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Abstract 

Crowdsourced images hold information could potentially be used to remotely monitor heritage sites, and reduce 
human and capital resources devoted to on‑site inspections. This article proposes a combination of semantic image 
segmentation and photogrammetry to monitor changes in built heritage sites. In particular, this article focuses 
on segmenting potentially damaging plants from the surrounding stone masonry and other image elements. The 
method compares different backend models and two model architectures: (i) a one‑stage model that segments 
seven classes within the image, and (ii) a two‑stage model that uses the results from the first stage to refine a binary 
segmentation for the plant class. The final selected model can achieve an overall IoU of 66.9% for seven classes (54.6% 
for one‑stage plant, 56.2% for two‑stage plant). Further, the segmentation output is combined with photogrammetry 
to build a 3D segmented model to measure the area of biological growth. Lastly, the main findings from this paper 
are: (i) With the help of transfer learning and proper choice of model architecture, image segmentation can be easily 
applied to analyze crowdsourcing data. (ii) Photogrammetry can be combined with image segmentation to alleviate 
image distortions for monitoring purpose. (iii) Beyond the measurement of plant area, this method has the potential 
to be easily transferred into other tasks, such as monitoring cracks and erosion, or as a masking tool in the photogram‑
metry workflow.
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Introduction
Preservation of the authenticity and physical integrity of 
heritage sites requires regular monitoring and mainte-
nance through on-site inspections. Although inspections 
can protect sites from a variety of natural and anthropo-
genic threats, they require intensive human and mate-
rial resources, especially for remote sites. For example, 
Historic Environment Scotland (HES) manages approxi-
mately 300 properties, with some of the sites being 

extremely remote [1]. In addition to on-site inspections, 
managers of those sites deploy remote equipment, or ask 
citizen scientists and visitors to collect data to assist with 
preservation works. Given that HES properties attracted 
5 million visitors in 2018 [2], the photographs and vid-
eos from visitors could create a beneficial crowdsourced 
visual resource. In particular, this data can capture com-
mon forms of deterioration in cultural heritage, such as 
erosion, cracks, plant growth and other physical damage, 
that may accumulate over time to more severe damages, 
reducing the aesthetic value of the heritage sites [3, 4].

Crowdsourcing has been widely used in the past to 
assist heritage preservation works [5]. Examples of dedi-
cated crowdsourcing projects that successfully helped 
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preservation and reconstruction works include [6, 7] 
and [8]. However, the extraction and analysis of crowd-
sourced imagery data becomes an issue for cultural 
heritage practitioners as a consequence of two features 
brought by crowdsourcing. First, due to the diversity of 
camera angles of crowdsourced images, properties (e.g. 
areas of objects) cannot be directly compared between 
distinctive images. Second, as crowdsourced images were 
taken by multifarious photographic equipment under 
different lighting conditions, the sizes and qualities of 
these images are various. As a result, objects within the 
images are difficult to be recognized automatically. Thus, 
this article tests a combination of computer vision and 
photogrammetry to measure potentially damaging plant 
growth from crowdsourced images of built heritage sites.

Within computer vision, convolutional neural networks 
(CNNs) are an effective tool for image analysis because 
they can learn high-level features of images [9]. Three 
types of CNNs have been applied to built heritage data-
sets: classification, object detection, and semantic seg-
mentation. In particular, these CNNs have proved helpful 
for the documentation and damage detection in masonry 
walls. To identify spalling, cracks, and efflorescence in 
bricks at the Palace Museum in Beijing, researchers 
tested image classification CNNs with a sliding window-
based approach [10]. This method was later improved by 
using an object detection algorithm that can identify and 
classify bricks regardless of their size or placement within 
the wall [11]. Multi scale image segmentation has been 
implemented to identify polygonal stones in castellated 
walls which were then stored in a stone management 
database [12, 13]. Additionally, semantic segmentation 
can detect objects that occlude brick walls, so a predicted 
pattern for the brick and mortar can be referenced in 
case the wall is damaged [14].

The usefulness of CNNs for built heritage goes beyond 
identifying weathering in historic stones. Image classifi-
cation CNNs have identified mould and deterioration on 
the interior of buildings [15]. Object detection algorithms 
have detected components of ventilation systems in his-
toric libraries [16], and missing decorative tiles from 
ancient roofs [17]. Finally, semantic segmentation has 
been used to identify and quantify the damage to yellow-
glazed roof tiles [18]. CNNs are incredibly versatile in 
their applications to built heritage, but there is one type 
of damage that is underrepresented in the literature.

Plant growth can be particularly harmful, both chemi-
cally and mechanically, to stones in historic structures 
[19]. Identifying and measuring the area of new plant 
growth from crowdsourced images could prevent further 
damage. Past solutions to plant measurement relied on 
manually selecting pixels with image processing software, 
such as ImageJ. Some newer software specific to leaf area 

measurement, such as Easy Leaf Area [20] and Leaf-IT 
[21], incorporated traditional automatic image segmen-
tation techniques [22, 23]. However, these methods are 
prone to misclassifications for more complex images, like 
those of cultural heritage sites that have similar colors 
and unclear margins between the background and target 
objects. CNNs have successfully identified images with 
plants growing between historic stones [19], and agri-
cultural research has shown that semantic segmentation 
can detect plants within complex scenes [24]. Thus, this 
article will propose a semantic segmentation approach 
to separate plants from other elements within crowd-
sourced images of built heritage.

There is no ’one-size-fits-all’ solution for monitoring 
and documenting a heritage site, but photogramme-
try has proved to be a popular method [25–27]. Some 
sources argue that terrestrial laser scanning (TLS) is 
more accurate than photogrammetry [28]. However, 
photogrammetry lends itself well to damage detection 
because it offers higher resolution textures than TLS 
[29]. While photogrammetric surveys create effective 3D 
models for damage detection in heritage buildings, they 
are time-consuming if the damage has to be manually 
labelled [29]. Previous automated segmentation meth-
ods are ineffective on larger and more complex datasets 
[30]. Further attempts of automating change detection 
between long-term photogrammetric surveys led to out-
puts that are hard to interpret [31]. The most promising 
new way to segment photogrammetric models for built 
heritage is to implement a semantic segmentation CNN.

State-of-the-art papers have investigated the use of 
semantic segmentation algorithms to automate the pro-
cess of segmenting point clouds by architectural elements 
for 3D heritage documentation [32–36]. However, these 
methods were tested on large-scale photogrammetry 
surveys or laser scans, which may be impractical or pro-
hibitively expensive for some heritage sites. By mobilising 
visitors to submit crowdsourced images, photogram-
metry and semantic segmentation have the potential 
to quickly produce small-scale 3D models that provide 
updates on the site.

This study, for the first time in the authors’ knowledge, 
applies image segmentation algorithms to photogramet-
ric models of to extract useful information from crowd-
sourced photographs to support remote monitoring 
activities at cultural heritage site.

Study site and data
The crowdsourced images used in this article are from 
Monument Monitor [37], a collaborative research pro-
ject between HES and the Institute of Sustainable Her-
itage at University College London. The project aims 
to facilitate conservation and monitoring efforts at 
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heritage sites by extracting useful information from 
visitor photographs. Through signage around the herit-
age site, visitors are asked to submit their photographs 
via email or social media platforms such as Facebook 
and Twitter. Approximately 20 properties across Scot-
land are under the supervision of this project [37]. This 
paper focuses on images of Bothwell Castle, a large 
medieval castle located in South Lanarkshire, Scotland. 
The site dates back to the thirteenth century and was 
damaged by sieges during the Wars of Independence 
[38]. The main scene of these images is an inner corner 
of the Bothwell castle with a small locked gate at the 
south-east corner of the site, as shown in the first row 
of Fig. 1.

In total, there are 113 photographs of Bothwell Castle 
in the dataset. These photographs were taken between 
January 2019 and March 2020, and they are stored in 
JPEG and PNG format. The size and resolution of the 
images vary greatly across the dataset since they were 
submitted by different visitors with a range of photo-
graphic equipment. The dataset was split into a train-
ing set of 93 images and a test set of 20 images. These 
images were manually labelled with Labelbox [39]. 
There are seven classes in total, including window 
(108/113), sky (110/113), plant (101/113), masonry 
(113/113), hole (83/113), gate (43/113) and signboard 
(36/113). Some examples of labelled images are pre-
sented in the second row of Fig. 1.

Materials and methods
Image segmentation algorithm
Semantic image segmentation
The creation of the deep convolutional neural network 
AlexNet [40] drastically improved the performance of 
computer vision algorithms for classification. The image 
classification error rate of the ImageNet competition dra-
matically reduced from 2011 to 2017 [41]. Then CNNs 
were adapted to perform computer vision tasks beyond 
overall image classification, including semantic image 
segmentation. As shown in Fig.  1, semantic segmenta-
tion involves detecting and partitioning an image into 
different segments based on their class. According to a 
literature review [42], recent popular image segmenta-
tion models are usually made up of two parts, namely 
a backend and a classifier. The backend is a deep CNN 
which is responsible for extracting the features of an 
image to form a feature map through convolutional and 
pooling operations. The classifier, with a relatively small 
neural network architecture compared to the backend, is 
responsible for making predictions based on the feature 
map from the backend. Finally, the prediction is biline-
arly interpolated to size of the original image, and they 
are combined to form a segmented image. This process is 
summarized by Fig. 2.

An image segmentation model classifies each pixel 
based on the predicted probabilities of a pixel belonging 
to each possible class. This is achieved by finding opti-
mal weights of the neural network by minimizing the loss 

Fig. 1 A group of representative examples of images from the dataset. The original crowdsourced photographs are in the top row, and their 
corresponding segmentation labels are shown



Page 4 of 17Liu et al. Heritage Science           (2022) 10:27 

function. The loss measures the difference between the 
ground truth label y and predicted one ŷ from the train-
ing phase. A weighted cross-entropy loss function of Eq. 
(1) is used for image segmentation in this case, where 
i = 1, . . . ,C is the class of the pixel. The weight for class 
Wi is calculated based on Eq. (2), where fi is the frequency 
of the pixels of class i in the training set. This is to avoid 
the model to favor small objects too heavily, or ignore 
small objects and focus on large objects in prediction.

Transfer learning is a technique which allows a deep-
learning model to be adjusted and applied to another, 
usually smaller dataset [42]. The backbones of segmenta-
tion models can first be trained with a computer vision 
competition dataset, usually exceeding 100  k labelled 
training examples, such as COCO [43] or the Open 
Images dataset [44]. These large datasets contain images 
of complex yet common scenes from daily life. When a 
model has already been trained to extract features from 
universal images, transfer learning then saves tremen-
dous computational cost and time. As lack of high-
quality cultural heritage dataset limits the application of 
machine learning methods in heritage studies [45], trans-
fer learning becomes an important novel technique to 
bring general knowledge learnt from other areas to solve 
data-sparsity problem in the heritage domain. This paper 
innovatively combines transfer learning with photogram-
metry to highlight the potentiality of transfer learning 
technique in improving heritage monitoring work when 
combined with existing methods.

There are several image segmentation algorithms that 
are based on deep convolutional neural networks and 

(1)Loss(y, ŷ) =−
C∑

i=1

Wi · yi · log(ŷi)

(2)Wi =
log(fi)

∑C

j=1
log(fj)

transfer learning techniques, including DeepLab fam-
ily models [46], FCN [47], U-Net [48] and Mask R-CNN 
[49]. Considering the exceptional performance in similar 
tasks and relatively easy implementation and preparation 
works compared to other algorithms, DeepLab [46] fam-
ily models are adopted in this task.

DeepLab family and DeeplabV3
DeepLab family is a representative of dilated convolu-
tional models. As stated in the papers of DeepLab fam-
ily models [46, 50], compared to other computer vision 
tasks, image segmentation faces two main problems. 
First, the small resolution of the produced feature map 
due to multi-layer convolutional operations makes it dif-
ficult to detect small objects and draw clear boundary 
in an image, such as plant or cracks with small areas in 
this case. Second, the varying scales of the same type of 
objects within different images can influence the perfor-
mance of image segmentation models. This issue will be 
prominent for tasks dealing with unstructured imagery 
data (e.g. crowdsourced photographs).

To address those problems, DeepLab family models 
propose to use a dilated convolution operation, which 
adds ’holes’ in the convolution kernel to skip some pix-
els. The rate of dilation is the number of zeros between 
two consecutive filter values along each spatial dimen-
sion as illustrated by Fig.  3. On the basis of dilated 
convolution, Deeplabv family models apply Atrous 
Spatial Pyramid Pooling (ASPP) to extract features in 
different scales and produce a higher resolution fea-
ture map with only minimal additional computational 
cost, which obtained an outstanding performance on 
dealing with small objects segmentation and vary-
ing scales problem. Specifically, using DeeplabV3 as 
an example, the model uses convolutional layers of a 
3 × 3 kernel with different rates of dilation. After pro-
cessing the feature map in parallel, it concatenates 
the outputs from the dilated convolution layers and 
an output from a global average pooling layer. This 

Fig. 2 The summarized process of image segmentation
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is further processed by a 1 ×  1 convolution layer and 
bilinearly interpolated to form a tensor to be used in 
the final calculation of loss. This strategy enables the 
model to not only save the required memory of GPU 
in computation due to no computation in the dilated 
convolution kernel, but also gain a larger field-of-views 
resulted from the expanded convolution kernel and 
the ability to deal with varying scale objects due to the 
multi-grid ASPP. In this article, the DeeplabV3 with 
a backend part of ResNet101, abbreviated as Model1, 
will serve as the baseline model to be compared with 
other models.

DeeplabV3+
To further improve performance, DeeplabV3+ [51], the 
latest version of the DeepLab family of image segmenta-
tion models, reconsidered its structure as an encoding-
decoding structure (with DeeplabV3 structure as the 
encoding part) and added a more sophisticated decod-
ing part. The encoding step downsamples the image into 
a small prediction map. Then the decoding step upsam-
ples the prediction map into the original size of the input 
image. In the decoding stage, it concatenates the features 
processed by an 1 ×  1 convolution operation from the 
feature map produced by the backbone model. This is fol-
lowed by another 3 ×  3 convolution layer before inter-
polating to the original image size, rather than a naïve 
bilinear interpolation upsampling. This gives the model a 
better ability of predicting a smoother and precise result 
given the input image.

Another modification of DeeplabV3+ is that, apart 
from ResNet, it utilises a modified version of the Xcep-
tion network [52]. With several changes in the back-
bone neural network structure, it achieved exceptional 
image segmentation results. DeeplabV3+ with two dis-
tinctive backbone parts, namely Xception and ResNet, 
was applied to this crowdsourced dataset. They will be 
referred to as Model2 and Model3 respectively.

Two‑stage model design
The previous models partition whole images into distin-
guishing segments belonging to different classes. Addi-
tionally, this paper explores an optional two-stage model 
that only makes a binary classification to further refine 
the segmentation results for a specific class. As illus-
trated by Fig.  4, this second model type classifies pixels 
into plant and non-plant classes from a crop based on 
the bounding box of plants from the output of the first 
segmentation model. This cropped image is given by 
reverse selection using density-based spatial clustering of 
applications with noise (DBSCAN) [53], an unsupervised 
clustering technique, to partition and assign labels to dis-
joint individuals in the output of the image segmentation 
model. eps in DBSCAN controls the maximum distance 
between two pixels for one to be considered as in the 
same region of the other. It is therefore a free parameter 
for this algorithm that can be adjusted according to dif-
ferent scenarios.

The second model is also a DeeplabV3+ model with 
ResNet as its backbone part using the same procedure as 
the first model (except there is no log-transformation of 
the weights to each class in the loss function). The origi-
nal image dataset was manually cropped around all the 
plants. Therefore, the training of this two-stage model 
does not require additional photographs. This extra step 
was carried out to refine the prediction result by further 
clearing the boundary between plants and non-plant 
objects and provide a more flexible solution to segment-
ing objects in different scenes by adding the parameter 
eps.

Photogrammetry
Although crowdsourced images can provide insights into 
the plant growth at heritage sites, it is inaccurate to com-
pare areas of plant growth from photographs taken from 
very different angles. To address this, photogrammetry 
can be used to build a comprehensive and stereoscopic 

Fig. 3 An illustration of dilated convolution, where a rate of dilation equal to 1 is the original convolution kernel with no dilation
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view of a heritage site by constructing a 3D model from 
crowdsourced photographs. The photogrammetry 
method used in this article is incremental Structure from 
Motion (SfM) [54]. To reconstruct a complete 3D model 
from 2D images, the process of photogrammetry can be 
roughly split into three steps, namely features match-
ing, sparse reconstruction and dense reconstruction. 
The first step detects common features among the input 
images using algorithms such as Scale-Invariant Feature 
Transform (SIFT) [55]. Then, the second step uses bun-
dle adjustment [56] to form estimated camera poses and 

an optimal sparse 3D model. Finally, the last step recon-
structs a dense 3D model with the Patch-Match algo-
rithm [57].

This article combines photogrammetry with image 
segmentation, as shown in Fig. 5. Firstly, photogramme-
try software is used to construct a 3D model of the inner 
corner of Bothwell Castle from the crowdsourced image 
dataset. Next, the same image dataset is partitioned into 
segments locating each class by the image segmentation 
model. Finally, the segmented images are re-mapped 
onto the 3D model, given the known camera poses and 

Fig. 4 Illustration of two‑stage model. The second model takes the cropped part of the first model’s prediction (objects in the same class are 
separated into different disjoint instances by DBSCAN algorithm) to further refine the segmentation result

Fig. 5 The process of combining image segmentation and photogrammetry
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mapping scheme. This gives a 3D model with textures 
segmented into different regions. Hence, a property of 
an object, such as the plant area, can be easily measured 
from any viewpoint to remove the distortion caused by 
angle of shooting. Lastly, a flowchart of Fig.  6 summa-
rizes the whole process of the proposed algorithm.

Software and hardware
This paper uses PyTorch as the framework of the image 
segmentation models, combined with its associate com-
puter vision library Torchvision and an implementation 
of DeeplabV3+ [58]. Image processing was conducted 
using the open-source computer vision and photogram-
metry tools OpenCV [59], VisualSFM [60] and Open-
MVS [61]. As for the hardware, the model is trained on a 
personal computer with a CPU of Intel I7-6850K, a GPU 
of NVIDIA RTX2070 and a 32G RAM.

Training setting
These three one-stage models and three two-stage 
models were trained using the same hyper-parameters 
and dataset. Except for the loss function and weights 
of each class, the Adam optimizer [62] is applied with 
a learning rate of 0.01. The learning rate will decay to 

one tenth of itself every 50 epochs, and the number of 
epochs is set to 100. The whole dataset of 113 images 
are randomly split into training set (93 images) and test 
set (20 images). Given this dataset is quite small, trans-
fer learning was applied. Specifically, backend models 
pre-trained on Pascal VOC 2012, SBD and Cityscapes 
datasets [58] were used. The batch size in the train-
ing phase is six images considering the RAM of GPU. 
When fed into the model, all images are resized to a 
resolution of 900 × 900 for the one-stage models, and 
200 ×  200 for two-stage models. For images with dif-
ferent sizes, the eps of DBSCAN is automatically set 
to 

√
#Pixels
20  based on empirical observations. For data 

augmentation, the color parameters (brightness, satu-
ration, hue and contrast) of the training images are 
randomly changed within a small range when training 
the model to avoid overfitting. As reflected by Fig.  7, 
all three models have successfully converged after 100 
epochs in the training phase, during which losses of 
both Model1 and Model3 are smooth. Model2’s loss is 
volatile and consistently higher than other two models. 
The relevant code can be found at [63].

Fig. 6 A flowchart for the whole process of the proposed algorithm. At the training phase, crowdsourced photos are collected and manually 
segmented to train one‑stage and two‑stage models. In the inference phase, the newly collected crowdsourced photos will be processed by the 
(one‑stage or two‑stage) image segmentation model and a photogrammetry model to obtain a segmented 3D model, which can be used for 
further estimation of area of interest
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Results and discussion
Results

(3)Precision = 1

K

K∑

j=1

TPj

TPj + FPj

(4)Recall = 1

K

K∑

j=1

TPj

TPj + FNj

(5)IoU = 1

K

K∑

j=1

TPj

TPj + FNj + FPj

In this article, five metrics are used to evaluate the per-
formance of the model, namely Precision, Recall, Inter-
section over Union (IoU or Jaccard Index), F1-score and 
Mean Pixel Accuracy (MPA) [64]. As the first four met-
rics are only defined for binary classification case, the 
macro-average of these metrics for each class j is used. 
Specifically, in binary classification, if define TPj , FPj , FNj 
and TNj according to the confusion matrix in Table  1 
for class j, Precision, Recall and IoU can be defined by 
Eqs. (3–5), where K is the number of classes. F1-score is 
the harmonic mean of Precision and Recall. MPA is the 
macro-averaged pixel accuracy for all classes, which is 
shown in Eq. 6, where njj is the total number of TPs for 

(6)MPA =

1

K

K∑

j=1

njj

tj
forK appear in the image

Fig. 7 The loss plot for three one‑stage models and two‑stage model in the training phase

Table 1 The definition of elements in confusion matrix for class j 

Predictionj and Labelj are predictions and true labels for class j

Predictionj

Negative Positive

Labelj

 Negative True negative ( TNj) False positive ( FPj)

 Positive False negative ( FNj) True positive ( TPj)
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class j and tj is the total number of pixels labelled as class 
j. These metrics avoid biases caused by unbalanced num-
ber of pixels between different classes.

Under the hardware condition described in “Soft-
ware and hardware” section, the training process took 

approximately 1 h for the training set with a size of 93 
images in this case. As for the inference phase, the major-
ity of the time spent on prediction of all three trained 
models is less than 0.2 s in the first stage and 0.6 s for the 
two-stage task. This demonstrates the practicality of the 
models in terms of required processing time.

Figure  8 shows the predictions of the one-stage (first 
row) and two-stage (second row) models overlapped 
with the original image for a typical example in the test 
set. As displayed in Fig. 8, the prediction of Model2 con-
tains more false positives (FPs) compared to Model1 
and Model3. The boxplot in Fig. 9 summarizes the per-
formance of the three models on the test set with a 
confidence interval of 95% and a whisker of 1.5. All the 
metrics have been averaged across 20 test images. Note 
that metrics are not calculated for a class if there are no 
groundtruth labels for that class in the test image. In this 
case, there were two test images of the inner corner of 
Bothwell Castle that did not have plants in them.

Among the three models, Model3 has the best perfor-
mance in all metrics over other models reflected by its 
overlall IoU of 66.9% (one-stage plant 54.6%, two-stage 
plant 56.2%), overall F1-score of 74.3% (one-stage plant 
69.6%, two-stage plant 70.5%) as well as overall MPA of 

Fig. 8 The visual representation of the segmented photographs. The 
first row are the results of the one‑stage model, and the second row 
are the results of two‑stage model

Fig. 9 The boxplot of the results of one‑stage model and two‑stage model’s performance on overall classes and plant class, where red triangles 
represent mean values. IoU and F1‑score are not accounted if there are no groundtruth labels for that class in the image
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84.4% (one-stage plant 94.3%, two-stage plant 93.7%). 
Although Model1’s performance and Model3’s perfor-
mance are close as reflected by Table 2, Model3’s predic-
tion is smoother and able to detect small objects such as 
the plants at the left-upper corner in Fig.  8. Therefore, 
Model3 is chosen as the default model for this task.

Figure  10 shows the confusion matrices for Model3, 
including precision rates and recall rates of each class, 
for one-stage and two-stage models on the left and right 
respectively. For the plant class, the precision rate is con-
sistently lower than the recall rate. This indicates that the 
models tend to aggressively predict pixels to the plant 
class, resulting in a large number of FPs to lower the preci-
sion rate. By comparing the left matrix and right matrix in 
Fig. 10, and considering the values in Table 3, the second 
stage in the model is shown to slightly improve the preci-
sion rate but decrease the recall rate for Model3. Figure 11 
presents the generalisability of Model3 to segmenting 
plant classes from images of other scenes besides the Both-
well castle (with eps for DBSCAN set to 3).

Finally, Fig. 12 displays the reconstructed 3D photo-
grammetry models. Specifically, 87 out of 93 images 
in the training set are used by VisualSFM to build 
the 3D photogrammetry model. In Fig.  12, from left 
to right is the original 3D photogrammetry model, 
the 3D photogrammetry model textured with overall 

classes, and the 3D photogrammetry model textured 
with a binary mask for the plant class. As presented 
in Fig. 12, the final 3D model with segmented textures 
clearly gives the partitions of each object in this scene 
with fairly high accuracy in 3D space, which allows 
the properties, such as area, of the interested object 
to be accurately and easily monitored in arbitrary per-
spective. The percentage below the name of each class 
in Fig.  12 is the ratio of the estimated count of pix-
els over that of the whole model surface. Given these 
ratios, the area of interest can be easily calculated 
when the area of a reference object is known.

Discussion
From the results presented above, several advan-
tages of the model could be summarized as follows. 
Firstly, the accuracy of the segmented results for 
an unstructured and complex scenario is reason-
able, demonstrated by the performance statistics 
and the visualization of the output result. Secondly, 
the average processing time per image could be con-
sidered acceptable even for larger projects. Thirdly, 
training the model is relatively straightforward and 
object features are automatically extracted by CNN 
layers, instead of a cumbersome manual feature 
extraction processes. Lastly, with the assistance of 

Table 2 Median of differences between different models

The numbers in brackets are the 25th and 75th percentiles

IoU (%) F1 (%) MPA (%) Precision (%) Recall (%)

Overall

 M1–M2 14.6 (5.3, 25.6) 15.3 (5.0, 25.4) 1.1 (− 3.1, 7.0) 14.4 (4.6, 27.5) 13.9 (1.0, 17.6)

 M1–M3 − 2.3 (− 5.1, 0.3) − 2.3 (− 3.5, 0.0) − 1.1 (− 3.9, 0.6) − 2.7 (− 3.6, 0.3) − 1.4 (− 4.2, 0.6)

 M2–M3 − 21.3 (− 26.1, − 9.7) − 20.7 (− 26.6, − 7.7) − 2.0 (− 6.3, 1.3) − 21.2 (− 29.1, − 9.0) − 12.9 (− 19.2, − 2.5)

Plant (1s)

 M1–M2 − 0.9 (− 11.8, 8.5) − 0.8 (− 10.7, 8.3) 0.7 (− 2.4, 2.9) − 6.5 (− 13.6, 10.0) 2.3 (− 4.6, 6.0)

 M1–M3 − 8.8 (− 14.6, − 1.0) − 9.0 (− 16.0, − 0.8) − 1.7 (− 3.8, − 0.2) − 7.8 (− 14.8, 0.4) − 3.3 (− 8.7, − 0.1)

 M2–M3 − 6.2 (− 14.7, 3.0) − 4.9 (− 16.2, 2.4) − 0.7 (− 5.5, 0.2) 2.7 (− 12.5, 5.6) − 2.4 (− 12.5, 0.1)

Plant (2s)

 M1–M2 10.9 (6.5, 25.2) 9.6 (6.7, 27.2) 0.1 (− 0.3, 1.1) 13.4 (7.4, 22.1) 0.2 (− 0.4, 1.9)

 M1–M3 2.9 (− 3.7, 5.7) 2.2 (− 3.5, 4.7) − 0.1 (− 1.4, 0.5) 1.5 (− 3.8, 5.5) − 0.2 (− 3.1, 1.1)

 M2–M3 − 10.5 (− 26.1, − 2.6) − 10.2 (− 29.7, − 2.6) − 0.3 (− 1.0, 0.1) − 10.4 (− 23.1, − 2.9) − 0.4 (− 1.9, − 0.0)

Table 3 Median of differences between one‑stage models and two‑stage models (1s and 2s represent one‑stage model and two‑
stage model respectively)

The numbers in brackets are the 25th and 75th percentiles

IoU (%) F1 (%) MPA (%) Precision (%) Recall (%)

2s–1s (M1) 12.2 (2.0, 28.1) 10.7 (1.2, 22.9) 0.3 (− 1.5, 2.4) 14.7 (1.9, 28.6) 0.4 (− 4.4, 5.2)

2s–1s (M2) − 3.5 (− 10.6, 1.6) − 1.9 (− 9.8, 1.7) 0.0 (− 0.8, 1.6) − 5.0 (− 14.3, 1.1) 0.8 (− 1.2, 5.3)

2s–1s (M3) 4.9 (− 3.0, 9.2) 3.6 (− 1.7, 7.9) − 0.6 (− 1.9, 0.9) 7.9 (− 2.5, 12.1) − 1.3 (− 4.3, 3.4)
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photogrammetry technique, the segmented images 
could be synthesized into a 3D model with segmented 
textures, which allows the properties such as area, 
shape or volume to be measured from different per-
spectives, eliminating the inaccuracy and biases intro-
duced by different angles of shooting.

However, there are three main limitations associ-
ated with this proposed model. The first one is the 
difficulty in small objects detection. This is inherited 
from all deep-learning based computer vision algo-
rithms that have to make trade-offs between global 
and local vision [50]. More specifically, since the 
model will process the input image into a feature map, 
which is smaller than the original image by a factor 
of the output stride defined by the model in terms of 
the resolution, the model will fail to detect or give an 
imprecise result to very small objects. The second dis-
advantage of the model is the large number of FPs in 
the predictions, which may lead to an overestimation 
of the plant area. The last limitation for the model is 
the requirement of photographs with comprehensive 
angles taken within a specific period of time. If the 
interval of time between photographs used to build 
the photogrammetry model is too long, the built 3D 
model of the scene may not be representative for any 
particular timestamp.

Further work and potential applications
There are potential future directions for the model 
to be improved. The first way to strengthen the per-
formance of the model is to increase the size of the 
training examples used to fine-tune the classifier 
part in the model. It should be noted that the current 
image segmentation model has been only trained by 
93 training images, which is an extremely small size 
of training dataset. A larger size of training dataset 
would definitely benefit the model considering the 
complicated model structure. The additional training 
images for the image segmentation model should not 
be limited to photographs of this site. Images from 
other scenes could be also beneficial to the model 
as long as they contain similar objects due to the 
advanced generalization ability of deep-learning based 
models as shown by Fig.  11. Secondly, in this paper, 
the last photogrammetry part may be further refined 
by supplementing other information. For example, 
some photographs used to build the photogrammetry 
model lack EXIF data. Thus, real focal length data of 
those photographs is missing. Although the SfM algo-
rithm will automatically set focal length to a medium 
viewing angle for photographs missing EXIF data [60], 
more accurate focal length data could help to ensure 
the quality and consistency of the result from photo-
grammetry algorithm [65].

Fig. 10 Confusion matrix of Model3 for one‑stage model and two‑stage model. All data are averaged across 20 test images, and are normalized by 
column. Precision and Recall are not accounted if no groundtruth labels for that class in the image
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In terms of its other potential applications, this 
image segmentation model can be easily changed 
to monitor other damages in historical sites, such 
as cracks, erosion and insects based on 2D image 
data. This transformation can be done by re-train-
ing the model on the new training images and their 
correspondent labels. Beyond this, the model could 
potentially be used as a semantic masking tool in pho-
togrammetry workflows and applications [66]. This 
is achieved by using image segmentation model to 

automatically partition the object of interest from the 
background in images before processing them with 
photogrammetry algorithms.

Conclusion
To extract useful information from the increasing 
amount of crowdsourced cultural heritage photo-
graphs uploaded to online websites by visitors and 
amateurs, this article proposes to use DeeplabV3+, 
a deep-learning based semantic image segmentation 

Fig. 11 Segmentation results for plant class in other scenes (predicted regions are highlighted in blue). The eps for DBSCAN is set to 3
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algorithm that is capable of handling segmentation 
tasks in complex scenarios. It is further combined 
with photogrammetry to automatically process the 
crowdsourced photographs. This can significantly save 
human and capital resources spent on on-site inspec-
tion and management of remote built heritage sites.

Although there are still some limitations such as the 
difficulty in segmenting small objects and relatively 
low precision rate, on the task of monitoring the plant 
growth in Bothwell Castle, this model has a satisfying 
segmentation performance in terms of the metrics of 
an overall IoU of 66.9% (one-stage plant 54.6%, two-
stage plant 56.2%), an overall F1-score of 74.3% (one-
stage plant 69.6%, two-stage plant 70.5%) as well as 
an overall MPA of 84.4% (one-stage plant 94.3%, two-
stage plant 93.7%). Besides, this model has a powerful 
generalisability in other scenes besides Bothwell castle 
and an acceptable processing time per image of less 
than 0.2 s for one-stage model and 0.6 s for two-stage 
model on a home PC. This demonstrates the usability 
and practicality of its application in the cultural her-
itage sector. In addition, the segmented results are 
successfully combined with built photogrammetry 
models to measure the area of the plant from arbitrary 

perspectives, eliminating distortions caused by angle 
of shooting.

This method can be easily transferred to other moni-
toring tasks to measure cracks, erosion or even insects 
by replacing the training images and adjusting the 
classes in the model. Beyond area measurement, other 
properties of these objects, such as volume and shape, 
can be potentially measured by using image segmen-
tation as an automated masking tool in the pre-pro-
cessing step of photogrammetry. In conclusion, the 
proposed combination of semantic segmentation and 
photogrammetry can be effectively and efficiently 
applied to automatically extract useful information 
from crowdsourced data to support remote cultural 
heritage sites monitoring activities.

Appendix A: Model architecture
Model architecture in terms of convolutional layers and 
pooling layers for each model used in this research is 
shown in Table 4, where square brackets represent pro-
cessing blocks.

Fig. 12 The front view of the built segmented 3D photogrammetry model. They are the original model, the model with segmented texture 
for overall classes and the model with texture for plant class from left to right. The percentage below the name of each class is the ratio of the 
estimated count of pixels over that of the whole model surface
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