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Abstract

Semantic query optimization refers to the process of using

integrity constraints (ic ‘s) in order to optimize the evaluation

of queries. The process is well understood in the case

of unions of select-project-join queries (i. e., nonrecursive

datalog). For arbitrary datalog programs, however, the

issue has largely remained an unsolved problem. This

paper studies this problem and shows when semantic query

optimization can be completely done in recursive rules

provided that order constraints and negated EDB subgoals

appear only in the recursive rules, but not in the it’s.

If either order constraints or negated EDB subgoals are

introduced in it’s, then the problem of semantic query

optimization becomes undecidable. Since semantic query

optimization is closely related to the containment problem

of a datalog program in a union of conjunctive queries, our

results also imply new decidability and undecidability results

for that problem when order constraints and negated EDB

subgoals are used.

1 Introduction

An integrity constraint (it) is a rule with an empty head,

describing some semantic properties of data. Using it’s

it is possible to express a variety of constraints, such

as data dependencies (functional dependencies, mul-

tivalued dependencies and inclusion dependencies) as

well as constraints involving comparisons (e.g., an em-

ployee’s salary is less than his manager’s salary). Se-

mantic query optimization refers to the process of using

it’s in order to optimize the evaluation of a query. For

example, we can use integrity constraints to push se-

lections in the query to the earliest point where they

can be applied, or to remove redundant joins. Seman-

tic query optimization is especially important in appli-

cations that require integrating multiple heterogeneous
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sources of data (e.g., [CGMH+94, LSK95]). The topic

of semantic query optimization has been investigated in

many papers (e.g., [Kin81, CGM88]) and is well under-

stood for queries that can be represented as a union of

conjunct ive queries. For queries involving recursion, or

which cannot otherwise be translated to a union of con-

junctive queries (because of aggregation or duplicates),

semantic query optimization has largely remained an

unsolved problem.

Recent results have shed new light on this subject.

First, in [LS92, LMSS93] it was shown how to push order

constraints (i.e., selections) in recursive rules. These

techniques can be used directly for complete semantic

query optimization if, in each ic, only one subgoal is not

an order constraint, Secondly, in [CV92] it was shown

how to test whether a union of conjunctive queries

contains a recursive program (assuming that there

are neither order constraints nor negated subgoals).

Since it’s are a special case of conjunctive queries,

the containment algorithm of [CV92] can be used

to determine satisfiability of recursive rules in the

presence of it’s. Obviously, determining satisfiability

of a set of rules is an important part of semantic query

opt imiz at ion.

In [CGM88], Chakravarthy et al. have shown that

the core of semantic query optimization is computing

residues. Intuitively, a residue is some part of an

integrity constraint that cannot be mapped into the

body of a rule, and therefore, its negation can be added

to the rule. In particular, if the residue is empty, then

the rule is unsatisfiable and can be ignored. In the case

of recursive rules, however, it is not enough to look at

residues involving each rule in isolation. Instead, we

must look at residues w.r.t. ,derivation trees produced

by the datalog program. The problem is to find a finite

procedure to compute the residues, while the number

of derivations trees can be infinite. We describe an

algorithm for computing precisely the residues in a

recursive program. We also show how to transform

the program so that it does not have any sequence

of rule applications that is guaranteed (by the it’s)

to produce an empty result. The algorithm uses the
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query-tree techniques first developed in [LS92] and later

refined in [L MSS93]. The key idea behind the query tree

algorithm is to attach a label to every node in the tree,

describing the residues applicable to that node when it

is part of a derivation of the query. The same idea is the

key for extending semantic query optimization to other

cases in which queries cannot be represented as unions

of conjunctive queries, such as SQL queries involving

aggregation and duplicates. A detailed discussion of

these extensions is beyond the scope of this paper.

Specifically, we show the following results. Semantic

query optimization can be completely done in recursive

rules with order constraints and negated EDB subgoals,

provided that it’s have neither order constraints nor

negated EDB subgoals. We also show that if either order

constraints or negated EDB subgoals are introduced

in it’s, then in general the problem of semantic query

optimization is undecidable while in some special cases

it is still decidable; in particular, one undecidability

result is for the case of it’s that express functional

dependencies. Our work also implies new decidability

and undecidability results for the containment problem

discussed in [CV92], since we consider rules and it’s that

may have order constraints and negated EDB subgoals.

2 Preliminaries

A datalog program P consists of function-free Horn

rules; its EDB predicates are those appearing only

in bodies of rules and its IDB predicates are those

appearing in heads and, possibly, in bodies of rules. An

EDB (extensional database) is a set of ground facts for

the EDB predicates; we usually refer to the EDB just as

the database. The IDB (intensional database) is a set of

ground facts that are computed for the IDB predicates

by applying rules bottom-up starting with the EDB. We

usually distinguish one IDB predicate of T as the query

(or goal) predicate.

An order atom is an atom of the form ~$d, where y

and 6 are either variables or constants and 19 is one of

the usual comparison predicates (i.e., <, >, ~, ~, = and

#). Order atoms represent a dense order defined on the

domain and they may appear in bodies of rules provided

that rules are safe as defined in [U1189]. We also consider

a limited form of negation by allowing negated EDB

atoms in bodies of rules provided that negation is used

safely. Note that the term ‘(atom” refers to an atom

that appears positively and the term “literal” refers to

an atom that appears positively or negatively.

An integrity constraint (abbr. ic) is a rule with an

empty head; we may think of an ic as a rule that derives

false if its body can be satisfied. In this paper, we

assume that bodies of it’s do not have IDB predicates

(but may have EDB predicates as well as dense-order

predicates). A database is consistent with respect to

(or satisfies) a set C of it’s if false cannot be derived

when applying the it’s to the database (i.e., none of the

bodies in C can be satisfied by the EDB facts and the

given order on the domain).

A derivation tree for a ground atom b consists of goal

nodes and rule nodes. An EDB goal node is a ground

literal of an EDB predicate, and an IDB goal node is

a ground atom of an IDB predicate. A rule node is a

ground instantiation of a rule, such that all the order

atoms in the body of that rule are satisfied. The root

of the tree is the goal node b. The only child of an IDB

goal node g is a rule with head g. A rule node has a

child for every (EDB or IDB) literal in its body. The

leaves are goal nodes of EDB predicates; that is, they are

ground EDB literals, and we assume that those literals

are satisfied by the given database.

A symbolic derivation tree t for a predicate p is

similar to a derivation tree, except that it has variables

instead of constants. The root of t is an atom of p

that initially has a distinct variable in every argument

position. Every rule node oft is the result of unifying

a rule of the program with a goal node. Note that

every derivation tree d can be represented by a pair

(d’, ~), where d’ is a symbolic derivation tree and @ is

an assignment of constants to the variables of d’. We

say that a symbolic derivation tree d’ is consistent with

respect to a set of it’s C if there is an assignment @, such

that the set of EDB atoms in the derivation tree (d’,+)

is consistent with C (and, of course, no atom appears in

(d’, ~) both positively and negatively).

Satisfiability and Query Reachability Consider a

datalog program P with a query predicate q, and let

C be a set of it’s. We say that a predicate p E P is

satisjiab!e w.r.t. C if there is some database D that

satisfies C, such that a bottom-up evaluation of P

produces a nonempty relation for p.

An atom p(al, . . . . an) (where cri is either a constant

or a variable) is query reachable w .r.t. C if there is

some database D that is consistent with C, such that an

instantiation of p(al, . . . . an) is part of a derivation of

some answer to the query predicate q of P. Note that

in general, query reachability of p(ctI, . . . . an) implies

satisfiability of p, but the converse is not necessarily

true. In [LMSS93], it is shown that query reachability

and satisfiability are LOGSPACE-reducible to each

other.

Denoting Appearance of Dense Order and Nega-

tion The presence of order atoms and negated EDB

atoms increases the complexity of the problems we con-

sider. Interestingly, order atoms and negated EDB

atoms are easier to deal with when they are present

in the program but not in the it’s. In our discussion,

1During the construction of t some variables of the root may

be equated.
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we will explicitly state where order atoms and negated

EDB atoms are allowed to appear. We use d to denote

the presence of order atoms and m to denote the pres-

ence of negated EDB atoms. Thus, a {d}-program is a

program that may only have order atoms, a {O, =}-ic is

an ic that may have either order atoms or negated EDB

atoms (or both), etc. When we simply say “program”

or “it” it means that there are neither order constraints

nor negated EDB atoms.

Local Order and Negated Atoms We say that an

order atom (or a negated EDB atom) A, appearing in

the body of an ic, is local if there is (at least) one positive

EDB atom in the body that contains all the variables

of A. For example, the order atom in the following ic is

local.

:— e(X, Y), e(Y, Z), X < Y.

The order atom X < Z, however, would not be local in

the above ic.

The importance of locality lies in the following. The

problems we investigate are decidable as long as it’s

have only local order and negated atoms, but become

undecidable when it’s have either

atoms that are not local.

3 Illustrative Examples

Semantic query optimization refers

order or negated

to the process of

using integrity constraints in order to optimize the

evaluation of a query. The key idea in this process is

to exploit the possible interactions between a rule of

the program and the integrity constraints. Intuitively,

given a rule r and an integrity constraint c, it may be

the case that every instantiation of r satisfies some of

the conjuncts of the integrity constraint. This can be

shown by mapping subgoals of c to subgoals or r. Of

course, if the mapping is complete, i.e., maps all the

subgoals of c into the body of r, it means that the

rule can never be satisfied and, hence, can be removed

from the program. The more likely case is that there

are only partial mappings of subgoals of c into the

body of r. Given a partial mapping r from c to r,

the residue consists of those conjuncts of c that are

not mapped to r. The negation of the residue must

be satisfied by instantiations of the rule. Therefore, if

we compute the residues dl, . . . , dn for c and r (each

residue is obtained by a different mapping from c to r),

then ~dl A . . . A Tdn is an additional constraint that

can be added to the body of r (note that each di is

a conjunction of literals). Clearly, for databases that

satisfy the integrity constraints, adding Tdl A . . . A Tdn

(or any subset of these conjuncts) to r will not change

the output of the program. Of course, the goal is to add

conjuncts that will facilitate a more efficient evaluation

of r.

Example 3.1 The IDB predicate goodPath computes

paths that are constructed from single steps and

connects points given by the EDB predicates startPoint

and endPoint.

rl : path(X, Y) :– step(X, Y).

r2 : path(X, Y) :– step(X, Z), path(Z, Y).

r3 : goodPath(X, Y) :– startPoint(X), path(X, Y),

endpoint.

The following ic states that end points must have a

greater value than all start points.

:– startPoint(X), endpoint, Y ~ X.

Any instantiation of rs satisfies the first two conjuncts

of the above ic. Therefore, we get the residue Y s X

and, consequently,

r3 to obtain

goodPath(X, Y)

Y > X can b; added to the bo~y of

:– startPoint(X), path(X, Y),

endpoint, Y > X.

Note that by applying the selection Y > X to

path(X, Y), we can reduce the cost of evaluating rule

rs. ❑

The above optimization could be done by existing

methods for semantic query optimization, since the

residue is obtained by mapping the ic into a single

rule. In recursive programs, however, it is not always

possible to find all the interactions between an integrity

constraint and the program by considering each rule in

isolation. For example, consider the following it’s that

state that a step emanates from a start point only if

that point is greater than or equal to 100, and that no

step goes from a point to another with lesser or equal

value:

:– startPoint(X), step(X, Y), X <100. (1)

:- step(X, Y), X ~ Y. (2)

Together these it’s imply that there is no need to

consider paths that emanate from points less than 100.

This is because paths follow monotonically increasing

points, and the starting point needs to be at least 100.

However, to see this we must observe the structure of

every derivation tree produced for goodPath. Using the

it’s we can rewrite the program for goodPath as follows:

r{ : path(X, Y) :– step(X, Y), X ~ 100.

r~ : path(X, Y) :– step(X, Z), path(Z, Y),

x >100.

r~ : goodPath(X, Y) :– startPoint(X), path(X, Y),

endpoint.
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Note that when evaluating the rewritten program,

we will not produce tuples for path for which the first

argument is less than 100. Furthermore, note that

rewriting the program involved not only identifying the

residues w.r.t. derivation trees, but also placing them

in the earliest possible point in the evaluation of the

program. More generally, the program has the property

that it completely incorporates the integrity constraints,

defined as follows.

Definition 3.1 Let P be a datalog program and C be a

set of zntegrity constraints. The program P completely

incorporates G if for all symbohc derivation trees t

(for all IDB predicates), every goal node in t is query

reachable w.r. t. C.

The problem we consider in this paper is to find

a rewriting of a datalog program that completely

incorporates the given integrity constraints.

4 An Algorithm for Semantic Query

Optimization

In this section, we describe an algorithm for rewriting

a datalog program T into one that fully incorporates

a given set of it’s, C. The algorithm is based on the

general paradigm of constructing a query tree [LS92,

LMSS93]. A query tree for a given datalog program

P is a finite AND/OR tree that encodes precisely all

derivations of the query predicate q from databases

that satisfy the integrity constraints of C. The query

tree actually encodes symbolic derivations (recall that

a symbolic derivation is like a derivation, except that

constants are replaced by variables, and it represents

the set of derivations that can be obtained by assigning

constants to those variables), The root of the query tree

is a goal node consisting of an atom of q. The children

of a goal node are rule nodes for all the rules that can be

unified with that goal node. The children of a rule node

are the goal nodes for the subgoals in the body of that

rule. Intuitively, the query tree can be viewed as a tree

automaton that accepts only the possible derivations of

the query [Var89]. Once a query tree is constructed for

a given program, a rewritten program can be obtained

by forming a rule for every rule node in the tree.

The key challenge in building a query tree is to

encode precisely a possibly infinite set of symbolic

derivations using a finite structure. The key idea for

achieving finiteness is to attach labels to nodes in the

tree, define an appropriate equivalence relation on labels

(that relation must have a finite number of equivalence

classes), and expand only one goal node from each

equivalence class. Note that “expanding a goal node”

means creating children for that goal node (one child

for each rule that unifies with that goal node). Given a

query tree T that has been expanded as described above,

a symbolic derivation tree t is encoded in T if t can be

obtained as follows. Start from the root and choose one

rule-node child and its subgoal nodes. Inductively, let

t be the tree created so far. If n is a goal node oft for

some IDB predicate and n is currently a leaf of t, then

let n’ be the expanded goal node in T that is equivalent

to n (n’ may be n itself). Expand n with one of the

children of n’ (some variable renaming may be needed

when doing this expansion).

Clearly, the crux of the query-tree construction

is devising a labeling scheme (with an appropriate

equivalence relation), such that the resulting query tree

will encode precisely the desired set of derivations.

For semantic query optimization, we will use labels

that represent partial mappings from it’s into symbolic

derivation trees (alternatively, the labels represent

residues, since the unmapped portion of a partial

mapping is a residue). Specifically, the label of a node

n is a set of residues that are applicable at node n

whenever n appears in a symbolic derivation encoded in

the query tree. Formally, the label of a node n having a

predicate p is a set of triplets of the form (1, a, s), where

. 1 is one of the integrity constraints,

● s is the set of the unmapped EDB atoms of 1, and

● a is a (possibly partial) mapping from variables of s

to argument positions of p.

The triplet (1, o,s) means that if d is a symbolic

derivation tree, such that d includes n and is encoded

by the query tree, then there is a partial homomorphism

that maps every EDB atom of 1 that is not in s to some

leaf of d. Note that the homomorphism maps to leaves

of d and not necessarily to leaves of the subtree rooted

at n. In the algorithm, we will also use adornments that

are similar to labels, except that they map EDB atoms

of 1 to leaves of the subtree rooted at n.

Note that c specifies only the variables of s that are

mapped to (the variables in) the argument positions of

the predicate p of n, but does not specify how other

variables of 1 are mapped to variables of the symbolic

derivation d. It is sufficient to require that the triplet

(1, a,s) be consistent in the following sense. If two

EDB atoms of 1, one in s and the other is not, share a

variable Z, then cr maps Z to an argument position of

the predicate p of n.

Two goal nodes nl and nz are defined to be equivalent

if the atoms in these nodes are isomorphic and the labels

of these nodes are identical (i.e., both labels are the

same set of triplets). The key observation is that the

number of equivalence classes is finite and, therefore,

the construction of the query tree will terminate.

To explain the algorithm, we need to describe how

the labels are computed, Informally, the query tree

is computed in two phases: a bottom-up computation

of adornments followed by a top-down creation of the

166



query tree. In the bottom-up phase, we compute

a set of adornments for each predicate in the given

program ?, and construct a set of adorned rules that

use the adorned predicates. In the top-down phase,

we create the query tree, including labels, by using the

rules constructed in the bottom-up phase. The labels

of nodes in the query tree are determined from the

adornments of those nodes and the adornments of their

ancestors.

We use the following example to illustrate the

algorithm. The predicate p describes the transitive

closure of paths created by edges of a and of b. The

only integrity constraint, I, specifies that an edge of a

cannot be followed by an edge of b.

T1 : p(x, Y) :–

rz : p(x, Y) :–

r3 : p(x, Y) :–

7’4: p(x, Y) :–

I: :—

In the example, a triplet

a(X, Y).

b(X, Y).

a(x, -z), P(.zj Y).

b(x, z), P(Z, Y).

a(X, Z), b(Z, Y).

of the form (1, u,s) will be

denoted by describing s as a set of atoms; the mapping

a will be described implicitly by using an additional

atom that represents the goal node with which (1, a,s)

is associated, and some of the variables in s are from

that atom.

4.1 The Algorithm

We will now describe the algorithm for a {0, =}-program

and it’s (i.e., the program, but not the it’s, may have

order atoms and negated EDB atoms). Later, we

will generalize the algorithm also to some cases of

{0, q}-ic’s. We assume that the given program 7 has

already been processed by the algorithm of [LMSS93]

for completely incorporating the constraints implied by

the order atoms and negated EDB atoms that appear in

the rules. Moreover, we assume that in each rule of T,

we have substituted X for Y (or vice-versa) whenever

the order atoms of the rule imply that X = Y.

Bottom-Up Phase In the bottom-up phase, we

compute a set of adornments for each predicate and

a set of adorned rules 71 as follows. Initially, each

IDB predicate has an empty set of adornments. An

EDB predicate e has to be considered as a collection of

several predicates, where each predicate in the collection

represents one possible pat tern of equalities among

the argument positions of e. Formally, we use atoms

(e.g., e(X, X, Y), e(X, Y, Y), etc.) to represent different

patterns of equalities. Each one of these atoms, say

e(Xj X, Y), has a single adornment that includes a

triplet for every ic 1 and every possible way of mapping

a subset (including the empty subset) of atoms of 1 to

e(X, X, Y). In the rules of the program, we associate

each occurrence of e with one of these atoms.

The sets of adornments for IDB predicates are

computed by bottom-up iterations as follows. Consider

a rule r

p:–ql, . ... qm,7qm+l, . . ..7qn. C.

where ql, . . . . q~ are the positive subgoals, q~+l, ., q~

are the negative EDB subgoals and c denotes the

conjunction of the comparison literals in the body. For

each q~ (i = 1, ..., m), we choose an adornment A;

from the current set of adornments, Q;, of qi, and

we construct an adornment for rule r, denoted Ar, as

follows. A, will include all the triplets of the form

(I, u,u.. .u~n, sin.. . ns~ ), where

● for l~i~m, (I, Ui, Si)GAi J and

● 01,..., an are compatible, i.e., if a~ and Uj map the

same variable of 1 to argument positions al and az

of qi and qj, respectively, then these two argument

positions have the same variable.

If, in one of the triplets generated for Ar, the intersec-

tion S1 n . . . n s~ is empty, then A, is the inconsistent

adornment. If Ar is consistent, then we create from AT

a new adornment AP for the head predicate p as follows.

Suppose that the following holds.

(1, a, s) EA. .

a satisfies the following. Whenever two EDB atoms

of I, one in s and the other is not, share a variable

Z, then o maps this variable to argument position(s)

(in the body of r) having a variable X, such that X

also appears in the head of rule r.

Then AP will include (1, r,s), where r maps a variable

Z of I to argument position a of the head p if u maps

Z to an argument position in the body of r that has

the same variable as argument position a of the head

p. If we have not already computed an adornment for

p that is identical to AP, then we add AP to the set of

adornments for predicate p. Finally, we add the rule

pAp :– qf’, . . .,q;-j=qm+l,....~qn!c.

to P1, and associate the adornment A, with this

rule. Note that since there are “only” a doubly-

exponential number of adornments, the bottom-up

phase will terminate.

We will now show how adornments are computed in

our example. First, it should be noted that there are

several ways of partially mapping an ic 1, and some

are redundant in the following sense. Let (1, al, sl)

and (1, U2, S2) be two triplets for the same goal node,

such that S1 ~ S2 and al is a restriction of a2 to

the variables that appear in S1. Clearly, (1, uz, s2)
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is redundant with respect to (1, al, s1). In general,

however, redundant triplets can be removed only at

the end of the construction of the query tree. In our

example, the triplet for the empty mapping is going

to appear in all the adornments. However, since it is

redundant, we will not show it.

In our example, we begin with an adornment a(X, Y)

{{6(Y, Z)}} for a and b(X, Y){{a(Z, X)}} for the

predicate b. With the rules rl and r2, we create the

following adornments for p, respectively:

pl: P(X, Y){{b(Y, 2)}}

P2: P(x, Y){{a(z, x)}}

Using P1 in rs does not produce a new adornment for p,

and using pz in rs results in an inconsistent adornment

(i.e., empty residue). Using PZ in rq does not produce

a new adornment for p, but using PI in rd produces the

following adornment for p:

P3: P(x, Y){{b(y, z)}, {a(z, x)}}

Using P3 in rd does not produce

and, so, the bottom-up phase is

the adorned predicates pl and p2

a new adornment

done. Intuitively,

correspond to the

transitive closures of a and b respectively, while p3

corresponds to paths that are constructed from edges

of b followed by edges of a. The set of rules 71 is the

following:

S1 : pl(X, Y) :– a(X, Y).

S2 : p2(X, Y) :– b(X, Y).

S3 : pI(X, Y) :– a(X, Z), P1(Z, Y).

S4 : p2(X, Y) :– b(X, Z), p2(Z, Y).

S5 : p3(X, Y) :– b(X, Z), pl(.z, Y).

s6 : p3(x, Y) :– b(X, 2), p3(.2, Y).

Top-down Phase In the top-down phase, we actually

create the query tree and determine the labels of the

nodes in the tree. The labels are determined by the

adornments of the predicates and are pushed down from

parent to child. As stated earlier, the labels of the

nodes are used in order to decide when to terminate the

construction of the tree. However, the labels are also a

refinement of the adornments. An adornment describes

partial mappings from it’s to the subtree rooted at node

n, while a label describes partial mappings from it’s

to a complete symbolic derivation tree in which node

n appears. Thus, the mappings described by labels

have smaller unmapped portions as compared to the

mappings described by adornments and, hence, labels

produce smaller residues (which are more effective for

the purpose of optimization).

The query tree is actually a forest consisting of one

tree, with a root qA, for each adornment A of the query

predicate q. The tree for qA is constructed top-down

from the rules of 71. Each node of the tree has an

adornment (which comes from T1 ) and a label that is

created during the construction of the tree. Thus, we

will denote a goal node as PAIL, where p is the predicate

of that node, A is the adornment and L is the label.

For the root, the adornment and the label are the same

and, hence, the root is denoted as qA’A. In general,

given a node with an adornment A and a label L, the

following holds. For every triplet (1, a, s) in A there is

a corresponding triplet (1, cr’, s’) in L, such that s’ ~ s

and U1 is the restriction of u to those variables that

appear in s’. Note that two goal nodes are equivalent if

they have isomorphic atoms (i.e., same variable pattern)

and identical labels (rather than identical adornments).

The tree is built inductively as follows. Consider a goal

node pAIL. We create a rule-node child of pA’L for each

rule of 71 that has PA as its head. Suppose that rule r

PA’ :–q;’, . . ..q.m, %n+l, ~qn, cqn,c.

is used to create a child of pA’L (i.e., A is the same as

AP ). Let A, be the adornment that was created for

rule r during the bottom-up phase. We will now show

how to create labels for rule r and its subgoals. Note

that there are certain correspondences between triplets

as follows.

●

●

●

A triplet (1, a’, s’) in L has a corresponding triplet

(1, r,s) in A (recall that A is the same as AP). This

is so by the inductive hypothesis associated with the

construction of the tree.

The triplet (1, ~, s) has a corresponding triplet

(1, a,s) in A,, such that (1, r,s) was obtained from

(1, a,s) in the construction of AP (i.e., A) during the

bottom-up phase.

The triplet (1, a, s) has a corresponding triplet

(1, Ui, si~ c A~, such that (1, a,s) was obtained

(during the bottom-up phase) when (1, ui, si) was

chosen from Ai.

Thus, the triplet (1, a’, s’) of L corresponds to the triplet

(1, u~, s~) of Ai and, therefore, we make (1, a;, s’) a

triplet in the label of the subgoal q~a, where a; is the

restriction of u~ to the variables of s’. Of course, the

triplet (1, al, s’) in the label of subgoal qf’ corresponds

to the triplet (1, a~, si ) in the adornment A, of q~’.

Similarly, the triplet (1, a’, s’) of L corresponds to the

triplet (1, a,s) of A, and, therefore, we make (1, a“, s’) a

triplet of the label of rule r, where a“ is the restriction of

a to the variables of s’. Of course, the triplet (1, u“, s’)

in the label of rule r corresponds to the triplet (1, a,s)

in the adornment Ar of rule r.

As stated earlier, we expand a goal node in the tree

only if there is no other goal node in the tree that

is equivalent to it and was already expanded. After

creating the query tree we remove nodes that are not

reachable from the EDB leaves and the root (see [LS92]).
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The query tree created for our example is shown in

Figure 1. In the example, the labels remain identical

to the adornments. The rules in the query tree can now

be used to obtain a rewritten program that exploits the

integrity constraints. In our case, the rewritten program

(which is exactly 7JI) will be more efficient, because it

will not attempt to create paths in which arcs of a are

followed by arcs of b (thereby saving the effort involved

in performing joins that are guaranteed to be empty).

Our algorithm establishes the following result.

Theorem 4.1 Suppose that P is a {6, T}-program with

a query predicate q and C a’s a set of it’s. The above

algorithm constructs a query tree T and a new program

P’ thai consists of the rules in the rule nodes of T,

such that the following holds. First, for ail databases

D that satisfy C, the programs P and P’ are equivalent

(i. e., produce the same relation for the query predicate

q). Second, every IDB goal node in every symbolic

derivat~on tree of P’ is query reachabie w.r. t. C.

Proof (sketch): It can be shown that all symbolic

derivation trees of the query predicate that are produced

by rules of P’ are also produced by rules of the original

program P. The symbolic derivation trees of the query

predicate that are produced by P, but not by P’, are

exactly those that are inconsistent with C. Thus, P and

P’ are equivalent for all databases satisfying C.

The second part of the theorem follows from the

following observations. First, recall that we have

assumed that the algorithm of [LMSS93] was applied

to P prior to our algorithm. Consequently, every

symbolic derivation tree of P can be instantiated to

a derivation tree from some set of EDB facts (which

does not necessarily satisfies C) by instantiating each

variable to a distinct constant. Our algorithm removes

those symbolic derivation trees that do not have any

instantiation for which the set of EDB facts satisfies

C. Moreover, our algorithm does not equate any two

variables in the remaining symbolic derivation trees.

Also, instantiating each variable to a distinct constant

guarantees that the remaining symbolic derivation trees

sat isfy C. Thus, the theorem follows. ❑

4.2 Local Order and Negated Atoms

We can generalize the algorithm to the case of it’s with

local order and negated EDB atoms (we will refer to

these atoms just as “local atoms”). In order to do that,

we need to “transfer” the local atoms from the it’s to

the rules of the program. We do it as follows. First,

we associate each local atomz 1 with one EDB atom a

(from the same it), such that a includes all the variables

of 1; moreover, we also generate the pair (a, 1). We use

the pairs to rewrite repeatedly the rules of the program

2Note that 1denotes a (positive) atom, which is either an order

atom or an EDB atoms that appears negatively in an ic.

as follows. If (a, 1) is one of the pairs and r is a rule of

the program with an EDB atom a’, such that

● there is a homomorphism h from a to a’, and

● neither h(i) nor -h(i) are literals in the body of r,

then replace r with two rules that are identical to

r, except that one of them also has h(i) and the

other has +(l). (Technically, we have not considered

negated order atoms; however, a negated order atom is

equivalent to a unique positive order atom.)

After the rewriting of the program is completed, we

can apply the algorithm with the following modification.

Consider the step of creating the adornment A. for rule

r (in the bottom-up phase), and suppose that (1, a,s)

is a triplet in A.. Then in the modified algorithm, we

retain (1, a,s) in A, only if (1, a, s) also satisfies the

following condition. If the triplet (1, o,s) implies that

atom a of 1 is mapped to an EDB atom a’ of r, according

to a homomorphism h, and if i is a local atom of 1 that

is associated with a (i.e., we created the pair (a, 1)),

then the triplet (1, a,s) is in A, only if either one of the

following holds:

● If i is an order atom, then h(l) is in r.

● If i is an EDB atom, then =h(/) is in r.

Theorem 4.2 Suppose that P is a {d,=} -program with

a query predicate q and C is a set of {6, -t}-ic’s in which

all order and negated atoms are local. The rewriting

of P fo!iowed by the a!gorithm of Section 4.1 (with the

above modification) constructs a query tree T and a new

program P’ that consists of the rules in the rde nodes of

T, such that the following holds. First, for al! databases

D that satisfy C, the programs P and P’ are equivalent

(i. e., produce the same relation for the query predicate

q). Second, every IDB goal node in every symbolic

derivation tree of P’ is query reachable w.r. t. C.

Proof (sketch): It is easy to show that the rewriting

preserves equivalence. Also, the rewriting terminates,

since it does not introduce new variables in any

rule. Now consider any symbolic derivation tree t of

the rewritten program (before applying the modified

algorithm). It can be shown that if there is a

homomorphism h that maps all the EDB atoms of an

ic 1 c C to t, then for all local atoms i of 1, either

h(i) or +(l) is also in t. Therefore, it follows that t

is not consistent with respect to I if and only if there

is a homomorphism that maps all the literals of 1 to t.

Moreover, if t is consistent with respect to I, then by

substituting a distinct constant for each variable oft, we

get a derivation tree that is consistent with I. Next, it

can be shown (similarly to the proof of Theorem 4.1)

that the modified algorithm creates a query tree T,
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b{’, Z) Pl(’, y) b(X, Z)

Figure 1: The final query tree. The labels shown in the roots

such that T encodes all symbolic derivation trees of the

rewritten program that are consistent with C. ❑

We can further generalize the algorithm as follows.

Suppose that we apply the original algorithm to 7,

while mapping only EDB atoms of it’s and not gen-

erating the inconsistent adornment even when all EDB

atoms are mapped; let the result be the query tree T.

Consider a triplet (1, u,s) in the label of some IDB goal

node of T, such that s is empty (i.e., all EDB atoms

of 1 have been successfully mapped). We say that the

triplet (1, a,s) is quasi-locai if for each order atom m

in 1, all the variables of m are mapped (according to

the mapping implied by (1, a, s)) to variables that ap-

pear in a single rule node of T. Note that it is easy to

test whether (1, a,s) is quasi-local. We say that that

the it’s of C are quasi-iocai with respect to P if every

triplet (1, o,s) of T, such that s is empty, is quasi-local.

In the full version, we will show that a result similar to

Theorem 4.2 holds when P is a {0, -}-program and C is

a set of {0}-ic’s that are quasi-local with respect to P.

5 Satisfiability and Containment

The problem of satisfiability in the presence of integrity

constraints is closely related to the problem of the

containment of a datalog program in a union of

conjunctive queries. In fact, the following proposition

shows that satisfiabilit y is as hard as cent ainment.3

Proposition 5.1 The following two problems are LOG-

SPACE-reducible to each other, even when programs

and it’s are allowed to have order atoms and negated

EDB atoms.

3Note that in this containment problem there are no ic’s.

●

●

p3 (z, Y)

of the trees are common to the entire tree below.

[s a data!og program not contatned in a union O)

conjunctive queries? (The conjunctive queries have

order atoms and negated EDB atoms when the tc’s

have those atoms.)

IS the query predicate of a data!og program satisfiable

with respect to a set of ic’s ?

When neither order atoms nor negated EDB atoms

are present, cent ainment of a dat slog program in a

union of conjunctive queries has doubly exponential

lower and upper bounds [CV92]. By Proposition 5.1,

the same is true for satisfiability of a query predicate

with respect to it’s. This result can be generalized as

follows.

Theorem 5.1 Satisflability of the query predictive of a

{d, T}-program with respect to a set of it’s has doubly

exponential lower and upper bounds.

Proof As presented, the first step of the algorithm

of Section 4.1 is applying the algorithm of [LMSS93],

which has an exponential upper bound, and the com-

plexity of the following bottom-up and top-down phases

is doubly exponential. In the full version, however, we

will show that the algorithm of [LMSS93] can be in-

corporated into the bottom-up and top-down phases to

give an overall doubly-exponential upper bound. The

lower bound follows from [CV92]. ❑

It is worth noting that the complexity of testing

unsatisfiability is considerably better than the general

case in either one of the following cases (actually, the

second case is a generalization of the first).

● The program has a single IDB predicate.

. We want to test whether all the IDB predicates of a

program P are unsatisfiable.
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Formally, we say that a program P is empty if none

of its IDB predicates is satisfiable. The following

proposition shows that program emptiness is equivalent

to containment among unions of conjunctive queries.

Proposition 5.2 Suppose that P is a {0, 1}-program

and C is a set of {0, ~}-ic’s, Let P’ consist of

the initialization rules of P (i. e., rules with no IDB

predicates in their bodies). Program P is empty if and

only if P! is empty.

Proof Since the rules of P’ appear also in P, it follows

that if P is empty with respect to C, then so must be

P’.

Conversely, suppose that P’ is empty. Therefore,

all the initialization rules of P are unsatisfiable andf

so, the first iteration of a bottom-up evaluation of P

cannot produce any IDB fact. Consequently, all the

IDB relations of P are empty. ❑

Theorem 5.2 The following are complexity results for

program emptiness.

1. Emptmess of a {=}-program with respect to a set of

it’s is NP-complete.

2. Emptiness of a {~}-program with respect to a set of

{~}-ic’s is in EXPSPACE.

3. Emptiness of a {0, ~)-program with respect to a set

of {d}-ic’s is 11~-complete.

~. Emptiness of a {0, ~}-program with respect to a set

of {d, =}-ic’s is in EXPSPAC’E.

Proof The upper bounds follow from [K1u88, LS93].

The lower bounds of Parts 1 and 3 follow from [SY81]

and [vdM92a], respectively. ❑

In the remainder of this section, we give some unde-

cidability results for satisfiability. First, satisfiability is

undecidable if it’s have order atoms, even when only

monadic recursion and # are used [vdM92b, LMSS93].

In fact, the proof of [LMSS93] shows the following.

Theorem 5.3 Satisfiabiiity of the query predicate of a

dataiog program P with respect to a set C of {#}-zc’s is

undecidable, even if P has only unary IDB predicates,

one iinear recursive ru!e and two nonrecursive rules.

When the it’s have negated EDB atoms instead of

order atoms, the situation is not any better, as shown

by the next theorem; the proof of this theorem is given

in the appendix.

Theorem 5,4 Satisfiability of the query predacate of a

datalog program P with respect to a set C of {=}-ic’s is

undecidable, even if P has only unary IDB predicates,

one linear recursive rule and two nonrecursive rules.

Finally, satisfiability is undecidable even if the in-

tegrity constraints are expressing only functional depen-

dencies and the program has only #.

Theorem 5.5 Suppose that P is a dataiog program

with #, but without negation or any other comparison

predicate. Satisjiabilit y of the query predicate of program

P with respect to a set of integrity constraints C of the

form

:– e(X, Yl, Zl), e(X, Y2, Z2), Zl # 22

is undecidable.

Proof Follows from a result of [LMSS93]. ❑

6 Appendix: Proof of Theorem 5.4

Proof (Sketch) The proof of Theorem 5.3, which is

given in [LMSS93], uses # in the it’s. We will show

how to replace # by a binary EDB predicate neq(X, Y).

First, a few words about the proof of [LMSS93].

That proof uses three EDB predicates. The first two,

SUCC(X, Y) and zero(X), represent the successor and the

zero relations, respectively. The third EDB predicate,

cnfg(T, Cl, C’z, S), represents configurations of a two-

counter machine, where T is the time, C’l and C2 are

the two counters and S is the state. The program

computes whether the configurations form a halting

computation, and the it’s check that the EDB relations

are correct representations of zero, successor and the

configurations. Only the it’s use #.

In our proof, we have three additional EDB predi-

cates. The first, dom(X), represents the domain. We

use it’s in order to assure that dom(X) has, at least,

all the constants that appear in SUCC, zero and cnfg.

For example, the following two it’s assure that all the

constants from the successor relation are in dom(X).

:– SUCC(X, Y), ldom(X).

:— SUCC(X, Y), 7dom(Y).

There are similar rules for zero and cnfg.

We also have an EDB predicate, eq(X, Y), for

representing equality. The next ic checks that eq has a

tuple (a, a) for each element that appears in the relation

for dom,

:— dom(X), =eq(X, X).

Note that eq may also have tuples that do not represent

equality. However, if a tuple (a, b) appears in the

relation for eq, then a and b will be considered as equal.

Moreover, using the next two it’s, we can force eq to be

symmetric and transitively closed.

:— eq(X, Y), =eq(Y, X),

:– eq(X, Z), eq(Z, Y), ~eq(X, Y).
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Using the next two it’s, we guarantee that any two zeros

are equal and a zero cannot be equal to an element that

is not a zero.

:— zero(X), zero(Y), leq(X, Y).

:– zero(X), eq(X, Y), 7zero(Y).

We also need to express the following constraint: If

there is a path (of length one or more) from a to b in

the successor relation, then a and b are not equal. To

do that, we need yet another EDB predicate neg. The

next two it’s constrain neg(X, Y) to contain succ(X, Y)

and to be transitively closed. Note that in the following

it’s, we use equality as it is represented by eq (rather

than enforcing equality by multiple occurrences of the

same variable).

:— eq(X, X’), succ(X’, Y’), eg(Y’, Y), ~neg(X, Y).

._ eg(X, X’), neq(X’, Z), eg(Z, Z’), neg(Z’, Y’),

eq(Y’, Y), Tneq(X, Y).

The following two it’s guarantee that every two

elements from the domain are either equal or not equal,

but not both,

:— eq(X, Y), neg(X, Y).

._ dorn(X), dom(Y), 7eq(X, Y), lneq(X, Y).

Note that the first ic above implies that neg(X, X)

cannot be satisfied.

The following two it’s say that if two elements are

equal, then so are their successors and predecessors.

:— SUCC(X, Y), SUCC(X’, Z), eq(X, X’), neq(Y, Z).

:– SUCC(Y, X), SUCC(Z, X’), eg(X, X’), neg(Y, Z).

The next ic says that a zero cannot have a predeces-

sor.

:— SUCC(X, Y), zero(Y).

The next three it’s check that any configuration at

time zero has zeros in the two counters and in the state.

:— cn~g(T, Cl, Cz, S), zero(T’), ~2ero(C’1).

._
cn~g(T, Cl, C2, S), zero(T), -,zero(Cz).

:— cn$g(T, Cl, Cz, S), zero(T), ~zero(S).

The following ic enforces cn~g to be closed under

equality.

:– cn~g(T, Cl, C2, S), eq(T, T’), e~(C’1, c1 ),

eq(Cz, C!), eq(S, S’), ~cnfg(T’, C;, C~, S’).

Finally, there are also it’s that check that the

transitions are correct. These it’s are the same as

in [L MSS93]. In these it’s, we represent X # Y as

neq(X, Y); we test whether a counter is zero or not zero,

using the atoms zero(C) and 7zero(C), respectively;

and we increment and decrement a counter C using the

atoms SUCC(C, X) and SUCC(X, C), respectively. As an

example, the following ic checks the transition 6(j, >,=

) = (j’, pop, push).

:— cnfg(T, s, c1,(22),cnfg(T’, s’, cl, Cj),

SUCC(’T, T’), S = j, -zero(Cl), zero(C’2),

S“ = j’, neq(S’, S“).

In the above rule, S = j is a

conjunction

zero(Z), succ(Z, Vi), succ(Vl, V2),

shorthand for the

. . . 1 Succ(vj-1, s)

provided that j is not zero; otherwise, S = j is

just zero(S). The atom S“ = j’ represents a similar

conjunction.

Note that the above ic is violated if the first

~onfiguration satisfies the given transition (i.e., the state

is j, the first counter is greater than zero and the second

counter is zero) while the second configuration is for a

time T’, where T1 is a successor of T, but the st ate is not

what it should be. There are similar it’s for checking

that either counter C! is not the result of decrementing

Cl by one or counter C; is not the result of incrementing

C2 by one.

Let G be the graph obtained from succ and eq (i.e., G

has an arc for each tuple in the relations of these

predicates).

Claim 6.1 There is no path in G that contains arcs

from succ and connects elements that are equa! accord-

ing to eq.

The claim is true, because neq contains the transitive

closure of paths of G with at least one arc from Succ,

and the EDB satisfies the constraint:

:— eq(X, Y), neq(X, Y).

Note that, in particular, G does not have cycles

cent aining arcs from succ.

Now suppose that the facts eq(a, a’) and eq(b, b’) are

in the EDB and there is a path from a to b that has more

successor arcs than some path from at to b’. Since the

it’s imply that successors (and predecessors) of equal

elements are also equal (equality is according to eq),

it follows that there is a portion of the path from a

to b that connects equal elements and has at least one

successor arc, in contradiction to Claim 6.1.

It thus follows that if all the constraints are satisfied,

then the successor relation is a sound (albeit not

4We could have used, in this conjunction, equality based on eg

rather than on multiple occurrences of variables; however, there

is no need to do that.
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complete) representation of the non-negative integers.

Therefore, any sequence of consecutive configurations

from the EDB that starts at time zero must correspond

to a correct computation of the 2-counter machine.

So far, we have described the it’s. The program

includes the following rules that compute the times of

those configurations in the EDB that are reachable from

the initial one.

reach(T) :– cnjg(T, S, Cl, C’z), zero(T).

reach(T’) :– Teach(T), sr4cc(T, T’),

cnfg(T’, S’, C:, C’;).

There is a third rule having the (0-arity) query predicate

halt in its head; this rule computes whether some

configuration is reachable from the initial one and its

state is the halting state.

halt :– reach(T), cnfg(T, S, Cl, C2), S = h.

It follows from the above discussion that on every

consistent EDB, the relation for reach consists of

times of configurations that form a valid computation.

Therefore, the program is satisfiable if and only if the

2-counter machine reaches the halting state. ❑
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