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Abstract

Facial action unit (AU) recognition is a crucial task for fa-
cial expressions analysis and has attracted extensive atten-
tion in the field of artificial intelligence and computer vision.
Existing works have either focused on designing or learn-
ing complex regional feature representations, or delved into
various types of AU relationship modeling. Albeit with vary-
ing degrees of progress, it is still arduous for existing meth-
ods to handle complex situations. In this paper, we investi-
gate how to integrate the semantic relationship propagation
between AUs in a deep neural network framework to en-
hance the feature representation of facial regions, and propose
an AU semantic relationship embedded representation learn-
ing (SRERL) framework. Specifically, by analyzing the sym-
biosis and mutual exclusion of AUs in various facial expres-
sions, we organize the facial AUs in the form of structured
knowledge-graph and integrate a Gated Graph Neural Net-
work (GGNN) in a multi-scale CNN framework to propagate
node information through the graph for generating enhanced
AU representation. As the learned feature involves both the
appearance characteristics and the AU relationship reason-
ing, the proposed model is more robust and can cope with
more challenging cases, e.g., illumination change and partial
occlusion. Extensive experiments on the two public bench-
marks demonstrate that our method outperforms the previous
work and achieves state of the art performance.

Introduction

Facial expression and its behavior is one of the most cru-
cial channels for emotional communication between indi-
viduals. Intelligent facial expression analysis has recently
attracted wide research interest due to its potential appli-
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Figure 1: Coupling effect of multiple AUs caused by a vari-
ety of facial expressions.

cations in the field of human-robot interaction and com-
puter vision. As defined in the Facial Action Coding System
(FACS) (Friesen and Ekman 1978), which is the most widely
used and versatile method for measuring and describing fa-
cial behaviors, the facial action units (AUs) refer to the local
facial muscle actions and plays a paramount role in express-
ing comprehensive facial expressions. AU recognition has
thus become a long-standing research topic in the field of
artificial intelligence and computer vision (Li et al. 2017b;
Li, Abtahi, and Zhu 2017; Zhao, Chu, and Zhang 2016).

Facial action unit recognition has been mainly treated as
a multi-label classification problem that is independent of
each other. Most of the traditional methods focus on the de-
sign of more discriminative hand-crafted features (e.g. shape
or appearance features) or more effective discriminative
learning methods (Valstar and Pantic 2006; Zhao et al. 2015;
Jiang, Valstar, and Pantic 2011). In recent years, deep con-
volutional neural networks have been widely used in AU
recognition due to their powerful feature representation and
end-to-end efficient learning scheme, and have greatly pro-
moted the development of this field (Zhao, Chu, and Zhang
2016; Li, Abtahi, and Zhu 2017; Bishay and Patras 2017;
Chu, De la Torre, and Cohn 2016). However, recent efforts
based on deep convolutional neural networks are indulged
in designing deeper and more complex network structures
without exception, learning more robust feature representa-
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tions in a data-driven manner without explicitly considering
and modeling the local characteristics of the facial organs
and the linkage relationship between the facial muscles. As a
common sense, facial action units are not independent from
one another, considering the linkage of a same facial expres-
sion to multiple action units and the anatomical characteris-
tics of faces. As shown in Fig. 1, a happiness expression ac-
tivates both AU6 and AU12, as we generally “raise cheek”
and “pull lip corners” when we smile. On the other hand,
due to structural limitations of facial anatomy, some action
units are generally not likely to be activated simultaneously.
For instance, we can not simultaneously stretch our mouth
and raise our cheek.

Base on the above concerns, some of the research works
propose to improve the AU recognition based on the AU re-
lationship modeling. For example, Tong et al. (Tong, Liao,
and Ji 2007) proposed to apply a dynamic Bayesian net-
work (DBN) to model the relationships among different
AUs, Wang et al. (Wang et al. 2013) developed a more com-
plex model based on restricted Boltzmann machine (RBM)
to exploit the global relationships among AUs and Chu et
al. (Ginosar et al. 2015) recently proposed to model both
the spatial and temporal prior cues for more accurate fa-
cial AU detection. However, existing AU relationship based
recognition methods have the following three shortcomings.
First of all, existing AU relationship modeling are designed
based on handcrafted low level features and are applied as
a post-processing or embedded as a priori rule into complex
classification models, usually in isolation with the feature
representation, and are hence limited to the performance of
feature extraction. Secondly, existing methods only attempt
to capture local pair-wise AU dependencies based on lim-
ited facial expressions observation. This pair-wise data is not
combined to form a graph structure for more comprehensive
AU relationship reasoning. Last but not the least, since the
AU relationship modeling relies on the preamble feature ex-
traction, the whole algorithm framework can not be run end-
to-end, which greatly restricts the model efficiency and the
performance of the method. Moreover, existing end-to-end
deep learning based models also have not explicitly consid-
ered the AU relationship in their model design.

Taking into account the above shortcomings and being
inspired by the differentiability of the graph neural net-
work and its superior performance in the entity relationships
learning, we propose an AU semantic relationship embed-
ded representation learning (SRERL) framework to gradu-
ally enhance the regional facial feature by fully exploiting
the structural collaboration between AUs. Specifically, we
organize the facial action units in the form of structured
knowledge-graph and propose to integrate a Gated Graph
Neural Network (GGNN) (Li et al. 2015) in a multi-scale
CNN framework to propagate node information through the
graph. As the proposed network framework is able to em-
bed the globally structured relationships between AUs in the
learning process of features in an end-to-end fashion, the
learned feature thus involves both the appearance character-
istics and the AU relationship reasoning and is more robust
towards more challenging cases, e.g., illumination change
and partial occlusion.

In summary, this paper has the following contributions:

• This work formulates a novel AU semantic relationship
embedded representation learning framework which in-
corporate AU knowledge-graph as an extra guidance for
the enhancement of facial region representation. To the
best of our knowledge, we are the first to employ graph
neural network for AU relationship modeling.

• With the guidance of AU knowledge-graph and the dif-
ferentiable attributes of the gated graph neural network,
we are able to collaboratively learn the appearance repre-
sentation of each facial region and the structured semantic
propagation between AUs in an end-to-end fashion.

• We conduct extensive experiments on the widely used
BP4D and DISFA datasets and demonstrate the superi-
ority of the proposed SRERL framework over the state-
of-the-art facial AU recognition methods.

Related Work

Automatic facial action unit recognition has attracted
widespread research interest and achieved great progress
in recent years. The existing AU recognition methods can
be roughly divided into robust feature representation based
methods and semantic relationship modeling based meth-
ods.

Traditional feature representation based AU recognition
methods focus on the design of more discriminative hand-
crafted features. For instance, Valstar et al (Valstar and Pan-
tic 2006) proposed to analyze the temporal behavior of ac-
tion units in video and used individual feature GentleBoost
templates built from Gabor wavelet features for SVM based
AU classification. Baltrusaitis et al (Baltrušaitis, Mahmoud,
and Robinson 2015) designed a facial AU intensity estima-
tion and occurrence detection system based on the fusion
of appearance and geometry features. However, these hand-
crafted low level feature based algorithms are relatively frag-
ile and difficult to deal with various types of complex situ-
ations. In recent years, deep convolutional neural networks
have been widely used in a variety of computer vision tasks
and have achieved unprecedented progress (He et al. 2016;
Li and Yu 2018; Li et al. 2017a; Liu et al. 2018). There
are also attempts to apply deep CNN to facial AU recogni-
tion (Zhao, Chu, and Zhang 2016; Li, Abtahi, and Zhu 2017;
Bishay and Patras 2017; Chu, De la Torre, and Cohn 2016).
Zhao et al (Zhao, Chu, and Zhang 2016) proposed a unified
architecture for facial AU detection which incorporates a
deep regional feature learning and multi-label learning mod-
ules. Li et al (Li, Abtahi, and Zhu 2017) proposed an ROI
framework for AU detection by cropping CNN feature maps
with facial landmarks information. However, non of these
methods explicitly take into consideration the linkage rela-
tionship between different AUs.

Considering the linkage effect of facial expressions on
various AUs and the anatomical attribute of facial regions,
there are research works which rely on action unit rela-
tionship modeling to help improve recognition accuracy.
Tong et al. (Tong, Liao, and Ji 2007) proposed a dynamic
Bayesian network (DBN) to model relationships between
AUs. Wang et al. (Wang et al. 2013) further developed a
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Figure 2: An overall pipeline of our proposed AU semantic relationship embedded representation learning (SRERL) framework.
It is composed of a multiscale feature learning and cropping module followed by a GGNN for node information propagation.

three-layer Restrict Boltzmann Machine (RBM) to exploit
the global relationships between AUs. However, these early
works simply model the AU relations from target labels and
are independent with feature representation. Wu et al. (Wu,
Wang, and Ji 2016) proposed a 4-layer RBM to simultane-
ously capture both feature level and label level dependen-
cies for AU detection. As they are based on handcrafted
low level features, the whole algorithm framework can not
be performed end-to-end, which greatly restricts the model
efficiency and the performance of the method. Recently,
Corneanu et al. (Corneanu, Madadi, and Escalera 2018) pro-
posed a deep structured inference network (DSIN) for AU
recognition which used deep learning to extract image fea-
tures and structure inference to capture AU relations by
passing information between predictions in an explicit way.
However, the relationship inference part of DSIN also works
as a post-processing step at label level and is isolated with
the feature representation.

Method

In this section, we introduce our semantic relationship em-
bedded representation learning framework in detail. Firstly,
we briefly review the gated graph neural network (GGNN)
and introduce the construction of the AU relationship
graph, which will work as a guided knowledge-graph for
GGNN propagation in our framework. Then, we present the
structure of our proposed SRERL framework. The overall
pipeline of our framework is illustrated in Figure 2.

Preliminary: Gated Graph Neural Network (Li et
al. 2015)

Given a graph with N nodes and the initial representation
of each node, the idea of GGNN is to generate an output for
each graph node or a global output, by learning a propaga-
tion model similar to LSTM. Specifically, denote the node
set as V and its corresponding adjacency matrix A. For each
node v ∈ V , we define a hidden state representation ht

v at
every time step t. When t = 0, the hidden state representa-

tion is set as the initial node feature xv . Adjacency matrix
A encodes the structure of the graph. The basic recurrent
process of GGNN is formulated as

h(1)
v = [xT

v , 0] (1)

a(t)v = AT
v [h

(t−1)
1 · · ·h

(t−1)
|V | ]T + b (2)

ztv = σ(W za(t)v + Uzh(t−1)
v ) (3)

rtv = σ(W ra(t)v + Urh(t−1)
v ) (4)

h̃t
v = tanh(Wa(t)v + U(rtv ⊙ h(t−1)

v )) (5)

h(t)
v = (1− ztv)⊙ h(t−1)

v + ztv ⊙ h̃t
v (6)

where Av is a sub-matrix of A which refers to the adjacency
matrix for node v. W and U are learned parameters. sigma
and tanh are the logistic sigmoid and hyperbolic tangent
functions. ⊙ means element-wise multiplication operation.
The essence of the iterative update of GGNN evolution is to
compute the hidden state of next time-step by looking into
the combination of the current hidden state of each node and
its adjacent information, as shown in Eq (3-6).

After T time steps, we get the final hidden states. Then
the node-level output can be computed as follow

ov = g(h(T )
v , xv) (7)

where xv is the annotation of node v, function g is a fully
connected network.

Preliminary: AU Relationship Graph Construction

AU relationship graph represents the globally structured re-
lationships between AUs, which is composed of a node set
V and an edge set E. Specifically, each node v ∈ V repre-
sents a specific AU and the edges represent the correlations
between AUs in our graph. The graph is constructed based
on the AU relationship gathered from the training set and
some supplementary a priori connections (from common fa-
cial expressions and facial anatomy analysis). We detail the
construction of V and E as follow,
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Figure 3: The location of facial AUs and the constructed AU
relationship graph.

Node Set V : Each node in graph represents a correspond-
ing AU. Given a dataset that covers C AUs, the constructed
graph is formed by a node set V containing C entities.

Edge Set E: According to FACS (Friesen and Ekman
1978), there exists strong relationship between AUs due to
the linkage of each facial expression to multiple action units
and the anatomical characteristics of faces. The relationship
can further be divided into positive and negative ones, where
positive correlation means that two AUs are likely to co-
occur while negative correlation refers to that the two rarely
appear together. We capture most of the AU relationship by
calculating the conditional probability on the training sam-
ples, which is formulated as

a posi,j = [P (yi = 1|yj = 1)− P (yi = 1) > ppos], (8)

a negi,j = [P (yi = 1|yj = 1)− P (yi = 1) < pneg], (9)

where yn denote the n-th AU label. ppos and pneg is the
threshold for positive and negative relationship, respectively.
a posi,j ∈ Apos and a negi,j ∈ Aneg. Thus, we can gen-
erate the adjacency matrix of AU relationship graph with
the positive relationship matrix Apos and negative relation-
ship matrix Aneg, i.e., A = [Apos − I(A),−Aneg, (Apos −
I(A))T ,−AT

neg]. I(A) denotes the identity matrix of the
same dimension as A.

However, due to the limitation of dataset, there are still
a few common relationships that are not counted. Refer-
ring to the latest research on AU relations (Zhang et al.
2018), we add some additional relationships. Specifically,
we add (AU4, AU7), (AU15, AU24) as positive correlation
and (AU2, AU6), (AU12, AU15), (AU12, AU17) as nega-
tive correlation for BP4D dataset (Zhang et al. 2013). These
relationship are summarized in Figure 3, where green lines
represent positive correlation and red lines represent nega-
tive ones. For clarity, we use a line with arrow to represent a
one-way relationship and a line without arrows to represent
a two-way relationship.

Relationship-Embedded Representation Learning

As shown in Fig. 2, our proposed SRERL framework is
composed of a multiscale CNN based feature learning and
cropping module followed by a GGNN for node information

propagation. The GGNN takes as input the cropped facial re-
gion feature and propagate on the defined knowledge-graph
to learn relationship-embed AU feature representation. We
elaborate these two components in the following.

Multiscale Feature Learning and Cropping We choose
the VGG19 (Simonyan and Zisserman 2014) model as our
backbone network, which is composed of 5 groups of con-
volutional layers with down-sampling. For the sake of the
trade-off between feature performance and its resolution, we
use the first 4 groups of convolutional layers for initial ap-
pearance feature extraction. The input to the feature extrac-
tor is a 224 × 224 RGB facial image with its landmarks in-
formation. Since the size of the relevant regions of each AU
varies (e.g. the area corresponding to AU6 “Cheek Raiser”
is larger than that of AU12 “Lip Corner Puller”), we con-
catenate the output feature maps of all the four groups (all
resized to 14 × 14) to form a multiscale global feature. The
concatenated feature maps are further fed into a local re-
sponse normalization layer which could normalize pixels
between channels and help to converge. The formulation is
given as

bc =
ac

(k + α×C
n

∑min(C−1,c+n/2)

c′=max(0,c−n/2)
a2
c′
)β

, (10)

where k, α, β are hyperparameters, C represents the channel
number of the feature maps. ac denotes the pixel in cth chan-
nel and n is set to 2 which refers to the number of neighbor-
ing channels chosen to normalize the pixel ac. Then we crop
out each AU region according to facial landmarks, which is
further fed into separate region learning stream for each lo-
cal AU feature representation. Specifically, we capture adap-
tive AU region by resorting to facial landmarks. Since there
exists relationship between facial anatomy region and AUs,
we can generate the location of each AU center, which is
further corresponded to the closest facial landmark. After
getting the representative landmark of each facial AU, we
crop a 6 × 6 region from the concatenated global feature
maps for its initial regional feature. Figure 3 illustrates the
correspondence between facial AUs and facial landmarks.

We further refer to (Li, Abtahi, and Zhu 2017) and adopt
separate filters in each cropped AU region to train its rep-
resentation separately. Suppose we have C AUs. Due to
the symmetry of the face, we obtain 2C patch-wise feature
maps ( each AU corresponds to two patches), and design 2C
independent regional feature learning branches. For each in-
dividual region learning branch, we use a 3 × 3 convolu-
tional layer and a fully connected layer to learn the specific
local representation. These convolutional layers and fully
connected layers are trained separately, which could help to
avoid information interference between different AU regions
caused by varies scales of receptive fields.

Balanced Loss Function

Data imbalance is a common problem in AU recognition,
especially during multi-label training. However, due to the
ensemble training setting of multiple classification units, it
is hard to apply effective undersampling or oversampling
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strategies to balance the data bias. In this work, we design
an adaptive loss function for imbalanced data training.

loss = −
1

C ·N

N∑

j=1

C∑

i=1

2{rineg[l
i
j = 1]·

log(
pij + 0.05

1.05
) + ripos[l

i
j = 0]log(

1.05− pij

1.05
)}

(11)

ripos =

∑M
k=1[l

i
k = 1]

M
(12)

rineg = 1− ripos (13)

where l is the ground truth and p is the probability predicted
by our method. [x] is an indicator function which returns 1
when the statement x is true, and 0 otherwise. Let C denote
the number of AUs, and N denote the batch size. ripos and

rineg are constant, which indicate the proportion of positive
samples or negative samples in the training set. M denotes
the number of samples in the training set.

GGNN for Action Unit Detection As shown in Figure 2,
we generate the initial local feature of 2C regions using
our tailored multiscale feature learning and cropping mod-
ule. Let fi denotes the feature of a specific AU region,
i ∈ [0, 1, 2, ..., 2C − 1]. Considering the symmetry of a hu-
man face, each AU corresponds to two specific regions. The
initial feature of each node in GGNN is thus given as

xv =
f2v ⊕ f2v+1

2
(14)

where ⊕ denotes element-wise summation. According to
Equation 1, the hidden state vector is initialized with the cor-
responding feature xv . At each time-step t, the hidden state
can be updated according to Eq 2−6. Finally, the output of
each node in GGNN can be computed using Eq 7, which is
further concatenated for final label prediction.

Experimental Results

Datasets

We evaluated our model on two spontaneous dataset:
BP4D(Zhang et al. 2013) and DISFA(Mavadati et al. 2013).
BP4D contains 2D and 3D facial expression data of 41
young adult subjects, including 18 male and 23 female. Each
subject participated in 8 tasks, each of which corresponds to
a specific expression. There are totally 146,847 face images
with labeled AUs. We refer to (Zhao, Chu, and Zhang 2016)
and split the dataset into 3 folds. In which, we take turns
to use two folds for training and the other for testing, and
report the average results of multiple tests. DISFA contains
stereo videos of 27 subjects with different ethnicity. There
are totally 130,815 frame images, each of which is labeled
with intensities from 0-5. We choose frames with AU inten-
sities higher or equal to C-level as positive samples, and the
rest as negative samples. C is chosen as 2 in our experiment.
As with BP4D, we also split the dataset into 3 folds for re-
liable testing. We use VGG19 model trained on BP4D to
directly extract initial appearance feature, and finetune the
parameters of separate region learning module and GGNN
in DISFA.

Evaluation Criteria

We evaluate our method with two metrics, including F1
score and AUC. F1 score takes into consideration both the
precision p and the recall r , and is widely used in binary
classification. F1 score can be computed as F1 = 2 p·r

p+r ,

and AUC refers to the area under the ROC curve.

Implementation Details

During the knowledge-graph construction, we set ppos as 0.2
and pneg as −0.03 in Eq (8−9), and set α = 0.002, β = 0.75,
k = 2 in Eq 10. We use an Adam optimizer with learn-
ing rate of 0.0001 and mini-batch size 64 with early stop-
ping to train our models. For F1-score, we set the threshold
of prediction to 0.5. All models are trained using NVIDIA
GeForce GTX TITAN X GPU based on the open-source Py-
torch platform (Paszke et al. 2017).

Ablation Studies

Effectiveness of Multiscale CNN To verify the effective-
ness of multiscale feature learning and cropping, we re-
move the GGNN part of our framework and directly per-
form multi-label classification on the extracted regional fea-
tures, we call this variant multiscale representation learning
framework (MS RL). We have also implemented a single-
scale version for comparison (SS RL). We trained the two
variants with the same setting, using our proposed balanced
loss function. We have also listed the result of the orig-
inal VGG network and that trained using balanced loss
function (VGG BL) for comparison. As shown in Table 2,
SS RL achieved higher F1 score and AUC in most of AUs
when compared with VGG BL, especially in AU1, 4, 23.
Overall, it outperforms VGG BL by 2.4% and 1.7% in terms
of average F1-score and AUC on the BP4D dataset, respec-
tively. We believe that the reason for its higher performance
lies in the application of independent regional feature rep-
resentation, which avoids the feature interference in differ-
ent AU regions. When compared with SS RL, MS RL gains
0.50% and 0.40% performance improvement w.r.t F1-score
and AUC, which evidences the effectiveness of the multi-
scale setting.

Effectiveness of Knowledge-Graph based Feature Em-
bedding To verify the effectiveness of AU relationship-
embedded feature enhancement, we have compared the per-
formance of our proposed SRERL to those without rela-
tionship modeling (MS RL). As shown in Table 2 and Ta-
ble 3, we can clearly see the effectiveness. In BP4D dataset,
SRERL achieves 0.90% and 0.50% performance boost w.r.t
F1-score and AUC when compared with MS RL. The ac-
curacy improvement is more significant in DISFA dataset,
which is 2.90% and 0.50% in terms of F1-score and AUC
respectively. At the same time, it can be seen from the anal-
ysis of individual AU performance that relationship model-
ing actually plays a crucial role in improving the accuracy
of recognition. For instance, there exists strong positive re-
lationship between AU1 and AU2. In BP4D dataset, AU1
and AU2 increased by 0.3% and 1.0% in F1-score, and in-
creased by 0.7% and 1.4% in AUC respectively when com-
pared to MS RL. Meanwhile, SRERL achieved 6.0% and
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AU 1 2 4 6 7 10 12 14 15 17 23 24

positive samples ratio 0.21 0.17 0.20 0.46 0.55 0.59 0.56 0.47 0.17 0.34 0.17 0.15

Table 1: Data distribution of BP4D dataset

AU
F1-score AUC

VGG VGG BL SS RL MS RL SRERL VGG VGG BL SS RL MS RL SRERL

1 37.3 41.6 47.1 46.6 [46.9] 61.4 63.1 [67.5] 66.9 67.6
2 32.7 41.4 42.9 [44.3] 45.3 59.8 65.4 67.9 [68.6] 70.0
4 52.3 44.1 51.5 [53.1] 55.6 70.6 65.5 70.8 [72.1] 73.4
6 76.2 76.4 76.7 77.3 [77.1] 78.5 78.2 78.2 [78.4] [78.4]
7 75.7 73.3 [77.2] 76.8 78.4 74.1 73.5 [75.8] 75.2 76.1

10 82.3 81.2 82.7 83.8 [83.5] 78.9 78.8 [80.4] 80.9 80.0
12 86.9 86.0 [87.1] 86.8 87.6 84.8 85.5 [85.7] 85.2 85.9
14 55.9 64.0 62.3 61.9 [63.9] 61.7 64.5 64.3 [64.4] [64.4]
15 37.2 46.7 49.4 [51.1] 52.2 61.7 70.2 71.2 [73.1] 75.1
17 57.2 61.7 61.6 [63.7] 63.9 68.2 70.1 70.3 [71.4] 71.7
23 29.4 40.7 [46.2] 45.6 47.1 58.5 66.6 70.9 [71.1] 71.6
24 41.7 51.6 53.8 53.2 [53.3] 64.7 76.4 75.3 [76.0] 74.6

Avg 55.4 59.1 61.5 [62.0] 62.9 68.6 71.5 73.2 [73.6] 74.1

Table 2: Ablation study on the BP4D dataset. It demonstrates the effectiveness of balanced loss design, multiscale CNN as well
as relationship-embed feature representation

AU
F1-score AUC

MS RL SRERL MS RL SRERL

1 39.7 45.7 76.4 76.2
2 44.5 47.8 80.8 80.9
4 52.4 59.6 74.9 79.1
6 44.7 47.1 77.8 80.4
9 44.7 45.6 76.8 76.5

12 69.0 73.5 87.7 87.9
25 86.3 84.3 91.9 90.9
26 42.7 43.6 75.3 73.4

Avg 53.0 55.9 80.2 80.7

Table 3: The effectiveness of relationship-embedded feature
enhancement on DISFA dataset.

3.3% higher F1-score in DISFA dataset for AU1 and AU2.
On the other side, AU12 and AU15 are negatively corre-
lated. In BP4D dataset, AU12 and AU15 increased by 0.8%
and 1.1% in F1-scroce, and increased by 0.7% and 2.0% in
AUC. The experimental results well demonstrate that the
relationship-embedded representation learning can greatly
enhance the regional facial feature by fully exploiting the
structural collaboration between AUs.

Effectiveness of Balance Loss Table 1 illustrates the data
distribution of the BP4D data set. We can clearly see that the
occurrence rate of AU2, 15, 23, 24 are less than 20% while
that of AU10 is close to 60%. From Table 2, we can find
that the AUs which are of higher occurrence rate achieve
higher performance in VGG method. For example, the oc-
currence rate of AU12 is 56% in the dataset, and the F1-
score and AUC of AU12 are 86.9% and 84.8% respectively.

While the occurrence rate of AU23 is 17%, its correspond-
ing accuracy is relatively lower, which is 29.4% and 58.5%
respectively.

As shown in table 2, VGG with balance loss (VGG BL)
outperforms the original VGG on many AUs, especially in
those with lower occurrence rate. For example, it increases
AU2 and AU15 by 8.7% and 9.5% w.r.t F1-score, and 5.6%
and 8.5% in terms of AUC, respectively. Compared to orig-
inal VGG, VGG BL achieved about 4% and 3% higher F1-
score and AUC in average.

Comparison with the State of the Art

We compare our method to alternative methods, includ-
ing linear SVM(LSVM) (Fan et al. 2008), Joint Patch and
Multi-label Learning(JPML) (Zhao et al. 2015), ConvNet
with locally connected layer(LCN) (Taigman et al. 2014),
Deep Region and Multi-label Learning(DRML) (Zhao, Chu,
and Zhang 2016), Region Adaptation, Multi-label Learn-
ing(ROI) (Li, Abtahi, and Zhu 2017) and Deep Structure
Inference Network(DSIN) (Corneanu, Madadi, and Escalera
2018).

Table 4 and table 5 show the result of 12 AUs on BP4D
and 8 AUs on DISFA. We can clearly witness that our model
outperform all of these state-of-the-art methods. Compared
to LSVM, our method achieved 27.6% and 41.9% higher F1-
score and AUC on BP4D dataset, and achieved 34.1% and
53.2% higher F1-score and AUC on DISFA dataset. The rea-
son for the higher performance is that LSVM only use hand-
craft feature and independent label inference. Our method
outperforms JPML by 17% in terms of F1-score and 23.6%
in AUC on BP4D in average. The main reason lies in that
JPML use predefined feature and is not end-to-end trainable.
LCN, DRML, ROI and DSIN are four state of the art meth-
ods which use convolutional neural network for end-to-end
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AU
F1-score AUC

LSVM JPML LCN DRML ROI DSIN Ours LSVM JPML LCN DRML Ours

1 23.2 32.6 45.0 36.4 36.2 51.7 [46.9] 20.7 40.7 51.9 [55.7] 67.6
2 22.8 25.6 41.2 [41.8] 31.6 40.4 45.3 17.7 42.1 50.9 [54.5] 70.0
4 23.1 37.4 42.3 43.0 43.4 56.0 [55.6] 22.9 46.2 53.6 [58.8] 73.4
6 27.2 42.3 58.6 55.0 77.1 76.1 77.1 20.3 40.0 53.2 [56.6] 78.4
7 47.1 50.5 52.8 67.0 [73.7] 73.5 78.4 44.8 50.0 [63.7] 61.0 76.1
10 77.2 72.2 54.0 66.3 85.0 79.9 [83.5] 73.4 [75.2] 62.4 53.6 80.0
12 63.7 74.1 54.7 65.8 [87.0] 85.4 87.6 55.3 60.5 [61.6] 60.8 85.9
14 [64.3] 65.7 59.9 54.1 62.6 62.7 63.9 46.8 53.6 [58.8] 57.0 64.4
15 18.4 38.1 36.1 33.2 [45.7] 37.3 52.2 18.3 50.1 49.9 [56.2] 75.1
17 33.0 40.0 46.6 48.0 58.0 [62.9] 63.9 36.4 42.5 48.4 [50.0] 71.7
23 19.4 30.4 33.2 31.7 38.3 [38.8] 47.1 19.2 51.9 50.3 [53.9] 71.6
24 20.7 [42.3] 35.3 30.0 37.4 41.6 53.3 11.7 53.2 47.7 [53.9] 74.6

Avg 35.3 45.9 46.6 48.3 56.4 [58.9] 62.9 32.2 50.5 54.4 [56.0] 74.1

Table 4: Comparison of quantitative results on the BP4D dataset. Our proposed SRERL achieves the best performance, which
outperforms the second best method by 4.0% and 18.1% in terms of F1-score and AUC respectively.

AU
F1-score AUC

LSVM LCN DRML ROI DSIN Ours LSVM LCN DRML Ours

1 10.8 12.8 17.3 41.5 [42.4] 45.7 21.6 44.1 [53.3] 76.2
2 10.0 12.0 17.7 26.4 [39.0] 47.8 15.8 52.4 [53.2] 80.9
4 21.8 29.7 37.4 [66.4] 68.4 59.6 17.2 47.7 [60.0] 79.1
6 15.7 23.1 29.0 50.7 28.6 [47.1] 8.7 39.7 [54.9] 80.4
9 11.5 12.4 10.7 8.5 46.8 [45.6] 15.0 40.2 [51.5] 76.5

12 70.4 26.4 37.7 89.3 70.8 [73.5] 93.8 54.7 54.6 [87.9]
25 12.0 46.2 38.5 [88.9] 90.4 84.3 3.4 [48.6] 45.6 90.9
26 22.1 30.0 20.1 15.6 [42.2] 43.6 20.1 [47.0] 45.3 73.4

Avg 21.8 24.0 26.7 48.5 [53.6] 55.9 27.5 46.8 [52.3] 80.7

Table 5: Comparison of quantitative results on the DISFA dataset. Our proposed SRERL achieves the best performance, which
outperforms the second best method by 2.3% and 28.4% in terms of F1-score and AUC respectively.

feature learning and multi-label classification. Compared to
LCN, our method reaches higher F1-frame and AUC in all
AUs on BP4D and DISFA dataset. DRML proposed to di-
vide feature map into 8*8 patches and use region learning
for each patch. ROI used facial landmarks to crop the fea-
ture and maps to 20 patch, which also applied region learn-
ing for each patch. Compared with DRML and ROI, our
model achieves 14.6% and 6.5% higher performance in F1-
score on BP4D while achieves 29.2% and 7.4% higher w.r.t
F1-score on DISFA. More impressively, our proposed SR-
ERL greatly outperforms DSIN by 4% and 2.3% in terms
of F1-score on BP4D and DISFA respectively. Noted that
DSIN also simultaneously modeled the deep feature learning
and the structured AU relationship in an unified framework.
However, the relationship inference part of DSIN works as a
post-processing step at label level and is being isolated with
the feature representation. Compared with DSIN, our per-
formance gain well proves the significance of the joint op-
timization of feature expression and semantic relationship
modeling for face action unit classification, and on the other
hand evidences the effectiveness of graph neural network in
exploiting more thorough relationship in facial AU represen-
tation.

Conclusion

In this paper, we have proposed a semantic relationship em-
bedded representation learning framework to well incorpo-
rate our constructed AU relationship knowledge-graph as
extra guidance information for end-to-end feature represen-
tation learning in a deep learning framework. Specifically,
the SRERL framework is composed of a multiscale feature
learning and cropping module followed by a gated graph
neural network for node feature propagation across the de-
fined knowledge-graph. To the best of our knowledge, we
are the first to explore the AU relationship based on a differ-
entiable graph neural network module in a feature represen-
tation level. Experimental results on the widely used BP4D
and DISFA datasets have demonstrated the superiority of the
proposed SRERL framework over the state-of-the-art meth-
ods.
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