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Semantic Provenance  
for eScience
Managing the Deluge of Scientific Data

Satya S. Sahoo,  
Amit Sheth,  
and Cory Henson
Kno.e.sis Center,  
Wright State University

Provenance information in eScience is metadata that’s critical to effectively 

manage the exponentially increasing volumes of scientific data from industrial-

scale experiment protocols. Semantic provenance, based on domain-specific 

provenance ontologies, lets software applications unambiguously interpret 

data in the correct context. The semantic provenance framework for eScience 

data comprises expressive provenance information and domain-specific 

provenance ontologies and applies this information to data management. The 

authors’ “two degrees of separation” approach advocates the creation of 

high-quality provenance information using specialized services. In contrast to 

workflow engines generating provenance information as a core functionality, 

the specialized provenance services are integrated into a scientific workflow on 

demand. This article describes an implementation of the semantic provenance 

framework for glycoproteomics. 

e Science, also known as cyber­
infrastructure, represents a par­
adigm shift in scientific research 

that lets scientists harness Web-based 
computing and data resources to 
achieve their objectives faster, more 
efficiently, and on an industrial scale. 
Using remote software and experi­
mental equipment, scientists can not 
only access but also generate and pro­
cess data from distributed sources. 
The resulting data deluge demands 
computing solutions that can use 
high-quality metadata — specifically, 
domain-specific provenance infor­
mation — to automatically interpret, 

integrate, and process data. Such so­
lutions bring real value to scientists 
by answering domain-specific queries 
effectively to support knowledge dis­
covery over large volumes of scientific 
data. But creating provenance infor­
mation of the requisite quality in the 
heterogeneous, distributed, and high-
throughput environment of eScience 
is a daunting challenge.

We argue that incorporating domain 
knowledge and ontological underpin­
ning in provenance using expressive 
domain-specific provenance ontologies 
is an approach equal to the challenge. 
This semantic provenance imposes a 
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formally defined domain-specific conceptual 
view on scientific data (domain semantics), 
mitigates or eliminates terminological hetero­
geneity, and enables the use of reasoning tools 
for knowledge discovery. Furthermore, we de­
fine a “two degrees of separation” approach for 
creating semantic provenance using special­
ized software tools. Unlike many prevalent 
workflow-engine-centric approaches, these 
tools refer to domain-specific provenance on­
tologies to create provenance information and 
are integrated into a scientific workflow on 
demand. 

We combine the essential aspects of high-
quality provenance — characteristics, a repre­
sentation model, the creation process, and usage 
— into a single semantic provenance framework. 
This framework will pave the way for software 
agents to interpret experimental data unam­
biguously for effective management of eScience 
data. We also describe an implementation of 
this framework — Spade (semantic provenance 
annotation of data in proteomics).

“Meaningful” Provenance for eScience 
The available worldwide infrastructure of com­
puting and data resources of eScience let sci­
entists collaborate in virtual laboratories.1,2 
Examples of such large-scale eScience projects 
include the Biomedical Informatics Research 
Network (www.nbirn.net), myGrid (www.my 
grid.org.uk), and TeraGrid (www.teragrid.org). 
The exponential increase in the scale and com­
plexity of experiments made possible by this 
infrastructure has resulted in a corresponding 
increase in the amount of scientific data gener­
ated; see, for example, https://cabig.nci.nih.gov/
inventory/inventory/data_resources and www.
nbirn.net/bdr/index.shtm. 

Figure 1 illustrates a high-throughput sci­
entific workflow for processing and analyzing 
proteomics data that generates hundreds of files 
per sample run (described later in detail). The 
rapidly increasing volume of data raises impor­
tant issues such as

How can we leverage the data for critical in­
sights that will in turn drive future research?
How can we seamlessly manage (compare, 
integrate, and process) large volumes of data 
generated by hundreds of distributed labora­
tories using heterogeneous starting materi­
als, equipment, protocols, and parameters?

•

•

It’s precisely these issues that we’ll address 
through the use of metadata — specifically, se­
mantic provenance information. 

Metadata and Provenance
Metadata’s critical role in managing large 
volumes of data has long been understood in 
library management (www.loc.gov/standards), 
geography (www.opengeospatial.org/standards/
gml), multimedia,3 and the biological sciences.4 
The database community has extensively ex­
plored the use of metadata to exchange, share, 
and integrate data from heterogeneous informa­
tion sources.3 Because traditional metadata de­
scriptions (such as electronic data-interchange 
formats) require manual interpretation, re­
searchers have proposed using semantic meta­

Biological sample
analysis by mass

spectometry
Raw binary

data

Convert binary
data to mzXML

format using
RedAW*

mzXML
data

Convert mzXML
to PeakList using

mzXML to
Other*

PeakLists

PeakList �lter

Processed
PeakLists

Database search
using Mascot*

Database
search
results

Statistical analysis
using Provalt*

Final
results

Biological
information

Data is acquired from mass spectrometer.
The format is native to the instrument used.

The native binary data is converted to a
standard XML-based intermediate format.

The data is converted to peak list format.
Instrument-speci�c algorithms are used.

Remove low-quality spectra from peak
list or determine the charge state

of the precursor ion.

Analysis of peak list by a database
search engine such as Mascot.

Analyze the peptide or
protein identi�cations.

Statistically analyze for proteomics results.

Process

Figure 1. Protocol for proteomics data analysis using a mass 
spectrometer. This high-throughput scientific workflow for 
processing and analyzing proteomics generates hundreds of  
files per sample run. (An asterisk indicates a third-party tool.)
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data to automate the integration of large-scale 
distributed data. 

Semantic metadata is “metadata that de­
scribes contextually relevant or domain-specific 
information about content (optionally) based on 
a[n]… ontology.”5 It not only mitigates termino­
logical heterogeneity but also enables software 
applications to “understand” and reason over it. 
Specific motivating factors for using semantic 
metadata are

to create a conceptual context to “capture 
domain knowledge and help impose a con­
ceptual semantic view on the underlying 
data”3 for accurate data interpretation; and
to support interoperability: semantic meta­
data is effectively an instance of ontology 
concepts or relationships, so the outcome 
from extensive research in ontology map­
ping and merging will enable easy integra­

•

•

tion of semantic metadata that subscribes to 
different ontologies.

Metadata in the form of provenance infor­
mation records the how, where, what, when, 
why, which, and by whom6 of data generated in 
a scientific experiment. Scientists can manu­
ally record provenance information, or software 
tools can automatically generate it. Scientists 
traditionally use provenance information, along 
with (implicit) domain expertise, to interpret 
and evaluate data accurately. Provenance infor­
mation also lets researchers verify and validate 
experimental procedures (see the “Related Proj­
ects in Provenance” sidebar). 

In the eScience informatics community, 
sustained research in provenance has led to 
many models for creating, representing, stor­
ing, and querying provenance (see http://twiki.
ipaw.info).7 Most current eScience approaches 
to provenance creation center on a “workflow-
engine perspective of the world.” So, the opera-
tions (in the form of Web services or scripts) 
orchestrated by the workflow engine are the 
principle actors in the resulting provenance 
descriptions, along with information about the 
input and output files. This approach not only 
ignores the multiple domain-specific relation­
ships that link the data, processes, and equip­
ment but also imposes a system-level view on 
what is essentially a scientific procedure. We 
term this category of provenance information 
system provenance, also sometimes called work-
flow provenance.8

Semantic Provenance
To be used effectively for managing large and 
growing volumes of data in eScience, prove­
nance information must be

Software-interpretable: Human mediation is 
inadequate to process, analyze, integrate, 
store, and query the petabytes of data and 
associated metadata generated by the in­
dustrial-scale processes in eScience. For 
software agents to be able to use metadata 
— specifically, provenance information — to 
manage eScience data, they must be able to 
“compute” over it.6

Expressive: Provenance information should 
be expressive enough to incorporate domain 
semantics of the data that will enable soft­
ware agents to use the provenance informa­

•

•

Related Projects in Provenance

The myGrid project Pedro1 was one of the earliest initiatives to 
create a process model (in UML) to capture domain details about 

a proteomics analysis protocol. The myGrid project has also iden-
tified provenance information as a platform for knowledge manage-
ment in eScience.2 

The Stanford Knowledge Provenance Infrastructure (KPI)3 is an 
example of provenance architecture focused on providing computable 
provenance information related to Web data such as news feeds for 
use by both agents and humans. KPI’s primary objective is to collect 
and provide the explanation associated with a piece of information,4 
which includes the source of data and any reasoning or inference proc
esses applied to the data. The project doesn’t use provenance informa-
tion for data management, which is the focus of our article. 

W.C. Tan discussed the classification of provenance information as 
fine-grained data provenance and coarse-grained workflow provenance.5 
Our definition of semantic provenance incorporates characteristics of 
both coarse- and fine-grained categories of provenance information.
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tion to accurately interpret eScience data in 
the correct context. 

To achieve these two objectives, we extend 
the notion of provenance information and com­
bine it with two important attributes of semantic 
metadata — domain knowledge and ontological 
underpinning (see Figure 2). We thus define 
semantic provenance as “information created 
with reference to a formal knowledge model 
or an ontology that imposes a domain-specific 
provenance view on scientific data. It consists 
of formally defined concepts linked together us­
ing named relationships with a set of rules to 
represent domain constraints.”

We illustrate the distinction between system 
provenance and semantic provenance using two 
types of queries. The first type is answered us­
ing system provenance; for example, “Find the 
original data from which result data X was de­
rived.” This query uses the workflow-centric 
provenance information that documents the in­
vocation order of processes, the input data, and 
the output data for each process. So, using the 
links connecting a process’s output data to its 
input data, a provenance-aware system could 
trace and identify the original data entity for 
result data X. Scientists typically use queries 
in this category to investigate the protocol that 
generated the data and to rerun a scientific 
workflow if needed for validation. 

The second type of query is answered using 
semantic provenance. Queries in this catego­
ry are complex and involve relationships that 
tie data, processes, and equipment parameters 
together using a domain-specific conceptual 
view. An example from the proteomics domain 
is, “Find proteins composed of peptides with N-
glycosylation consensus sequence {*N[^P][S/T]*} 
identified in samples labeled with O18.”

This query uses relationships between data 
entities that aren’t modeled in a workflow view 
of provenance information such as “a peptide is 
derived from a protein” and “proteins are identi­
fied from a particular sample.” Furthermore, the 
query constrains the samples (introduced in de­
tection equipment such as a mass spectrometer) 
to be labeled with O18 (an isotope of oxygen), 
which is again a domain-specific relationship. 

Note that in addition to incorporating do­
main-specific details, semantic provenance can 
also answer the first type of queries discussed.

We thus define semantic provenance (Sem-

Pro) to be a superset of system provenance 
(SysPro): SemPro ⊃ SysPro. Given the distinct 
limitations of the workflow-engine-centric view 
of provenance, we argue for a loosely coupled 
infrastructure for provenance creation using 
specialized services.

Two Degrees of Separation
Either the workflow engine or specialized an­
notation services can create provenance in­
formation.9 As we’ve discussed, provenance 
created with a workflow-engine-centric ap­
proach can’t answer queries that require use 
of domain semantics easily — if at all. Many 
teams participating in the Second International 
Provenance Challenge customized their prov­
enance-collection systems to answer the chal­
lenge queries using ad hoc terms such as “Warp 
Params 2” to denote provenance informa­
tion (see http://twiki.gridprovenance.org/bin/ 
view/Challenge/WebHome). 

We need a new strategy that decouples the 
task of generating high-quality semantic prov­
enance from the core functionality of workflow 

Domain-specific provenance ontologies

Semantic provenance

System
provenance

Conceptual context
(to address semantic

heterogeneity in multidatabases)

Comprehensive metadata
about data, processes,
and agents involved in
a scientific workflow

Impose a
domain-specific
conceptual view
on scientific data

Record of
data and process
provenance
(plain text,
handwritten notes)

Metadata for
verification of data
and validation of

process in eScience

Metadata in large-scale
distributed data
integration and
management

Ontologies

Figure 2. The evolution of semantic provenance. This evolution 
can be traced to metadata’s role in both integrating data in 
distributed environments and in verifying data and validating 
processing in eScience.
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engines. The task of semantic provenance cre­
ation should be managed by specialized services 
that refer to one or more domain-specific prove­
nance ontologies and can be integrated into sci­
entific workflows on demand. Then, a workflow 
engine, instead of providing native support for 
provenance creation, would feature a set of ser­
vices and a suite of domain-specific provenance 
ontologies as resources that could be flexibly in­
corporated into a scientific workflow according 
to user needs. This service-oriented architec­
ture (SOA) represents a scalable, adaptable, and 
workflow-engine-agnostic solution for eScience 
provenance. We term this approach “two degrees 
of separation” between the provenance informa­
tion and the workflow engine.

The two-degrees-of-separation approach is 
also founded on the Component-Based Software 
Engineering principle and on recent develop­
ments in service-oriented computing (SOC). The 
CBSE approach is based on reusable, loosely 
coupled, independent components for software 
system development.10 The Web-services-based 
SOA approach realizes the CBSE approach’s 
objectives. Provenance-generation tools im­
plemented as specialized Web services take 
advantage of the extensive and comprehensive 
Web services ecology already in place featuring 
representation schema, communication stan­
dards, and a registry standard. 

Some workflow engines’ use of Web Ser­
vices Description Language (WSDL)-based 
descriptions to create provenance is already 
constrained by the ambiguous data-typing 
of parameters (often as a “string” data type). 

Furthermore, the SOC community is rapidly 
adopting “lightweight” representational state 
transfer (REST) services as an alternative to a 
“heavyweight” WSDL-based architecture. Un­
like a predefined contract in the WSDL-based 
approach, consisting of precondition, post­
condition, and I/O parameters, REST services 
have minimal textual descriptions. Workflow 
engines relying purely on WSDL descriptions 
to derive provenance information might not be 
a sustainable approach.

The Semantic Provenance Framework
We describe the semantic provenance frame­
work for eScience along three fundamental di­
mensions (see Figure 3): 

semantic provenance annotation,
domain provenance ontologies, and 
usage. 

The first dimension involves a set of special­
ized tools plugged into a scientific workflow 
on demand to create semantic-provenance in­
formation. Extracting comprehensive metadata 
from multiple sources, such as generated scien­
tific data and Web forms (for parameter specifi­
cations, equipment details, project details, and 
so forth) is another important element of this 
dimension. 

The second dimension uses domain-specific 
provenance ontologies to model scientific pro­
cesses, data (including temporal information), 
and agents as formally defined concepts linked 
together using named relationships. 

In the third dimension, software agents use 
reasoning tools to process the semantic-prove­
nance information and answer complex domain 
queries. They can also use semantic-provenance 
information to compare, integrate, retrieve, and 
visualize scientific data.

This semantic-provenance framework achieves 
the important requirements identified by the 
proposed Open Provenance Model (OPM), part 
of the international provenance challenge (see 
http://twiki.ipaw.info/bin/view/Challenge/
OPM). It also addresses many nonfunctional 
requirements using the rich set of publicly 
available resources that the Semantic Web re­
search community has created. 

Semantic provenance addresses four OPM re­
quirements. The first is provenance information 
interoperability. Using ontology schema map­

•
•
•

Agent (continuant)
For example, a sensor

Process (occurrent)
For example, �ltering or merging

Data (continuant)
For example, a temperature reading

For example:
Time         Space      Theme

Semantic provenance annotation

Domain provenance ontologies

Reasoning, query answering

Integration, visualization
Trust, securityApplications

Figure 3. The three dimensions of the semantic provenance 
framework. One dimension represents semantic provenance 
annotations, another represents domain provenance ontologies, 
and the third dimension describes the different categories of usage.
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ping and merging techniques (www.ontology 
matching.org), semantic provenance from different 
workflows will be interoperable, so the eScience 
community can share and integrate them. 

The second requirement addressed is ease of 
application development. The wide availability 
of tools for Semantic Web resources, such as the 
Jena toolkit (http://jena.sourceforge.net/) and 
Sesame (http://openRDF.org), make it easier to 
develop applications.

The well-defined semantics of the Resource 
Description Framework (RDF) model,11 and ex­
pressive formal-logic-based OWL language, ad­
dress the next requirement, precise description 
of provenance information.

The final OPM requirement addressed is in-
ference capability and digital representation 
of provenance. Software applications can use 
tools such as Racer (www.sts.tu-harburg.de/~r.
f.moeller/racer), Pellet (http://pellet.owldl.com), 
and FaCT++ (http://owl.man.ac.uk/factplusplus) 
to perform reasoning over semantic provenance. 
Because digital representation is a foundational 
characteristic of the Semantic Web, semantic 
provenance supports digital representation of 
provenance information.

Semantic provenance also addresses three 
nonfunctional requirements. The first is publicly 
available ontologies. The set of publicly available 
ontologies listed on open biomedical ontologies 
(OBO) at the National Center for Biomedical On­
tologies (NCBO; www.bioontology.org) represent 
a tremendous research effort and should be re­
used for life sciences domain provenance. Many 
other domains that use the eScience platform 
are also developing high-quality ontologies such 
as in geospatial sciences (www.w3.org/2005/ 
Incubator/geo/XGR-geo-ont) and environmental 
sciences (http://sweet.jpl.nasa.gov).

The next nonfunctional requirement ad­
dressed is storage and querying resources. The 
SPARQL query language (www.w3.org/TR/
rdf-sparql-query) has been accepted as a W3C 
recommendation for querying RDF resources. 
There are multiple storage solutions available 
for Semantic Web resources including Oracle 
11g (www.oracle.com/technology/products/da­
tabase/oracle11g), Kowari (www.kowari.org), 
Virtuoso RDF (http://virtuoso.openlinksw.com/
wiki/main/Main/VOSRDF), and Jena.

Finally, semantic provenance supports vi-
sualization tools for Semantic Web resources. 
Many open source applications have been de­

veloped for visualization and browsing Seman­
tic Web data. Some examples projects include 
Welkin (http://simile.mit.edu/welkin), multiple 
plug-in tools for the Protégé environment 
(http://protege.stanford.edu), and Semantic An­
alytics Visualization (SAV; http://lsdis.cs.uga.
edu/projects/semvis).

Spade
Here, we describe a realization of the semantic 
provenance framework in the glycoproteomics 
domain.

Background
Mass spectrometry (ms) is an analytical pro­
cedure for proteomics data to study protein 
structure and posttranslational modifications. 
Software tools analyze raw data produced by a 
mass spectrometer in a multistep process that 
yields a list of identified entities and their quan­
tification. The protocol that scientists at the 
Complex Carbohydrate Research Center (CCRC) 
follow for protein identification from ms data 
(Figure 1) is typical in proteomics research. This 
high-throughput process might generate more 
than 500 data files from a single sample.

Scientists originally conducted this analyti­
cal procedure manually by transferring data 
across distributed systems and then invoking 
software tools. The scientists, who were respon­
sible for keeping track of each result file across 
multiple projects, often spent frustratingly long 
hours searching for a previous result or trying 
to correlate results using handwritten notes. We 
completely automated this analytical process as 
a scientific workflow using Semantic Web ser­
vices (Web services annotated with ontological 
concepts) orchestrated using the Taverna work­
flow engine (http://taverna.sourceforge.net). 

Many prior efforts have automated scientific 
protocols, and workflow-based automation in 
itself isn’t novel; what’s new is the support for 
semantic provenance. To help scientists manage 
the large volumes of data using provenance in­
formation, we developed the ProPreO proteomics 
provenance ontology (described in the next sec­
tion).11 Next, we implemented a set of semantic-
provenance creation services that are plugged 
in at each intermediate step of the workflow (see 
Figure 4). This infrastructure is Spade.

Spade creates semantic provenance in two 
phases. The first phase is entity extraction. Rel­
evant descriptions for creating provenance in­
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formation — such as parameter details, project 
descriptions, and identified biological entities 
(for example, protein groups) — are extracted 
either from Web forms that users fill out at the 
start of the workflow or from data files gener­
ated during the sample run. These entities are 
categorized as instances of ProPreO ontology 
classes using class membership relations based 
on a set of heuristic rules. The entity extraction 
and classification at each step of the workflow 
results in an aggregated list of ProPreO ontol­
ogy class instances at the end of the workflow.

During the second phase, the provenance-
creation services assert named relationships 
that apply between two entities (categorized 
as instances of ProPreO classes in the previous 
step), using the ProPreO ontology schema as 
reference. We use Jena to traverse the ontology 
schema and identify the correct relationship 
between two entities.

The semantic provenance thus created during 
each sample run is represented as RDF triples and 
is loaded after conversion to Notation3 (N3) format 
(using Jena) into the Oracle 10g database (www.
oracle.com/technology/sof tware/products/ 
database/oracle10g). We currently use the SPAR­

QL query interface supported by the Oracle 10g 
(Release 2) database to query the semantic prov­
enance, but we’re developing a more intuitive, 
graphical query interface for scientists.

The ProPreO ontology
The ProPreO ontology is the central resource 
that underpins semantic provenance in Spade. 
ProPreO is a large domain-specific provenance 
ontology12 with three primary concepts to model 
proteomics data analysis: data, tasks, and agents 
(which initiate or participate in task execution). 
ProPreO currently has approximately 490 class­
es and 35 named relationships with 145 con­
straints, such as class-level restrictions. It’s also 
populated with 3.1 million instances of ProPreO: 
tryptic peptide. (Program-code font indicates 
ontological terms here and throughout this sec­
tion.) ProPreO has been released for community 
use and is listed at the OBO at NCBO.

We describe the CCRC proteomics data-
analysis procedure as modeled in the ProPreO 
ontology (see Figure 5) to illustrate the expres­
siveness of semantic provenance in Spade. The 
analysis procedure yields a set of peptides and 
protein groups (ProValt_output_data) gener­
ated by the algorithm ProValt (ProValt), which 
statistically analyzes the peptide or protein 
identifications made by the Mascot database 
search engine in the previous step. The search 
engine performs tasks (data_classification 
and data_correlation) to analyze peak-list 
data (ms-ms_peak_list) to identify peptides 
or proteins that are represented as records in 
a protein database (protein_sequence_data-
base). The database search engine and ProValt 
each use a set of operating parameters to gen­
erate the data sets. These parameter sets (input 
_operating_parameter_collection) are re­
lated to the computational tasks via the named 
relationship (has_input_operating_parameter 
_collection). The original peak lists are creat­
ed by a task implemented by peak-list extraction 
algorithms that use data (MS_raw_data_native 
_format) recorded by a specific category of mass 
spectrometer (Micromass_QTOF_2_quadrupole_
time_of_flight_mass_spectrometer). The pat­
tern we see emerging is a rich, interconnected 
graph that logically correlates data sets, proc­
esses, and instruments, as Figure 5 illustrates.

Query example
The following example from the ms group at 

User

SPARQL query interface

ProPreO ontology

Oracle
RDF store

Semantic
provenance
module 6

Semantic
provenance
module 2

Semantic
provenance
module 1

Semantic
provenance
information

Semantic
provenance
annotation
modules

Mass spectrometry
data-analysis protocol

mzXML2pkl pkl2pSplit
Mascot

database
search

ProValt applicationraw2mzXML

Figure 4. The Semantic Provenance for Data in protEomics (Spade) 
architecture. Spade encompasses the scientific workflow, the 
ProPreO ontology, provenance creation service, and generated 
semantic provenance.
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CCRC illustrates real-world use of Spade: Jean, 
a new graduate student, is scheduled to make a 
presentation in the next group meeting. The pre­
sentation will let the group peer review Jean’s 
research protocols by evaluating the quality of 
her experimental results.

Jean issues a query against the semantic-
provenance information associated with the ms 
data repository:

List the protein groups identified with high confi­
dence value — that is,  protein groups with a Mascot 
score > 3500 — detected by the Mascot search en­
gine against a T.cruzi database (Mascot search input 
parameter, Taxonomy = T.cruzi. The protein groups 

should contain at least one peptide fragment with a 
specific consensus sequence of {*N [^P] [S/T]*}.

This query seeks to identify the best-quality 
results from all the sample runs executed until 
the current date to identify and integrate data 
from multiple result files. In the proteomics 
data-analysis protocol, the Mascot database 
search engine assigns scores to protein groups 
that reflect the confidence value of the identi­
fication. Each of the identified protein groups is 
associated with its Mascot score using a named 
relationship that identifies protein groups with 
a Mascot score greater than 3500. The other 
constraint, described as the presence of the 
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Figure 5. The proteomics data-analysis protocol. This schematic representation of the protocol shows how it uses 
ProPreO ontology concepts and the named relationships linking them.
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amino acid sequence {*N [^P] [S/T]*} in peptide 
fragments, is the N-glycosylation consensus se­
quence in peptides, which is of particular inter­
est to glycobiologists. The peptide fragments in 
a protein group are associated with their amino 
acid sequence, again using a named relation­
ship. The peptide fragments are related to the 
protein groups through the ProPreO ontology 
relationship ProPreO:has_parent_protein. A 
SPARQL query representing the user query is 
executed against the semantic provenance in­
formation to retrieve the relevant results from 
the data repository.

T he semantic-provenance framework is a ge­
neric approach to building a provenance in­

frastructure in different domains by extending 
and adapting to the requirements of specific 
domains. We’re implementing this framework 
to model provenance information of sensor data 
related to weather forecasting to demonstrate 
the use of semantic provenance information for 
data integration. We’re also extending the Pro­
PreO ontology to incorporate a Nuclear Magnetic 
Resonance (NMR)-based data-analysis protocol. 
This will let software applications use semantic 
provenance information to create an unambigu­
ous context for comparing experimental data 
for toxicology metabolomics using ms-based 
and NMR-based data-analysis approaches.�
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