
Semantic Product Search

Priyanka Nigam∗

nigamp@amazon.com
Amazon.com

Palo Alto, California, USA

Yiwei Song∗

ywsong@amazon.com
Amazon.com

Palo Alto, California, USA

Vijai Mohan
vijaim@amazon.com

Amazon.com
Palo Alto, California, USA

Vihan Lakshman
vihan@amazon.com

Amazon.com
Palo Alto, California, USA

Weitian (Allen) Ding2

weitiand@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Ankit Shingavi
ashingav@amazon.com

Amazon.com
Palo Alto, California, USA

Choon Hui Teo
choonhui@amazon.com

Amazon.com
Palo Alto, California, USA

Hao Gu
hggu@amazon.com

Amazon.com
Palo Alto, California, USA

Bing Yin
alexbyin@amazon.com

Amazon.com
Palo Alto, California, USA

ABSTRACT

We study the problem of semantic matching in product search,

that is, given a customer query, retrieve all semantically related

products from the catalog. Pure lexical matching via an inverted

index falls short in this respect due to several factors: a) lack of

understanding of hypernyms, synonyms, and antonyms, b) fragility

to morphological variants (e.g. łwoman" vs. łwomen"), and c) sen-

sitivity to spelling errors. To address these issues, we train a deep

learning model for semantic matching using customer behavior

data. Much of the recent work on large-scale semantic search using

deep learning focuses on ranking for web search. In contrast, seman-

tic matching for product search presents several novel challenges,

which we elucidate in this paper. We address these challenges by

a) developing a new loss function that has an inbuilt threshold to

differentiate between random negative examples, impressed but

not purchased examples, and positive examples (purchased items),

b) using average pooling in conjunction with n-grams to capture

short-range linguistic patterns, c) using hashing to handle out of vo-

cabulary tokens, and d) using a model parallel training architecture

to scale across 8 GPUs. We present compelling offline results that

demonstrate at least 4.7% improvement in Recall@100 and 14.5%

improvement in mean average precision (MAP) over baseline state-

of-the-art semantic search methods using the same tokenization

method. Moreover, we present results and discuss learnings from

online A/B tests which demonstrate the efficacy of our method.

CCS CONCEPTS

· Information systems → Retrieval models and ranking; ·

Applied computing→ Electronic commerce.

∗Both authors contributed equally to this research.
2This work was done when the author was at Amazon.com

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’19, August 4ś8, 2019, Anchorage, AK, USA

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6201-6/19/08.
https://doi.org/10.1145/3292500.3330759

KEYWORDS

Semantic Matching, Product Search, Neural Information Retrieval

ACM Reference Format:

Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman,Weitian (Allen)

Ding, Ankit Shingavi, Choon Hui Teo, Hao Gu, and Bing Yin. 2019. Semantic

Product Search. In The 25th ACM SIGKDD Conference on Knowledge Discov-

ery and Data Mining (KDD ’19), August 4ś8, 2019, Anchorage, AK, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3292500.3330759

1 INTRODUCTION

At a high level, as shown in Figure 1, a product search engine works

as follows: a customer issues a query, which is passed to a lexical

matching engine (typically an inverted index [17, 30]) to retrieve

all products that contain words in the query, producing a match set.

The match set passes through stages of ranking, wherein top results

from the previous stage are re-ranked before themost relevant items

are finally displayed. It is imperative that the match set contain a

relevant and diverse set of products that match the customer intent

in order for the subsequent rankers to succeed. However, inverted

index-based lexical matching falls short in several key aspects:

• Lack of understanding of hypernyms (generalizations of

words), synonyms (different words with the same meaning),

and antonyms (words that have opposite meanings). For

example, łsneakers" might match the intent of the query

running shoes, but may not be retrieved. Similarly, a łred

dress" matches the semantic intent of the query burgundy

dress and yet is not retrieved by a lexical matching engine.

Finally, łlatex free examination glovesž do not match the

intent of the query latex examination gloves, and yet are

retrieved simply because all the words in the query are also

present in the product title and description.

• Fragility tomorphological variants (e.g. łwoman" vs. łwomen").

One can address this issue to some extent by applications of

stemming or lemmatization. However, stemming algorithms

are often imperfect and lead to information loss and errors.

For instance, a stemmer that truncates nouns into their sin-

gular form might transform the query łreading glasses" into

łreading glass" and fail to return relevant results. To be viable

https://doi.org/10.1145/3292500.3330759
https://doi.org/10.1145/3292500.3330759

in production, these approaches typically require numer-

ous hand-crafted rules that may become obsolete and fail to

generalize to multiple languages.

• Sensitivity to spelling errors. According to some estimates

of web search logs [3, 4], 10-15% of queries are misspelled.

This leads to customer confusion (why are there no results

for the query łrred drressž?) and frustration. While modern

spell-correctionmethods can reduce the problem, a matching

engine that handles spelling errors would be simpler.

In this paper, we address the question: Given rich customer behavior

data, can we train a deep learning model to retrieve matching

products in response to a query? Intuitively, there is reason to

believe that customer behavior logs contain semantic information;

customers who are intent on purchasing a product circumvent

the limitations of lexical matching by query reformulation or by

deeper exploration of the search results. The challenge is the sheer

magnitude of the data as well as the presence of noise, a challenge

that modern deep learning techniques address very effectively.

Product search is different from web search as the queries tend

to be shorter and the positive signals (purchases) are sparser than

clicks. Models based on conversion rates or click-through-rates may

incorrectly favor accessories (like a phone cover) over the main

product (like a cell phone). This is further complicated by shop-

pers maintaining multiple intents during a single search session:

a customer may be looking for a specific television model while

also looking for accessories for this item at the lowest price and

browsing additional products to qualify for free shipping. A prod-

uct search engine should reduce the effort needed from a customer

with a specific mission (narrow queries) while allowing shoppers

to explore when they are looking for inspiration (broad queries).

As mentioned, product search typically operates in two stages:

matching and ranking. Products that contain words in the query

(Qi) are the primary candidates. Products that have prior behavioral

associations (products bought or clicked after issuing a query Qi)

are also included in the candidate set. The ranking step takes these

candidates and orders them using a machine-learned rank function

to optimize for customer satisfaction and business metrics.

We present a neural network trained with large amounts of pur-

chase and click signals to complement a lexical search engine in

ad hoc product retrieval. Our first contribution is a loss function

with a built-in threshold to differentiate between random negative,

impressed but not purchased, and purchased items. Our second con-

tribution is the empirical result that recommends average pooling

in combination with n-grams that capture short-range linguistic

patterns instead of more complex architectures. Third, we show

the effectiveness of consistent token hashing in Siamese networks

for zero-shot learning and handling out of vocabulary tokens.

In Section 2, we highlight related work. In Section 3, we describe

our model architecture, loss functions, and tokenization techniques

including our approach for unseen words. We then introduce the

readers to the data and our input representations for queries and

products in Section 4. Section 5 presents the evaluation metrics and

our results. We provide implementation details and optimizations

to efficiently train the model with large amounts of data in Section

6. Finally, we conclude in Section 7 with a discussion of future work.

Figure 1: System architecture for augmenting product

matching using semantic matching

2 RELATED WORK

There is a rich literature in natural language processing (NLP) and

information retrieval (IR) on capturing the semantics of queries and

documents. Word2vec [18] garnered significant attention by demon-

strating the use of word embeddings to capture semantic structure;

synonyms cluster together in the embedding space. This technique

was successfully applied to document ranking for web search with

the DESM model [20]. Building from the ideas in word2vec, Diaz

et al. [6] trained neural word embeddings to find neighboring words

to expand queries with synonyms. Ultimately, based on these recent

advancements and other key insights, the state-of-the-art models

for semantic search can generally be classified into three categories:

(1) Latent Factor Models: Nonlinear matrix completion ap-

proaches that learn query and document-level embeddings

without using their content.

(2) Factorized Models: Separately convert queries and docu-

ments to low-dimensional embeddings based on content.

(3) Interaction Models: Build interaction matrices between

the query and document text and use neural networks to

mine patterns from the interaction matrix

Deerwester et al. [5] introduced Latent Semantic Analysis (LSA),

which involves computing a low-rank factorization of a term-document

matrix to identify semantic concepts and was further refined by

[1, 7] and extended by ideas from Latent Dirichlet Allocation (LDA)

[2] in [27]. In 2013, Huang et al. [11] published the seminal paper

in the space of factorized models by introducing the Deep Semantic

Similarity Model (DSSM). Inspired by LSA and Semantic Hashing

[23], DSSM involves training an end-to-end deep neural network

with a discriminative loss to learn a fixed-width representation

for queries and documents. Fully connected units in the DSSM ar-

chitecture were subsequently replaced with Convolutional Neural

Networks (CNNs) [10, 24] and Recurrent Neural Networks (RNNs)

[21] to respect word ordering. In an alternate approach, which ar-

ticulated the idea of interaction models, Guo et al. [9] introduced

the Deep Relevance Matching Model (DRMM) which leverages an

interaction matrix to capture local term matching within neural ap-

proaches which has been successfully extended by MatchPyramid

[22] and other techniques [12ś14, 26, 29]. Nevertheless, these inter-

action methods require memory and computation proportional to

the number of words in the document and hence are prohibitively

expensive for online inference. In addition, Duet [19] combines

the approaches of DSSM and DRMM to balance the importance of

semantic and lexical matching. Despite obtaining state-of-the-art

results for ranking, these methods report limited success on ad hoc

retrieval tasks [19] and only achieve a sub-50% Recall@100 and

MAP on our product matching dataset, as shown with the ARC-II

and Match Pyramid baselines in Table 5.

While we frequently evaluate our hypotheses on interaction

matrix-based methods, we find that a factorized model architecture

achieves comparable performance while only requiring constant

memory per product. Hence, we only present our experiments as it

pertains to factorized models in this paper. Although latent factor

models improve ranking metrics due to their ability to memorize

associations between the query and the product, we exclude it

from this paper as we focus on the matching task. Our choice of

model architecture was informed by empirical experiments while

constrained by the cost per query and our ability to respond within

20 milliseconds for thousands of queries per second.

3 MODEL

3.1 Neural Network Architecture

Our neural network architecture is shown in Figure 2. As in the

distributed arm of the Duet model, our first model component is

an embedding layer that consists of |V | × N parameters where V

is the vocabulary and N is the embedding dimension. Each row

corresponds to the parameters for a word. Unlike Duet, we share

our embeddings across the query and product. Intuitively, sharing

the embedding layer in a Siamese network works well, capturing

local word-level matching even before training these networks.

Our experiments in Table 7 confirm this intuition. We discuss the

specifics of our query and product representation in Section 4.

To generate a fixed length embedding for the query (EQ) and

the product (EP) from individual word embeddings, we use average

pooling after observing little difference (<0.5%) in both MAP and

Recall@100 relative to recurrent approaches like LSTM and GRU

(see Table 2). Average pooling also requires far less computation,

reducing training time and inference latency. We reconciled this

departure from state-of-the-art solutions for Question Answering

and other NLP tasks through an analysis that showed that, unlike

web search, both query and product information tend to be shorter,

without long-range dependencies. Additionally, product search

queries do not contain stop words and typically require every query

word (or its synonym) to be present in the product.

Queries typically have fewer words than the product content.

Because of this, we observed a noticeable difference in the magni-

tude of query and product embeddings. This was expected as the

query and the product models were shared with no additional pa-

rameters to account for this variance. Hence, we introduced Batch

Normalization layers [15] after the pooling layers for the query

and the product arms. Finally, we compute the cosine similarity

between EQ and EP . During online A/B testing, we precompute EP

for all the products in the catalog and use a k-Nearest Neighbors

algorithm to retrieve the most similar products to a given queryQi .

3.2 Loss Function

A critical decision when employing a vector space model is defining

a match, especially in product search where there is an important

Figure 2: Illustration of neural network architecture used

for semantic search

tradeoff between precision and recall. For example, accessories like

mounts may also be relevant for the query łled tv.ž

Pruning results based on a threshold is a common practice to

identify the match set. Pointwise loss functions, such as mean

squared error (MSE) or mean absolute error (MAE), require an

additional step post-training to identify the threshold. Pairwise loss

functions do not provide guarantees on the magnitude of scores

(only on relative ordering) and thus do not work well in practice

with threshold-based pruning. Hence, we started with a pointwise

2-part hinge loss function as shown in Equation (1) that maximizes

the similarity between the query and a purchased product while

minimizing the similarity between a query and random products.

Define ŷ := cos
(

EQ ,EP
)

, and let y = 1 if product P is purchased

in response to query Q , and y = 0 otherwise. Furthermore let

ℓ+ (y) := (−min (0,y − ϵ+))
m , and ℓ− (y) := max (0,y − ϵ−)

m for

some predefined thresholds ϵ+ and ϵ− andm ∈ {1, 2}. The two part

hinge loss can be defined as

L (ŷ,y) := y · ℓ+ (ŷ) + (1 − y) · ℓ− (ŷ) (1)

Intuitively, the loss ensures that when y = 0 then ŷ is less than ϵ−
and when y = 1 then ŷ is above ϵ+. After some empirical tuning on

a validation set, we set ϵ+ = 0.9 and ϵ− = 0.2.

As shown in Table 1, the 2-part hinge loss improved offline

matching performance by more than 2X over the MSE baseline.

However in Figure 3, a large overlap in score distribution between

positives and negatives can be seen. Furthermore, the score distribu-

tion for negatives appeared bimodal. After manually inspecting the

Figure 3: Score distribution histogram shows large overlap

for positives (right) and negatives (left) alongwith a bimodal

distribution for negatives when using the 2-part hinge

negative training examples that fell in this region, we uncovered

that these were products that were impressed but not purchased

by the customer. From a matching standpoint, these products are

usually valid results to show to customers. To improve the model’s

ability to distinguish positives and negatives considering these two

classes of negatives, we introduced a 3-part hinge loss:

L (ŷ,y) := I+(y) · ℓ+ (ŷ) + I
− (y) · ℓ− (ŷ) + I0 (y) · ℓ0 (ŷ) (2)

where I+ (y), I− (y), and I0 (y) denote indicators signifying if the

product P was purchased, not impressed and not purchased, and

impressed (but not purchased) in response to the query Q , respec-

tively, and ℓ0 (ŷ) := max (0, ŷ − ϵ0)
m . Based on the 2-part hinge

score distribution, ϵ0 was set to 0.55 with ϵ+ = 0.9 and ϵ− = 0.2 as

before. The effectiveness of this strategy can be seen in Figure 4,

where one can observe a clear separation in scores between random

and impressed negatives vs positives.

Figure 4: Score distribution shows clear separation between

purchased (right), seen but not purchased (center), and irrel-

evant products (left) when using the 3-part hinge

3.3 Tokenization Methods

In this section, we describe our tokenization methodology, or the

procedure by which we break a string into a sequence of smaller

components such as words, phrases, sub-words, or characters. We

combine word unigram, word n-gram, and character trigram fea-

tures into a bag of n-grams and use hashing to handle the large

vocabulary size, similar to the fastText approach [16].

3.3.1 Word Unigram. This is the basic form of tokenization where

the input query or product title is tokenized into a list of words.

For example, the word unigrams of "artistic iphone 6s case" are

["artistic", "iphone", "6s", "case"].

3.3.2 Word N-gram. In a bag of words model like ours, word un-

igrams lose word ordering. Instead of using LSTMs or CNNs to

address this issue, we opted for n-grams as in [25]. For example,

the word bigrams of "artistic iphone 6s case" are ["artistic#iphone",

"iphone#6s", "6s#case"] and the trigrams are ["artistic#iphone#6s",

"iphone#6s#case"]. Thesen-grams capture phrase-level information;

for example if łfor iphonež exists in the query, the model can infer

that the customer’s intention is to search for iphone accessories

rather than iphone Ð an intent not captured by a unigram model.

3.3.3 Character Trigram. Character trigram embeddings were pro-

posed by the DSSM paper [11]. The string is broken into a list of

all three-character sequences. For the example "artistic iphone 6s

case", the character trigrams are ["#ar", "art", "rti", "tis", "ist", "sti",

"tic", "ic#", "c#i", "#ip", "iph", "pho", "hon", "one", "ne#", "e#6", "#6s",

"6s#", "s#c", "#ca", "cas", "ase", "se#"]. Character trigrams are robust

to typos (łiphionež and łiphonrž) and handle compound words

(łamazontvž and łfiretvstickž) naturally. Another advantage in our

setting is the ability to capture similarity of model parts and sizes.

3.3.4 Handling Unseen Words. It is computationally infeasible to

maintain a vocabulary that includes all the possible wordn-grams as

the dictionary size grows exponentially with n. Thus, we maintain

a "short" list of several tens or hundreds of thousands of n-grams

based on token frequency. A common practice for most NLP ap-

plications is to mask the input or use the embedding from the 0th

location when an out-of-vocabulary word is encountered. Unfortu-

nately, in Siamese networks, assigning all unknown words to the

same shared embedding location results in incorrectly mapping

two different out-of-vocabulary words to the same representation.

Hence, we experimented with using the łhashing trick" [28] popu-

larized by Vowpal Wabbit to represent higher order n-grams that

are not present in the vocabulary. In particular, we hash out-of-

vocabulary tokens to additional embedding bins. The combination

of using a fixed hash function and shared embeddings ensures that

unseen tokens that occur in both the query and document map to

the same embedding vector. During our initial experiments with

a bin size of 10,000, we noticed that hashing collisions incorrectly

promoted irrelevant products for queries, led to overfitting, and did

not improve offline metrics. However, setting a bin size 5-10 times

larger than the vocabulary size improved the recall of the model.

3.3.5 Combining Tokenizations. There are several ways to combine

the tokens from these tokenization methods. One could create

separate embeddings for unigrams, bigrams, character trigrams,

etc. and compute a weighted sum over the cosine similarity of

these n-gram projections. But we found that the simple approach

of combining all tokens in a single bag-of-tokens performs well.

We conclude this section by referring the reader to Figure 5, which

walks through our tokenization methods for the example łartistic

iphone 6s casež. In Table 6, we show example queries and products

retrieved to highlight the efficacy of our best model to understand

synonyms, intents, spelling errors and overall robustness.

Figure 5: Aggregation of different tokenization methods il-

lustrated with the processing of łartistic iphone 6s casež

4 DATA

We use 11 months of search logs as training data and 1 month as

evaluation. We sample 54 billion query-product training pairs. We

preprocess these sampled pairs to 650 million rows by grouping the

training data by query-product pairs over the entire time period

and using the aggregated counts as weights for the pairs. We also

decrease the training time by 3X by preprocessing the training data

into tokens and using mmap to store the tokens. More details on our

best practices for reducing training time can be found in Section 6.

For a given customer query, each product is in exactly one of

three categories: purchased, impressed but not purchased, or ran-

dom. For each query, we target a ratio of 6 impressed and 7 random

products for every query-product purchase. We sample this way

to train the model for both matching and ranking, although in this

paper we focus on matching. Intuitively, matching should differen-

tiate purchased and impressed products from random ones; ranking

should differentiate purchased products from impressed ones.

We choose the most frequent words to build our vocabulary, re-

ferred to as |V |. Each token in the vocabulary is assigned a unique

numeric token id, while remaining tokens are assigned 0 or a hash-

ing based identifier. Queries are lowercased, split on whitespace,

and converted into a sequence of token ids. We truncate the query

tokens at the 99th percentile by length. Token vectors that are

smaller than the predetermined length are padded to the right.

Products have multiple attributes, like title, brand, and color, that

are material to the matching process. We evaluated architectures

to embed every attribute independently and concatenate them to

obtain the final product representation. However, large variability in

the accuracy and availability of structured data across products led

to 5% lower recall than simply concatenating the attributes. Hence,

we decided to use an ordered bag of words of these attributes.

5 EXPERIMENTS

In this section we describe our metrics, training procedure, and the

results, including the impact of our method in production.

5.1 Metrics

We define two evaluation subtasks: matching and ranking.

(1) Matching: The goal of the matching task is to retrieve all

relevant documents from a large corpus for a given query. In

order to measure the matching performance, we first sample

a set of 20K queries. We then evaluate the model’s ability

to recall purchased products from a sub-corpus of 1 million

products for those queries. Note that the 1 million product

corpus contains purchased and impressed products for ev-

ery query from the evaluation period as well as additional

random negatives. We tune the model hyperparameters to

maximize Recall@100 and Mean Average Precision (MAP).

(2) Ranking: The goal of this task is to order a set of documents

by relevance, defined as purchase count conditioned on the

query. The set of documents contains purchased and im-

pressed products. We report standard information retrieval

ranking metrics, such as Normalized Discounted Cumulative

Gain (NDCG) and Mean Reciprocal Rank (MRR).

5.2 Results

In this section, we present the durable learnings from thousands

of experiments. We fix the embedding dimension to 256, weight

matrix initialization to Xavier initialization [8], batch size to 8192,

and the optimizer to ADAM with the configuration α = 0.001, β1 =

0.9, β2 = 0.999, ϵ = 10−8 for all the results presented. We refer to

the hinge losses defined in Section 3.2 withm = 1 andm = 2 as

the L1 and L2 variants respectively. Unigram tokenization is used

in Table 1 and Table 2, as the relative ordering of results does not

change with other more sophisticated tokenizations.

We present the results of different loss functions in Table 1.

We see that the L2 variant of each loss consistently outperforms

the L1. We hypothesize that L2 variants are robust to outliers in

cosine similarity. The 3-part hinge loss outperforms the 2-part

hinge loss in matching metrics in all experiments although the two

loss functions have similar ranking performance. By considering

impressed negatives, whose text is usually more similar to positives

than negatives, separately from random negatives in the 3-part

hinge loss, the scores for positives and random negatives become

better separated, as shown in Section 3.2. The model can better

differentiate between positives and random negatives, improving

Recall and MAP. Because the ranking task is not distinguishing

between relevant and random products but instead focuses on

ordering purchased and impressed products, it is not surprising

that the 2-part and 3-part loss functions have similar performance.

In Table 2, we present the results of using LSTM, GRU, and

averaging to aggregate the token embeddings. Averaging performs

Table 1: Loss Function Experiments using Unigram Tokenization and Average Pooling

Loss Recall MAP Matching NDCG Matching MRR Ranking NDCG Ranking MRR

BCE 0.586 0.486 0.695 0.473 0.711 0.954

MAE 0.044 0.020 0.275 0.192 0.611 0.905

MSE 0.238 0.144 0.490 0.377 0.680 0.948

2 Part L1 0.485 0.384 0.694 0.472 0.742 0.966

3 Part L1 0.691 0.616 0.762 0.536 0.760 0.971

2 Part L2 0.651 0.576 0.768 0.549 0.776* 0.973*

3 Part L2 0.735* 0.664* 0.791* 0.591* 0.772 0.973*

Table 2: Token Embedding Aggregation Experiments using Unigram Tokenization

Loss Pooling Recall MAP Matching NDCG Matching MRR Ranking NDCG Ranking MRR

MSE

ave 0.238 0.144 0.490 0.377 0.680 0.948

gru 0.105 0.052 0.431 0.348 0.700 0.951

lstm 0.102 0.048 0.404 0.286 0.697 0.948

3 Part L1

ave 0.691 0.616 0.762 0.536 0.760 0.971

gru 0.651 0.574 0.701 0.376 0.727 0.965

lstm 0.661 0.588 0.730 0.469 0.739 0.964

3 Part L2

ave 0.735 0.664 0.791* 0.591* 0.772 0.973

gru 0.739* 0.659 0.777 0.578 0.775* 0.975*

lstm 0.738 0.666* 0.767 0.527 0.775* 0.976*

Table 3: Tokenization Experiments with Average Pooling and 3 Part L2 Hinge Loss

Tokenization Recall MAP Matching NDCG Matching MRR Ranking NDCG Ranking MRR

Char Trigrams 0.673 0.586 0.718 0.502 0.741 0.955

Unigrams 0.735 0.664 0.791 0.591 0.772 0.973

Unigrams+Bigrams 0.758 0.696 0.784 0.577 0.768 0.974

Unigrams+Bigrams+Char Trigrams 0.764 0.707 0.800 0.615 0.794* 0.978

Unigrams+OOV 0.752 0.694 0.799 0.633 0.791 0.978

Unigrams+Bigrams+OOV 0.789 0.741 0.790 0.610 0.776 0.979

Unigrams+Bigrams+Char Trigrams+OOV 0.794* 0.745* 0.810* 0.659* 0.794* 0.980*

Unigrams(500K) 0.745 0.683 0.799 0.629 0.784 0.975

Word Unigrams(125K)+OOV(375K) 0.753 0.694 0.804 0.612 0.788 0.979

similar to or slightly better than recurrent units with significantly

less training time. Asmentioned in Section 3.1, in the product search

setting, queries and product titles tend to be relatively short, so

averaging is sufficient to capture the short-range dependencies that

exist in queries and product titles. Furthermore, recurrent methods

are more expressive but introduce specialization between the query

and title. Consequently, local word-level matching between the

query and the product title may not be not captured as well.

In Table 3, we compare the performance of using different tok-

enization methods. We use average pooling and the 3-part L2 hinge

loss. For each tokenization method, we select the top k terms by

frequency in the training data. Unless otherwise noted, k was set

to 125K, 25K, 64K, and 500K for unigrams, bigrams, character tri-

grams, and out-of-vocabulary (OOV) bins respectively. It is worth

noting that using only character trigrams, which was an essential

component of DSSM[11], has competitive ranking but not match-

ing performance compared to unigrams. Adding bigrams improves

matching performance as bigrams capture short phrase-level infor-

mation that is not captured by averaging unigrams. For example,

the unigrams for łchocolate milkž and łmilk chocolatež are the

same although these are different products. Additionally including

character trigrams improves the performance further as character

trigrams provide generalization and robustness to spelling errors.

Adding OOV hashing improves the matching performance as it

allows better generalization to infrequent or unseen terms, with

the caveat that it introduces additional parameters. To differentiate

between the impact of additional parameters and OOV hashing,

the last two rows in Table 3 compare 500K unigrams to 125K uni-

grams and 375K OOV bins. These models have the same number

of parameters, but the model with OOV hashing performs better.

In Table 4, we present the results of using batch normalization,

layer normalization, or neither on the aggregated query and prod-

uct embeddings. The łQuery Sortedž column refers to whether all

positive, impressed, and random negative examples for a single

query appear together or are shuffled throughout the data. The

best matching performance is achieved using batch normalization

and shuffled data. Using sorted data has a significantly negative

impact on performance when using batch normalization but not

when using layer normalization. Possibly, the batch estimates of

mean and variance are highly biased when using sorted data.

Finally, in Table 5, we compare the results of our model to four

baselines: DSSM [11], Match Pyramid [22], ARC-II [10], and our

model with frozen, randomly initialized embeddings. We only use

word unigrams or character trigrams in our model, as it is not

immediately clear how to extend the bag-of-tokens approach to

methods that incorporate ordering. We compare the performance of

using the 3-part L2 hinge loss to the original loss presented for each

model. Across all baselines, matching performance of the model

improves using the 3-part L2 hinge loss. ARC-II and Match Pyramid

ranking performance is similar or lower when using the 3-part loss.

Ranking performance improves for DSSM, possibly because the

original approach uses only random negatives to approximate the

softmax normalization. More complex models, like Match Pyramid

and ARC-II, had significantly lower matching and ranking perfor-

mance while taking significantly longer to train and evaluate. These

models are also much harder to tune and tend to overfit.

The embeddings in our model are trained end-to-end. Previous

experiments using other methods, including Glove and word2vec,

to initialize the embeddings yielded poorer results than end-to-end

training. When comparing our model with randomly initialized

to one with trained embeddings, we see that end-to-end training

results in over a 3X improvement in Recall@100 and MAP.

5.3 Online Experiments

We ran a total of three online match set augmentation experiments

on a large e-commerce website across three categories: toys and

games, kitchen, and pets. In all experiments, the conversion rate,

revenue, and other key performance indicators (KPIs) statistically

significantly increased. One challenge we faced with our semantic

search solution was weeding out irrelevant results to meet the pre-

cision bar for production search quality. To boost the precision of

the final results, we added guard rails through additional heuris-

tics and ranking models to filter irrelevant products. A qualitative

analysis of the augmented search results coupled with an increase

in relevant business metrics provided us with compelling evidence

that this approach contributed to our goal of helping customers

effortlessly complete their shopping missions.

6 TRAINING ACCELERATION

During our offline experiments, we saw an average of 10% improve-

ment in matching metrics by increasing the data from 200 million

to 1.2 billion query-product pairs. In this section, we describe our

multi-GPU training techniques for efficiently handling these larger

datasets. Most parameters for this model lie in the embedding layer

and hence data parallel training approaches have high commu-

nication overhead. Furthermore data parallel training limits the

embedding matrix size as the model must fit in a single GPU. The

simplicity of averaging pooling combined with the separability of

the Siamese architecture allow us to use model parallel training to

increase the throughput. Letting k represent the embedding dimen-

sion and n represent the number of GPUs, the similarity function

of our model is shown in equation 3. The embedding matrix is split

among the GPUs along the embedding dimension. The input is sent

to all GPUs to look up the partial token embeddings and average

them. Sending the input to all GPUs tends to be inexpensive as the

number of tokens is small in comparison with the token embed-

dings or the embedding matrix. Simply concatenating the partial

average embeddings across GPUs requires O(2k) communication

of floating point numbers per example in both forward and back-

ward propagation. Equation 6 and 7 show how instead the cosine

similarity can be decomposed to transmit only the partial-sums

and partial-sum-of-squares. With this decomposition, we incur a

constant communication cost of 3 scalars per GPU.

Sim(Q, P) = cos(EQ ,EP) (3)

cos(a,b) =
a · b

∥a∥2 ∥b∥2
=

k
∑

i=1
ai · bi

√

k
∑

i=1
a2i

√

k
∑

i=1
b2i

(4)

Splitting the cosine similarity computation across n GPUs:

r = k/n (5)

k
∑

i=1

ai · bi =

n
∑

j=1

r
∑

l=1

ar (j−1)+l · br (j−1)+l (6)

k
∑

i=1

a2i =

n
∑

j=1

r
∑

l=1

a2
r (j−1)+l (7)

Results from these experiments are shown in Figure 6. We ran

experiments on a single AWS p3.16xlarge machine with 8 NVIDIA

Tesla V100 GPUs (16GB), Intel Xeon E5-2686v4 processors, and

488GB of RAM. The training was run 5 times with 10 million exam-

ples. The median time, scaled to 1 billion examples, is reported.

To achieve scaling, we had to ensure that the gradient variables

were placed on the same GPUs as their corresponding operations.

This allows greater distribution of memory usage and computation

across all GPUs. Unsurprisingly, splitting the model across GPUs for

smaller embedding dimensions (<256) increases the overall training

time. But beyond an embedding dimension of 512, the communi-

cation overhead is less than the additional computational power.

Note that the training time is almost linear at a constant embedding

dimension per GPU. In other words, training with an embedding

dimension of 2048 on 2 GPUs and an embedding dimension of 1024

on 1 GPU have similar speeds. In Figure 6, this is shown by the

dotted lines connecting points with the same embedding dimension

per GPU. With ideal scaling, the lines would be horizontal.

Table 4: Normalization Layer Experiments

Query Sorted Normalization Recall MAP Matching NDCG Matching MRR Ranking NDCG Ranking MRR

T

batch 0.730 0.663 0.763 0.553 0.751 0.970

layer 0.782 0.733 0.817* 0.649 0.812* 0.982*

none 0.780 0.722 0.798 0.616 0.799 0.976

F

batch 0.794* 0.745* 0.810 0.659* 0.794 0.980

layer 0.791 0.743 0.807 0.629 0.797 0.980

none 0.784 0.728 0.803 0.639 0.803 0.976

Table 5: Comparison with Baselines

Model Loss Tokenization Recall MAP Matching NDCG Matching MRR Ranking NDCG Ranking MRR

Our Model
3 Part L2 Char Trigrams 0.673 0.586 0.718 0.502 0.741 0.955

3 Part L2 Unigrams 0.735 0.664 0.791 0.591 0.772 0.973

Our Model

(Random Emb)

3 Part L2 Char Trigrams 0.268 0.149 0.291 0.075 0.426 0.792

3 Part L2 Unigrams 0.207 0.107 0.249 0.052 0.412 0.778

DSSM [11]

Crossentropy‡ Char Trigrams‡ 0.647 0.537 0.576 0.278 0.589 0.903

3 Part L2 Char Trigrams 0.662 0.568 0.726 0.557 0.745 0.956

Crossentropy Unigrams 0.702 0.580 0.526 0.206 0.534 0.890

3 Part L2 Unigrams 0.702 0.614 0.704 0.492 0.738 0.960

Match

Pyramid [22]

BCE‡ Unigrams‡ 0.475 0.357 0.599 0.348 0.682 0.959

3 Part L2 Unigrams 0.562 0.450 0.611 0.358 0.654 0.956

ARC II [10]
Pairwise‡ Unigrams‡ 0.399 0.270 0.547 0.299 0.673 0.939

3 Part L2 Unigrams 0.465 0.348 0.577 0.353 0.671 0.936

‡ These are the results from the best model trained using the loss and tokenization methodology presented in the original paper.

7 CONCLUSION AND FUTUREWORK

We presented our semantic product search model for an online

retail store to improve product discovery with significant increases

in KPIs. We discussed intuitions, practical tradeoffs, and key in-

sights learned from many iterations of experiments. We introduced

a 3-part hinge loss and showed that it outperforms other variants

by deftly handling impressed but not purchased products. Fur-

thermore, we showed that hashing unseen tokens improves the

precision across different tokenization strategies. We observed sig-

nificant improvements to offline metrics by increasing the training

data and presented our data preprocessing approach to reduce train-

ing time. Finally, we presented our approach to training models

across multiple GPUs to enable learning with larger embedding

sizes and reduce the training time. In the future, we hope to improve

the precision of our models and eliminate the need for additional

heuristics to filter irrelevant results online. Our initial experiments

using self-attention mechanisms and positional encodings did not

show improvements in precision over our existing model, which

we posit further underscores the unique nature of product search

versus more traditional problems in IR and NLP. We will continue

exploring approaches for scaling both training and inference.

Figure 6: Training timewith various embedding dimensions

ACKNOWLEDGMENTS

Nan Chen, Abhinandan Patni, and Trishul Chilimbi were instru-

mental in gathering data, engineering our training platform, and in-

creasing the training speed. Yesh Dattatreya and Sunny Rajagopalan

helped in hyperparameter optmization. Guy Lebanon, Vishy Vish-

wanathan and Inderjit Dhillon served as advisors throughout the

Table 6: Example Queries and Matched Products

Query: make it bake it suncatchers

Comments: Robustness to Spelling Error

Query: healthy shampoo

Comments: Associates sulfate-free to healthy

Query: collapsible step ladder

Comments: Synonymous intent

Query: ninjago lego training kai minifigure

Comments: Drops uninformative token "training"

project. Scott Le Grand and Edward Kandrot provided guidance to

design and implement model parallel training.

REFERENCES
[1] Michael W Berry and Paul G Young. 1995. Using latent semantic indexing for

multilanguage information retrieval. Computers and the Humanities 29, 6 (1995),
413ś429.

[2] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.
Journal of machine Learning research 3, Jan (2003), 993ś1022.

[3] Silviu Cucerzan and Eric Brill. 2004. Spelling correction as an iterative process
that exploits the collective knowledge of web users. In Proceedings of the 2004
Conference on Empirical Methods in Natural Language Processing.

[4] Hercules Dalianis. 2002. Evaluating a spelling support in a search engine. In In-
ternational Conference on Application of Natural Language to Information Systems.
Springer, 183ś190.

[5] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and
Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the
American society for information science 41, 6 (1990), 391ś407.

[6] Fernando Diaz, Bhaskar Mitra, and Nick Craswell. 2016. Query expansion with
locally-trained word embeddings. arXiv preprint arXiv:1605.07891 (2016).

[7] Susan T Dumais, Todd A Letsche, Michael L Littman, and Thomas K Landauer.
1997. Automatic cross-language retrieval using latent semantic indexing. In AAAI
spring symposium on cross-language text and speech retrieval, Vol. 15. 21.

[8] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In In Proceedings of the International Con-
ference on Artificial Intelligence and Statistics (AISTATS?10). Society for Artificial
Intelligence and Statistics.

[9] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance
matching model for ad-hoc retrieval. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. ACM, 55ś64.

[10] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional
Neural Network Architectures for Matching Natural Language Sentences. In
Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2 (NIPS’14). MIT Press, Cambridge, MA, USA, 2042ś2050. http:
//dl.acm.org/citation.cfm?id=2969033.2969055

[11] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management. ACM, 2333ś2338.

[12] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. 2017. Pacrr:
A position-aware neural ir model for relevance matching. arXiv preprint
arXiv:1704.03940 (2017).

[13] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. 2017. Re-pacrr: A
context and density-aware neural information retrieval model. arXiv preprint
arXiv:1706.10192 (2017).

[14] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. 2018. Co-pacrr: A
context-aware neural ir model for ad-hoc retrieval. In Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining. ACM, 279ś287.

[15] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[16] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2017. Bag
of Tricks for Efficient Text Classification. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers. Association for Computational Linguistics, 427ś431.

[17] CDManning, R PRABHAKAR, and S HINRICH. 2008. Introduction to information
retrieval, volume 1 Cambridge University Press. Cambridge, UK (2008).

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111ś3119.

[19] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to match using
local and distributed representations of text for web search. In Proceedings of the
26th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1291ś1299.

[20] Bhaskar Mitra, Eric Nalisnick, Nick Craswell, and Rich Caruana. 2016. A dual
embedding space model for document ranking. arXiv preprint arXiv:1602.01137
(2016).

[21] Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen,
Xinying Song, and Rabab Ward. 2016. Deep sentence embedding using long
short-term memory networks: Analysis and application to information retrieval.
IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) 24, 4
(2016), 694ś707.

[22] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.
2016. Text Matching as Image Recognition.. In AAAI. 2793ś2799.

[23] Ruslan Salakhutdinov and Geoffrey Hinton. 2009. Semantic hashing. International
Journal of Approximate Reasoning 50, 7 (2009), 969ś978.

[24] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
A latent semantic model with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management. ACM, 101ś110.

[25] Grigori Sidorov, Francisco Velasquez, Efstathios Stamatatos, Alexander Gelbukh,
and Liliana Chanona-Hernández. 2014. Syntactic n-grams as machine learning
features for natural language processing. Expert Systems with Applications 41, 3
(2014), 853ś860.

[26] Shengxian Wan, Yanyan Lan, Jun Xu, Jiafeng Guo, Liang Pang, and Xueqi Cheng.
2016. Match-srnn: Modeling the recursive matching structure with spatial rnn.
arXiv preprint arXiv:1604.04378 (2016).

[27] Xing Wei and W Bruce Croft. 2006. LDA-based document models for ad-hoc
retrieval. In Proceedings of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, 178ś185.

[28] Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alex
Smola. 2009. Feature hashing for large scale multitask learning. arXiv preprint
arXiv:0902.2206 (2009).

[29] Liu Yang, Qingyao Ai, Jiafeng Guo, and W Bruce Croft. 2016. aNMM: Ranking
short answer texts with attention-based neural matching model. In Proceed-
ings of the 25th ACM International on Conference on Information and Knowledge
Management. ACM, 287ś296.

[30] Justin Zobel and Alistair Moffat. 2006. Inverted files for text search engines. ACM
computing surveys (CSUR) 38, 2 (2006), 6.

http://dl.acm.org/citation.cfm?id=2969033.2969055
http://dl.acm.org/citation.cfm?id=2969033.2969055

Table 7: Shared versus Decoupled Embeddings for Query and Product

Tokenization Loss Shared Recall MAP Matching NDCG Matching MRR Ranking NDCG Ranking MRR

Unigrams BCE
F 0.520 0.418 0.649 0.420 0.692 0.953

T 0.586 0.486 0.695 0.473 0.711 0.954

Unigrams MSE
F 0.131 0.069 0.389 0.307 0.690 0.956

T 0.238 0.144 0.490 0.377 0.680 0.948

Unigrams 2 Part L2
F 0.622 0.553 0.773 0.581 0.775 0.974

T 0.651 0.576 0.768 0.549 0.776 0.973

Unigrams 3 Part L2
F 0.730 0.662 0.771 0.593 0.766 0.972

T 0.735 0.664 0.791 0.591 0.772 0.973

Unigrams+Bigrams+

Char Trigrams+OOV
3 Part L2

F 0.781 0.739 0.799 0.639* 0.784 0.980

T 0.790* 0.743* 0.805* 0.625 0.794* 0.981*

Table 8: Impact of Out-of-Vocabulary Bin Size

Tokenization Recall MAP Matching NDCG Matching MRR Ranking NDCG Ranking MRR

Unigrams+Bigrams+Char Trigrams 0.764 0.707 0.800 0.615 0.794 0.978

Unigrams+Bigrams+Char Trigrams+5K OOV 0.767 0.711 0.802 0.617 0.800 0.979

Unigrams+Bigrams+Char Trigrams+10K OOV 0.774 0.714 0.811 0.633 0.804 0.979

Unigrams+Bigrams+Char Trigrams+50K OOV 0.777 0.725 0.810 0.637 0.807 0.981

Unigrams+Bigrams+Char Trigrams+100K OOV 0.784 0.733 0.817 0.629 0.807 0.982

Unigrams+Bigrams+Char Trigrams+250K OOV 0.790 0.740 0.814 0.623 0.804 0.980

Unigrams+Bigrams+Char Trigrams+500K OOV 0.790 0.743 0.805 0.625 0.794 0.981

A ADDITIONAL EXPERIMENTS

This section details additional experiments completed to determine

the model architecture and to tune model hyperparameters.

We demonstrate empirically in Table 7 that sharing the embed-

ding layer between the query and product arm tends to perform

better for matching results across multiple tokenizations and loss

functions. As we described previously, sharing the embedding layer

helps local word-level matching and generalization to unseen to-

kens when using OOV bins. Note that in this experiment, the num-

ber of model parameters was held constant. So the embedding

dimension was 256 for the shared embedding layer but 128 for each

of the decoupled query and product embedding layers.

In Table 8, we present the results of varying the OOV bin size.

We see that matching performance improves as the bin size in-

creases, although ranking performance peaks at lower bin sizes.

These results confirm the intuition that adding OOV hashing leads

to generalization to unseen tokens. This generalization improves

matching performance as there are fewer spurious matches result-

ing from OOV tokens mapping to the same bucket and/or simply

excluding OOV tokens.

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Neural Network Architecture
	3.2 Loss Function
	3.3 Tokenization Methods

	4 Data
	5 Experiments
	5.1 Metrics
	5.2 Results
	5.3 Online Experiments

	6 Training Acceleration
	7 Conclusion and Future Work
	Acknowledgments
	References
	A Additional Experiments

