+1(zh) · · ·)) (5)

The choice of h can be tuned experimentally; we have found it to be
e�ective to chooseh = n−5 so that the �ne-grained section contains
a pyramid of four scales of convolutions. To create a generator
that faithfully reconstructs the target image x , we will update GF .
However, directly updating the weights of �ne-grained layers GF

to match output to x causes over�tting: when changed in this way,
the generator becomes sensitive to small changes in z and creates
unrealistic artifacts.

Instead, we train a small networkR to produce small perturbations
δi that multiply each layer’s output in GF by 1 + δi . Each δi has
the same number of channels and dimensions as the featuremap of
GF at layer i . This multiplicative change adjusts each featuremap
activation to be faithful to the output image. (Similar results can be
obtained by using additive δi .) Formally, we constructG ′

F
as follows:

G ′
F (zh) ≡ дn ((1 + δn−1) ⊙ дn−1(· · · ((1 + δh+1) ⊙ дh+1(zh) · · ·)))

G ′(z) ≡ G ′
F (GH (z)). (6)

The perturbation network R learns to produce δi starting from
a random initialization; R takes no input. Figure 3 illustrates the
architecture of this perturbation network.
To further prevent over�tting, we add a regularization term to

penalize large perturbations:

Lreg ≡

n−1∑

i=h+1

| |δi | |
2 (7)

.

Overall optimization. The overall optimization of G ′ can now be
summarized. To learn G ′, we �x the edited semantic representa-
tion ze and the unedited pixels x ⊙ maske that must be matched.
Furthermore, we �x all pre-trained layers of the generator G.

Our objective is to learn the parameters of perturbation network
R to minimize the following loss:

L = Lmatch + λregLreg. (8)

We learn the network R using the standard Adam solver [Kingma
and Ba 2015] with a learning rate of 0.1 for 1000 steps. The weight
λreg balances the magnitude of perturbations ofG ′ and closeness of
�t to the target pixels. We empirically set it to 0.1.
The optimization takes less than 30 seconds on a single GPU.

Fewer steps can be used to trade o� quality for speed. While 1000
steps achieve an average PSNR of 30.6 on unedited reconstruction
of a sample, it takes 100 steps to achieve PSNR of 24.6.

The computational form of adapting a network to a single image is
inspired by previous work on deep image prior [Ulyanov et al. 2018]
and deep internal learning [Shocher et al. 2018], which have been
shown to be e�ective at solving inpainting and super-resolution
without any training data beyond a single image. However, our
application is di�erent; we initialize G with a generative model
trained on a distribution of images in order to synthesize a semantic
change encoded in the latent vector ze , and then we train on a single
target image in order to blend the semantic edits with the original
image.

3.4 Semantic Editing Operations: GANPaint

Our user interface (Figure 4) enables interactive editing of images
that can be uploaded by users. Although computingG ′(ze) requires
some time, the interactive editor provides real-time previewsG ′

w (ze)
using a G ′

w that is fast to apply. The function G ′
w is set to a pertur-

bation of the generator G with weights that are optimized so that
G ′
w (z) ≈ x. SinceG ′

w is derived only from the pixels of the unedited
image x, it can be computed once when the image is uploaded and
applied quickly for each edit. Although G ′

w (ze) introduces more
visual artifacts compared to G ′(ze), it gives a good indication of
what the �nal rendering will look like at interactive rates. Currently,
our web-based interface requires a server-side GPU for inference.

To demonstrate semantic editing, we use Progressive GAN mod-
els [Karras et al. 2018] that can generate realistic scene images
trained on the LSUN dataset [Yu et al. 2015]. Once trained, this gen-
erator consists of 15 convolutional layers and produces images at a
resolution of 256 × 256 pixels. We closely follow methods of GAN
Dissection [Bau et al. 2019] to paint a photo by editing middle-level
latent representations located on the feature maps between the 4th
and 5th layer. The representation z ∈ R8×8×512 is a 512-channel ten-
sor with featuremaps of size 8 × 8. The GAN dissection toolkit [Bau
et al. 2019] can be used to identify a set of object types and con-
cepts C which we allow the user to insert, remove or change the
appearances of objects in their images, as detailed below.

Adding and removing objects. Using our GANPaint editor Figure 4,
users can select regions of an image they would like to edit. To insert
or remove an object belonging to class c in a user-selected region
U ∈ R8×8, we form a channel mask αc = (ic ⊗ U) ∈ R8×8×512, to
select speci�c features in z in the feature channels and locations
that the user wishes to edit. The feature channels ic ∈ R512 relevant
to class c are obtained by analyzing the generator using [Bau et al.
2019], and ⊗ indicates a broadcasted outer product.

The edited representation ze = edit(z) is computed as follows:

ze := (1 − αc) ⊙ z
︸ ︷︷ ︸

activations retained from z

+ αc ⊙ (s pc)
︸ ︷︷ ︸

edited activations

(9)

In the above, the representation z is blended with the feature vector
spc , where pc ∈ R8×8×512, is a spatially-expanded vector that rep-
resents the average activation of the object class c over all images,
constant in each 8 × 8 channel, and s is a scalar which controls
how much to shrink or boost edited activations. Setting s = 0 corre-
sponds to removing class c from the representation, whereas setting
s > 0 corresponds to adding class c .

ACM Trans. Graph., Vol. 38, No. 4, Article 59. Publication date: July 2019.

59:6 • David Bau, Hendrik Strobelt, William Peebles, Jonas Wul�, Bolei Zhou, Jun-Yan Zhu, and Antonio Torralba
(a

)

O
ri

g
in

a
l

Im
a
g

e

(b
)

G
en

er
a
te

d
 G

(z
)

(c
)

E
d

it
ed

 G
(z

e
)

(I
,
o

u
rs

)

A
d

a
p

te
d

 G
’(

z e
)

(e
)

L
a
p

la
ci

a
n

 P
y

r

(f
)

P
o

is
so

n
 B

le
n

d

(g
)

E
rr

o
r

T
o

le
ra

n
t

(d
)

C
o

lo
r

T
ra

n
sf

(h
)

O
v
er

fi
t

G
' w

(z
e)

(1) (2) (3) (4) (5) (6) (7) (8)

Fig. 5. Comparing our method to several compositing methods. From top to bo�om: (a) the original unmodified image (b) its reconstruction by the unmodified

generator; (c) the generated imageG(ze) a�er applying a semantic edit to the latent vector z ; (d) compositing the edited region from the edited generated (c) into

the original image (a) using simple color transfer; (e) Laplacian pyramid blending; (f) Poisson blending; (g) Error-tolerant image compositing; (h) reconstruction

of ze using a G′
w where weights have been overfit to the unedited original image x ; (i) our method: reconstruction of ze using a G′ with activations adapted

to match image x outside the editing region. Photos from the LSUN dataset [Yu et al. 2015].

ACM Trans. Graph., Vol. 38, No. 4, Article 59. Publication date: July 2019.

Semantic Photo Manipulation with a Generative Image Prior • 59:7

Changing the appearance of objects. The same system can also
alter the appearance of an object of class c . To do this, we simply
use equation (9) with a value of pc derived from a reference image

that has an appearance the user wishes to mimic. A simple way to
accomplish this is to set the i-th component of pc to be the mean of
the positive activations in the i-th channel of the latent features z
of the reference image for channels related to class c; all other ele-
ments of pc are set to zero. See Figure 8 for an example of changing
object appearances. Taking means of positive activations is only
one possible way to incorporate information about the reference
image’s latent representation z into pc ; we leave exploring other
ways of copying attributes to future work.

4 EXPERIMENTAL RESULTS

We evaluate each step of our method. In Section 4.1 we compare
our image-speci�c adaptation method to several compositing meth-
ods, and in Section 4.2 we compare our method to two simpli�ed
ablations of our method. In Section 4.3, we show qualitative results
applying our image-speci�c adaptationG ′ on both training set and
in-the-wild test images. In Section 4.4 we demonstrate our method
for changing the appearance of objects. In Section 4.5, we evaluate
our method for recovering the latent vector z from an image x.

4.1 Comparing Image-Specific Adaptation to Compositing

By adapting the generator to the original image, our method blends
the generated edited image with the unedited parts of the photo-
graph. This scenario is similar to the task of image compositing,
so we evaluate the performance of our method in comparison to
several compositing approaches. We compare our method to Color
transfer [Reinhard et al. 2001], Laplacian pyramid blending, Pois-
son editing [Pérez et al. 2003], and Error-Tolerant Image Composit-
ing [Tao et al. 2010]. In each case, we use the traditional compositing
method to insert the edited image pixels generated by G(ze) from
the edited region into the target photograph.

We asked 206 Amazon MTurk workers to compare the realism of
the results of each compositing algorithm with our results. For each
method, 1200 pairwise quality comparisons were collected on 20
di�erent edited images. For each comparison, workers are shown
the real photograph and the edited region as generated by G(xe),
then asked which image from a pair is the most realistic insertion
of the object into the photo. Top rows of Table 1 summarize the
results. Qualitative comparisons are shown in Figure 5(defg).
Workers �nd that our method yields more realistic results than

traditional image blending approaches on average. For example, in
the case Figure 5(c4), our method blends the new dome into the
old building while maintaining edges, whereas traditional blending
methods do not di�erentiate between boundary pixels that should
be crisp edges from those that require smooth blending.

4.2 Ablation Studies

To study the necessity of adapting G ′ by perturbing activations,
we compare our method G ′(ze) to two simpler generator-based
approaches. First, we compare our method toG(ze) itself without
any perturbations in G. Second, we compare to an adapted G ′

w (ze)
in which the image is rendered by an adaptedG ′

w with weights that

Table 1. AMT evaluation of compositing methods compared to our method:

we report the percentage of users that prefer various other methods over

ours. Our method is also compared to the unadapted generator G as well

as a directly adapted generator G′
w in which the weights have been fi�ed

so G′
w (z) ≈ x .

Method % prefer vs ours

Color transfer [Reinhard et al. 2001] 16.8%
Error-tolerant image compos. [Tao et al. 2010] 43.6%
Poisson blending [Pérez et al. 2003] 44.2%
Laplacian pyramid blending 47.2%

Our method 50.0%
G(ze) without adaptation 37.4%
G ′
w (ze), weights are �tted so G ′

w (z) ≈ x 33.1%

have been optimized to �t the unedited image, so that G ′
w (z) ≈ x.

AlthoughG ′
w is adapted to x, it is adapted to all pixels of the unedited

image without regard to the editing region. Results are summarized
in bottom rows of Table 1, and in Figure 5(ehi). Note that the question
asked for AMT raters shows the edited G(ze) as the example of the
foreground edit that should be inserted in the photo. Thus raters
are primed to look for the editing changes that are demonstrated
in image; this might result in ratings for G(ze) that could be higher
than they would without this prompt.

Compared to the two ablations, our method produces results that
are with fewer visible artifacts in the output image that are rated as
much more realistic on average. In particular, artifacts introduced
by G ′

w are seen as high-frequency di�erences between the target
image and the generated image, as well as additional color artifacts
near the edited region. These artifacts can be seen by zooming into
the examples in Figure 5(h).

4.3 �alitative Results

In this section, we show qualitative results of applying image-
speci�c adaptation on natural photographs.

Editing LSUN images. In Figure 6, we show several edits on images
from the LSUN datasets [Yu et al. 2015]. In the �rst column, we show
the original unedited image, which is inverted (column two). The
segmentation mask in column three indicates the edits requested
by the user and the resulting GAN-generated image is shown in
column four (G(ze)).

To the right (column �ve) we show the results of applying image-
speci�c adaptation on edits using the same user requests. All ex-
amples are taken from the LSUN dataset on which the GANs were
trained (living rooms, kitchens, outdoor church images).

Editing In-the-wild images. In Figure 7, we examine editing results
on newly collected images that are not in the training set. All edits
are applied using a GAN trained on ‘outdoor church’ images.

As can be seen in the second column of Figure 7, rendering ofG(z)
reveals parts of images such as building shapes, doors, windows,
and surfaces that are modeled byG. Many parts of the new church
images are modeled, and our image-matching method is able to

ACM Trans. Graph., Vol. 38, No. 4, Article 59. Publication date: July 2019.

59:8 • David Bau, Hendrik Strobelt, William Peebles, Jonas Wul�, Bolei Zhou, Jun-Yan Zhu, and Antonio Torralba

x edit maskG(z) G(ze) G’(ze)

L
iv

in
g

 r
o

o
m

C
h

u
rc

h
K

it
ch

en

More light by adding a kitchen window

Exchange artwork

Add a gate to Palazzo Vecchio, Florence

Remove dome from Karlskirche, Vienna

Fig. 6. Examples of editing work-flow. From le� to right: input image x is first converted to GAN imageG(z), edited by painting a mask, the e�ect of this mask

edit can be previewed at interactive rates as G(ze). It can be finally rendered using image-specific adaption as G′(ze). Photos from LSUN [Yu et al. 2015].

apply edit to these parts of the image in the presence of objects such
as cars and lampposts that are not generated by G(z).

4.4 Style Variants

We demonstrate varying styles of inserted objects in Figure 8. The
variants are produced by using di�erent source images ((a) and
(b)) and by using the same image but di�erent strengths of style
adaptation (c).

4.5 Recovering the Latent Vector z

Our method depends on starting with a latent vector z that is able
to approximate the user’s photo. Here we report our results in
recovering an inverse E ≈ G−1. We �nd z to optimize the latent
vector x ≈ G(z) in the following two steps.

First, we train a network Enet(x) to minimize the mean loss Eqn. 1
when inferring z from x. We �nd that ResNet-18 is e�ective at
computing a good estimate for z. We can quantitatively evaluate the
accuracy of Enet at recovering the correct z by testing it on images

ACM Trans. Graph., Vol. 38, No. 4, Article 59. Publication date: July 2019.

Semantic Photo Manipulation with a Generative Image Prior • 59:9

x edit maskG(z) G(ze) G’(ze)

Fig. 7. Applying our method on ‘in the wild’ images. These images are newly collected images that are not in the training set. Images are edited using a GAN

model trained on churches: new church images respond well to editing, even if they contain a few idiosyncratic objects (such as cars and lampposts) not

modeled by the generator. Photo of Urban Grace Church courtesy Visitor7 via Wikipedia (cc-by-sa/3.0); photo of First Baptist Church by the authors.

(b) Grass Appearance Changing(a) Dome Appearance Changing (c) Tree Appearance Changing
varying only strength

edit

original image x

variations

edit

original image x

reconstructed

reference image

variationsreconstructed

reference image

edit

variations

original image x

reconstructed

reference image

Fig. 8. Changing the appearance of domes, grass, and trees. In each section, we show the original image x, the user’s edit overlayed on x and three variations

under di�erent selections of the reference image. Additionally, we show reconstructions of the reference image from G. In (c), we fix the reference image and

only vary the strength term s . Photos from the LSUN dataset [Yu et al. 2015].

x = G(ztrue) for which the true latent vector ztrue is known. The
results are shown in Figure 9 (a).
Next, we apply gradient descent to optimize the latent vector

z using the same objective function (Eqn. 1). Our case, z = z4 is
a fourth-layer representation of an underlying progressive GAN,
which means that we do not have explicit statistics for regularizing
this representation. We have found that an e�ective implicit regu-
larizer for z4 can be obtained by optimizing over the earlier layers
z1, z2,and z3 rather than z4 itself. Using this approach results in
the recovery of nearly perfect z4, as shown in Figure 9 (b). We use

E(x) to denote the result of both steps of the optimization. Figure 10
shows a qualitative comparison of reconstructions G(E(x)) with in-
put images x for two pairs of images. We observe that, for x that are
generated by G, the inversion is nearly perfect: the reconstructed
image is indistinguishable from the original. Figure 10 also shows
reconstructions G(E(x)) for real images x that are not generated by
G. In this setting, the inversions are far from perfect. Furthermore,
the failure of E on other images reveals the types of images that
G cannot reconstruct, and provide insight into the limitations of
the generator. For example, in a model trained on outdoor scenes

ACM Trans. Graph., Vol. 38, No. 4, Article 59. Publication date: July 2019.

https://commons.wikimedia.org/wiki/File:Tacoma,_WA_-_Urban_Grace_Church_02.jpg

59:10 • David Bau, Hendrik Strobelt, William Peebles, Jonas Wul�, Bolei Zhou, Jun-Yan Zhu, and Antonio Torralba

(a) z = Enet(x), corr .980 (b) optimized z, corr .999

re
co

n
st

ru
ct

ed
 z

ztrue ztrue

Fig. 9. A generator G can be inverted accurately within its range. Two in-

version methods are tested on images generated by x = G(ztrue), and the

components of the predicted z = E(x) are plo�ed against the true compo-

nents of the known z. In (a), a Resnet-18 network is trained to calculateG−1

and achieves good precision. In (b), the network-computed results are used

to initialize an optimization that further refines the calculation of z. The
result is a recovery of the true z above a Pearson’s correlation about 99.9%.

Thus inversion works well for generated images. However, this does not

imply that these methods can invert real photos. Images from the LSUN

dataset [Yu et al. 2015].

original image x G(E(x)) original image G(E(x))

x
g

en
er

a
te

d
 b

y

G
A

N
 o

ri
g

in
a
ll

y

re
a
l
p

h
o

to

ch
u

rc
h

 m
o

d
el

re
a
l

p
h

o
to

s

b
ed

ro
o

m
 m

o
d

el

Fig. 10. Recovery of latent vectors z from images x: results can be compared

qualitatively by rendering G(z) and comparing to the original image x. For
images that were originally generated by the generator, our algorithm can

recover z that is quantitatively and qualitatively identical to its true value.

However, this is not true for many real photos x. Inverting and regenerating

the image reveals details that the generator cannot represent; for the two

models shown here, these details can include people and objects that are

not usually seen in the data set. Photos from LSUN [Yu et al. 2015].

of churches, the inversions cleanly drop out people and vehicles,
suggesting that this model cannot represent these types of objects
well. The model trained on bedrooms drops out certain types of
decorations.

5 LIMITATIONS AND DISCUSSION

Although our method for adapting a generative network allows
various semantic photo manipulations, many challenges remain.

Input photo G(xe) G’(xe)Remove chairs

Fig. 11. Failure cases. Some latent vector space operations are di�icult to

disentangle from undesired e�ects. For example, in this sequence, a user

has a�empted to use a latent space manipulation to remove all the chairs

from the image. In the generated version of the image, it can be seen that

when the chairs are removed, visual remnants remain mixed with the space.

Disentanglement of latent vector directions remains a core challenge for

this family of methods. Photo from the LSUN dataset [Yu et al. 2015].

First, our method requires an optimization be run after each edit,
which takes about 30 seconds on a modern GPU. This time can be
reduced by applying fewer optimization steps and incrementally
optimizing during editing, or by using a full-image adaptationG ′

w of
the generator that provides a adaptation of the generator that does
not depend on the editing region. Although these faster methods
introduce more artifacts than our full method, they can provide
useful preview of the results at interactive speeds.
Second, another challenge is that latent spaces learned by deep

neural networks are not fully disentangled, so �nding vector op-
erations to express a user intent can remain challenging. Adding
or removing an object from a scene may have some interactions
with unrelated objects. Some examples of undesirable interaction
are illustrated in Figure 11; in these examples, chairs are reduced
by zeroing chair-correlated components in the representation, but
the rendered results do not cleanly remove all parts of the chairs,
and distorted parts that resemble chair legs remain in the result. We
also note that our method for varying the appearances of objects
can be brittle; certain classes of objects (such as trees) vary more
than other classes (such as domes or skies). For example, in Figure
(10) we found that dome shape, but not color, could be varied.

Lastly, the quality and resolution of our current results are still
limited by the deep generator that we are using [Karras et al. 2018].
For example, in Figure 7, the GAN-synthesized images omit many
details such as cars and signage; our method cannot add such objects
to an image if they are not modeled by the generator. But our method
is not coupled with a speci�c generative model and will improve
with the advancement of models with better quality and resolution
(e.g., concurrent work [Brock et al. 2019; Karras et al. 2019]).

Nevertheless, we have found that in many computer graphics
applications the learned natural image prior can help produce more
realistic results with less user input. Our work presents a small step
towards leveraging the knowledge learned by a deep generative
model for semantic photo manipulation tasks.

ACKNOWLEDGMENTS

We are grateful for the support of the MIT-IBM Watson AI Lab, the
DARPA XAI program FA8750-18-C000, NSF 1524817 on Advancing
Visual Recognition with Feature Visualizations, and a hardware
donation from NVIDIA.

ACM Trans. Graph., Vol. 38, No. 4, Article 59. Publication date: July 2019.

Semantic Photo Manipulation with a Generative Image Prior • 59:11

REFERENCES
Xiaobo An and Fabio Pellacini. 2008. AppProp: all-pairs appearance-space edit propa-

gation. In ACM Transactions on Graphics (TOG), Vol. 27. ACM, 40.
Shai Avidan and Ariel Shamir. 2007. Seam carving for content-aware image resizing. In

ACM Transactions on graphics (TOG), Vol. 26. ACM, 10.
Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. 2009. Patch-

Match: A randomized correspondence algorithm for structural image editing. ACM
Transactions on Graphics (ToG) 28, 3 (2009), 24.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Zhou Bolei, Joshua B. Tenenbaum,William T.
Freeman, and Antonio Torralba. 2019. GAN Dissection: Visualizing and Understand-
ing Generative Adversarial Networks. In ICLR.

Andrew Brock, Je� Donahue, and Karen Simonyan. 2019. Large scale gan training for
high �delity natural image synthesis. (2019).

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. 2017. Neural photo
editing with introspective adversarial networks. In ICLR.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
2016. Infogan: Interpretable representation learning by information maximizing
generative adversarial nets. In NIPS.

Alexey Dosovitskiy and Thomas Brox. 2016. Generating images with perceptual
similarity metrics based on deep networks. In NIPS.

Frédo Durand and Julie Dorsey. 2002. Fast bilateral �ltering for the display of high-
dynamic-range images. In ACM transactions on graphics (TOG), Vol. 21. ACM, 257–
266.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image Style Transfer
Using Convolutional Neural Networks. CVPR (2016).

Jiahao Geng, Tianjia Shao, Youyi Zheng, Yanlin Weng, and Kun Zhou. 2018. Warp-
guided GANs for single-photo facial animation. In SIGGRAPH Asia. 231.

Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W Hasino�, and Frédo
Durand. 2017. Deep bilateral learning for real-time image enhancement. ACM
Transactions on Graphics (TOG) 36, 4 (2017), 118.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In
NIPS.

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2016. Let there be Color!:
Joint End-to-end Learning of Global and Local Image Priors for Automatic Image
Colorization with Simultaneous Classi�cation. ACM TOG 35, 4 (2016).

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2017. Globally and locally
consistent image completion. ACM Transactions on Graphics (TOG) 36, 4 (2017),
107.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-image
translation with conditional adversarial networks. In CVPR.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive growing
of gans for improved quality, stability, and variation. In ICLR.

Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator architecture
for generative adversarial networks. In CVPR.

Kevin Karsch, Varsha Hedau, David Forsyth, and Derek Hoiem. 2011. Rendering
synthetic objects into legacy photographs. ACM Transactions on Graphics (TOG) 30,
6 (2011), 157.

Natasha Kholgade, Tomas Simon, Alexei Efros, and Yaser Sheikh. 2014. 3D object
manipulation in a single photograph using stock 3D models. ACM Transactions on
Graphics (TOG) 33, 4 (2014), 127.

Tae-Hoon Kim and Sang Il Park. 2018. Deep context-aware descreening and rescreening
of halftone images. ACM Transactions on Graphics (TOG) 37, 4 (2018), 48.

Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In
ICLR.

Diederik P Kingma and Max Welling. 2014. Auto-encoding variational bayes. ICLR
(2014).

Jean-François Lalonde, Derek Hoiem, Alexei A Efros, Carsten Rother, John Winn, and
Antonio Criminisi. 2007. Photo clip art. ACM transactions on graphics (TOG) 26, 3
(2007), 3.

Anat Levin, Dani Lischinski, and Yair Weiss. 2004. Colorization using optimization. In
ACM transactions on graphics (tog), Vol. 23. ACM, 689–694.

Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and Jan Kautz. 2018. A closed-form
solution to photorealistic image stylization. In ECCV.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018. Spectral
normalization for generative adversarial networks. In ICLR.

Koki Nagano, Jaewoo Seo, Jun Xing, Lingyu Wei, Zimo Li, Shunsuke Saito, Aviral
Agarwal, Jens Fursund, Hao Li, Richard Roberts, and others. 2018. paGAN: real-time
avatars using dynamic textures. In SIGGRAPH Asia. 258.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. 2019. Semantic Image
Synthesis with Spatially-Adaptive Normalization. In CVPR.

Deepak Pathak, Philipp Krahenbuhl, Je� Donahue, Trevor Darrell, and Alexei A Efros.
2016. Context Encoders: Feature Learning by Inpainting. CVPR (2016).

Guim Perarnau, Joost van de Weijer, Bogdan Raducanu, and Jose M Álvarez. 2016.
Invertible conditional gans for image editing. In NIPS Workshop on Adversarial
Training.

Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson image editing. ACM
Transactions on graphics (TOG) 22, 3 (2003), 313–318.

Tiziano Portenier, Qiyang Hu, Attila Szabó, Siavash Arjomand Bigdeli, Paolo Favaro,
and Matthias Zwicker. 2018. Faceshop: Deep Sketch-based Face Image Editing. ACM
Transactions on Graphics (TOG) 37, 4 (July 2018), 99:1–99:13.

Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter Shirley. 2001. Color transfer
between images. IEEE Computer graphics and applications 21, 5 (2001), 34–41.

Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and James Hays. 2017. Scribbler:
Controlling Deep Image Synthesis with Sketch and Color. In CVPR.

Assaf Shocher, Nadav Cohen, and Michal Irani. 2018. “Zero-Shot” Super-Resolution
using Deep Internal Learning. In CVPR.

Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for
large-scale image recognition. In ICLR.

Michael W Tao, Micah K Johnson, and Sylvain Paris. 2010. Error-tolerant image
compositing. In ECCV.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 2018. Deep image prior. In
CVPR.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. 2018. High-Resolution Image Synthesis and Semantic Manipulation with
Conditional GANs. In CVPR.

Su Xue, Aseem Agarwala, Julie Dorsey, and Holly Rushmeier. 2012. Understanding and
improving the realism of image composites. ACM Transactions on Graphics (TOG)
31, 4 (2012), 84.

Fisher Yu, Ari Se�, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong
Xiao. 2015. Lsun: Construction of a large-scale image dataset using deep learning
with humans in the loop. arXiv preprint arXiv:1506.03365 (2015).

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. 2018.
Generative Image Inpainting With Contextual Attention. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Edward Zhang, Michael F Cohen, and Brian Curless. 2016a. Emptying, refurnishing,
and relighting indoor spaces. ACM Transactions on Graphics (TOG) 35, 6 (2016), 174.

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang,
and Dimitris Metaxas. 2017a. StackGAN: Text to Photo-realistic Image Synthesis
with Stacked Generative Adversarial Networks. In ICCV.

Richard Zhang, Phillip Isola, and Alexei A Efros. 2016b. Colorful Image Colorization.
In ECCV.

Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng, Angela S Lin, Tianhe Yu, and
Alexei A Efros. 2017b. Real-Time User-Guided Image Colorization with Learned
Deep Priors. ACM Transactions on Graphics (TOG) 9, 4 (2017).

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. 2016. Generative
Visual Manipulation on the Natural Image Manifold. In ECCV.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks. In ICCV.

ACM Trans. Graph., Vol. 38, No. 4, Article 59. Publication date: July 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Controllable Image Synthesis with GANs
	3.2 Reproducing a Natural Image with a Generator
	3.3 Image-Specific Adaptation
	3.4 Semantic Editing Operations: GANPaint

	4 Experimental Results
	4.1 Comparing Image-Specific Adaptation to Compositing
	4.2 Ablation Studies
	4.3 Qualitative Results
	4.4 Style Variants
	4.5 Recovering the Latent Vector z

	5 Limitations and Discussion
	Acknowledgments
	References

