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Abstract Recognizing 3D part instances from a
3D point cloud is crucial for 3D structure and scene
understanding. Several learning-based approaches use
semantic segmentation and instance center prediction
as training tasks and fail to further exploit the
inherent relationship between shape semantics and part
instances. In this paper, we present a new method
for 3D part instance segmentation. Our method exploits
semantic segmentation to fuse nonlocal instance fea-
tures, such as center prediction, and further enhances
the fusion scheme in a multi- and cross-level way. We
also propose a semantic region center prediction task to
train and leverage the prediction results to improve the
clustering of instance points. Our method outperforms
existing methods with a large-margin improvement in
the PartNet benchmark. We also demonstrate that our
feature fusion scheme can be applied to other existing
methods to improve their performance in indoor scene
instance segmentation tasks.

Keywords 3D part instance segmentation; feature
fusion; 3D deep learning

1 Introduction

3D instance segmentation is the task of distinguishing
3D instances from 3D data at the object or
part level and extracting the instance semantics
simultaneously [1–4]. It is essential for various
applications, such as remote sensing, autonomous
driving, mixed reality, 3D reverse engineering, and
robotics. However, it is also a challenging task due
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to the diverse geometry and irregular distribution
of 3D instances. Extracting part-level instances like
chair wheels and desk legs becomes more difficult
than segmenting object-level instances like beds and
bookshelves, as the shapes of the parts have large
variations in structure and geometry, while part-
annotated data are scarce.

A popular learning-based approach to 3D instance
segmentation follows the encoder–decoder paradigm,
which predicts pointwise semantic labels and
pointwise instance-aware features intercurrently
[3, 5–10]. Instance-sensitive features can be either 3D
instance centers, which have a clear geometric and
semantic meaning, or feature vectors embedded in
a high-dimensional space, where the feature vectors
of the points within the same instance should be
similar. The feature vectors of the points belonging
to different instances are far apart from each other.
Instance-aware features are used to group points into
3D instances via suitable clustering algorithms. Point
semantics is usually used only in the clustering step.
As the point set with the same semantics in a scene
is composed of one or multiple 3D instances, it is
natural to think about how to utilize this relation
maximally. The works of Refs. [11] and [12] associate
semantic features with instance-aware features to
improve the learning of semantic features and instance
features. However, they only fuse instance features
with semantic features in a pointwise manner, without
using semantics-similar points to provide nonlocal and
robust guidance to instance features.

In this study, we leverage the probability vectors of
semantic segmentation to help aggregate the instance
features of points in an explicit and nonlocal way.
We call our approach semantic segmentation-assisted
instance feature fusion. The aggregated instance
feature combined with the pointwise instance feature
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provides both global and local guidance to improve
instance center prediction robustly, whose accuracy
is critical to the final quality of instance clustering.
Compared to existing feature fusion schemes [11, 12],
our feature fusion strategy is more effective and
simpler, as verified by our experiments.

Human-made 3D shapes, such as chairs, are
composed of a set of meaningful parts and exhibit
hierarchical 3D structures (see Fig. 1). Extracting multi-
level part instances from the point cloud is challenging,
especially for fine-level 3D instances, such as chair
wheels. Existing studies independently performed 3D
part instance segmentation on each structural level and
also suffered from the insufficient labeled-data issue
on some shape categories. By utilizing the hierarchy
of shape semantics and part instances, we extend our
feature fusion scheme in a multi- and cross-level manner,
where the probability feature vectors at all levels are
used to aggregate instance features.

Furthermore, to better distinguish part instances
that are very close to each other, we propose to predict
the centers of grouped instances, called semantic
region centers, and use them to push the predicted
instance centers away from them, as the semantic
region centers play the role of the centers of a group
of semantics-same part instances. On the PartNet
dataset [13] in which 3D shapes have 3-level semantic
part instances, our approach exceeds all existing
approaches on the mean average precision (mAP)
part category (IoU > 0.5) by an average margin of
+6.6% on 24 shape categories.

Our semantic segmentation-assisted instance feature
fusion scheme is simple and lightweight; it is not
limited to 3D part instance segmentation and can
be extended to 3D instance segmentation for indoor

Fig. 1 Illustration of 3D models with fine-grained and hierarchical
part structures. Models are selected from PartNet [13]. From left
to right: part semantics and part instances at the coarse, middle,
and fine level. Point colors are assigned to distinguish different part
semantics and part instances.

scenes. We integrated several state-of-the-art 3D
instance segmentation frameworks with our feature
fusion scheme and observed consistent improvements on
the benchmark of ScanNet [14] and S3DIS [15], which
demonstrate the efficacy and generality of our approach.

Contributions. We make two contributions to
tackle 3D instance segmentation: (1) We propose an
instance feature fusion strategy that directly fuses
instance features in a nonlocal way according to
the guidance of semantic segmentation to improve
instance center prediction. This strategy is lightweight
and easily incorporated into many 3D instance
segmentation frameworks for both 3D object and part
instance segmentation. (2) Our multi- and cross-level
instance feature fusion and the use of the semantic
region center are effective for multi-level part instance
segmentation and achieve the best performance on the
PartNet benchmark. Our code and trained models
are publicly available at https://isunchy.github.
io/projects/3d_instance_segmentation.html.

2 Related work

2D instance segmentation. As surveyed by
Ref. [16], four typical paradigms exist in the literature.
The methods in the first paradigm generate mask
proposals and then assign suitable shape semantics
to the proposals [17–19]. The second one detects
multiple objects using boxes and then extracts
object masks within the boxes. Mask R-CNN [20]
is one of the representative methods. The third is
a bottom–up approach that predicts the semantic
labels of each pixel and then groups pixels into 2D
instances [21]. Its computation is relatively heavy
due to per-pixel prediction. The fourth paradigm
suggests using dense sliding windows techniques to
generate mask proposals and mask scores for better
instance segmentation [22, 23]. For detailed surveys,
see Refs. [16, 24, 25].

3D instance segmentation. The existing 3D
approaches follow the paradigms of 2D instance
segmentation (c.f . Refs. [26, 27]). Proposal-based
methods [13, 28] predict a fixed number of instance
segmentation masks and match them with the ground
truth using the Hungarian algorithm or a trainable
assignment module. The learned matching scores are
used to group 3D points into instances. Detection-
based methods [2, 6, 29, 30] generate high-objectness
3D proposals like boxes and then refine them to obtain

https://isunchy.github.io/projects/3d_instance_segmentation.html
https://isunchy.github.io/projects/3d_instance_segmentation.html
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instance masks.
Clustering-based methods first produce per-point

predictions and then use clustering methods to
group points into instances. SGPN [31] predicts
the similarity score of any two points and merges
points into instance groups according to the scores.
MASC [32] predicts the multiscale affinity between
neighboring voxels, for instance, clustering. Han
et al. [33] regress the instance voxel occupancy for
more accurate segmentation outputs. PointGroup [8]
uses both the original and offset-shifted point sets to
group points into candidate instances. DyCo3D [10]
improves pointgroup by introducing a dynamic-
convolution-based instance decoder. Observing that
non-end-to-end clustered-based methods often exhibit
over-segmentation and under-segmentation, Chen
et al. [34] and Liang et al. [35] propose mid-level
shape representation to generate instance proposals
hierarchically in an end-to-end training manner. Liu
et al. [7] approximate the distributions of centers to
select center candidates for instance prediction. As
mentioned in Section 1, most cluster-based methods
treat semantic segmentation and instance feature
learning as multitasks; only the works of Refs. [11]
and [12] fuse the network features of the instance
prediction branch and the semantic segmentation
branch to improve the performance of both branches.
Unlike the pointwise fusion of Refs. [11] and [12], our
method fuses instance features in a nonlocal manner
guided by semantic outputs, which is more robust
and effective.

Part instance segmentation. Different from
object-level 3D instance segmentation, part-level
3D instance segmentation is less studied due to
limited annotated data and the difficulty brought
by geometry-similar but semantics-different shape
parts. Mo et al. [13] present PartNet—a large-scale
dataset of 3D objects with fine-grained, instance-
level, and hierarchical part information. For the
part instance segmentation task, they developed
a detection-by-segmentation method and trained
a specific network to extract part instances per
structural level, where the semantic hierarchy was
used for part instance segmentation. Other object-
level instance segmentation methods, such as Refs. [9,
10], have also been extended to the task of part
instance segmentation, but they do not use the
semantic hierarchy. Yu et al. [36] further enrich

PartNet with information about the binary hierarchy
and design a recursive neural network to perform
recursive binary decomposition to extract 3D parts.
Our multi- and cross-level instance feature fusion
uses semantic hierarchy to improve instance center
prediction. Furthermore, the use of semantic region
centers assists instance grouping. The semantic region
centers serve the role of symmetric centers of a group
of semantics-same part instances and provide weak
supervision to the training.

3 Methodology

In this section, we first introduce our baseline neural
network for single-level and multi-level 3D part
instance segmentation in Section 3.1, then present
the model enhanced by our semantic segmentation-
assisted instance feature fusion module in Section 3.2
and the semantic region center prediction module in
Section 3.3.
3.1 Baseline network
Our baseline network follows the encoder–decoder
paradigm. The input to the encoder is a set of 3D
points S in which each point may be equipped with
additional signals such as point normal and RGB
color. Two parallel decoders are concatenated after
the encoder to predict the point-wise semantic labels
and the point offset to its corresponding instance
center, named semantic decoder Dsem and instance
decoder Dins, respectively. The baseline network
is depicted in Fig. 2, where the fusion module

Fig. 2 Illustration of our network architecture for single-level part
instance segmentation. The network takes a 3D point cloud as input.
N is the point number. A shared encoder and two parallel decoders
Dsem, Dins are used to output the pointwise semantic feature Fsem
and instance feature Fins to predict the point semantic label Lsem and
the offset vector OI to the instance center, and the offset vector OS
to the semantic region center. The feature fusion module aggregates
the instance features of points according to semantic segmentation
probability vectors to improve the offset prediction.
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and semantic region center will be introduced in
Sections 3.2 and 3.3, respectively.

The input points are shifted by the predicted offsets,
and the shifted points with the same semantics are
clustered into multiple 3D instances via the mean-
shift algorithm [37]. In an ideal situation, all input
points are shifted to their ground truth instance
centers, but in practice, the accuracy of predicted
offsets affects the performance of instance clustering.

Network structure. We choose O-CNN-based
U-Nets [38, 39] as our encoder–decoder structure.
The network is built on octree-based CNNs , and
its memory and computational efficiency are similar
to those of other sparse convolution-based neural
networks [40, 41]. The input point cloud is converted
to an octree first, whose non-empty finest octants
store the average signal of the points contained by
the octants. Both Dsem and Dins output point-wise
features via trilinear interpolation on sparse voxels:
Fsem, Fins ∈ RN×l, where N is the number of points
and l is the dimension of feature vectors.

Semantic prediction and offset prediction.
A two-layer MLP is used to convert Fsem to the
segmentation probability Psem ∈ RN×c, where c is
the number of semantic classes. The segmentation
label Lsem is then determined from Psem. The loss
for training semantic segmentation is the standard
cross-entropy loss.

Lsemantic = 1
N

N∑
i=1

CE(pi, p
∗
i ) (1)

Here, p∗ is the semantic label.
Parallel to the semantic branch, another two-layer

MLP maps Fins to the offset tensor OI ∈ RN×3,
which is used to shift the input points to the center
of the target instance. The loss for predicting the
offsets is the L2 loss between the prediction and the
ground-truth offsets.

Loffset = 1
N

N∑
i=1
||oi − o∗i ||2 (2)

Here, o∗ is the ground-truth offset.
Instance clustering. During the test phase, the

network outputs pointwise semantics and offset
vectors. We use the mean-shift algorithm to group the
shifted points with the same semantics into disjointed
instances.

Multi-level part instances. For shapes with
hierarchical and multi-level part instances, there
are two naive way to extend the baseline network:

(1) train the baseline network for each level
individually; (2) revise the baseline network to output
multi-level semantics and multi-level offset vectors
simultaneously by adding multi-prediction branches
after Fins and Fsem. We denote K as the level
number, add a superscript k to all the symbols defined
above to distinguish features at the k-th level, like
F

(k)
sem, F

(k)
ins , P

(k)
sem, c(k), O

(k)
I .

3.2 Semantic segmentation-assisted instance
feature fusion

3.2.1 Single-level instance feature fusion
As the points within the same instance possess the
same instance center, it is essential to aggregate the
instance features over these points to regress the
offset to the instance center robustly. However, these
points are not known during the network inference
stage and they are also the objective of the task. The
semantic decoder branch can predict the semantic
region composed by a set of part instances; we can
aggregate the instance features over the semantic
parts to provide nonlocal guidance to the input points.
We propose a semantic segmentation-assisted instance
feature fusion module that contains two steps. In the
first step, for each semantic part, we compute the
instance feature based on the points associated with
this part. Each point is associated with an aggregated
instance feature from semantic parts in the second
step according to its semantic probability vector. The
instance feature fusion pipeline is illustrated in Fig. 3.
Our feature aggregation procedure is as follows.

Part instance feature. We first aggregate the
instance features with respect to the semantic label
m ∈ {1, · · · , c} over the input:

Zm :=
∑

p∈S Psem(p)|m · Fins(p)∑
p∈S Psem(p)|m

(3)

where Zm is the aggregated instance feature for
the semantic part with semantic label of m, and
Psem(p)|m is the probability value of point p with
respect to the semantic label m.

Aggregated instance feature. For each point
p, we aggregate the instance feature Zm using the
semantic probability of p as Eq. (4):

F̂ (p) =
c∑

m=1
Psem(p)|m · Zm (4)

The above equations for all points can be written
in matrix form: Z = (Psem/ (I1Psem))T

Fins, F̂ =
PsemZ, where Z ∈ Rc×l,Psem ∈ RN×c,Fins ∈
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Fig. 3 Semantic segmentation-assisted instance feature fusion pipeline. Given the per-point instance feature and semantic probability, we
get the part instance features according to the instance feature of points associated with each semantic part. Then we obtain the aggregated
instance feature for each point by combining part instance features using its semantic probability.

RN×l, F̂ ∈ RN×l, I1 is an N × N matrix with all
ones, and “/” represents element-wise division.

We concatenate the aggregated instance feature
F̂ (p), the local instance feature Fins(p), and the
position of p to form a fused instance feature
Ffusion(p) := [F̂ (p), Fins(p),p], and use it to predict
the instance center offset. Figure 4(a) illustrates our
feature fusion module for a single level. The overall
network structure is shown in Fig. 2.
3.2.2 Multi-level instance feature fusion
For shapes with multi-level part instances, our single-
level instance feature fusion can be applied to each
level individually. The naively extended baseline
networks (Section 3.1) can benefit from this kind of
instance feature fusion for multi-level part instance
segmentation.

3.2.3 Cross-level instance feature fusion
When multi-level part instances and semantic
segmentation exhibit a hierarchical relationship, i.e.,
the fine-level part instances are contained within
the coarser-level part instances and can inherit the
semantics from their parent level, we leverage the
semantic segmentation in multi-levels to fuse instance
features at each level, we call our strategy cross-level
instance feature fusion. The exact fusion procedure
is as follows.

Instance feature aggregation. On level k,
we aggregate the instance features using semantic
probability vectors at the r-th level:

Z(k,r)
m :=

∑
q∈S P

(r)
sem(q)|m ·F (k)

ins (q)∑
q∈S P

(r)
sem(q)|m

, m∈{1, · · ·, c(r)}

(5)

Fig. 4 Semantic segmentation-assisted instance feature fusion for single-level and cross-level. (a) Single-level instance feature fusion. Instance
features Fins are aggregated to F̂ , with the help of semantic probability vectors Psem. F̂ , Fins, and the point position PC are assembled to
form the fused instance features Ffusion. (b) Cross-level instance feature fusion for a 3-level part instance segmentation. The fused features at
the 3rd level are depicted. For clarity, we omit fused features at other levels.
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Z
(k,r)
m s are then averaged at point p at the k-th level:

F̂ (k,r)(p) =
c(r)∑

m=1
P (r)

sem(p)|m · Z(k,r)
m (6)

The fused instance feature of p at the k-th level is
defined as
F

(k)
fusion(p) := [F̂ (k,1)(p), · · · , F̂ (k,K)(p), F (k)

ins (p),p]
It is mapped to offset vectors at the k-th level by
an MLP layer. We illustrate the cross-level instance
feature fusion in Fig. 4(b).

3.3 Semantic region center

During the test phase, we use the mean-shift algo-
rithm to split the offset-shifted points with the same
semantics into different instances. For 3D instances
which are close to each other, like two blades of a
scissor shown in Fig. 5(a), it is difficult to separate
the points belonging to them using mean-shift or
other 3D point clustering algorithms, as the instance
centers are very close to each other (see Fig. 5(b)).
We introduce the concept of semantic region center,
which is the center of semantically same instance
centers. The semantic region center is usually the
center of symmetrically arranged parts for human-
made shapes. Figure 5(c) illustrates the semantic
region centers. To make instance clustering easy, the
instance centers can be further shifted away from the
semantic region center, as shown Fig. 5(d). In the
offset prediction branch of our network, we also add
the offset prediction OS to the center of the semantic
region for each point.

In the instance clustering step, we shift the input
points as Eq. (7):

p̂ := p+OI(p) + λ · OI(p)−OS(p)
||OI(p)−OS(p)|| (7)

Here, p ∈ S, λ > 0.

Fig. 5 Illustration of the use of semantic region centers. (a) Input
point cloud of a scissor shape. Ground-truth part instances are
colored according to their semantics. (b) Predicted instance centers.
(c) Predicted semantic region centers. (d) By pushing the predicted
instance centers away from the predicted semantic region centers,
the shifted instance centers of the scissor blades become more
distinguishable than in (b).

4 Experiments and analysis

We design a series of experiments and ablation studies
to demonstrate the efficacy of our approach and its
superiority to other fusion schemes, including multi-level
part instance segmentation on PartNet [13] (Section 4.1),
and instance segmentation on indoor scene datasets
(Section 4.2): ScanNet [14] and S3DIS [15].
4.1 Part instance segmentation on PartNet

4.1.1 Experiments and comparison
Dataset. PartNet is a large-scale dataset with fine-
grained and hierarchical part annotations. It contains
more than 570k part instances over 26,671 3D models
covering 24 object categories. It provides coarse-,
middle-, and fine-grained part instance annotations.

Network configuration. The encoder and decoders
of our O-CNN-based U-Net had five levels of domain
resolution, and the maximum depth of the octree
was six. The dimension of the feature was set to
64. Details of the U-Net structure are provided in
Appendix A. We implemented our network in the
TensorFlow framework [42]. The network was trained
with 100,000 iterations with a batch size of 8. We
used the SGD optimizer with a learning rate of 0.1
and decay two times with the factor of 0.1 at the
50,000-th and 75,000-th iterations. Our code and
trained models are available.

Data processing. The input point cloud con-
tained 10,000 points and was scaled into a unit
sphere. During training, we also augmented each
shape by a uniform scaling with the scale ratio of
[0.75, 1, 25], a random rotation whose pitch, yaw,
and roll rotation angles were less than 10◦, and
random translations along each coordinate axis within
the interval [−0.125, 0.125]. The train/test split is
provided in PartNet. Note that not all categories
have three-level part annotations. During training,
we duplicated the labels at the coarser level to the
finer level, if the latter was missing, to mimic the
three-level shape structure. During the test phase, we
only evaluated the output from the levels which exist
in the data. The ground-truth instance centers and
semantic region centers were pre-computed according
to the semantic labels and part instances of PartNet.

Experiment setup. We set λ = 0.05 for Eq. (7).
We used the mean-shift implementation implemented
in scikit-learn [43]. The default bandwidth of mean-
shift was set to 0.1. All our experiments were
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conducted on an Azure Linux server with Intel Xeon
Platinum 8168 CPU (2.7 GHz) and Tesla V100 GPU
(16 GB memory). Our baseline network with cross-
level fusion was the default configuration. In practice,
we found that stopping the gradient from the fusion
module to the semantic decoder helps maintain the
semantic segmentation accuracy and slightly improves
the instance segmentation. So, we enabled gradient
stopping by default. An ablation study on gradient
stopping is provided in Section 4.1.2.

Evaluation metrics. We used per-category mAP
score with the IoU threshold of 0.25, 0.5, and 0.75
to evaluate the quality of part instance segmentation.
They are denoted by AP25, AP50, and AP75. s-AP50
is the metric proposed by Ref. [13], which averages
the precision over the shapes.

Performance report and comparison. We
report AP50 of our approach in all 24 shape categories
in Table 1. We also report the performance of three
comparison approaches: SGPN [31], PartNet [13],
and PE [9]. The results are averaged over three levels
of granularity. Our method outperformed the best
competitor PE [9] by 6.6%, and also achieved the best
performance in most categories. Our approach was

also the best on other evaluation metrics, as shown in
Table 2. Appendix C reports the per-category results
of AP25, AP75, and s-AP50. As DyCo3D [10] only
performed instance segmentation experiments in four
categories of the PartNet dataset, we compare it with
our approach on these categories separately in Table 3.
Our method outperformed DyCo3D by a large margin.
4.1.2 Ablation study
We validated our network design on PartNet instance
segmentation, especially for the fusion module and the
semantic region centers. The variants of our network
are listed below.
- Single-level baseline: the network trained for

each level individually without using the fusion
module.

- Multi-level baseline: the network trained for
multi-levels simultaneously without using the fusion
module.

- Single-level fusion: Single-level baseline with
single-level fusion.

- Multi-level fusion: Multi-level baseline with
single-level fusion on each level.

- Cross-level fusion: Multi-level baseline with
cross-level fusion.

Table 1 Part instance segmentation results of the test set on PartNet [13]. We report part-category AP50 on three instance levels. The
results of other methods are reported by PE [9]. Bold numbers are better. Some shape categories, masked by dashed lines, have no middle- and
fine-level instances for benchmark
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Table 2 Part instance segmentation on the test set of PartNet.
AP25, AP50, AP75, s-AP50 are averaged over three levels. The results
of other methods are reported by PartNet [13] and PE [9]

AP25 AP50 AP75 s-AP50 mIoU

SGPN [31] — 46.8 — 64.2 —
PartNet [13] 62.8 54.4 38.9 72.2 —
PE [9] 66.5 57.5 41.7 — —
Ours 72.1 64.1 49.7 76.1 66.1

Table 3 Part instance segmentation on the four categories of PartNet.
AP50 is reported

Level Chair Lamp Stora. Table

DyCo3D

Coarse 81.0 37.3 44.5 55.0
Middle 41.3 28.8 38.9 32.5
Fine 33.4 20.5 30.4 24.9
Avg 51.9 28.9 37.9 37.5

Ours

Coarse 84.1 38.2 56.4 65.3
Middle 45.7 30.9 53.3 36.2
Fine 38.2 21.7 44.0 28.9
Avg 56.0 30.3 51.2 43.5

For each variant, we use symbol † to indicate that
the predicted semantic region centers are not used for
instance clustering. The optimal variant is cross-level
fusion. The performance of each variant is reported
in Table 4.

Single-level baseline versus multi-level base-
line. The performances of single-level baseline and
multi-level baseline in the same setting (w. or w/o
fusion and semantic region center) are not much
different. However, the training effort of multi-level
baseline is much lower. There are a total of 50 levels
for all 24 categories of PartNet. The single-level
baseline must train 50 networks, while the multi-level
baseline only needs to train 24 networks.

Fusion module. It is clear that the performance
of all baselines with the fusion modules improved.
Single-level fusion and multi-level fusion increase
AP50 by +3.9 and +4.4 points compared to their
baselines, respectively. Cross-level fusion surpasses
them at AP50 by +2.0 and +1.6 points. Here,
the network of cross-level fusion has a slightly
large network size. On Chair category, the network
parameters of cross-level fusion, multi-level fusion,
multi-level baselines are 8.13M, 7.98M, and 7.89M,
respectively.

Use of semantic region centers. The instance
segmentation performance is consistently improved
by using semantic region centers. The improvement
is also more noticeable when the fusion module

Table 4 Ablation studies of our approach on PartNet test data.
Methods marked with † use the predicted instance centers only. Our
default and optimal network setting is cross-level fusion

AP25 AP50 AP75 s-AP50 mIoU

single-level baseline† 67.3 57.9 45.3 74.4 64.9
single-level baseline 67.4 58.2 45.5 75.0 64.9

single-level fusion† 70.4 61.2 48.8 74.8 65.4
single-level fusion 71.1 62.1 49.0 75.8 65.4

multi-level baseline† 67.1 57.9 45.0 74.1 65.0
multi-level baseline 67.3 58.1 45.1 74.7 65.0

multi-level fusion† 70.9 61.8 48.8 74.8 65.5
multi-level fusion 71.5 62.5 49.2 75.6 65.5

cross-level fusion† 71.3 63.1 48.6 75.2 66.1
cross-level fusion 72.1 64.1 49.7 76.1 66.1

cross-level fusion(gradient)† 71.1 62.2 48.4 75.0 65.2
cross-level fusion(gradient) 71.8 63.3 49.3 75.9 65.2

cross-level fusion(one-hot)† 70.7 62.4 48.1 75.0 65.8
cross-level fusion(one-hot) 71.6 63.5 49.0 75.8 65.8

cross-level fusion(backbone)† 69.6 61.6 46.0 74.7 65.3
cross-level fusion(backbone) 70.2 62.4 47.1 75.3 65.3

cross-level fusion(two-dir)† 71.0 62.6 48.3 75.2 65.7
cross-level fusion(two-dir) 71.8 63.6 48.7 76.0 65.7

ASIS fusion† 68.2 59.0 45.0 74.7 65.1
ASIS fusion 68.6 59.1 45.9 75.0 65.1

JSNet fusion† 68.5 59.2 46.3 75.4 65.4
JSNet fusion 68.8 59.3 46.6 75.6 65.4

is enabled to improve both the instance center
prediction and the semantic region center prediction.
For example, there is only +(0.2–0.3) improvement
when using semantic region centers on single-
level baseline and multi-level baseline, while the
improvement over cross-level fusion† is +1.0.

In Fig. 6, we present the instance segmentation
results of multi-level baseline, cross-level fusion†, and
cross-level fusion. The predicted instance centers
are more compact and distinguishable when using
the fusion module. The use of semantic region
centers helps further separate close instances, e.g.,
the scissor blades in the 1st column, the bag handles
in the 2nd column, and the chair back frames in the
7th column.

Stopping gradient. One of the inputs of the
fusion module is the semantic segmentation pro-
bability. The gradients of the fusion module can
backpropagate the errors to the semantic branch.
In our experiments, we found that gradient back-
propagation impairs semantic segmentation and leads
to slightly worse instance segmentation results (see
cross-level fusion(gradient) in Table 4).
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Fig. 6 Visual comparison of part instance segmentation on the test set of PartNet. Part instances at the fine level are colored with random
colors. 1st row: part instance ground-truth. 2nd row: results of our multi-level baseline†. 3rd row: results of our cross-level fusion† without
using semantic region centers. 4th row: results of our cross-level fusion using semantic region centers. The corresponding shifted points are
rendered at the top left of each instance segmentation image. Green and red boxes represent good and bad instances, respectively.

Instance feature aggregation. In our instance
feature fusion module, we used the semantic
probability of the point to aggregate the instance
features from different semantic parts. An alternative
way is to aggregate the instance features of the
part which the point belongs to, i.e., using the
one-hot version of semantic probability for each
point. We found that our default fusion is better
than this alternative (cross-level fusion(one-hot) in
Table 4) because the instance features from different
semantic parts can bring more contextual information,
especially for points with fuzzy semantic probability.

Network backbone. The O-CNN [38, 39] back-
bone used in our network is different from the
PointNet++ [44] backbone used in Refs. [9, 13].
Therefore, we also replaced the O-CNN backbone
with PointNet++ for a fair comparison. As shown
in cross-level fusion(backbone) in Table 4, the

performance of the PointNet++ backbone with our
fusion scheme is lower than that of the O-CNN
backbone by 1.7 points in AP50, but it is still much
better than Refs. [13] and [9], by +8.0 and +4.9
points, respectively, in AP50. This experiment further
validates the efficacy of our approach.

Fusion scheme of ASIS [11] and JSNet [12].
We compare our fusion module with other fusion
schemes proposed in ASIS [11] and JSNet [12]. ASIS
jointly fuses the features between the segmentation
and instance branches to improve the performance, as
shown in Fig. 7(a). It has two fusion directions: one
of them maps the semantic feature to the instance
feature space using an MLP layer; the other one
uses K-nearest neighbors in the instance feature
space to aggregate the semantic feature. Similar
to ASIS, JSNet also has two fusion directions as
shown in Fig. 7(b). One maps the semantic feature

Fig. 7 Concept illustration of the fusion schemes of ASIS [11], JSNet [12], and our method. (a) ASIS has two fusion directions. It maps the
semantic feature to the instance feature using an MLP layer and uses the nearest neighbors in the instance feature space to aggregate the
semantic features. (b) JSNet also has two fusion directions. It maps the semantic feature to the instance feature using an MLP layer and adds
the global instance feature to the pointwise semantic feature. (c) Our fusion module has only one fusion direction: the semantic probability
directly helps the aggregation of instance features in a nonlocal manner.
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to the instance feature space, and the other adds the
global instance feature to the semantic feature. Our
fusion scheme differs in two aspects compared to the
ASIS and JSNet fusion modules. Firstly, our fusion
module has only one fusion direction, as shown in
Fig. 7(c), which uses semantic probability to guide
the instance feature aggregation. Secondly, our fusion
module uses the network output of semantic branch—
semantic probability to guide the fusion of instance
features, while ASIS and JSNet use the intermediate
network information to fuse features. The fusion
modules of ASIS and JSNet are more like enhancing
the two decoders of the network, while our fusion
module has a more specific target—to improve the
accuracy of the predicted instance offsets. To prove
the superiority of our fusion scheme, we replace
our fusion module with the ASIS fusion and the
JSNet fusion and integrate them with our single-level
baseline and our loss functions. We observed +0.9 and
+1.1 points improvement of AP50 over the baselines
using semantic region centers (see ASIS fusion and
JSNet fusion in Table 4). However, the improvements
are minor compared to our single-level fusion which
has +3.9 points improvement. In Fig. 8, we illustrate
some results generated by different fusion methods.
The shifted points of our fusion module are more
compact and accurate, resulting in a more reasonable
segmentation of the part instances. We also insert
the other direction fusion into our fusion module
by mapping the semantic feature to the instance
feature space using an MLP layer. The performance

Fig. 8 Visualization comparison of different fusion methods on
PartNet. (a) Part instance ground-truth. (b) Results of our fusion
module. (c) Results of ASIS fusion module. (d) Results of JSNet
fusion module. The corresponding shifted points are rendered at the
top right of each instance segmentation image.

is slightly worse than cross-level fusion due to the
worse semantic segmentation results, as shown in
cross-level fusion(two-dir) in Table 4.

Bandwidth of mean-shift. We experienced diffe-
rent bandwidth values for the mean-shift algorithm:
0.05, 0.10, 0.20, with cross-level fusion† setting. Their
performance results are slightly different, as shown
in the first three rows of Table 5. Mean-shift with
bandwidth 0.10 performed better than the other two
choices. Therefore, we used 0.10 by default.

Choices of λ. With the default bandwidth of
the mean-shift algorithm, we experienced several
choices of λ for Eq. (7): 0.025, 0.050, 0.075, under
cross-level fusion. The last three rows of Table 5
show the results. λ = 0.050 achieved the best result,
while larger λ could damage the centerness of the
shifted points and did not comply with the predefined
bandwidth. According to our empirical study, λ was
set to 0.050 by default.

4.2 Instance segmentation on indoor scenes

Datasets. The ScanNet [14] dataset contains 1613
scans with annotations of 3D object instances.
Instance segmentation was evaluated on 18 object
categories. We report the results on the validation
set. The S3DIS [15] dataset has 272 scenes with 13
categories. It was collected from six large-scale areas,
covering more than 6000 m2 with more than 273
million points. We report the performance on both
Area-5 and 6-fold sets.

Evaluation metrics. For ScanNet, we use the
widely-adopted evaluation metric, mAP ; AP25 and
AP50 denote AP scores with the IoU threshold of 0.25
and 0.5, respectively. In addition, AP averages the
scores with the IoU threshold set from 0.5 to 0.95,
with a step size of 0.05. For S3DIS, we use the metrics
proposed by Ref. [11]: mCov, mWCov, mPrec, and
mRec. mCov is the mean instance-wise IoU. mWCov

Table 5 Bandwidth and λ selection. The first three rows are our
results for cross-level fusion† with different bandwidths. The last three
rows are the results for cross-level fusion with different λ settings

Bandwidth λ AP25 AP50 AP75 s-AP50

0.05 — 70.5 61.8 48.2 75.0
0.10 — 71.3 63.1 48.6 75.2
0.20 — 71.1 62.4 48.6 74.4

0.10 0.025 71.9 64.0 49.7 76.0
0.10 0.050 72.1 64.1 49.7 76.1
0.10 0.075 70.0 61.9 47.5 74.8
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is the weighted version of mCov, where the weights
are determined by the sizes of each instance. mPrec
and mRec denote the mean precision and recall with
an IoU threshold of 0.5. In both datasets, we also
report the semantic segmentation metric mIoU for
reference.

Experiment setup. To demonstrate the effi-
ciency of our instance feature fusion module and
its applicability to different network designs, we
integrated our single-level fusion module into some
recent instance segmentation frameworks, which have
both the semantic segmentation branch and the
instance feature branch: PointGroup [8], DyCo3D [10],
HAIS [34], ASIS [11], and JSNet [12]. The settings
of the original frameworks, such as loss functions,
clustering algorithms, and training protocols, were
kept. Our multi- or cross-level fusion is not used here
as there are no multi-level instances on the indoor
scene datasets. On the ScanNet dataset, we used the
original frameworks of PointGroup, DyCo3D, and
HAIS as baselines and inserted our fusion module
to help in network training. As the work of HAIS
and DyCo3D leveraged pretrained network weights
to initialize the network weights to obtain high
performance, for a fair comparison, we followed their
method and used pretrained weights as initialization
to train their networks with our fusion module.
In Appendix B, we also provided the comparison
without using any pretrained weights. On the S3DIS
dataset, we retrained ASIS and JSNet with and

without their original fusion modules, and trained
the networks by replacing their fusion modules with
our fusion module for further comparison.

Performance report and time analysis. Table 6
shows the performance results of PointGroup,
DyCo3D, and HAIS with and without our fusion
module on the validation set of ScanNet. Our
fusion module consistently improved these methods:
+2.4, +1.1, and +0.8 points on AP , and +1.6,
+0.7, and +0.5 points on AP50. In Fig. 9, we
present some instance segmentation results by HAIS
with and without our fusion module. Without our
fusion module, the shifted points have a larger
distribution which can lead to wrong clustering
results, as highlighted by the red circles. With our
fusion module, the shifted points are closer to their
instance centers, which helps to achieve more accurate
clustering results.
Table 6 Quantitative comparison on ScanNet [14] validation set.
Our fusion module is added to each network (marked with ∗) and
exhibits consistent performance improvements. The results of other
methods are from their released models and checkpoints. We used
their pre-trained weights for initialization and training of the whole
network with our fusion module

Method AP AP50 AP25 mIoU
PointGroup 35.2 57.1 71.4 67.3
PointGroup∗ 37.6 58.7 71.8 67.6

DyCo3D 35.5 57.6 72.9 69.5
DyCo3D∗ 36.6 58.3 73.2 69.5

HAIS 44.1 64.4 75.7 72.3
HAIS∗ 44.9 64.9 75.9 72.4

Fig. 9 Visual comparison of instance segmentation on the validation set of ScanNet. Without the fusion module, the shifted points are more
dispersive and result in wrong instance segmentation results, as shown in the red circles. Our fusion module can help to get more accurate
offsets, and the compact shifted points can get better instance clustering.
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On S3DIS, we retrained ASIS and JSNet with and
without their original fusion modules, and we also
integrated our fusion module with their base networks.
As reported in Table 7, the improvement of our fusion
module outperformed their original fusion modules.

On the above experiments, the additional inference
time caused by our fusion module for each method
was small compared to the total time, as reported
in Table 8. The additional time of our fusion is also
smaller than the fusion modules of ASIS and JSNet.
We conclude that our fusion module is a lightweight
and an effective plugin to improve the performance
of other methods.

Table 7 Quantitative comparison on S3DIS [15]. b-ASIS is the
baseline of ASIS, i.e., without the ASIS feature fusion module.
Similarly, b-JSNet is the baseline of JSNet. We added our fusion
module to each method marked with ∗. The number before parentheses
is the metric on Area 5, while the number inside parentheses is the
metric on 6-fold cross-validation

Method mCov mWCov mPrec mRec mIoU

b-ASIS 45.4(49.0) 48.6(53.0) 53.7(58.8) 42.9(47.3) 52.0(58.4)

ASIS 45.8(49.4) 48.9(53.3) 54.7(59.5) 43.6(47.4) 52.3(58.8)

b-ASIS∗ 46.1(50.4) 49.2(54.4) 55.4(63.0) 43.4(50.2) 53.1(59.3)

b-JSNet 47.9(50.8) 50.7(54.8) 55.6(60.7) 44.8(49.7) 53.5(59.5)

JSNet 48.8(51.7) 51.6(55.5) 56.6(61.1) 46.1(50.6) 53.9(59.9)

b-JSNet∗ 49.5(51.9) 52.6(55.8) 58.6(63.1) 46.6(51.0) 54.7(60.4)

Table 8 Average inference time for a 3D scan. Methods using
our fusion module are marked with ∗. The first three methods are
measured on ScanNet validation set and the last two methods are
measured on Area 5 of S3DIS. The runtime was measured on Tesla
V100 GPU

Method Inference time (ms)

PointGroup 428

PointGroup∗ 439(+11)

DyCo3D 392

DyCo3D∗ 400(+8)

HAIS 375

HAIS∗ 388(+13)

b-ASIS 3405

ASIS 5058(+1653)

b-ASIS∗ 3646(+241)

b-JSNet 4138

JSNet 4256(+118)

b-JSNet∗ 4192(+54)

5 Conclusions

We present a novel semantic segmentation-assisted
instance feature fusion scheme and an improved

instance clustering method via the semantic region
center for multi-level 3D part instance segmen-
tation. Our method explicitly utilizes the inherent
relationship between semantic segmentation and part
instances considering their hierarchy. Its efficacy is
well demonstrated on a challenging 3D shape dataset—
PartNet. Our feature fusion scheme also integrates
well with other state-of-the-art 3D indoor-scene
instance segmentation models, which it consistently
improve on ScanNet and S3DIS.

Limitation. In our algorithm for PartNet, the
bandwidth of the mean-shift algorithm and the
shift parameter λ were set empirically. Devising
a differentiable clustering algorithm with trainable
bandwidth and λ for end-to-end training would help
improve the instance segmentation accuracy further.
The approach of taking mean-shift iterations as
differentiable recurrent functions [45] is a promising
direction.

Appendix

A U-Net structure

We used an O-CNN-based U-Net structure with
two decoders as our base network. The encoder and
decoders have five levels of domain resolution, and
the maximum depth of the octree is 6, as illustrated
in Fig. 10.

B Training from scratch in ScanNet

For the methods of PointGroup [8], DyCo3D [10],
and HAIS [34], we trained their networks using the
default setting of their released codes from scratch
with and without our fusion module. The results in
Table 9 show that our fusion module led to consistent
improvements. Note that all methods trained from

Table 9 Quantitative comparison on ScanNet [14] validation set.
Our fusion module is added to each network (marked with ∗) and
exhibits consistent performance improvements. The other methods
are trained from scratch using their released codes. The networks
with our fusion module are also trained from scratch

Method AP AP50 AP25 mIoU

PointGroup 33.6 55.4 70.0 67.1
PointGroup∗ 34.4 56.1 71.7 67.3

DyCo3D 32.5 53.0 69.0 67.2
DyCo3D∗ 34.5 55.8 70.7 67.6

HAIS 42.5 61.7 73.5 71.0
HAIS∗ 43.1 62.8 74.5 71.4
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Fig. 10 O-CNN-based U-Net structure for instance segmentation on the PartNet dataset. Conv(C, S,K) and Deconv(C, S,K) represent
octree-based convolution and deconvolution. C, S,K are the output channel number, stride, and kernel size, respectively.

Table 10 Part instance segmentation results on the test set of PartNet [13]. We report AP25, AP75, and s-AP50 on three instance levelles.
Bold numbers are better
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Fine 57.7 — 22.1 68.3 - 58.4 53.7 67.5 84.8 38.0 62.4 66.8 — — 63.5 45.8 — 54.0 — 45.0 — 52.6 52.5 58.7 86.4
Avg 72.2 78.4 37.9 74.6 83.8 72.7 64.2 74.8 89.5 58.4 74.8 76.6 77.8 44.5 70.1 55.8 100.0 70.6 95.3 61.9 87.6 57.6 66.7 70.5 87.7

O
ur

s

Coarse 83.3 84.6 75.8 91.0 88.7 94.8 74.9 86.3 97.4 83.4 86.3 85.7 80.1 47.4 76.5 65.8 100.0 84.7 96.2 75.9 88.6 73.0 90.5 83.4 88.5
Middle 66.2 — 50.7 — — 65.6 — 81.5 — 66.5 — — — — — 54.8 — 80.9 — 70.9 — 66.7 58.5 — —
Fine 63.9 — 39.1 70.1 — 59.5 54.8 69.5 89.1 56.5 69.5 73.7 — — 55.6 47.4 — 67.2 — 63.3 — 63.9 51.9 66.2 88.4
Avg 76.1 84.6 55.2 80.6 88.7 73.3 64.9 79.1 93.3 68.8 77.9 79.7 80.1 47.4 66.1 56.0 100.0 77.6 96.2 70.0 88.6 67.9 67.0 74.8 88.5
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scratch are inferior to their versions using pretrained
weights.

Remark. The above networks trained from scratch
do not reproduce the performance of the released
checkpoints of these works. The authors of DyCo3D
and HAIS responded that their released checkpoints

used other pre-trained network weights and were not
trained from scratch.

C Evaluation and visualization in PartNet

We report AP25, AP75, and s-AP50 on the 24
shape categories of PartNet in Table 10. In Fig. 11,

Fig. 11 Visual comparison of part instance segmentation on the test set PartNet. Part instances at each level are colored with random colors.
(a, d) Ground truth instance parts. (b, e) Results of our multi-level baseline†. (c, f) Results of our cross-level fusion. The corresponding shifted
points are rendered on the top-left of each instance segmentation image. Red boxes represent wrong instance results.
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we illustrate the multi-level baseline and cross-
level fusion instance segmentation results. Our
fusion module helps obtain more compact and
distinguishable instance centers and yielded better
instance segmentation results.

Availability of data and materials
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datasets.
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