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Abstract. Semantic segmentation refers to the process of assigning an object

label (e.g., building, road, sidewalk, car, pedestrian) to every pixel in an image.

Common approaches formulate the task as a random field labeling problem mod-

eling the interactions between labels by combining local and contextual features

such as color, depth, edges, SIFT or HoG. These models are trained to maximize

the likelihood of the correct classification given a training set. However, these

approaches rely on hand–designed features (e.g., texture, SIFT or HoG) and a

higher computational time required in the inference process.

Therefore, in this paper, we focus on estimating the unary potentials of a con-

ditional random field via ensembles of learned features. We propose an algorithm

based on convolutional neural networks to learn local features from training data

at different scales and resolutions. Then, diversification between these features is

exploited using a weighted linear combination. Experiments on a publicly avail-

able database show the effectiveness of the proposed method to perform semantic

road scene segmentation in still images. The algorithm outperforms appearance

based methods and its performance is similar compared to state–of–the–art meth-

ods using other sources of information such as depth, motion or stereo.

1 Introduction

Road scene understanding from a mobile platform is a central task for vehicle environ-

ment perception. This process is the key to success in autonomous driving and driver

assistance systems such as vehicle and pedestrian detection. Understanding road scenes

involves comprehending the scene structure (e.g., sidewalks, buildings, trees, roads),

scene status (i.e., traffic situations) or understanding the motion patterns of other ob-

jects present in the scene. A core component of road scene understanding systems is

its semantic segmentation [1,2]. Semantic segmentation is the process of partitioning

an image into disjoint regions and the interpretation of each region for semantic mean-

ings (Fig. 1). Semantic segmentation provides important information to support higher

level scene interpretation tasks. Therefore, in this paper, we focus on the semantic seg-

mentation of road images.
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Fig. 1. Semantic scene segmentation aims at assigning every pixel in an image by one of the

predefined semantic labels available (i.e., pedestrian, car, building, road, sidewalk, tree, sky).

Image taken from [3].

Common semantic scene segmentation approaches formulate the problem as a ran-

dom field labeling problem and model the dependencies of labels of pairs of variables

by combining different types of features such as color, texture, depth, edges among oth-

ers [4,5]. Then, a model describing these interactions is built and trained to maximize

the likelihood of the correct classification. For instance, Gupta et al. [6] include the 3D

geometry of the scene to improve the segmentation task by discarding physically im-

plausible relations between segments. Floros et al. [5] include top–down segmentations

from a densely sampled part–based detector. Other approaches include other sources of

information such as structure from motion [2] or stereo disparity [4]. However, these

conditional random field models have two main limitations. First, their dependency on

hand–designed features that may not be appropriated for the specific task. Second, these

approaches tend to be costly in terms of inference since inference requires searching

over different label configurations.

In this paper, we focus on multi–scale learning features for road detection. Feature

learning has received a lot of attention recently. For instance, a multi–scale end to end

learning algorithm is proposed in [7]. In that approach, the authors train a Convolutional

Neural Network in two steps. First, features are extracted at different scales and their

output is concatenated to generate a feature vector. Then, in a second stage these fea-

tures are trained to learn predictions of different classes. The approach shows promising

results in different databases. However, the training stage is complex and also involve

large (intermediate) feature vectors. Therefore, we propose a different approach to ob-

taining pixel potentials to represent the unary potentials of a conditional random field.

The core of the algorithm is a Convolutional Neural Network trained to extract local

features exploiting the 2D structures present in an image. In addition, the algorithm in-

cludes contextual information by extracting features at different visual scales (i.e., the

larger scale, the smaller area of the image is occupied by the object being analyzed).

Finally, robustness to scale variations is achieved by extracting these features at multi-

ple resolutions. Then, all these features are considered as weak features and combined

into a CRF as unary potentials. The ensemble of features is learned using global opti-

mization to exploit inter–feature diversification. Different experiments conducted on a

publicly available database show the effectiveness of the proposed method to perform

semantic road scene segmentation.
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The rest of this paper is organized as follows. First, in Sect. 2, we introduce condi-

tional random fields for image segmentation. Convolutional neural networks for feature

extraction are introduced in Sect. 3 and the algorithm to compute ensembles of multi–

scale features is detailed in Sect. 3.1. Then, in Sect. 4, experiments are presented and

the results are discussed. Finally, conclusions are drawn in Sect. 5.

2 Conditional Random Fields for Image Segmentation

Image segmentation consists of partitioning an image into several disjoint regions that

show homogeneity to certain features such as color, texture, edges. This process is usu-

ally formulated as a random field labeling problem to aggregate local cues such as color,

texture along with contextual cues describing the possible spatial interactions between

labels [4,5]. To this end, an image is represented with a graph structure G =< V ,E >

where V is a set of N random variables Y = Y1, . . . ,YN representing the nodes of the

graph (i.e., |V | = N) and corresponding to the pixels in the image. Each of these vari-

ables is allowed to take values from a discrete domain of labels L = l1, , . . . , lK . Fur-

thermore, E is the set of edges modeling the relationships between neighboring pixels.

Then, image segmentation is done by assigning every pixel in the image xi ∈ V a mean-

ingful label li ∈L . Finally, let y= {Yi ∈ V } a label assignment with values in L . Then,

we consider a Conditional Random Field (CRF) to model the Gibbs energy as follows:

E(y) = ∑
i∈V

ψi(li,xi)+ ∑
(i, j)∈E

ψi j(li, l j), (1)

where ψi(li,xi) is the unary potential modeling the likelihood of a pixel taking a certain

label, and ψi j(li, l j) is the pairwise potential modeling the coherence of neighboring

pixels taking the same label. Then, the most probable label assignment ŷ is obtained by

minimizing the Gibbs energy on the graph structure: ŷ = argminy E(y).
Conventionally, the unary potential is computed using features in an image such

as color, texture, shape or hand–designed features such as SIFT or HoG. Then, the

model is build and trained to maximize the likelihood of the correct classification. In the

next section, we introduce the use of convolutional neural networks to extract specific

features representing each possible label.

3 Feature Learning via Convolutional Neural Networks

In this paper we focus on learning/extracting features from training images using con-

volutional neural networks (CNN). CNNs are hierarchical architectures widely used for

object detection and recognition [8] that alternate different type of layers (e.g., con-

volution, sub–sampling) to extract and combine visual patterns presents in the input

data [9]. An example of this type of architectures is shown in Fig. 2. This architecture

can be interpreted as a set of filter banks divided in three different layers and a set of

connections to fuse them. The kernels of these filters and the connection weights are

learned off–line using training data [9].

Based on this learning architecture we extract features at two different visual scales:

fine and coarse. These two scales (levels from now on) consider different amount of
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Fig. 2. Convolutional neural networks alternate layers of convolution (C–layers) and sub–

sampling layers (S–layers) to learn high–order local features directly from training data. Con-

nection weights are given by wi j (i–th layer, j–th kernel), the size of convolutional kernels is

kiN ×kiM and the subsampling size for the S–layer is siN × siM .

contextual information by varying the size of the input patch. In particular, we consider

patch sizes of 32×32 and 64×64 for the fine and coarse levels respectively. Moreover,

robustness to scale variations is improved by extracting features using different kernel

sizes. In practice, this is done by resizing input images to 4 different scales: 1, 1
2
, 1

4
and

1
5
. Hence, this stage takes a RGB image of size X ×Y as input and extracts fine and

coarse features at multiple resolutions by applying a sliding window on patches of size

32× 32 and 64× 64 respectively. The output is a K ×X ×Y confidence map relating a

set of K (i.e., number of labels available) floating point numbers, ranging from 0 to 1,

to each pixel in the image to indicate their per–class potential. The higher the potential

is, the more likely the pixel belongs to that class.

3.1 Multi–scale Feature Ensembles as Unary Potentials

Unary potentials (e.g., ψi in Eq. (1)) model the likelihood of a pixel taking a certain

label. These potentials are usually estimated using common features extracted from

incoming data (e.g., color, texture, depth, edges). If more than one feature is available,

the unary potentials are estimated as a combination of them either using predefined

rules (e.g., sum, product, maximum, minimum [10]) or learned weighted combinations.

Using fixed rules does not exploit the fact that different objects (classes) have different

needs in terms of context and scale information. Therefore, if training sets are available,

a more powerful combining approach consists of a weighted combination of features.

In this case, the unary potentials can be estimated as follows:

ψi(li,x|Θi) =
R

∑
r=1

wrψr(li,x|Θr), (2)

where Θ1, . . . ,ΘR is the set of R features and wr is the weight modeling the relative rel-

evance of that feature for the given label. In this section, unary potentials are computed
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as a weighted combination of multi–scale learned features. To this end, we consider

the output of each CNN (different scales and different levels) as a different feature and

fuse them using a weighted linear combination. More precisely, we focus on class–

dependent weighted linear combination were each feature (scale and resolution) for

each class receives a different weight. These class–dependent weights are learned glob-

ally (all weights and all classes at the same time) off–line by minimizing the sum of

squared errors between the output of the CNN and the target label.

4 Experiments

Experiments validating the proposed algorithm are conducted on the Cambridge-driving

Labeled Video Database (CamVid) [3]. CamVid is a publicly available database of

high-quality images acquired using a camera mounted on the windshield of a vehi-

cle driving in an urban scenario at different daytime. Thus, these sequences include

challenging situations as crowded scenes, different lighting conditions and different

road type. Ground–truth is provided as manual annotations at 1fps. These annotations

include 32 different classes [3]. However, for fair comparison with other approaches,

we use 11 object categories as in [2,11]. We follow the experimental setup in [2,11]

by dividing into 367 training and 233 testing images and providing evaluations by

down–scaling the images by a factor of 3. Quantitative evaluations are provided using

pixel–wise confusion matrices including global and average accuracy. The former is the

number of pixels correctly classified over the number of pixels in the testing set. The

latter is the number of pixel correctly classified per class divided by the total number of

pixels in that class.

For testing purposes we devise a simple road scene segmentation algorithm based

on CNN and CRF. The core of the algorithm is a CNN which takes an N ×M image as

input and outputs a K×N×M confidence map relating a set of K (i.e., number of labels

available) floating point numbers indicating the per–class potential of each pixel in the

image. The higher the potential is, the more likely the pixel belongs to that class. Then,

a single unary potential per class is computed using Eq. (2). Finally, the most probable

label assignment is estimated minimizing the energy function in Eq. (1).

The parameters of the algorithm are empirically fixed as follows. First, the algorithm

uses two levels (fine and coarse) and four different scales (R = 8): 1x, 1
2
x, 1

4
x and 1

5
x

resolution. Further, the input layer (RGB data) at each level is sparsely connected to the

first convolutional layer: each color plane is connected to two different kernels and then

all three color planes are connected to two more kernels. The first connections enforce

learning independent preprocessing kernels for each color while the last ones combine

them.

4.1 Training and Data Preparation

The training set consists of 367 high–quality images manually labeled. This results in

millions of highly correlated training samples that difficult the training process. Hence,

to obtain a reasonable overhead we reduce the number of training samples by consider-

ing only a subset of training patches for each image. This subset per image is generated
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using over–segmentation and selecting a representative number of pixels within each

region. In this paper, the over–segmented image is obtained using the turbo–pixel ap-

proach in [12]. Then, training samples are selected as the centroid of each superpixel.

This sampling technique has two main advantages. First, it improves diversity in the

training set by reducing the number of samples (i.e., iterative learning algorithms such

as back–propagation can explore more samples in less time). Second, the selection of

the centroid improves the intra–class variance since the centroid is the best representa-

tion of the superpixel area and maximize the distance between samples from two con-

secutive superpixels. Based on this sampling technique, two non–overlapping training

sets are generated using different dilation masks around the centroid of each super-

pixel (Fig. 3). The first subset is used to train the CNN and, the second one is used

to learn the weights. Thus, the weights of the ensemble are learned globally using the

approach in Sect. 3.1 using unseen samples. Both training subsets are resampled to

improve the balance between classes.

Fig. 3. The number of training samples is sub–sampled to reduce the computational training over-

head. The incoming image is over–segmented using superpixels. Then, patches centered at the

centroid of each superpixel and several pixels in its surrounding area are selected as training

samples.

The layers of the CNN are trained in supervised mode using the pixel labels in the

first training subset. To this end, image patches centered in the training set are ex-

tracted. Robustness to scale and noisy acquisition conditions is reinforced using jit-

ter in each patch. More precisely, we consider a random scale per sample between

[0.6, . . . ,1.4], random Gaussian noise σ = [0.3, . . . ,1.2] and random rotations in the

range [−17◦, . . . ,17◦]. Given this resampled training set, CNN at each level is trained

(weight learning) independently using classical back–propagation. The parameters of

the CNN are corrected due to standard stochastic gradient descent by minimizing the

sum of square differences between the output of the CNN and the target label. Training

is stopped when the error in consecutive epochs does not decrease more than 0.001.

Finally, the CRF is trained using the Conditional Random Field toolbox in [13].

The set of weights obtained is listed in Table 1. The larger the weight, the more

important the feature. As shown, different weights are obtained for each class. For

instance, high weights are given to the 4th–scale of the coarse level for the bicyclist

and sign–symbol classes (i.e., more contextual information is needed to predict these

classes) while the road ensemble mainly consists of fine scales.
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Table 1. Set of weights obtained for the experiments. Weights are computed globally without

bounding their possible values.

Fine Level Coarse Level

Scales 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Byciclist 0.023 0.360 0.120 −0.009 0.008 0.608 0.062 −1.0

Building 0.185 0.658 0.244 0.106 0.188 0.388 0.280 −1.0

Car 0.092 0.296 0.220 0.192 −0.007 0.337 0.189 −1.0

Column-pole 0.022 0.132 0.078 −0.020 0.101 0.251 0.021 −0.536

Fence −0.145 0.344 0.182 0.027 0.058 0.487 0.181 −1.0

Pedestrian 0.020 0.197 0.100 0.032 0.079 0.320 0.092 −0.746

Road 0.050 0.272 0.074 0.109 0.089 0.478 0.3414 −1.0

Sidewalk −0.040 0.309 0.174 0.051 −0.023 0.546 0.184 −1.0

Sign–symbol 0.060 0.247 0.191 0.048 0.076 0.314 0.040 −0.823

Sky 0.383 0.375 0.361 −0.008 0.026 0.096 0.062 −0.867

Tree 0.063 0.351 0.380 0.087 0.208 0.301 0.047 −1.0

4.2 Results

Representative qualitative results are shown in Fig. 4 and pixel–wise confusion ma-

trices are shown in Fig. 5. These matrices provide per–class classification rates given

by the total number of correctly classified pixels divided by the total number of pixels

in the training set. For comparison, we provide confusion matrices for three different

configurations. First, using a linear combination only at the finner level. Second, the

confusion matrix using both levels and learned weights and finally, the confusion ma-

trix using the CRF framework and CNN to estimate the unary potentials. As shown,

the best average per–class accuracy is provided by the fusion of weights without the

pairwise potentials Fig. 5b. However, using the pairwise potentials reinforce relation

between neighboring pixels and improves the global accuracy of the algorithm. In this

case, the accuracy of large classes (e.g., road, sidewalk) is improved at the expense of

lowering the accuracy of classes with small presence in the dataset (e.g., sign–symbol).

These contingency table suggests that miss–classifications are mainly located in small

objects such as column-pole and sign-symbol corresponding with those classes with

less examples in the training set. Further, the algorithm exhibits lower performance in

classifying bicycles, buildings, fences and trees. The former are usually classified as

pedestrian due to their similarity (Fig. 1).

The performance of the proposed CNN–CRF algorithm is also compared to several

methods in the state–of–the–art. These approaches include different types of features

such as appearance [2], motion cues (SfM) [2], their combination [2] , depth [11],

semantic texton and superpixels [11] and their combination [11,4] to improve their

performance. We also include approaches including object detectors [5,4] since they

provide the highest accuracy within the state–of–the–art. Moreover, for comprehen-

sive evaluation, we include five different instances of our algorithm. First, the com-

plete CNN–CRF using all the scales and features. Then, two different multi–scale

instances excluding the CRF: using both levels (MultiScale CNN–no CRF) and using

only the fine level (CNN–MR Fine). Finally, an instance where histogram of superpixel

labels is used to reinforce the spatial consistency of object labels (CNN–superpixels)

is also included. We also include a CNN approach based on a single scale at the finer

level (Fine Level). This configuration outputs the maximum response over each class,
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Fig. 4. Qualitative semantic road segmentation results. First and fourth rows: input image. Second

and fifth rows: manually annotated labels. Third and sixth rows: results of our algorithm.

(a) (b) (c)

Fig. 5. Confusion matrix over the CamVid test set. a) Using directly the ensemble of learned

features (average recognition rate per class is 54.95%±23.3). b) Using directly the ensemble of

learned features (average recognition rate per class is 58.6%±21.7%). b) Using the ensemble of

learned features and the CRF (average rate per class is 55.57%±33.41).

computes the superpixel histogram of object labels (using the approach in [14]) and

finally, assigns the predominant class label to each pixel in the superpixel. The base-

line is the appearance based algorithm in [2] since it is based on appearance features

extracted in a single image. A summary of per–class accuracy is listed in Table 2. As

shown, our approach significantly improves the performance of the maximum fusion

method, the baseline and the combination of motion and appearance. Furthermore, the

proposed approach provides similar per class average accuracy compared to the rest of

methods. However, the proposed algorithm provides a lower global performance. This

is mainly due to the lack of accuracy in the road class (89.0% compared to 95%) since

this is the class with more pixels in the database. As shown, using depth information
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provides the highest accuracy for the road class and high global accuracy but lower per

class average performance. Hence, we expect a significant improvement in the overall

performance by including temporal information to our approach. From these results,

we can conclude that using learning ensembles of trained multi–scale features provides

promising semantic road image segmentation in a single image.

As shown, compared to state–of–the–art approaches, the proposed algorithm

provides the higher accuracy for car, column–pole and bicyclist and it outperforms

algorithms combining appearance and structure from motion features. In addition, it

provides promising results compared to algorithms using CRF frameworks to combine

multiple features from diversified sources of information. For instance, the top per-

forming algorithm combines depth, semantic textons, object detection and superpixel

features to achieve the higher class average accuracy. Nevertheless, the proposed algo-

rithm outputs a per–class confidence map indicating the pixel potential per class that

could be combined with the rest of features and integrated into a CRF framework im-

proving the global and class average accuracy.

Table 2. Quantitative comparison of our method with state–of–the–art road scene recognition

approaches on the CamVid database. These approaches include different cues such as motion,

appearance, depth or stereo information. Bold names indicate an instance of the proposed method.

Bold values indicate the best performing method.
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Our approach (CNN–CRF) 84.3 65.3 93.1 74.6 0.4 93.5 25.6 32.3 13.8 85.0 54.3 56.6 83.6

MultiScale CNN - noCRF 47.6 68.7 95.6 73.9 32.9 88.9 59.1 49.0 38.9 65.7 22.5 58.6 72.9

CNN–MR Fine 37.7 66.2 92.5 77.0 26.0 84.0 50.9 43.7 31.0 65.7 29.7 54.9 68.3

CNN–superpixels 3.2 59.7 93.5 6.6 18.1 86.5 1.9 0.8 4.0 66.0 0.0 30.9 54.8

Fine Level 33.2 53.9 87.8 67.1 23.2 83.9 42.7 44.1 31.3 63.0 26.1 50.6 63.5

[11] Unary 61.9 67.3 91.1 71.1 58.5 92.9 49.5 37.6 25.8 77.8 24.7 59.8 76.4

Baseline (App. [2]) 38.7 60.7 90.1 71.1 51.4 88.6 54.6 40.1 1.1 55.5 23.6 52.3 66.5

[2](SfM) 43.9 46.2 79.5 44.6 19.5 82.5 24.4 58.8 0.1 61.8 18.0 43.6 61.8

[2](SfM combined) 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 53.0 69.1

[11] Unary & pairwise 70.7 70.8 94.7 74.4 55.9 94.1 45.7 37.2 13.0 79.3 23.1 59.9 79.8

[11] higher order 84.5 72.6 97.5 72.7 33.0 95.3 34.2 45.7 8.1 77.6 28.5 59.2 83.8

[4] (no det.) 79.3 76.0 96.2 74.6 43.2 94.0 40.4 47.0 14.6 81.2 31.1 61.6 83.1

[4] (det.) 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8

[5] (top down) 80.4 76.1 96.1 86.7 20.4 95.1 47.1 47.3 8.3 79.1 19.5 59.6 83.2

[1] depth 85.3 57.3 95.4 69.2 46.5 98.5 23.8 44.3 22.0 38.1 28.7 55.4 82.1

Finally, the computational cost required to process a single image is analyzed.

Currently we have a sub–optimal implementation based on Lua code and Matlab. Our

implementation takes approximately 5 seconds to output the features of a 320× 240

image and approximately 5 seconds to estimate the optimum labeling. Further, our ap-

proach is highly parallelizable and specially suitable for FPGA–based processors [15].

From these results, we can conclude that the proposed CNN–based algorithm provide

promising semantic road scene segmentation in a single image.
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5 Conclusions

In this paper, we proposed a semantic road image segmentation algorithm based on

the fusion of multiple features. The algorithm first extracts learned features at multiple

scales and multiple resolutions and then, fuses them at pixel level using a weighed linear

combiner. Features and weights are learned off–line directly from training data.

Experiments conducted on a publicly available database demonstrate that a weighted

combination outperforms other fusion methods based on fixed rules or single scale

methods. Moreover, the algorithm outperforms state–of–the–art appearance based

methods and it performs similar in terms of class average performance compared to

algorithms using other types of cues such as motion, depth or stereo.
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