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Abstract This paper describes a methodology for auto-

mated recognition of complex human activities. The paper

proposes a general framework which reliably recognizes

high-level human actions and human-human interactions.

Our approach is a description-based approach, which en-

ables a user to encode the structure of a high-level human ac-

tivity as a formal representation. Recognition of human ac-

tivities is done by semantically matching constructed repre-

sentations with actual observations. The methodology uses

a context-free grammar (CFG) based representation scheme

as a formal syntax for representing composite activities. Our

CFG-based representation enables us to define complex hu-

man activities based on simpler activities or movements.

Our system takes advantage of both statistical recognition

techniques from computer vision and knowledge represen-

tation concepts from traditional artificial intelligence. In the

low-level of the system, image sequences are processed to

extract poses and gestures. Based on the recognition of ges-

tures, the high-level of the system hierarchically recognizes

composite actions and interactions occurring in a sequence

of image frames. The concept of hallucinations and a prob-

abilistic semantic-level recognition algorithm is introduced

to cope with imperfect lower-layers. As a result, the sys-

tem recognizes human activities including ‘fighting’ and

‘assault’, which are high-level activities that previous sys-

tems had difficulties. The experimental results show that our

system reliably recognizes sequences of complex human ac-

tivities with a high recognition rate.
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1 Introduction

A high-level understanding of human activities is essential

for various applications, including surveillance systems and

human computer interaction systems. In particular, a human

activity recognition system may enable the detection of ab-

normal activities as opposed to the normal activity of per-

sons using public places such as airports and subway sta-

tions. The automated recognition of human activities may

also be useful for real-time monitoring of elderly people, pa-

tients, and babies. In this paper, we develop a general recog-

nition framework for high-level human activities and apply

the framework to actual sequences of videos, while espe-

cially focusing on the semantic-level aspect of the recogni-

tion. Methodologies developed for representation and recog-

nition of human actions and human-human interactions are

presented and discussed throughout the paper.

The paper introduces a new probabilistic description-

based approach for the recognition of high-level human ac-

tivities. Our approach is to incorporate humans’ concep-

tual knowledge of the structure of human activities into the

recognition process, by enabling the system to maintain for-

mal programming language-like representations of human

activities. Our representation explicitly describes the tem-

poral and spatial structure of human activities that the sys-

tem aims to recognize using a context-free grammar (CFG)

based representation scheme: a human activity is repre-

sented by decomposing it into multiple sub-events and by

specifying their temporal, spatial, and logical relationships.

A sub-event of one activity may be composed of multiple
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sub-events of itself, capturing the hierarchical structure of

human activities. Once human activities are hierarchically

represented, our method is able to recognize them by per-

forming semantic matching between the representation and

the observed images from a given sequence in a video. The

probability (i.e. confidence) associated with an activity be-

ing matched is also computed for reliable recognition of the

activity.

The process of our approach can be clearly illustrated

with the following example: the recognition of the human-

human interaction ‘assault’. The interaction ‘assault’ indi-

cates a situation where one person suddenly approaches

and starts attacking another. Following our description-

based approach, we are able to represent the ‘assault’ in

terms of three sequential sub-events, ‘approach’, ‘attack-

ing’, and ‘fighting’, which may be decomposed themselves

into their sub-events until the atomicity is obtained. As a

result, the ‘assault’ corresponds to several atomic-level ac-

tions, ‘stretching a hand’ or ‘raising a hand’ for example,

which are organized sequentially or concurrently. There-

fore, detecting these atomic actions with statistical models

(e.g. hidden Markov models) and hierarchically matching

those results with the representation will enable the system

to recognize the high-level activity ‘assault’. Further, based

on the probability of the occurrence of atomic actions, the

probability for the ‘assault’ maybe computed, measuring the

confidence of the match.

The contribution of this paper is on the development

of the general recognition methodology for complex high-

level activities and the implementation of the framework for

processing of real videos. Our approach has several advan-

tages that distinguishes it from previous approaches. First,

our approach is able to represent and recognize human ac-

tivities of any level of hierarchy. Such an ability enables our

approach to recognize extremely high-level activities such

as ‘assault’ and ‘fighting’, which has not been attempted by

previous approaches. Secondly, our approach is designed to

recognize activities composed of sub-events having complex

sequential and concurrent relationships. Concurrent sub-

events must be represented in order to recognize high-level

activities with a complex structure, while most of the pre-

vious approaches including previous statistical approaches

(using dynamic Baysian networks or hidden Markov mod-

els) and syntactic approaches (using stochastic context-free

grammars) were limited in the case of recognizing activities

with concurrent sub-events. Finally, our approach is proba-

bilistic, compensating for the failures of its low-level recog-

nitions (the gesture layer may fail in the recognition of one

gesture for example). Even though probabilistic frameworks

have been common for statistical approaches, research to

integrate a probabilistic decision into a description-based

approach handling complex concurrency has not been con-

ducted previously.

Based on our new framework and algorithms, we con-

structed a human activity recognition system and tested the

system with real videos containing sequences of interactions

between two persons. The system successfully recognized

relatively simple two person interactions such as ‘pushing’

and ‘hugging’ with high accuracy. Furthermore, the experi-

mental section of this paper also illustrates the recognition

results of complex recursive activities like ‘fighting’, ‘greet-

ing’, ‘assault’, and ‘pursuit’ that previous system have not

attempted to recognize.

The paper is organized as follows. In Sect. 2, we present

works done by other researchers while comparing their work

to our new approach. Next, we describe the overall frame-

work of our system, and illustrate the role of each compo-

nent in Sect. 3. Section 4 illustrates the low-level compo-

nents for pose and gesture estimation of persons. Sections 5

and 6 presents detailed recognition methodology used in the

high-level of our system, the semantic layer. Section 5 illus-

trates a formal representation scheme to describe the tempo-

ral, spatial, and logical structure of high-level human activ-

ities. In Sect. 6, the hierarchical methodology to recognize

represented activities from video sequences are presented.

Section 7 discusses the recognition of activities with re-

cursive and continuous characteristics (e.g. fighting). Tech-

niques to enable the probabilistic recognition of activities

are presented in Sect. 8. Experimental results are provided

in Sect. 9 with real-world videos of human activities, and

Sect. 10 concludes the paper.

2 Related Works

Various methodologies have recently been developed to-

ward the recognition of high-level activities. Before pre-

senting our approach, we discuss the previous approaches

especially focusing on their abilities and limitations. Based

on techniques that they use for recognition, approaches are

classified into three categories: statistical approaches, syn-

tactic approaches, and description-based approaches. Our

approach, which belongs to the class of ‘description-based

approach’, is compared not only with statistical approaches

and syntactic approached, but also with other description-

based approaches.

2.1 Statistical Approaches

The recognition of human activities using statistical mod-

els such as Bayesian networks (BNs), hidden Markov mod-

els (HMMs) and dynamic Bayesian networks (DBNs) has

been studied thoroughly (Fine et al. 1998; Natarajan and

Nevatia 2007; Nguyen et al. 2005; Oliver et al. 2000;

Park and Aggarwal 2004a, 2004b; Shi et al. 2004; Starner

and Pentland 1995; Yamato et al. 1992). In the case of sta-

tistical approaches, one statistical model is generally con-

structed for each activity. For each model, the probability of
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the model generating an observed sequence of feature vec-

tors is calculated to measure the likelihood between the cor-

responding activity and a given input image sequence.

Park and Aggarwal (2004a, 2004b) presented a hierar-

chical framework to recognize human actions and interac-

tions from pixel level images. The framework abstracts im-

age sequences into poses, gestures, actions, and interactions.

Their system uses extracted body part knowledge to estimate

poses for each frame, and then estimates the most domi-

nant gesture based on a sequence of poses. Bayesian net-

works are constructed to estimate the poses, and dynamic

Bayesian networks are trained to recognize gestures. A ges-

ture recognized through DBNs is directly converted into a

single action, represented as the operation triplet. Two con-

current operation triplets of different persons are combined

to form interactions, and two interactions might be com-

bined to present the cause and effect of interactions. Their

system successfully recognized atomic components of hu-

man interactions, gestures, and interactions composed of

one or two gestures.

Note that our system presented in this paper takes ad-

vantage of their low-level recognition framework (Park and

Aggarwal 2004a) for the gesture recognition. The pose es-

timation and gesture detection methodologies of our system

is similar to that of Park and Aggarwal’s system. The differ-

ence is in the high-level of the system to recognize human

activities: Park and Aggarwal’s (2004b) system used a de-

cision tree to classify simple human interactions, while the

high-level of our system uses a description-based approach

that recognizes human activities by maintaining descrip-

tion on activities’ structure. As a result, instead of recog-

nizing interactions composed of two sequential actions as

Park and Aggarwal’s (2004b) system have done, our system

recognizes hierarchical activities composed of multiple sub-

events having complex temporal, spatial, and logical struc-

tures.

Nguyen et al. (2005) used hierarchical HMMs in order

to recognize two levels of actions. Similar to Park and Ag-

garwal’s (2004a) work, they recognized primitive behaviors

based on HMMs. Treating the recognition of primitive be-

haviors as observations for complex behaviors, they con-

structed another layer of HMMs on top of the primitive be-

havior recognition system. As a result, their system was able

to represent and recognize two levels of behaviors with a

probabilistic model.

Shi et al. (2004) tried to overcome the disadvantage

of previous systems through using propagation networks

(which can be interpreted as an extension of HMMs) as a

representation of actions. Their work also decomposes ac-

tions into several atomic actions, and constructs a network

describing the temporal order needed among them. Unlike

HMMs, their network allowed multiple activations of nodes,

implying that they are able to deal with sub-events which are

occurring simultaneously.

Statistical approaches are especially suitable when recog-

nizing sequential activities. With enough training data, sta-

tistical models are able to reliably recognize correspond-

ing activities even in the case of noisy inputs. The major

limitation of statistical approaches are their inherent inabil-

ity to recognize hierarchical activities with complex tempo-

ral structures, such as an activity composed of concurrent

sub-events. For example, HMMs and DBNs have difficulty

modeling the relationship of activity A occurred ‘during’,

‘started with’, or ‘finished with’ activity B. The edges of

HMMs or DBNs specify the sequential order between two

nodes, suggesting that they are suitable for modeling se-

quential relationships, not concurrent relationships. In addi-

tion, as an activity gets more complex, statistical approaches

need a greater amount of training data, preventing the ap-

proach from being applied to highly complex activities.

2.2 Syntactic Approaches

Syntactic approaches model human activities as multiple

production rules generating a string of symbols, and adopt

parsing techniques from the field of programming language

to recognize the activities from a given string. Context-

free grammar (CFG) and stochastic context-free grammar

(SCFG) have been adopted by previous researchers to recog-

nize high-level activities (Bobick and Wilson 1997; Ivanov

and Bobick 2000; Joo and Chellappa 2006; Minnen et al.

2003; Moore and Essa 2002). Production rules of CFGs nat-

urally lead to a hierarchical recognition of the activities,

where each symbol of the string is considered as a simple

action.

Ivanov and Bobick (2000) proposed a hierarchical ap-

proach for the recognition of high-level activities, which

models human activities with a stochastic context-free gram-

mar (SCFG). They divided the framework into two layers:

the lower layer using HMMs for the recognition of simple

actions, and the higher layer using stochastic parsing tech-

niques for the recognition of high-level activities. The recog-

nition result of the lower layer of the system is converted as

a sequence of simple actions. The higher layer treats the se-

quence as a string of simple actions, enabling the parsing

techniques to be applied. The overall recognition process is

done probabilistically, since the activities are represented in

terms of stochastic production rules. Minnen et al. (2003)

also adopted SCFG for the recognition. Their system fo-

cuses on the segmentation problem of multiple objects. They

have shown that the semantic-level processing of activities

using CFG may help the segmentation and the tracking of

objects. The concept of hallucinations are introduced to ex-

plicitly compensate for the failures of atomic-level recog-

nition failures. Moore and Essa (2002) used CFG for the

recognition of activities as well, focusing on multi-task ac-

tivities.
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The main limitation of syntactic approaches is also in the

recognition of concurrent activities. Syntactic approaches

are able to probabilistically recognize hierarchical activities

composed of sequential sub-events, but are inherently lim-

ited on activities composed of concurrent sub-events. Since

syntactic approaches are modeling a high-level activity as a

string of atomic-level activities composing them, temporal

ordering of atomic-level activities has to be strictly sequen-

tial. In addition, for their system, the user must provide all

possible production rules for all possible events, even for

large domains.

2.3 Description-Based Approaches

Description-based approaches are approaches that recognize

human activities by maintaining their description (or repre-

sentation) on the temporal and spatial structure of the ac-

tivities which they want to recognize (Hongeng et al. 2004;

Nevatia et al. 2004; Pinhanez 1999; Siskind 2001; Vu et al.

2003). They represent a high-level human activity in terms

of relationships between simpler activities (i.e. sub-events)

composing the activity. In description-based approaches, a

time interval is usually associated with an occurring sub-

event to specify necessary temporal relationships among

sub-events. That is, description-based approaches model a

human activity as an occurrence of its sub-event (which

might be composed of their own sub-events) that satisfies

certain temporal and spatial relationships.

Allen’s temporal predicates (Allen and Ferguson 1994)

have been widely adopted for these approaches to specify re-

lationships (sequential, concurrent, and their combinations)

between time intervals explicitly. These relationships not

only include simple sequential relations between two time

intervals, but also combinations of complex concurrent rela-

tions. In description-based approaches, CFG is widely used

as a formal syntax of the representation (similar to those of

programming languages), and an approximation algorithm

for the constraint satisfaction problem is generally designed

for the recognition of represented activities. Even though

description-based approaches often take advantage of CFG

as well, their usage and syntactic approaches’ usage of CFG

is completely different. Syntactic approaches use CFG for

the recognition directly. Description-based approaches use

CFG as a formal syntax of the representation (note that the

syntax does not have to be expressed in terms of CFG).

Siskind (2001) adopted Allen’s temporal predicates and

constructed his event logic for the computer vision prob-

lem, recognizing block stacking events. He extracted force-

dynamic relations between participants as features of events,

and applied event logic directly on top of them for rep-

resentation and recognition. His event logic was particu-

larly designed for processing liquid and semi-liquid events,

which our system also recognizes in Sect. 8.3. He focused

on developing an efficient algorithm to recognize events that

have characteristics of liquidity. His system is deterministic,

recognizing high-level activities assuming that the low-level

recognitions are done correctly. The major disadvantage of

his system is that it limits one time interval to be used no

more than once when describing temporal relationships, re-

ducing the expressiveness of their representation.

Hongeng et al. (2004) constructed a representation lan-

guage for general events, using Allen’s temporal predicates,

spatial predicates, and logical predicates. Their representa-

tion provided promising results on recognition of compos-

ite events, dividing the hierarchy of events into three levels.

They not only provided a representation scheme, but also il-

lustrated the initial results of the recognition system using

their representation. The recognition of an activity is per-

formed probabilistically by assuming conditional indepen-

dence among its sub-events (i.e. they computed the proba-

bility of an activity as a ‘product’ of those of its sub-events).

The major limitation of their representation language is that

their hierarchy of events is strictly fixed to three levels.

This limits constructing high-level composite actions from

simpler composite actions, and high-level interactions from

simpler interactions. In addition, their system is not able to

compensate for the failure of recognition of one of its sub-

events because of their conditional independence assump-

tion.

Vu et al.’s (2003) approach was also description-based.

Similar to Hongeng et al. (2004), they represented activities

(which they call scenario representation) by specifying nec-

essary conditions using Allen’s temporal predicates (Allen

and Ferguson 1994) and other spatial predicates. Notably,

their representation is able to describe high-level activities

with any levels of hierarchy. They have shown successful

experimental results with the activity of a person stealing

from a bank. However, unlike Hongeng et al.’s (2004) sys-

tem, only conjunctive predicates are allowed when concate-

nating multiple temporal relationships (i.e. only ‘and’ con-

catenations allowed, not ‘or’). Also, similar to the work done

by Siskind (2001), their method does not define time inter-

vals of the activity being represented explicitly, and uses a

time interval that covers time intervals of entire sub-events

as a resulting time interval. This prevents the system from

naturally representing activities with cause-and-effect rela-

tionships (since the effects usually occurs ‘after’ the activ-

ity) and activities with a recursive structure. Their system is

deterministic.

Table 1 compares the abilities of previous approaches and

our new methodology. As shown in the table, the system

we design and implement in this paper is able to recognize

high-level human activities with any levels of hierarchy. The

range of activities that our system is able to represent is

broader as compared to the previous approaches, enabling
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Table 1 A table comparing abilities of previous systems and our new approach

Approaches Levels Complex temporal Complex logical Recognition of Handle imperfect

of hierarchy relations concatenations recursive activities low-levels

Statistical Limited (depends v

(Nguyen et al. 2005; on data amount)

Park and Aggarwal 2004a;

Shi et al. 2004)

Syntactic Unlimited v v

(Ivanov and Bobick 2000;

Minnen et al. 2003;

Moore and Essa 2002)

Siskind (2001) Unlimited A sub-event v

participates only once

Hongeng et al. (2004) Limited (3-levels) v v

Vu et al. (2003) Unlimited v Conjunctions only

Our approach Unlimited v v v v

the recognition of high-level activities composed of sub-

events with logical concatenations of complex temporal re-

lationships (especially concurrent relationships). Recursive

activities are also represented and recognized as a conse-

quence. Furthermore, our proposed system has the ability to

handle noisy recognition results from the low-level, gesture

recognition for example. The recognition system which has

all of above mentioned abilities had not been developed pre-

viously.

3 Framework

Overall, the system can be divided into two levels: the low-

level corresponding to three layers (the body-part layer, the

pose layer, and the gesture layer), and the high-level corre-

sponding to the semantic layer. The low-level of the system

recognizes atomic components of human activities, i.e. ges-

tures, based on the sequence of input frames using various

existing computer vision techniques. The high-level of the

system, the semantic layer, is designed to maintain the se-

mantic structure (temporal, spatial, and logical) of human

activities encoded by a human expert. In the semantic layer,

human activities are finally recognized by hierarchically

matching recognition results given from the low-level with

the representation of activities defined by the user, while

considering the probability of matching. Figure 1 shows the

overall framework of our system. Our focus in this paper is

on the semantic layer.

Any technique can be used for the low-level of the sys-

tem, if it correctly detects a starting point and an ending time

of an occurring gesture. In order for the semantic layer to

Fig. 1 Figure illustrating the overall framework of the system
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recognize complex high-level activities, raw pixel-level im-

age sequences must be processed up to the atomic compo-

nents in the low-level. In this paper, we adopt the frame-

work developed by Park and Aggarwal (2004a, 2006) for

the low-level of the system. Their system is able to reliably

recognize gestures such as ‘a person raising his/her arm’

and ‘a person’s head turning left’ using various computer

vision techniques. Their framework to recognize gestures is

composed of several layers: the body-part layer, the pose

layer, and the gesture layer. The body-part layer, the lowest

layer, estimates the numerical status of each body part per

image frame. Taking those numerical values as parameters,

the pose layer extracts poses for each frame. The gesture

layer then generates sequences of gestures from given se-

quences of poses. A pose is the abstraction of the state of one

body part, and a gesture is the abstraction of meaningful sub-

sequence of those poses. There is a one-to-one correspon-

dence between an occurring gestures and an atomic action.

Various pixel-level techniques are used for the body-part ex-

traction layer. Bayesian networks are used to implement the

pose layer, and dynamic Bayesian networks (DBNs) are im-

plemented for the gesture layer.

The high-level of the system (i.e. the semantic layer)

recognizes human activities, from atomic-level actions to

high-level interactions, by comparing detection results from

the low-level with representations of activities it wants to

recognize. The semantic layer is designed to maintain its

knowledge on the temporal and spatial structure of a hu-

man activity as a ‘representation’. Using the representation

of the activity, the system hierarchically matches the repre-

sentation with detected gestures, recognizing time intervals

of occurring activities. In addition, the probability associ-

ated with the detected time interval is computed, by mea-

suring the confidence of the matching and that of low-level

detections. As a result, the system probabilistically detects

time intervals of human activities, which are classified into

three types depending on the structure of the representation:

atomic actions, composite actions, and interactions.

If a human activity has no sub-events and can be recog-

nized directly from low-level of the system, it is classi-

fied as an atomic action. If the activity has multiple sub-

events (atomics actions and/or composite actions), but all

sub-events are of the same person, we call it a compos-

ite action. Otherwise, if the activity has sub-events of more

than one person, the activity is classified as an interaction.

Since an interaction can always be decomposed into actions

of two persons, all interactions have composite character-

istics inherently. As shown in Fig. 1, a composite action

can have simpler composite actions as its sub-events, and

an interaction can have other interactions as its sub-events.

This suggests that the maximum number of levels of hier-

archy that our system recognizes is not fixed, unlike previ-

ous approaches (Hongeng et al. 2004; Nguyen et al. 2005;

Park and Aggarwal 2004a, 2004b; Shi et al. 2004).

The intuition behind dividing the recognition process

into two levels is to enable the system to integrate advan-

tages of both statistical computer vision techniques and con-

cepts from the field of artificial intelligence. Statistical com-

puter vision methods are able to cope with noise while

they are difficult to train, in the case of complicated activi-

ties. Instead of applying statistical computer vision methods

(e.g. Bayesian networks and hidden Markov models) for the

recognition of composite activities, our system uses statis-

tical methods only for the recognition of human gestures.

Data on gestures, such as ‘stretching an arm’ or ‘withdraw-

ing an arm’, are relatively common, enabling the system to

reliably recognize them even with noise. In the high-level of

the system, we adopt concepts and predicates from Allen’s

temporal logic (Allen and Ferguson 1994), and represent hu-

man activities in terms of simpler sub-events in the format

close to the full first-order logic. A probabilistic recognition

algorithm is designed to take advantage of both the low-level

detection results and the high-level representations.

4 Low-Level Processing of the System

4.1 Body-Part Layer

The objective of the body-part layer is in the estimation of

features in each frame so that the pose layer can correctly es-

timate the pose of each body part. The body-part layer con-

tains pixel-level, blob-level, and object-level processing to

extract meaningful information from a sequence of raw im-

ages. We use a hierarchical methodology developed by Park

and Aggarwal (2004a, 2006), in order to construct quanti-

tative image features from one input frame. Their system

parameterized the state of three body parts (head, upper-

body, and lower-body) in terms of ellipses and convex hulls.

Maintaining the overall structure of the system, we have re-

implemented the framework to extract additional features

for more reliable analysis of the status of body parts. Our

new system explicitly tracks the hand position, which pro-

vides additional important features. The new system also

considers the fact that skin blobs can merge during the in-

teractions. As a result, the body-part layer of our system is

more reliable compared to the previous system in tracking

body-parts, extracting three features: ellipses of each body

part, convex hulls of each body part, and the explicit hand

position.

4.2 Pose Layer

In the pose layer, a pose for each body part is estimated

based on features extracted by the system’s body-part layer.

A pose is the abstraction of the body part’s static state

in one image frame. For each image frame, the pose that
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Fig. 2 An example figure showing poses of each frame and the overall

gesture. The left person is constantly raising his hand to point the other

person

best describes the instantaneous configuration of the body

part is selected based on parameters from the body-part

layer. We constructed one-dimensional states for a head

pose, describing the torso direction. Upper-body and lower-

body poses have a two dimensional structure, each cor-

responding to vertical and horizontal positions of a hand

and a leg. For example, assume that a person is standing

still, facing left with his/her arm fully raised and stretched.

Then, his/her head pose will be left, the upper-body pose

will be 〈high, stretched〉, and the lower-body pose will be

〈low,withdrawn〉. Figure 2 shows example results of the

pose estimation.

Extending Park and Aggarwal’s (2004a) work, Bayesian

networks are implemented to estimate a pose of each body

part. The body-part parameters, estimated from the lower-

layer, are converted into discrete values and are treated as

observations produced by a specific pose. Bayesian net-

works estimate the pose for each frame, from the given

observations and probabilities in the network. Once these

Bayesian networks are pre-trained with appropriate training

images with correct poses labeled by a human (i.e. super-

vised learning), they probabilistically estimates a pose cor-

responding to each body part per frame. Figure 3 illustrates

the structure of the Bayesian networks and possible states

for the pose of each body part, which is a final output of

the pose layer. Note that new features, hand positions, are

added: V 3 and V 8. As a result of the pose layer, an input

image sequence is converted into a sequence of poses.

4.3 Gesture Layer

A gesture is an elementary movement of a body part. Tak-

ing the sequence of poses for each body part as input, the

gesture layer detects possible gestures occurring along the

sequence. Essentially, gestures are sub-sequences of a se-

quence of poses. The objective of the gesture layer is to

recognize a set of all occurring gestures. Each occurring

gesture has its starting time and ending time, which might

overlap with other gestures. Example results of the gesture

detection based on the pose estimation results are shown in

Fig. 2.

Fig. 3 Figure of the Bayesian network and explanation of meaning of

nodes. The Bayesian network estimates the state of hidden nodes (i.e.

poses), based on observations. The Bayesian network reduces dimen-

sions from twelve into five

We construct hidden Markov models (HMMs) to detect

the gestures occurring inside the sequence of frames. In or-

der to recognize a sequence of gestures for each body part,

we constructed one HMM per each gesture type. Types of

gestures which our system is recognizing in this paper are

similar to those in the paper presented by Park and Aggar-

wal (2004a). In addition to the gestures they recognized, we

recognize ‘start stretched’, ‘stay withdrawn’, ‘stay raised’,

and ‘stay lowered’ gestures for the ‘upper-body’ and ‘lower-

body’. As a result, the body part head has six possible ges-

tures: ‘keep facing front’, ‘keep facing back’, ‘keep facing

left’, ‘keep facing right’, ‘turn left’, and ‘turn right’. The

body part ‘upper-body’ has two separate dimensions of ges-

tures, each corresponding to the horizontal movement and

the vertical movement of the arm. Gestures ‘stretch’, ‘with-

draw’, ‘stay withdrawn’, and ‘stay stretched’ correspond to

the former case, and gestures ‘raise’, ‘lower’, ‘stay raised’,

and ‘stay lowered’ correspond to the latter case. The ges-

tures possible for the lower-body are exactly the same as

that of the upper-body, except that now the subject of the

gesture is the leg, not the arm. The structure of the HMMs

is shown in Fig. 4.

The objective of the gesture layer is to detect which

HMM created the observed sequence of poses and at what

point. This is the traditional evaluation problem of the

HMM. More specifically, the evaluation problem of the

HMM is to determine the probability that a particular se-

quence of visible states, i.e. poses in our case, was gener-

ated by a corresponding model. In our gesture layer, each of

the HMMs runs in parallel, measuring the likelihood of the

corresponding gesture based on input. Additionally, for each

body part, the ‘noise HMM’ is constructed to cover input se-

quences that are not related to any gesture we defined. The



8 Int J Comput Vis (2009) 82: 1–24

Fig. 4 Structure of ‘noise HMM’ and other HMMs. For each gesture

to be recognized, one HMM will be constructed in order to recognize

corresponding gestures. Additionally, for each body part, one noise

HMM will be created. Probability aij corresponds to the transition

probability from state wi to wj . Probability bjk corresponds to the

probability of observing k, when the real state of model is wj

‘noise HMM’ tends to have the highest likelihood for mean-

ingless sequences, making all gestures not to be detected.

These HMMs are pre-trained to generate observations

corresponding to each gesture. The training videos with cor-

rect gesture labels attached to time intervals (i.e. a pair of a

starting time and an ending time) are given to the HMMs, in

order to estimate the transition and observation probabilities

of the HMMs. Once the HMMs are trained, they are used by

the system for the automated recognition of gestures.

We use the backward-looking forward algorithm to cal-

culate the likelihood for each HMM. This works in the same

way as a forward algorithm until detecting the ending point

of the gesture. If the likelihood of a HMM exceeds the prob-

ability threshold at frame t , we assume that the gesture cor-

responding to the HMM occurred, and the ending time of

that gesture is t . Once the ending time of the gesture is de-

tected, then the algorithm runs a backward algorithm to find

the starting point of the gesture. After detecting the starting

time and ending time of the gesture correctly, the algorithm

proceeds to frame t + 1. As a result of the gesture layer,

a set of gestures labeled with starting and ending times is

created for each body part. Input noises and miscalculation

from lower layers are handled in this layer through HMM.

5 Semantic Layer: Representation

In the semantic layer, the system maintains representations

of human activities which are encoded based on their se-

mantic structure. The hidden Markov models presented in

the previous section is able to recognize gestures such as

‘arm stretching’ and ‘arm withdrawing’, but HMMs them-

selves are not sufficient to recognize high-level interactions

like ‘pushing’ and ‘hand shaking’. In order to recognize

high-level activities based on gesture detections, we take a

description-based approach in our semantic layer. That is,

our system maintains the representation of an activity de-

scribing how gestures must be concatenated temporally, spa-

tially, and logically in order to form the activity, and takes

Fig. 5 Example of necessary relationship among time intervals for in-

teraction ‘push’

advantage of them for the recognition. In this section, we in-

troduce the key concepts essential to represent activity struc-

tures, and present a formal representation syntax to describe

activities using them. The recognition algorithm using the

constructed activity representations will be discussed in the

next section.

Our representation approach is a hierarchical approach,

which decomposes an activity into several simpler activ-

ities called ‘sub-events’ and describes necessary relation-

ships among the sub-events. We first present the concept

of ‘time intervals’, which are associated with activities and

their sub-events to represent their starting and ending times.

Next, we introduce the ‘predicates’ used to formally de-

scribe temporal relations between time intervals, spatial re-

lations between persons, and logical relations concatenating

other relations. Finally, a programming language-like repre-

sentation syntax is provided, which allows the description of

structures of activities using time intervals and predicates.

5.1 Time Intervals

A time interval intuitively is the time associated with an oc-

curring activity. The time intervals we discuss throughout

this paper are always associated with designated actions or

interactions that we are interested in. In Allen and Fergu-

son’s (1994) interval temporal logic, a time interval is de-

fined in the linear time line, with a fixed starting point and

ending point. Since activities are rarely instantaneous but

take certain periods of time when occurring, the interval rep-

resentation of time is appropriate for describing activities.

Allen and Ferguson attempted to represent an event by pre-

senting necessary conditions for the event’s time interval.

Our system follows their approach, while representing hier-

archical activities explicitly. We associated time intervals to

the activity being represented and its sub-events, and repre-

sent the activities by presenting their temporal structure.

The intuition behind time interval associations is to de-

scribe necessary temporal structure of an activity in terms of

the relations among intervals. Figure 5 shows the example

time intervals of the human-human interaction ‘push’ and

its sub-events. As shown in the figure, time intervals ‘i’,

‘j ’, ‘k’, ‘l’, and ‘this’ are associated with activities, and the

intervals are organized sequentially and concurrently. Each
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time intervals ‘i’, ‘j ’, ‘k’, and ‘l’ corresponds to a simpler

activity. The variable ‘this’ is a special variable, always in-

dicating the time interval of the defining activity itself.

Figure 5 explicitly illustrates the temporal structure of the

interaction ‘push’. In order for the interaction ‘push’ to oc-

cur, all of time intervals of its sub-events ‘i’, ‘j ’, ‘k’, and ‘l’

has to be detected and they have to satisfy following tempo-

ral orders: (i) The time interval ‘this’, assigned for the point-

ing interaction itself, must start with time interval ‘i’ and fin-

ish with time interval ‘j ’, each assigned for an arm stretch-

ing activity and a staying arm stretched activity of person1.

(ii) Time intervals ‘i’ and ‘j ’ must happen consecutively,

and ‘i’ must be before ‘j ’. In addition, (iii) time interval ‘k’

must occur during ‘this’, where ‘k’ indicates touching in-

teraction of two persons. Finally, (iv) ‘k’ and ‘l’ must occur

consecutively, suggesting that one person must be forced out

as a consequence of the push.

We should note that time intervals of simpler activities

are used when representing the relationships. This enables

the system to use already defined activities to define new

higher-level events, providing a concept of hierarchical ac-

tivity representation. We denote all activities included in

the relationships as ‘sub-events’ of defining activity. That

is, activity ‘Stretch(p1’s arm)’, ‘StayStretched(p1’s arm)’,

‘Touching(p1, p2)’, ‘Depart(p2, p1)’ are sub-events of the

activity ‘push interaction’ in this example.

5.1.1 Special Time Interval ‘This’

The concrete definition of the time interval ‘this’ is the key

for hierarchical activity representation. Once the activity is

correctly represented in terms of ‘this’ and other sub-events,

the activity can be used as a sub-event of other higher-level

activities. It is the ‘this’ which is providing robustness to

our system compared to previous description-based recogni-

tion systems. In most of the previous description-based ap-

proaches, the time interval that includes time intervals of all

of its sub-events is defined to be the resulting time interval

of a represented activity (Hongeng et al. 2004; Siskind 2001;

Vu et al. 2003). On the other hand, our system uses the spe-

cial variable ‘this’ to define the resulting time interval. We

already saw an example of the use of ‘this’ in Fig. 5.

There are several advantages to having a separate vari-

able indicating the resulting time interval of a represented

activity. First of all, as mentioned above, it is the special

variable ‘this’ which is giving us the power of hierarchical

representation. Secondly, our representation has freedom in

setting the range of resulting time intervals. The ‘this’ can

be defined within any range the user chooses. This gener-

alization is useful when representing human activities with

pre-conditions and/or effects. In addition, the variable ‘this’

enables us to represent an important class of high-level ac-

tivities called ‘recursive activities’, which will be discussed

in Sect. 7. Finally, our representation can be easily converted

into the equivalent first-order logic, enabling the system to

take advantage of research from the field of artificial intelli-

gence.

5.2 Predicates

In the above example, all necessary conditions and relation-

ships for the event are explained in English. Conceptually,

the verbal description of time intervals and their relation-

ships presented in the previous subsection is a valid form of

the human activity representation. However, since it is not

humans but the computer system that has to maintain the

representation, we need a formal method of expressing the

relationships. In order to provide a formal methodology to

describe relationships, we present three categories of predi-

cates in this subsection: temporal, spatial, and logical pred-

icates. Temporal predicates express the relationship among

time intervals of sub-events. Spatial predicates, on the other

hand, describe the relationship between persons involved in

the interactions. Logical predicates, ‘and’, ‘or’, and ‘not’,

concatenate multiple temporal and spatial predicates to con-

struct an overall representation for the event description.

5.2.1 Temporal Predicates

Temporal relationships are extremely important when de-

scribing human actions and interactions. Usually, actions

and interactions of humans consist of sequences of sub-

events. Temporal predicates not only provide us with a

mechanism to define such sequential relations, but also help

us to provide restricting conditions for the actions and in-

teractions. We directly adopt the temporal relations among

time intervals introduced in Allen’s interval temporal logic

(Allen and Ferguson 1994). ‘before’, ‘meets’, ‘overlaps’,

‘starts’, ‘during’, and ‘finishes’ are the predicates defined

in Allen’s interval temporal logic. Each predicate takes two

time intervals as a parameter for the predicates, and decides

whether they are true or false. Let a and b be the time inter-

vals, (astart , aend) and (bstart , bend).

before(a, b) ⇐⇒ aend < bstart

meets(a, b) ⇐⇒ aend = bstart

overlaps(a, b) ⇐⇒ astart < bstart < aend

starts(a, b) ⇐⇒ astart = bstart and aend < bend

during(a, b) ⇐⇒ astart > bstart and aend < bend

finishes(a, b) ⇐⇒ aend = bend and astart > bstart

5.2.2 Spatial Predicates

Spatial predicates define the spatial relationship between

two agents or objects. Thus, they can be defined only in
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terms of interactions. If any interaction contains some spa-

tial predicates, and t is the satisfying time interval of that

event, those spatial predicates will always be true in the time

interval t .

We designed two spatial predicates: ‘near’ and ‘touch’.

The ‘near’ predicate provides us with information on wheth-

er two persons are closer than a given relative distance value

or not. The distance between two persons is divided by the

mean of their heights, producing the relative distance. The

‘touch’ predicate is true if and only if the boundary ratio that

two persons share is greater than the threshold parameter.

near(person i, person j, threshold) ⇐⇒

(Relative distance between i and j) < threshold

touch(person i, person j, threshold) ⇐⇒

(Overlapping boundary of i and j) > threshold

5.2.3 Logical Predicates

Logical predicates include the ‘and’, ‘or’, and ‘not’ pred-

icates. These are elementary logical predicates. All these

predicates can take any relationship as a parameter. The

‘and’, ‘or’, and ‘not’ predicates are defined in an obvious

manner. That is, logical predicates can concatenate temporal

and spatial predicates to express relationships. The predicate

‘and’ holds if and only if relations described in all two pa-

rameters are satisfied. The predicate ‘or’ holds if more than

one of two parameters is satisfied. We say that the ‘not’ of a

relationship is satisfied if and only if the relationship para-

meter is false.

5.3 Representation

In this subsection, we present a methodology to construct

a formal and machine-understandable representation of hu-

man activities. As we have discussed, the representation of

an activity must consist of two essential components: the

time intervals associated with the sub-events, and the nec-

essary conditions needed among them. What we present in

this subsection is a formal representation syntax, which en-

ables the usage of the time intervals and the predicates to

describe the semantics of the activities. We use context-free

grammar (CFG) to describe the syntax of the representa-

tion, similar to that of programming languages. Following

the syntax, we are able to construct machine-understandable

descriptions of human activities. The constructed represen-

tations are maintained by the system for the recognition of

the activities, which we will discuss in the next section.

We considered the hierarchical nature of human activi-

ties when constructing the representation. A human activity

is described in terms of simpler activities, i.e. sub-events of

the activity, which themselves might be composed of their

own sub-events. We start constructing the representation by

first defining the ‘atomic actions’, the elementary compo-

nents of human actions not having any sub-events. Using

atomic actions as basic building blocks, composite actions

are represented next. Composite actions, once defined, can

be treated as a sub-event of other composite actions, rep-

resenting higher-level actions. Furthermore, actions of mul-

tiple persons can be concatenated to construct interactions,

which themselves may be used as a sub-event of higher-level

interactions. As a result, we are able to construct a human

activity with any levels of hierarchy.

5.3.1 Atomic Action Representation

Atomic actions are the most elementary component of hu-

man activities, which may not be divided into simpler mean-

ingful movements. Atomic components of human actions

and interactions are the gestures, recognized through sys-

tem’s lower-level. Therefore, we can construct one atomic

action from one gesture. However, gestures solely are insuf-

ficient to represent the actions. In order to represent actions,

the system needs to explicitly specify the subject and ob-

ject of the actions. Following the linguistic theory of ‘verb

argument structure’, we represent atomic actions as 〈agent–

motion–target〉, adopting Park’s operation triplet (Park and

Aggarwal 2004a). Putting subject and object information to-

gether with the gesture, we construct the operation triplet.

For example, ‘person 1 stretched his hand to the person 2’s

head’ is an atomic action, because only one gesture is in-

volved in the action. Gesture ‘stretch’ is the motion of this

atomic action. In the operation triplet, ‘person 1’s hand’ is

the agent and ‘person 2’s head’ is the target.

5.3.2 Composite Action Representation

If an action contains two or more atomic actions, it is classi-

fied as a composite action. Sub-events of composite actions

can be atomic actions, or even other composite actions. The

only constraint when constructing composite actions is that

only the actions of the same person can become the sub-

events. Otherwise, it becomes an interaction, rather than a

composite action.

Figure 6 illustrates the example time intervals and their

relationships of the composite action, ‘shake-hands action’.

The ‘shake-hands action’ represents an action that a person

is performing in the hand shake interaction. That is, the per-

son stretches his/her arm, stays stretched for some period,

and then withdraws it. There are three sub-events participat-

ing in the ‘shake-hands action’: ‘stretch’, ‘stay stretched’,

and ‘withdraw’. Each sub-event has an associated time in-

terval variable: ‘x’, ‘y’, and ‘z’. In addition, the figure de-

scribes that ‘x’, ‘y’, and ‘z’ have to be done in a sequential

order.
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Fig. 6 Example illustrating the atomic actions’ time intervals and their

relationships needed for the composite action, ‘shake-hands action’

As we have discussed in Sect. 5.1, the figure description

of temporal structure of the activity using time intervals is

a sufficient form of representation since it is capturing nec-

essary temporal relations among them. The problem is to

convert this human-understandable conceptual representa-

tion into a machine-understandable programming language-

like representation of the activity. Therefore, we construct

the representation syntax that the user should follow when

encoding the representation.

The representation for composite actions consists of two

parts: a list of variables corresponding to time intervals as-

sociated with designated sub-events, and the relationships

among those variables. The first component can be repre-

sented as a list of (time interval, sub-event) pairs. The sec-

ond component, which represents necessary conditions for

composite actions, is defined through predicates mentioned

in Sect. 5.2. Variables that are defined and the special vari-

able ‘this’, representing the defining action itself, are used in

order to specify the relationships. Therefore, we are able to

represent a composite action in terms of the relationship be-

tween ‘this’ and other time interval variables ‘t1’, ‘t2’, . . . ,

which are time intervals of sub-events.

As a format of the representation syntax, we use a

context-free grammar (CFG). CFG naturally leads the rep-

resentation to use concepts recursively, enabling the action

to be defined based on sub-events. We emphasize once more

that our CFG-based representation scheme is a formal syn-

tax to generate the representation, not a production rule to

analyze the input images. This differentiates our work from

the work done by Ivanov and Bobick (2000) and other simi-

lar conventional uses (i.e. syntactic approached presented in

Sect. 2.2) of CFG for syntactic recognition processes.

Our CFG does not generate sequences of poses or ges-

tures directly. Rather, we construct a representation of com-

posite actions using the CFG. A representation built through

the CFG describes all participating sub-events, and their

relationships. Sub-events can either be atomic actions or

other already represented composite actions. Even though

the CFG does not create the sequences of poses or ges-

tures directly, we will be able to recognize composite ac-

tions through detecting sequences that satisfy the represen-

tation constructed with our CFG. With our CFG, we are able

to represent any action if its temporal, spatial, and logical

structure can be described in terms of the predicates we have

defined.

The full representation syntax is presented in Appendix

A.2. This is similar to the syntax of programming languages

(note that syntax for C and Java is in CFG). Following the

syntax, we are able to represent semantics of an activity

by specifying sub-events composing the activity, associating

time interval variables with the sub-events, and describing

necessary relationships using the predicates.

For example, let’s look into the composite action ‘shake-

hands action’ again. As we informally defined previously

in Fig. 6, we associate variables ‘x’, ‘y’, and ‘z’ with sub-

events ‘stretch’, ‘stay stretched’, and ‘withdraw’. Then, rela-

tionships are represented in terms of predicates: meets(x, y),

meets(y, z), starts(x, this), and finishes(z, this). Therefore,

the formal representation of ‘shake-hands action’ is defined

through our CFG scheme as follows.

StretchHand(i) = atomic_action

(〈person i’s hand, stretch, other person〉);

StayStretchedHand(i) = atomic_action

(〈person i’s hand, stay stretched,other person’s hand〉);

WithdrawHand(i) = atomic_action

(〈person i’s hand, withdraw, null〉);

ShakeHandsAction(i) = (

list( def(x,StretchHand(i)),

list( def(y,StayStretchedHand(i)),

def(z,WithdrawHand(i) ) )

),

and( meets(x, y),

and( meets(y, z),

and(starts(x, this),finishes(z, this) ) )

)

);

5.3.3 Interaction Representation

Interactions are composed of the actions and/or interactions

of two persons. In the case of actions, actions are classi-

fied into atomic actions and composite actions. On the other

hand, all interactions have composite characteristics. There-

fore, except for the fact that sub-events of interactions can be

actions of both persons, the CFG production rule, i.e. repre-

sentation scheme, of interactions is almost identical to that

of composite actions. Further, spatial predicates also can be

used to describe relationships for interactions. The full CFG

syntax is presented in Appendix A.2.

The following example shows how a ‘hand-shake’ inter-

action can be represented by following our CFG syntax. The

already defined composite action, ‘shake-hands action’ of

two persons, is used as a sub-event of the interaction ‘shake-

hands interaction’. If person i and j do the action ‘shake-

hands action’ concurrently, and their hands touch, we regard

it as a hand shake interaction.
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TouchingInteraction(i, j) = (null, touch(i, j,0));

ShakeHandsInteractions(i, j) = (

list( def(x,ShakeHandsAction(i)),

list( def(y,ShakeHandsAction(j)),

def(z,TouchingInteraction(i, j)) )

),

and( and( during(z, x),during(z, y)),

and( starts(z, this),finishes(z, this) )

)

);

6 Semantic Layer: Recognition

The semantic layer recognizes human activities by analyz-

ing whether its sub-event detection results satisfy the rep-

resentation of the activity it wants to recognize. Atomic ac-

tions are directly recognized using the gesture recognition

results from the low-level of the system. Composite actions

are recognized based on the recognition result of atomic ac-

tions and other composite actions. In the recognition of in-

teractions, recognition results of any simpler activities, in-

cluding other interactions, can be used. In the case of com-

posite actions and interactions, recognition of activities is

done by finding time intervals that satisfy all temporal and

spatial relationships needed for the special variable ‘this’.

6.1 Atomic Action Recognition

An atomic action is represented in terms of an operation

triplet. By definition, an occurring time interval of an atomic

action is that of a gesture specified through the motion term

in the operation triplet 〈agent–motion–target〉. If the gesture

layer recognized a gesture specified in motion term of the

triplet, and its subject and object corresponds to the agent

and target term of operation triplet, the system concludes

that the atomic action is recognized in that time interval.

6.2 Composite Activity Recognition

As we have presented in the previous sections, a represen-

tation of a composite action or an interaction has two com-

ponents: time interval variable definitions and their relation-

ship descriptions. Therefore, the recognition of composite

actions and interactions requires two steps. In the first step,

the system must recognize all of its sub-events. In the sec-

ond step, the system needs to check whether the time inter-

vals detected for the sub-events satisfy the relationships de-

scribed in the activity representation. If they do, the system

can safely deduce that the activity occurred with the sub-

events detected. However, this is not a trivial process since

an activity described to be a sub-event of another activity

may occur multiple times. Among multiple occurrences of

the sub-event, the system must decide which among them

(if there is any) contributed to the occurrence of the activ-

ity. That is, each variable has multiple possible time interval

assignments, and the system must choose the correct one to

be assigned and check its relationships in order to recognize

the activity.

Our system searches for a combination of time interval

assignments that satisfies relationships needed for the activ-

ity. If there are n variables and m1, m2, . . . ,mn number of

time intervals for each variable, then there exist
∏

i=0 to n mi

possible combinations of (variable, time interval) pairs. In

addition, the special variable ‘this’ can be associated with

T 2 number of time intervals where T is the total num-

ber of frames. The goal is to find the combination among

T 2 ·
∏

i=0 to n mi of them, which satisfies the relationships

specified in the representation. This is a traditional con-

straint satisfaction problem. The system must find a specific

combination of (variable, time interval) pairs that satisfies

relationships, among all possible combinations.

We have developed a heuristic methodology to approxi-

mate the correct solution in a polynomial amount of com-

putation. Originally, the constraint satisfaction problem is a

NP-hard problem, which requires O(T 2 ·
∏

i=0 to n mi) time

complexity in our case. One of commonly used approxima-

tion techniques is to reduce the number of candidate assign-

ments, mi . That is, instead of searching for all possible as-

signments, we may search for time intervals only within a

certain window at each time point. The system requires to

repeatedly search for the correct combination after each time

frame, but this reduces the number of candidate time inter-

vals per variable dramatically.

The extreme case of this is to make the system only use

the most recent time interval per variable. This simplifica-

tion always gives the correct result with the assumption that

‘one sub-event occurs only once during an execution of a hu-

man activity’. In practice, this is a good assumption which

is true in most cases. Therefore, at each time point, there ex-

ists only one combination to check its relationships. In ad-

dition, once a combination has been found, the time interval

for ‘this’ can be calculated by narrowing its range based on

other detected time intervals. For example, assume that the

time interval for ‘x’ is (1, 4) and that for ‘z’ is (10, 15) in

case of ‘shake-hands’ (Fig. 6). The time interval for ‘this’

has to be (1, 15), since it has to start with ‘x’ and has to end

with ‘z’. As a result, we have developed a recognition al-

gorithm which only requires the time complexity of O(rT ),

where r is the number of relationships per action.

Since our representation for actions and interactions has a

hierarchical structure, i.e. one action or interaction has mul-

tiple sub-events which may be decomposable as well, our

action and interaction recognition is done in a hierarchi-

cal way. If a composite action or an interaction A has ac-

tions B and C in its variable list, i.e. B and C are sub-events
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Fig. 7 Example recognition process tree of the interaction

‘shake-hands interaction’

of A, then the recognition system first recognizes action B

and C. If B and C are composite themselves, they again trig-

ger recognition of their sub-events in the variable list. At

some point, all the sub-events will be atomic actions, which

the system recognizes using the algorithm described in the

previous subsection. This is similar to tree traversal where

activities are nodes, variable lists specify edges, and atomic

actions are leaves. In order to recognize the root action or in-

teraction, the system must recognize its child. This process

continues until the system reaches the leaves. Once the sys-

tem reaches leaves, the system is able to compute time in-

tervals of composite actions or interactions that have atomic

actions as sub-events. The system traverses back to the root,

recognizing all internal nodes from leaves to the root. At

each internal node, the system has to solve the constraint

satisfaction problem that we have discussed above. Figure 7

illustrates the recognition process of the ‘shake-hands inter-

action’.

7 Recursive Activities

In previous sections, we represented human activities in

terms of a strictly fixed number of sub-events. However,

for abstract high-level human activities such as ‘fighting’ or

‘greeting’, the number of sub-events is not clear. We can-

not say that the person punching the other three times is

a fighting activity while the person punching four times is

not. Rather, those high-level human activities tend to have

recursive characteristics. Assume that the system detected a

fighting interaction in some time interval. If another punch-

ing interaction is directly followed by a detected fighting in-

teraction, the system must detect a longer fighting interac-

tion covering the latest punching, based on the detection of

the shorter fighting interaction.

7.1 Recursive Activity Representation

Here we provide the concept of recursive representation for

human activities. In the case of recursive actions and inter-

Fig. 8 The necessary temporal relationship among time intervals for

recursive interaction ‘fighting’. The base case is shown in bottom

actions, a defining human activity can become sub-events

of itself. We do not describe the actual overall length of

the defining human activity, but instead use a simpler (or

shorter) identical activity as a sub-event. This recursive rep-

resentation is able to catch the varying length of the defining

activity, since the level of hierarchy can grow indefinitely.

Essentially, the syntax provided in the CFG-based repre-

sentation scheme is able to describe recursive activities with-

out any modification. Modification is not needed for the syn-

tax, but for the interpretation in the representation scheme.

Previously, the InteractionName(i, j ) in the CFG syntax

(Appendix A.2) can only denote activity names (strings of

characters) that had been defined already. That is, only an

activity that has been defined may be used as a sub-event. If

we modify the interpretation of InteractionName(i, j ) a little

bit, enabling the user to use the name of the defining activity

also, the recursive activities can be represented easily.

Another important characteristic of recursive activities is

the existence of the base case. Recursive activities are recog-

nized by detecting the simpler identical activity. Therefore,

at some point, the system needs the seed (or core) activity

of the detection, which does not rely on the detection of a

simpler identical activity. This is called a base case of the

recursive activity. When representing the recursive activity,

the user must always construct the base case of the activity.

Otherwise the system will fail to understand the activity.

Let’s look at the actual ‘fighting’ interaction for example.

In principle, the interaction ‘fighting’ is defined as a concate-

nation of a simpler ‘fighting’ and one ‘negative interaction’

as illustrated in Fig. 8. The ‘negative interaction’ is disjunc-

tive concatenation (i.e. ‘or’ product) of ‘punch’, ‘kick’, and

‘push’, which are composing activities of the fighting. The

base case of the ‘fighting’ is one ‘negative interaction’. The

‘greeting’ interaction can be represented in a similar man-

ner. In the case of the ‘greeting’ interaction, the interaction

must contain at least one ‘shake hands’ interaction which

is a core of ‘greeting’. Thus, the base case of the greeting

is the single hand shaking interaction. The following shows

the formal representation for ‘negative interaction’, ‘fight-

ing’, and ‘greeting’.
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NegativeInteraction(i, j) = (

list( def(x,PunchInteraction(i, j)),

list( def(y,KickInteraction(i, j),

def(z,PushInteraction(i, j))))

),

or( equals(this, x),

or(equals(this, y), equals(this, z))

)

);

FightingInteraction(i, j) = (

list( def(x,FightingInteraction(i, j)),

def(y,NegativeInteraction(i, j))

),

or( equals(y, this),

and( meets(x, y),

and( starts(x, this),finishes(y, this)))

)

);

GreetingInteraction(i, j) = (

list( def(x,ShakeHandsInteraction(i, j)),

list( def(y,PositiveInteraction(i, j)),

def(z,GreetingInteraction(i, j)))

),

or( equals(x, this),

or( and( meets(y, z),

and( starts(y, this),

finishes(z, this))),

and( meets(z, y),

and( starts(z, this),

finishes(y, this))))

)

);

7.2 Recursive activity recognition

For the recognition of recursively described actions and in-

teractions, an iterative approach is used. We explain this iter-

ative algorithm with the example, the ‘fighting’ interaction.

The system starts with setting time interval ‘x’, correspond-

ing to sub-event ‘fighting’, to null. Then, the system is only

able to find base cases. In the case of ‘fighting’, a single

‘negative interaction’ corresponds to a base case. Once we

found some initial ‘fighting’ interactions, we now treat those

detected ‘fighting’ as sub-events of the 2nd iteration. The

‘fighting’ interactions found through the 2nd iteration serve

as a sub-event of the 3rd iteration. Iteration continues un-

til no ‘fighting’ is detected additionally. The detection result

of nth iteration serves as a sub-event of (n + 1)th iteration.

With this iterative algorithm, given the detection result of

the 1st iteration, i.e. the base case detection, we are able to

detect recursive activities. The pseudo-code of the complete

algorithm is provided in Fig. 9. The function CSP implies

that we are solving the constraint satisfaction problem men-

tioned in Sect. 6.2. The system finds the occurring activity

Fig. 9 The algorithm for the recognition of recursive activities

by checking all possible combinations of (variable, time in-

terval) pairs, whether they satisfy the activity’s representa-

tion or not.

8 Probabilistic Recognition

In this section, we introduce the methodology for the prob-

abilistic recognition of human activities. First, in Sect. 8.1,

we present a method to probabilistically recognize an activ-

ity when time intervals of all gestures composing the activ-

ity are provided together with their confidence probabilities

from the gesture layer. Even when few gestures composing

a high-level activity are detected with low confidence, this

method gives the system an ability to recognize the activity

if the confidence of the detected gestures are mostly high.

Next, in Sect. 8.2, the concept of ‘hallucination’ time in-

tervals is introduced, which enables the system to recog-

nize activities even with the complete failures of gesture

detections (i.e. the situation where no correct time inter-

val is detected by the gesture layer at all) by hallucinating

the missing time intervals. Since our system models halluci-

nated gestures as ‘liquid’ activities in order to handle them

efficiently, we present a fast algorithm to recognize high-

level activities from liquid sub-events in Sect. 8.3. Liquid

activities are activities that have a continuous nature, ‘touch-

ing’ for example. Hallucinations and liquid activities will be

defined more formally in Sect. 8.2, and the detailed algo-

rithm to recognize activities with them will be presented in

Sect. 8.3.
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8.1 Probability Calculation

Our probabilistic recognition algorithm consists of two

parts: the time interval detection procedure and the prob-

ability calculation procedure for each time interval detected.

First, using the algorithm presented in Sect. 6.2, time in-

tervals associated with a high-level activity can be detected

hierarchically based on time intervals of detected gestures.

However, unlike in the case of the deterministic recognition,

even a time interval of a gesture detected with a small proba-

bility is now considered a valid candidate time interval in the

case of probabilistic recognition. The gesture layer is asked

to generate time intervals with the confidence probabilities

attached to them, whenever the probability of a gesture oc-

curring reaches any local maximum (i.e. the likelihood of

the HMM reaches a local maximum). Except for the fact

that more time interval candidates are associated with each

gesture, generating more time intervals for atomic actions,

the overall algorithm is equivalent. As a result, a time inter-

val associated with a high-level activity is detected, and time

intervals of gestures composing the activity is identified.

Once time intervals of an activity being recognized are

detected, the system then computes the probability (or con-

fidence) of the activity by considering probabilities associ-

ated with the detected gestures composing the activity. By

avoiding deterministic decisions to be made by the gesture

layer, our probabilistic algorithm is able to recognize human

activities more reliably and accurately. The objective is to

calculate the probability of an activity occurring in one time

interval, given the sequence of images. If we denote images

from frame 1 to T as IT , then the conditional probability

of the activity R occurred in the time interval 〈s, e〉 can be

expressed as P(R〈s,e〉 | IT ). The goal of our algorithm is to

calculate P(R〈s,e〉 | IT ) based on the recognition results of

gestures, P(G
〈si ,ei 〉

i | IT ) where Gi is the ith gesture com-

posing the activity.

In order to calculate probability of a high-level activity,

we use the dependency information between the activity and

its sub-events. The hierarchy tree (e.g. Fig. 7) illustrates

dependencies among the activities similar to the Bayesian

network. Activities associated with child nodes depend on

the activity associated with a parent node. By the definition

of the operation triplets, the gesture specified in an opera-

tion triplet depends on that atomic action, i.e. the leaf node.

The main difference between the dependency among nodes

in the hierarchy tree and those in the Bayesian network is

that siblings of the hierarchy tree are not conditionally in-

dependent given the parent node; sub-events tend to occur

together, implying that they are highly correlated.

We denote a union of sub-events of each element in set S

as sub(S). When an element a of the set S does not have any

sub-events, the sub(S) is defined to be sub(S−a) ∪ a. Then,

the probability P(R〈s,e〉 | IT ) can be enumerated using the

dependency among nodes, as follows:

P(R〈s,e〉|IT )

= P
(

{R}|sub({R})
)

× P
(

sub({R})|sub
(

sub({R})
))

× · · · × P
(

subd({R})|IT
)

=

d−1
∏

i=0

P
(

subi({R})|subi+1({R})
)

× P
(

subd({R})|IT
)

=

d−1
∏

i=0

P
(

subi({R})|subi+1({R})
)

× P
(

a1, . . . , an|I
T
)

(1)

where a1, a2, . . . , an are leaf nodes (i.e. atomic actions) of

the tree and d is the depth of the tree.

Because of the characteristics of our representation, we

can safely assume that an activity occurs if and only if all of

its sub-events occur. That is, for all set of siblings S in the

tree, P(S|sub(S)) = 1.

Therefore, P(R〈s,e〉 | IT ) can be simplified into the prod-

uct of conditional probabilities among atomic actions and

gestures. If we assume conditional independence among

recognitions made by the gesture layer, the probability can

be enumerated as follows:

P(R〈s,e〉|IT )

=

d−1
∏

i=0

P
(

subi({R})|subi+1({R})
)

× P
(

a1, . . . , an|I
T
)

= 1 × P
(

a1, . . . , an|I
T
)

=
∑

g1

. . .
∑

gn

[

P
(

a1, . . . , an|g1, . . . , gn

)

× P
(

g1, . . . , gn|I
T
)]

(2)

We estimate the probability P(a1, . . . , an|g1, . . . , gn)

using the regression techniques with binary features g1,

g2, . . . , gn. Both the linear regression with a minimum

and maximum value of 0 and 1 and the logistic regres-

sion have been applied to estimate the probability value

P(a1, . . . , an|g1, . . . , gn), resulting a similar outputs. In the

case of the logistic regression, we assume the P(a1, . . . , an|

g1, . . . , gn) to be a logistic function of g1, . . . , gn:

P
(

a1, . . . , an|g1, . . . , gn

)

= 1/
(

1 + e−β0−β1g1−···−βngn
)

(3)

where we estimate parameters β0, . . . , βn through training.

In contrast to the training full conditional probability ta-

ble that has O(2n) cases even for binary features, only O(n)

parameters need to be trained for the linear and logistic re-

gressions. As a result, the high-level of the system can be

trained with less training data, while appropriately estimat-

ing the real probability distribution.
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After calculating the probability associated with an activ-

ity’s time interval, i.e. P(R〈s,e〉 | IT ), the system can make

a recognition decision by accepting time intervals with the

probability above a certain threshold probability value and

rejecting others. That is, only the time intervals with high

confidence probability are recognized. Because of the char-

acteristics of the linear (or logistic) regression, the probabil-

ity of an activity tends to be high when one or more gestures

have low confidence probability but all the others have high

enough probability.

Recursive activities can also be recognized probabilisti-

cally using the method presented in this sub-section. Ges-

tures composing a recursive activity can be revealed us-

ing the algorithm presented in Sect. 7.2, and the regression

technique can be applied in a similar way to estimate the

probability, theoretically. One practical problem arises when

calculating the probability of recursive activities is on the

number of training examples needed. Because of the char-

acteristics of the recursive activities, the number of gestures

composing the activity is not limited. For example, the num-

ber of gestures is six if the fighting is composed of three

punching actions, while it is ten if the fighting is composed

of five punching actions. In order for the regression tech-

nique to estimate the probability correctly, it must be trained

with sufficient examples for each case. Theoretically, they

can simply be trained with large training data. In practice,

we usually limit the size of the recursive activities, since the

amount of data that can be obtained is limited.

8.2 Concepts of Hallucinations and Liquid Activities

In this sub-section and the following sub-section, we present

a methodology for the semantic layer to overcome com-

plete failures of the gesture layer. For reliable recognition

of high-level activities, the system must be able to detect oc-

curring activities even when time intervals associated with

one or few gestures are not detected because of the failure.

The probability calculation method presented in the previ-

ous sub-section requires all gestures composing an activity

to have associated time intervals at least with a low prob-

ability in order for it to recognize the activity. Therefore,

we introduce the concept of ‘hallucination’ time intervals,

which is inserted in the place of missing gestures with an

extremely low probability. With hallucinated time intervals

of gestures, our approach is able to recognize high-level ac-

tivities even with imperfect lower layers probabilistically.

‘Hallucinations’ are time intervals which are inserted re-

gardless of the gesture recognition results, to compensate for

the failures of the gesture layer. Our usage of hallucinations

is similar to that in previous syntactic approaches (Minnen

et al. 2003). The difference is in the locations where hallu-

cinations must be inserted, and the algorithm to recognize

activities with concurrent hallucinations. Since syntactic ap-

proaches focus on the recognition of sequential activities,

inserting hallucinations between correctly detected gestures

was sufficient for them. However, our approach is designed

not only to recognize sequential activities but also to recog-

nize activities composed of complex concurrent sub-events.

That is, in our representation, gestures may occur in time in-

tervals with any starting time and any ending time, implying

that the ability to insert hallucinations in all possible inter-

vals is required. In principle, the system may put hallucina-

tion time intervals with all possible starting time and ending

time, generating T 2 number of intervals where T is the num-

ber of observed frames. However, maintaining T 2 number

of time intervals for each gesture results in an exponential

amount of computation for recognitions (more specifically,

O(nT 2n) where n is the number of gestures composing the

activity).

In order to model hallucinations concisely, we intro-

duce the concept of ‘liquid’ and ‘semi-liquid’ time inter-

vals. Siskind (2001) introduced the concept of liquid and

semi-liquid events. Occurring time intervals of those ac-

tivities are modeled with a range of starting time and a

range of ending time. A liquid (or semi-liquid) time in-

terval represents all time intervals whose starting time is

within the specified range of it and whose ending time is

within its range. If the range of its starting time and end-

ing time are identical, the time interval is called a ‘liquid’.

Otherwise, it is called a ‘semi-liquid’. The human activ-

ity ‘touching’ is a good example of an activity which can

efficiently be modeled using a liquid time interval. If two

persons are touching from time frame 5 to time frame 15,

two persons are essentially touching in any time interval

whose starting and ending are within (Hongeng et al. 2004;

Park and Aggarwal 2004b).

We model a hallucinated time interval of a gesture as a

liquid interval whose range of starting time and ending time

is from 0 to T . Therefore, only one liquid time interval needs

to be maintained as a hallucination for each gesture (instead

of maintaining T 2 intervals).

8.3 Recognition of Liquid Activities

We construct an efficient algorithm to recognize human ac-

tivities when one or more sub-event composing them are liq-

uid time intervals. More specifically, a linear time algorithm

is developed to check whether given combinations of sub-

events’ time intervals (including liquid time intervals) sat-

isfy the specified temporal relationship or not. The process

of the algorithm is as follows. First, the algorithm converts

the formal representation of the human activity into a di-

rected graph form, similar to Ryoo and Aggarwal (2007).

Next, the algorithm associates a range of time for each node

in the graph, and checks whether assigning an integer value

within the range to each node is possible or not. If possible,

it suggests that there exists at least one valid time interval

combination that satisfies the temporal constraints.
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8.3.1 Conversion into a Directed Graph Representation

In our directed graph representation, a vertex is a time

point (either starting time or ending time of a sub-event),

and an edge from vertex t1 to vertex t2 implies t1 < t2.

The purpose of this conversion is to calculate the necessary

temporal ordering between times associated with an activ-

ity’s sub-events. The procedure to convert our programming

language-like representation into a directed graph represen-

tation is presented below.

First, the system must convert Allen’s temporal pred-

icates for time intervals into equalities and inequalities

among time points. In our programming language-like rep-

resentation, temporal relationships are specified as a logical

formula of Allen’s temporal predicates. Following the defi-

nition of temporal predicates, the representation can be con-

verted into equalities and inequalities among time points as

follows:

Let a and b be the time intervals, (astart , aend) and

(bstart , bend).

before(a, b) =⇒ aend < bstart

meets(a, b) =⇒ aend = bstart

overlaps(a, b) =⇒ astart < bstart < aend

starts(a, b) =⇒ astart = bstart and aend < bend

during(a, b) =⇒ astart > bstart and aend < bend

finishes(a, b) =⇒ aend = bend and astart > bstart

Also, we add one trivial inequality astart < aend for

all time intervals a. As a result, logical concatenations of

Allen’s temporal predicates are converted into logical con-

catenations of equalities and inequalities among time points.

Next, the system removes the predicate ‘not’, as follows.

First, the system applies De Morgan’s laws to enumerate the

inequalities to make ‘not’s are only attached to a single pred-

icate. Then,

not(t1 < t2) =⇒ t2 < t1 or t1 = t2

not(t1 = t2) =⇒ t1 < t2 or t2 < t1

The system then converts a logical formula into a disjunc-

tive normal form (DNF). The end product is the disjunction

of conjunctive clauses of pure equalities and inequalities.

This suggests that the activity representation can be divided

into several conjunctive clauses, where each clause presents

necessary temporal conditions for the activity. There is no

semantic difference between the DNF representation and the

directed graph representation we plan to construct. For each

clause, we formulate one directed graph to help the user vi-

sualize the representation. The system first calculates time

points that are equal, checking the equalities in a clause. The

Fig. 10 The directed graph representation of ‘shake-hands’.

x, y, and z are time intervals of sub-events, each asso-

ciated with ShakeHandAction(i), ShakeHandAction(j), and

TouchingInteraction(i, j) as illustrated in Sect. 5.3.3

system assigns one vertex for a set of time points which are

equal. For example, if t1 = t2 and t2 = t3, only one ver-

tex is assigned for a set {t1, t2, t3}. Then, an edge is con-

structed from a vertex v1 to a vertex v2, if ∃t1, t2 such that

(t1 ∈ v1 and t2 ∈ v2 and t1 < t2). What this directed graph

representation suggests is that the activity can be completed

if and only if an integer value is correctly assigned for each

vertex while satisfying the temporal order of the graph.

For example, the representation of the human-human in-

teraction ‘shake-hands’ can be converted into a directed

graph form as follows. The formal representation of it is

presented in Sect. 5.3. First, the temporal predicates are con-

verted into equalities and inequalities.

(xstart < zstart and ystart < zstart and

zend < xend and zend < yend and

xstart < xend and ystart < yend and zstart < zend

thisstart = zstart and thisend = zend)

This already is a DNF composed of only one conjunctive

clause. Figure 10 shows a final directed graph representation

of the example.

8.3.2 Temporal Constraint Verification

Once the direct graph is constructed, we associate the range

of time to each node based on time intervals detected for

sub-events. Next, we try to detect any contradiction caused

by the association. Each node corresponds to either the start-

ing time or ending time of a sub-event, whose range is speci-

fied based on liquid time intervals. For each given time range

association, the system must verify that there exists at least

one value in the assigned range for each node which does not

result any temporal contradiction. In our temporal graph, the

value of an ancestor node must be strictly less than its de-

scendants. That is, since our system keeps track of time in a

frame-based fashion (i.e. a time points is an integer value),

the value of a child node must be greater than or equal to the

(value of its parent) + 1. Figure 11 illustrates an example

of valid integer value assignments that satisfy the temporal

constraints.
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Fig. 11 (Color online) The directed graph representation of

‘shake-hands’ with ranges for time intervals associated. The two blue

numbers on the left of each node show the minimum and maximum

value of a valid time assignment. The red numbers on the right of the

nodes are time values assigned within the range, which satisfy the tem-

poral constraints of the graph without any contradiction. The goal of

the algorithm is to check whether there exists such assignment when a

range for each node is given

Therefore, the following constraint is posed for a time

range association to verify that the association avoids the

temporal contradiction of the activity.

∀t1, t2 : (t2.rangemax − t1.rangemin) ≥ distance(t1, t2)

where t2 is a descendant of t1.

This condition can be checked for each time range as-

signment in linear time using an algorithm similar to the tree

traversal algorithm. Figure 12 shows the pseudo code of this

linear time algorithm. In addition, after verifying that the

condition is satisfied, the system can also compute a desired

range for the time interval ‘this’ as follows:

this(start or end).rangemin

= maxt1(distance(t1, this) + t1.rangemin)

this(start or end).rangemax

= mint2(t2.rangemax − distance(this, t2))

where t1 is an ancestor of this(start or end) and t2 is a de-

scent of this(start or end), and this(start or end) can either be a

starting time or ending time of the time interval ‘this’.

Overall, the algorithm to recognize human activities

based on liquid time intervals is developed. As a result, high-

level activities can be recognized hierarchically even with

imperfect gesture recognition by modeling hallucinations as

liquid time intervals.

9 Experiments

9.1 Recognition of Eight Simple Interactions

We have recognized the following eight simple (though

composite) two-person interactions through our system: ap-

proach, depart, point, shake-hands, hug, punch, kick, and

push. Interaction videos taken by Sony VX-2000 were con-

verted into sequences of image frames with 320 × 240 pixel

Fig. 12 The algorithm for checking the temporal constraint of time

range associated for an interaction

resolution, obtained at a rate of 15 frames per sec. Eight

persons participated in the experiment and 24 sequences

were obtained. In each sequence, participants were asked to

perform a number of the above interactions consecutively

and continuously. Overall, each simple interaction was per-

formed 12 times.

The representations for the eight interactions were con-

structed manually using our CFG-based representation

scheme. Usually, a composite action is first defined in order

to represent a meaningful one-person movement in the inter-

action. For example, in the previous sections, the composite

action ‘shake-hands action’ was defined first in order to rep-

resent interaction ‘shake-hands interaction’. The composite

action ‘shake-hands action’ and the interaction ‘touching’

were sub-events.

Figures 13 and 14 show the intermediate outputs of each

layer. In this experiment, two persons performed three in-

teractions consecutively: shake-hands, point, and hug. The

body-part layer extracts features for each body part per

frame. Figure 13 shows the sequences of raw images, and

processed images for extracting body-part parameters. Once

the features for each frame are extracted, the pose layer con-
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Fig. 13 (a) Shows sequences of raw images of consecutive three inter-

actions: shake hands, point, and hug. (b) Illustrates processed sequence

of images by the body-part layer

Fig. 14 Outputs of the pose layer, the gesture layer, and the action and

interaction layer. Time intervals of atomic actions and interactions are

presented

verts them into a discrete pose for each body part. The ges-

ture layer converts sequences of poses into sequences of ges-

tures. The recognition algorithms provided in the previous

sections are then used to recognize interactions based on in-

formation from the gesture layer. Figure 14 shows the result

of the pose layer, the gesture layer, and the final result of

interaction recognitions.

Table 2 shows the performance (rate of true positives)

of our recognition system on eight simple interactions. Be-

cause of the accurate representation and probabilistic recog-

nition of composite actions, our system performed superior

to the previous statistical system developed by Park and Ag-

garwal (2004b) that showed 0.8 recognition accuracy on the

same activities. Moreover, the results are obtained from se-

Table 2 A table showing recognition accuracy of eight simple inter-

actions

Interaction Deterministic system Probabilistic system

Approach 12/12 12/12

Depart 12/12 12/12

Point 11/12 12/12

Shake hands 11/12 11/12

Hug 10/12 10/12

Punch 11/12 11/12

Kick 10/12 11/12

Push 11/12 11/12

Total 88/96 90/96

quences of consecutive interactions, not segmented manu-

ally. The system was able to recognize sequences of actions

and interactions with a high degree of accuracy. Our sys-

tem taking advantage of hallucinations and the probabilis-

tic recognition algorithm is compared with the deterministic

version of the system. False positive rates of both systems

were almost 0, since the probability of detecting multiple

sub-events satisfying a particular temporal order ‘by mis-

take’ is extremely small.

9.2 Recognition of High-Level Interactions

Most of the eight simple interactions presented above were

constructed as a concatenation of composite actions and

simpler interactions, such as touching. Those composite ac-

tions were constructed based on atomic actions. Therefore,

a simple interaction can be interpreted as a composition of

composite human actions (i.e. 3-levels). Our system has the

ability to represent and recognize even higher-level interac-

tions composed of those eight simple interactions. We con-

ducted experiments on the recognition of two recursive in-

teractions, fighting and greeting, which have a set of eight

simple interactions as their sub-events. In addition, the high-

level interaction assault and pursuit were also represented

and recognized. The assault and pursuit contain the interac-

tion fighting as their sub-event.

Our representation of the fighting and greeting, con-

structed using our a CFG-based representation scheme,

are presented in Sect. 7. Both of them are represented

recursively. The interaction assault and pursuit are also

represented using CFG-based representation scheme, as a

concatenation of the fighting interaction and other simpler

interactions. The assault indicates a situation where one

person approaches and tries to damage the other person who

was staying peacefully. The interaction fighting follows as a

consequence of the assault. The pursuit is initiated by two

persons running in the same direction. If one person starts

attacking the other and fighting follows as a consequence,
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Table 3 A table showing recognition accuracy of recursive interac-

tions fighting and greeting

Interaction Deterministic system Probabilistic system

Fighting 13/18 17/18

Greeting 4/6 5/6

Total 17/24 22/24

Table 4 A table showing recognition accuracy of recursive interac-

tions assault and pursuit

Interaction Deterministic system Probabilistic system

Assault 4/6 6/6

Pursuit 4/6 6/6

Total 8/12 12/12

we call it pursuit. The actual representation of assault and

pursuit is presented below.

AssaultInteraction(i, j) = (

list( def(a,Approach(i, j)),

list( def(n,NegativeInteraction(i, j)),

def(f,FightingInteraction(i, j)))),

and( and( meets(a,n),meets(n,f )),

and( starts(a, this),finishes(f, this)))

);

PursuitInteraction(i, j) = (

list( def(m1,Move(i,direction1)),

list( def(m2,Move(i,direction1)),

list( def(n,NegativeInteraction(i, j)),

def(f,FightingInteraction(i, j))))),

and( and( meets(m1, n),meets(m2, n)),

and( meets(n,f ),

and( starts(m1, this),finishes(f, this))))

);

Participants were asked to perform pure fighting and

greeting interactions six times each. Also, assault and pur-

suit were performed six times. Since each assault or pur-

suit interaction contains one fighting interaction, the inter-

action fighting was performed 18 times total. Tables 3 and 4

show the recognition results of our system. Again, false pos-

itive rates were almost 0 because of the complex structure

of the activities. In the case of recursive interactions such

as fighting or greeting, multiple time intervals are detected

for one long sequence of fighting. For example, if three

consecutive punching actions occurred, then fighting inter-

actions composed of one, two, and three punching actions

must be detected. In this case, there are 3 fighting interac-

tions composed of only one punching, 2 fighting interac-

tions composed of two punching, and 1 fighting interaction

Fig. 15 Time intervals of atomic actions, simple interactions, and the

recursive interaction fighting are detected

composed of three punching. Only when the longest of them

is detected, we evaluate that sequence as ‘correct’. Figures

15 and 16 illustrate examples of time intervals detected for

fighting and assault. We can observe that multiple time in-

tervals are detected for each fighting interaction and assault

interaction.

9.3 Recognition with Noise

We have further conducted experiments to verify the ap-

plicability of our methodology on real-world systems. In the

case of real-world applications such as an automated surveil-

lance system using CCTV cameras, low-level components

of the system including pose estimation and gesture detec-

tion tend to have relatively low accuracy due to noise and

occlusions. What we verify through the experiment in this

subsection is that the semantic layer we have proposed in

this paper is able to reliably recognize high-level activities

even under noisy low-level detections by probabilistically

compensating for their failures. The motivation behind the

design of the probabilistic semantic layer is to enable the

system to handle noisy low-levels, and we here verify that

our approach successfully handles them.
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Fig. 16 Example recognition results of the interaction assault

In order to simulate realistic environments where the low-

level components (i.e. gesture recognition) have difficulties,

we have added artificial noise to the gesture detection. The

gesture detection accuracy of our low-level of the system is

originally between 0.9 and 0.95 for datasets we have seen in

Sects. 9.1 and 9.2. By making the system to randomly throw-

ing out detected gestures with 0.2 probability, we were able

to simulate the situation where the gesture detection accu-

racy is between 0.7 and 0.8. We have re-trained the para-

meters of our system for new noisy inputs, while setting the

false positive rate to be approximately 0. The evaluations

were done using the identical datasets that we have used in

the previous subsections.

Table 5 shows the overall performance of our system.

The performance of the deterministic version of our sys-

tem and the probabilistic version of our system are measured

and compared. Both systems are evaluated with normal ges-

ture detection results as well as noisy gesture detection re-

sults.

As expected, the deterministic version of our system (i.e.

the system without the probabilistic hallucinations) per-

formed poorly on both the recognition of 8 simple inter-

actions and that of recursive activities. Since all gestures

composing an activity must be detected in order for the

deterministic system to recognize the activity, the system

missed many occurring activities. In contrast, the probabilis-

tic version of our system was able to cope with noisy inputs.

Especially in the case of activities composed of many ges-

tures (e.g. pushing, shake-hands, fighting, assault, . . .), the

system was able to overcome few failures of the gesture

Table 5 A table comparing recognition accuracies of systems with

noisy gesture detections

System 8-Simple Recursive

Deterministic 0.917 0.694

Deterministic (noisy inputs) 0.615 0.361

Probabilistic 0.938 0.944

Probabilistic (noisy inputs) 0.740 0.833

detection based on the other gestures which are correctly

detected. If the majority of gestures composing an activity

were detected, our system was able to recognize the activity

by generating probabilistic hallucinations for missing ges-

tures.

The total time complexity of our semantic layer on recog-

nizing an activity is O(
∑

k=0 to h nCh · r · T ) where n is

the number of the sub-events, h is the maximum number of

hallucinations allowed by the system, r is the number of re-

lationships of the activity, and T is the number of frames.

Generally, the maximum possible hallucinations, h, is set to

be a small number, resulting overall complexity to be in a

polynomial number. As a result, our semantic layer recog-

nizes activities from gesture detection results in real-time

with our semi-optimized C++ implementation. That is, if

the low-level components of the system are functioning in

real-time, the whole system is able to recognize activities in

real-time from raw video sequences. In addition, what we

must note is that the computational complexity of detecting

an activity at each frame is dependent only on the number

of sub-events n and that of relationships described in its rep-

resentation r . This implies that the complexity is not depen-

dent on the total number of possible gestures, making our

system scalable.

10 Conclusions and Future Works

We have presented the general methodology for the auto-

mated recognition of complex human activities. The funda-

mental idea is to use the CFG-based representation scheme

to represent high-level actions and interactions. The CFG-

based representation scheme provides a formal method to

define occurring time intervals of composite actions and in-

teractions. The idea of hierarchically representing complex

actions and interactions as a composition of simpler actions

and interactions was the key. Based on the constructed rep-

resentation of activities, the recognition was performed hier-

archically and probabilistically. Our experiments show that

the system can represent and recognize complex human ac-

tivities with a high recognition rate.

The novelty and contribution of our work is in the frame-

work and algorithms to represent and recognize high-level
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hierarchical activities from a raw image sequence. The al-

gorithm enables the recognition of human activities with

any level of hierarchy, whose sub-events are organized se-

quentially and/or concurrently. In addition, our representa-

tion explicitly captures the hierarchical and recursive nature

of actions and interactions. Recursive representation was al-

lowed to describe high-level activities, enabling the system

to recognize human activities with a continuous characteris-

tic. Our system has the ability to use represented actions as

sub-events of higher-level actions, thereby minimizing the

redundancy. Finally, the recognition process was probabilis-

tic, enabling the system to handle noisy inputs and compen-

sate for the failures of low-level processing. The main draw-

back of our system is in the time complexity to find optimum

recognition solution: it is a NP-hard problem. Our system

overcomes this by applying heuristics and posing constraints

on the recognition process. Experimental results suggest that

our methodology is reasonable and gives good results.

The potential of our work is that our methodologies are

applicable to various high-level activity recognition prob-

lems, if domain dependent atomic-level actions can be de-

tected with its starting time and ending time using other

computer vision techniques. Our system can recognize any

action and interaction if their time intervals can be defined

properly through our CFG-based representation scheme.

The representation and recognition methodologies in our se-

mantic layer are robust and reliable, even compensating for

the complete failures of mistakes made by low-level compo-

nent like HMMs. In the future, we plan to apply this frame-

work to various applications, including surveillance systems

using CCTVs, human-computer interactions systems, and a

system for sports play analysis.

Also, we aim to develop a methodology that is able to

learn representations of activities automatically based on

large training sets. Currently, the representation of human

activities are encoded by human experts following our CFG

syntax. On average, once an expert gets familiar with our

CFG representation syntax, he/she is able to encode a repre-

sentation of a single activity in few minutes. Our representa-

tion essentially is equivalent to the ordering of time intervals

(e.g. Fig. 5), and converting it into our formal representation

is a mechanical process if the expert is confident about its

conceptual structure. However, even though the representa-

tion of one activity can be used repeatedly for its recognition

once encoded, adding the representation whenever a new ac-

tivity is required to be recognized is an inefficient task.

Therefore, in our future work, we aim to enable auto-

mated learning of the representation of human activities.

Whenever an activity is occurring, it is likely to show partic-

ular sub-events organized in a particular order. Thus, group-

ing commonly appearing gestures and capturing common

structural patterns among them will enable the construction

of appropriate representations. The learned representation is

expected to have several variations depending on the train-

ing set, similar to the case of experts with different bias en-

coding the representation. However, what we have observed

though our experiments is that even though the represen-

tations of intermediate actions created by different experts

vary, the representations encoded are eventually decompos-

ing the activity into a similar set of gestures. Since the prob-

abilistic recognition process of our system is mostly depen-

dent on the gestures composing the activity, the recogni-

tion with automatically learned representation is expected

to show the comparable performance as long as it is able to

capture them correctly.

Appendix A

In this appendix, we present full context-free grammar

(CFG) syntax of our activity representation. We first pro-

vide a brief explanation of general context-free grammars.

Next, the full syntax for our representation is described.

A.1 Context-Free Grammar

In the formal language theory, context-free grammars denote

a particular class of languages which generate strings of ter-

minals (i.e. symbols). CFG has first been defined by Chom-

sky (1956), and it has often been used to describe syntax of

programming languages, such as Algol, C, C++, and Java.

The advantage of CFGs is that they are expressive enough

to describe complex languages like programming languages,

while parsing them is computationally tractable. Efficient

polynomial time parsers (e.g. LL and LR parsers) have been

developed.

A context-free grammar is described based on four com-

ponents. We represent a CFG G by four components, as

G = (V ,T ,P,S). V is a set of variables, T denotes ter-

minals, P describes a set of production rules, and S is the

starting variable. Each variable, also called a non-terminal,

corresponds to a set of strings that can be generated by fol-

lowing production rules starting from the variable. Termi-

nals are a finite set of symbols that appear in a language.

For example, integer numbers are terminals for a numeri-

cal expression. Production rules are the rules to generate a

sequence of terminals. By consecutively applying produc-

tions rules to replace variables with a sequence of terminals,

a string of symbols following the syntax can be constructed.

The start symbol is the variable which the application of pro-

duction rules has to be started with.

Let’s look into an example CFG for generating mathe-

matical expressions. For the simplification, we limit our ex-

pressions to the operators + and ∗, which represent the ad-

dition and the multiplication. We also limit the expressions

to use only a, b, and c as their symbols. The full syntax
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G = (V ,T ,P,S) can be expressed as follows: V = {E,I },

T = {a, b, c}, S = E, and P which is listed below.

E → E + E

E → E ∗ E

E → I

I → a

I → b

I → c

As a result, strings such as a + b, a ∗ b + a, and a + a + b +

c∗b can be generated. Only the strings that can be generated

by the production rules are the valid strings satisfying the

syntax. Thus, strings such as −a, ab+, and d ∗ e are invalid

strings which are syntactically incorrect.

A.2 Full CFG Representation Syntax

In this subsection, we present the full CFG representation

syntax for human activities. We describe the representation

syntax for atomic actions, composite actions, and interac-

tions. We start with the presentation of the syntax for ac-

tions (i.e. atomic actions and composite actions), and then

describe the syntax for interactions.

The CFG syntax presented in this paper is a detailed and

formalized version of the CFG syntax presented in Ryoo

and Aggarwal’s earlier works (Ryoo and Aggarwal 2006a,

2006b). As mentioned in the previous subsection, a CFG G

consists of four components: G = (V ,T ,P,S) where V is

the set of variables, T is the terminals, P is the set of produc-

tions, and S is the starting variable. In the case of our CFG

syntax for actions, V = { ActionDefine, ActionName, Ac-

tion, ActionExp, ActionDefs, ActionRelationship, Logical-

Predicate, Temporal-Predicate, name, c, var, person, opera-

tion triplet }, T = { atomic_ action, list, def, null, ‘this’, and,

or, not, before, meets, overlaps, starts, during, finishes, (, ),

=, ;, „ {all alphabet characters} }, and S = ActionDefine.

P , the production rules, is presented below. Parameters were

added to the variables when describing the production rules

P , to illustrate the semantic constraints for composite ac-

tions. Our P is a formal and complete description of pro-

duction rules for our representation syntax without any pa-

rameters. Parameters were added not to describe syntax, but

to describe semantic characteristics of our representation.

Non-terminal ActionExp(i) indicates the action of per-

son i. ActionExp(i) can be either an atomic action, or a

composite action defined with two components:

ActionDefs(i, var) and ActionRelationship(var). The first

component, ActionDefs(i, var), defines the variables for cor-

responding time intervals of sub-events. Parameter var is de-

fined to be the list of variables associated with sub-events.

ActionDefs(i,var) is the list of several def(c, Action(i)), and

this defines the contents of list var. Statement

def(c, Action(i)) associates a variable with the time inter-

val of a denoted sub-event. As a result, list var contains a

list of variables associated with time intervals of the corre-

sponding sub-events.

The second component is ActionRelationship(var). With

temporal and logical predicates, ActionRelationship(var)

defines all necessary conditions for the action using all vari-

ables in var and the special variable ‘this’. A combination of

any temporal predicates presented in Sect. 5.2 can be used to

define ActionRelationship(var). The time interval ‘this’ sat-

isfying all necessary conditions will be the corresponding

time interval for the action.

ActionDefine(i)

→ ActionName(i) “ = ” ActionExp(i)“; ”

ActionName(i) → name“(”person(i)“)”

Action(i) → ActionExp(i) | ActionName(i)

ActionExp(i)

→ “(”ActionDefs(i,var)“, ”

ActionRelationship(var)“)”

| “atomic_action” “(”operation triplet“)”

ActionDefs(i,var)

→ “list” “(” “def” “(”c“, ”Action(i)“)” “, ”

ActionDefs(i,var − c)“)”

| “def” “(”c“, ”Action(i)“)”

| “null”

ActionRelationship(var)

→ LogicalPredicate“(”ActionRelationship(var)“, ”

ActionRelationship(var)“)”

| TemporalPredicate“(” “this” “, ”var(a)“)”

| TemporalPredicate“(”var(a)“, ” “this” “)”

| TemporalPredicate“(”var(a)“, ”var(b)“)”

| “null”

LogicalPredicate → “and”|“or”|“not”

TemporalPredicate → “before”|“meets”|“overlaps”

|“starts”|“during”|“finishes”

name → char∗

c → char∗

var → char∗

person → char∗

Similarly, the production rules for the interaction repre-

sentation can be described as follows. The only difference

between the production rules for composite actions and that

for interactions is that the production rules for interactions

allow description of two different persons as participants.

As a result, the spatial predicates describing spatial relations

between two persons may also be listed following the syn-

tax.
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InteractionDefine(i, j)

→ InteractionName(i, j)“ = ”InteractionExp(i, j)“; ”

InteractionName(i, j)

→ name“(”person(i)“, ”person(j)“)”

Interaction(i, j)

→ InteractionExp(i, j)

| InteractionName(i, j)

InteractionExp(i, j)

→ “(”InteractionDefs(i, j,var)“, ”

InteractionRelationship(i, j,var)“)”

InteractionDefs(i, j,var)

→ “list” “(” “def” “(”c“, ”Interaction(i, j)“)” “, ”

InteractionDefs(i, j,var − c)“)”

| “list” “(” “def” “(”c“, ”Action(i or j)“)” “, ”

InteractionDefs(i, j,var − c)“)”

| “def” “(”c“, ”Interaction(i, j)“)”

| “def” “(”c“, ”Action(i or j)“)”

| “null”

InteractionRelationship(var)

→ LogicalPredicate“(”

InteractionRelationship(var)“, ”

InteractionRelationship(var)“)”

| TemporalPredicate“(” “this” “, ”var(a)“)”

| TemporalPredicate“(”var(a)“, ” “this” “)”

| TemporalPredicate“(”var(a)“, ”var(b)“)”

| SpatialPredicate“(”person(i)“, ”person(j)“, ”

threshold“)”

| “null”

SpatialPredicate → “near”|“touch”
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