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Abstract

Recent decades have witnessed rapid development in the field of medical image segmentation. Deep learning-based fully
convolution neural networks have played a significant role in the development of automated medical image segmentation
models. Though immensely effective, such networks only take into account localized features and are unable to capitalize on
the global context of medical image. In this paper, two deep learning based models have been proposed namely
USegTransformer-P and USegTransformer-S. The proposed models capitalize upon local features and global features by amal-
gamating the transformer-based encoders and convolution-based encoders to segment medical images with high precision. Both
the proposed models deliver promising results, performing better than the previous state of the art models in various segmentation
tasks such as Brain tumor, Lung nodules, Skin lesion and Nuclei segmentation. The authors believe that the ability of
USegTransformer-P and USegTransformer-S to perform segmentation with high precision could remarkably benefit medical
practitioners and radiologists around the world.
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1 Introduction

SINCE the dawn of the 21st Healthcare industry has started
adopting technology rapidly. One area in which this adoption
of technology has given remarkable results is the area of
“Medical Imaging”. Medical imaging refers to techniques
and processes used to mimic the state of organs via im-
ages CT-Scan, X-rays and MRI [1]. Until the past de-
cade, the advancements in medical imaging were more
focused on optimizing and improving the process of
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creating organ images and enhancing the quality of med-
ical images. While the process of inferring information
was left untouched and immensely dependent on the
availability of experts and trained professionals. The lack
of innovation in information inferring processes has led
to burdened healthcare infrastructures in many countries.
The only way to reduce this burden is to automate certain
aspects of inferring information from medical images.
One domain that has a lot of scope automation is
segmentation.
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Segmentation in medical imaging deals with labelling each
pixel on the image with a class which is known as Semantic
segmentation. Semantic Segmentation has a plethora of appli-
cations in the healthcare industry. Some of the areas where
segmentation has been used are - detection of lung nodules
from CT-Scans of lungs [2], Detection of Brain tumor [3],
segmentation of skin lesion [4], Polyp detection [5] (Polyps
are irregular tissue growth on body), Liver segmentation [6],
Nuclei segmentation [7], etc. A lot of research has been put
into developing segmentation models and algorithms using
multiple toolboxes. A lot of research has been put into devel-
oping segmentation models and algorithms using multiple
toolboxes. After going through literature, we found that, until
now the problem of medical image segmentation has been
tackled with algorithms that can be grouped into 4 broad cat-
egories namely, 1) machine learning-based algorithms, 2) ear-
ly convolution neural networks (CNN), 3) optimized CNN,
and 4) feature extracting convolution networks. Each category
of algorithms is presented as follows [8-10].

1.1 Machine learning based algorithms

Machine learning methods in the medical image segmentation
are broadly classified into two categories such as 1) supervised
learning and 2) unsupervised learning. The supervised
methods employed artificial neural networks [11]. However,
the unsupervised methods consisted of extensive use of K-
mean algorithm [12], Hard C-mean algorithms [13] and
Fuzzy C-means algorithms [14]. The common problem
among these techniques is that such techniques majorly rely
on predefined features or some structure. The reliance on
predefined features reduces the generalizing ability and ro-
bustness of the techniques.

1.2 Early convolutional networks

With the significant development in the deep learning, the task
of medical image segmentation has tried to solved using
Convolutional Neural Networks (CNN) [15] models. Early
on, the patching-based CNN models are used over primitive
algorithms as reported in [16]. Then, a ground-breaking im-
provement has been observed with the invent of the UNet
[17]. Tt builds upon the concept of using a fully convolutional
network (FCN) and it consists contracting segment that en-
codes the features and an expansive segment that generates the
mask from the encoded features. This architecture is capable
of learning high-resolution features to provide more precise
outputs. The authors also introduced the use of data augmen-
tation during training to aid the training of models on smaller
datasets and to make them robust. The limitation of the UNet
architecture is that they use simple skip connections which
lack the ability to transfer spatial features across the encoder
and decoder.

1.3 Optimized convolutional networks

In order to overcome the limitation of simple skip connections
in the Unet, multiple architectures with complex skip connec-
tions are introduced. in [18], the authors have proposed an
architecture named, MultiResUNet. This model replaces pairs
of standard convolution layers present in the vanilla UNet
with inception like MultiRes block to restore features learned
at various scales while maintaining memory efficiency. The
MultiRes block also consists of 1 x 1 convolutions to learn
spatial information, owing to such additions MultiResUnet
passes baselines set by Unet on multiple datasets. Further,
the authors in [19] introduced DC-UNet that builds upon the
MultiResUNet and aimed to improve the performance of im-
age segmentation algorithms on tricky dataset. Further, the
authors replace the simple residual connection in the
MultiRes block with a sequence of 3 X 3 convolutions to
increase the ability of the model to learn better spatial features.
This architecture can learn features of different scales, reduce
the semantic gap and learn spatial features. The DC-UNet is
able to perform considerable well on infrared (IR) breast
dataset, IEEE-ISBI dataset, and CVC_Clinic DB. Another
approach as reported in [20] is taken to introduce efficient skip
connections in the original UNet. The authors proposed a
novel architecture, the UNET++ for semantic and instance
image segmentation. The architecture differs from the original
UNet architecture proposed in [17] in terms of optimized skip
connections and connections between adjacent nodes. Thus,
such modifications equip UNET++ to have considerable ad-
vantages over the traditional UNet architecture like always
having the optimal depth and efficient fusion of features in
the decoder. Further UNET++ achieves decent results on six
problems in the domain of medical image segmentation,
namely, Electron Microscopy (EM), Cell segmentation,
Nuclei segmentation, Brain tumor segmentation, Liver
Segmentation, and Lung Nodule Segmentation. The third
way to improve the UNet by making the skip connections
more effective has explored in [21] where the authors of
BCDU-NET make use of Bi-ConvLSTM in the skip connec-
tions, which assist in relaying semantic information between
the corresponding layers. The effectiveness of this result is
proved by achieving state-of-the-art results on three bench-
mark datasets, namely, Drive Dataset, ISIC 2018 Dataset,
and Lung Nodule Analysis (LUNA) dataset.

1.4 Feature extraction convolutional networks

In order to further enhance the performance of image segmen-
tation algorithms, multiple newer architectures which focus on
improving the feature extraction power of the UNet encoder
have been introduced. In [22], the authors have proposed
DoubleU-Net model for medical image segmentation which
is based on the idea of using two UNets wherein the first UNet
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uses a VGG-19 encoder pre-trained on ImageNet and the sec-
ond UNet takes in the multiplication of the original image and
the output of the first UNet as input. The DoubleU-Net per-
forms well on datasets such as CVC-Clinic DB, ISIC 2018,
and 2018 Data science Bowl challenge datasets. Further, a
different approach has been taken by the authors of a novel
segmentation architecture DRINet [23], which is based on
DenseNet and Inception-ResNet. The dense blocks in the ar-
chitecture of DRINet are used in the encoder part and residual
inception blocks, along with unpooling from the decoder of
the DRInet. Thus, such blocks are used to replace standard
convolution blocks to learn distinctive features in cases of
similar shape, intensity, location, and size. The DRINet per-
forms well on CSF, CT, and multi-organ datasets. In [24], the
authors have proposed another Novel architecture for 2D
medical image segmentation, namely, CE-NET which has 3
major components such as Feature Encoder, Content extrac-
tor, and decoder in contrast to encoders, and decoders seen in
typical UNets. The use of a context extractor that performs
Atrios convolutions help to make the filters act on global
features and thus provides the model more context. The CE-
NET achieves excellent results in Optic disc image segmen-
tation, Retinal Vessel Detection, Lung segmentation, and Cell
contour segmentation.

A potential research challenge in the aforementioned archi-
tectures is that these models are only capable of extracting
local context and unable to take into account global features,
and long-range dependencies in the image data. Despite the
heavy optimization in the extraction and usage of local fea-
tures, the improvements in models’ performance are signifi-
cantly low. We hypothesize that this is due to the lack of
consideration of global features and intending to overcome
this research gap and fully capitalize on global features in
segmenting medical images. We propose the
USegTransformer-P and USegTransformer-S approach which
leverage both local features from the full convolution net-
works and long-term dependencies obtained by transformers.
We believe that such a combination will yield state-of-the-art
results. The novelty and salient features of this paper is sum-
marized as follows:

*  We have developed a novel medical image segmentation
models, USegTransformer-P and USegTransformer-S,
which utilizes both the local and global features of the
image using an amalgamation of Transformers based en-
coders and UNet based encoders.

*  We have developed a fully convolutional ensemble de-
coder for transfusing both the local and global features
obtained from a fully convolutional network and trans-
former network respectively, from an image in a learnable
manner.

*  We have analyzed the performance of sequential and par-
allel stacking of transformer-based encoder-decoder and

@ Springer

convolution-based encoder-decoder in order to achieve a
better configuration of the proposed models.

*  We have proved the efficacy of the proposed models by
comparing them with reported medical image segmenta-
tion models on benchmark datasets used in renowned
competitions such as LUNA, ISIC-2018, and Kaggle
Data science bowl.

The paper is further divided into 4 sections, namely, the
methodology, results and experimentation, discussion, and
conclusion and future scope. In the methodology section, we
explain every intricate detail about our proposed models,
USegTransformer-P and USegTransformer-S. In the result
section, we explain and analyze the performance of our pro-
posed model with the help of metrics and visualizations. In the
discussion section we probe into what are qualitative and
quotative effects of the use of global features in segmentation
algorithms. In the final section that is conclusion and future
work; we present our findings as well as discuss the direction
future works that can be done in the field in the automated
medical segmentation.

2 Proposed architecture

The UNet-based model extracts localized features in the high-
level representations such as the CNN models. On the other
hand, transformer-based models like ViT extract global con-
text and long-range dependencies. In a task like an image
segmentation, we would require both kinds of feature repre-
sentations. Therefore, in this proposed system model, we
come up with two different methods to use the best of both
worlds. These methods take advantage of the different feature
extraction abilities of a transformer model and CNN model.
By doing this, the proposed system model is capable of un-
derstanding the local features as well as the global context.
The first model, known as the USegTransformer-P shown in
Fig. 2a, is a parallel model and the second model that is the
USegTransformer-S as shown in Fig. 2b, is a sequential model
inspired from the work reported in [22].

The proposed system models derive their name from the
use of a transformer-based encoder-decoder architecture
stacked with U-Net inspired encoder-decoder convolutional
architecture to segment the bestowed image. The suffix of
USegTransformer (-P and -S) signifies the type of stacking.
For the given image img € R” * " * € with a spatial resolu-
tion of H x W, where H and W denote height and width of the
conferred image and C channels. The main goal is to yield a
segmentation mask msk € R * V. The architecture of
USegTransformer-P and USegTransformer-S consists of two
common parts, namely, the transformer-based encoder-decod-
er and an UNet inspired encoder-decoder convolutional block.
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These components and the stacking details of the proposed
models are discussed in the following subsections.

2.1 Transformer based image encoder-decoder

The vision Transformer models have been quite successfully
used in both computer vision [25] and natural language pro-
cessing [26] and have provided promising results in both
fields. The primary edge that the transformers have over other
techniques is efficiency in terms of computational resource
usage and its efficacy in performing various tasks. This suc-
cess of the vision transformers model can be attributed to
parallelization, where, unlike in Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM), all time-
steps can be passed in a single step making the model compu-
tationally efficient. Secondly, the transformers use a self-
attention mechanism to gain global attention features from
the data which attributes to the results that the transformers
achieve.

2.1.1 Transformer encoder

This research study used a transformer-based self-atten-
tion architecture to encode the images into high-level
features with a global context. We have first divided
the image {img' € R” * " * €} into two-dimensional (2D)

flattened patches {img;mERP %.C }, where i € [1.... N] and

each patch is of size P x Pwith N = % to make the image
data sequential and time distributed as reported in [25].
Further, we have also added a linear layer called the projection
layer to project these flattened patches into a L dimension
vector where L is the length of image sequence and these
patches are known as Projected Patches. To include the spatial
information of the input image in the proposed model, we
added these projected patches with a positional encoding ma-
trix {EPOSERNXE’”bEdS’“} where EmbedSize is given as
Embeds;,, = L. The positional encodings matrix can be de-
veloped in different ways however, we have kept the position-
al encoding matrix as a learnable parameter in this proposed
research, i.e., the model will also update the elements of this
positional embedding matrix during back-propagation. The
positional encodings and the flattened patches are combined
and mathematically presented as:

Ponped = [X|E,X;E, X} E, .....x) E | + Epos (1)
where E is the linear projection matrix such that £ eR(PCxL)
and Ep,, represent the learnable position encoding. After the
image’s encoding is performed, we move on to apply the
Multi-Headed-Self-Attentions (MHSA) and Position-wise
Feed-Forward Networks (FFNs) layers. The transformer

consists of A Multi-Head-Self-Attention (MHSA) and H
Position-wise Feed-Forward Networks (FFNs) blocks. The
Egs. (2) and (3) explain the operations performed during the
self-attention phase.

2y = MHSA(LinNorm (z;)) + 2j-1 (2)

z; = FFN (LinNorm(z;)) + 21 (3)

where LinNorm( ) denote the Linear Layer Normalization and
z; is a feature tensor. The FFN block includes linear layers
with the rectified linear unit (ReLU) activation function, and
the MHSA contains L self-attention heads (SAs) connected in
parallel. In each SA head, we cmputed the attention by map-
ping queries and key-value pairs to an output. The key (K),
value (V), and query (Q) matrixes are formed by the encoded
input matrices. Now, we compute the dot of the query matrix
with all the key matrices and then scale each of them by v/d.
where dj, is the dimensions of the key matrix and query matrix
and apply the SoftMax function to obtain the self-attention
weight matrix, which then multiplied with the value matrix.
The Eq. (4) below explains this procedure mathematically.

T
%’%)v @)

The outputs from all the attention heads are concatenated
into a single matrix, which is represented as:

Attention(K,Q,V) = Soﬁmax<

MHSA(Z) = [l’ll,hz,h3....,hH]WMHSA (5)

where W) 54 represents the weights of the learnable weight
matrix of different SAs. The flow of input through the trans-
former encoder layer can also been understood by analysing
Fig. 1.

2.1.2 Convolution based decoder

After obtaining the encoded images through the transformer-
based encoder, we pass the encoded vector, which is first

reshaped and rearranged to a 2D matrix Img,,,,€R" "¢
and then passed through a convolutional auto-encoder in-
spired decoder as reported in [27]. Here, we have used decod-
er convolutional up-sampling blocks. Each convolutional up-
sampling block includes a Conv2D layer with a kernel size of
3 x 3 with a Batch-Normalization layer and ReLu activation
with a bilinear up-sampling layer that has a scale factor of 2.
The image from the bottleneck encoder is passed through each
decoding step where at every step, we up-sample the image by
a factor of 2. This process is continued until we achieve the
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MLP

LinNorm

LinNorm

Fig. 1 Schematic of the transformer based image encoder

original image resolution. At the final stage, we use a convo-
lution layer with 1 x 1 kernel size and with the sigmoid
activation in the end.

2.2 U-net inspired encoder-decoder block

As pellucid from the above discussion, the transformer-based
encoder provides a global high-level representation of fea-
tures. Therefore, we need a fully convolutional network to
yield localized high-level feature representation to identify
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subtly local regions in the masked image. Hence, we use a
UNet-inspired fully convolutional encoder-decoder architec-
ture for this purpose. The encoder block consists of a sequence
of 2D convolution, batch normalization, and activation, re-
peated twice, followed by a pooling function to downscale.
The decoder block consists of a sequence of linear or bi-
linear up-sampling followed by 2D convolution, batch nor-
malization, and activation function, repeated twice.
Additionally, there exists a stacking of encoder outputs to
decoder inputs at the same dimension across the encoder and
the decoder through skip connections. The flow of input im-
age in a UNet can be mathematically expressed as:

ReH><W><3:>Reh><w><c:>ReH><W><C (6)

In the experiments, all convolutions have a 3 x 3 kernel
with padding = 1. The activation function uses a standard
ReLU function. The pooling is applied using max-
pooling. The input image passes through a series of encoder
blocks wherein, after each block, the number of channels
scales up by a factor of 2. The final encoded activation map
has 1024 channels. It passes through a series of decoder
blocks wherein, after each block, the number of channels
scales down by a factor of 2 shown in Fig. 2.

2.3 USegTransformer-P: Fully convolutional ensemble
decoder

USegTransformer-P is a parallel stacked model of the
transformer-based self-attention model and the UNet based
model using a fully convolution-based decoder. The image
is input into both the networks individually to output segmen-
tation masks. These masks are stacked together and are con-
voluted usinga 1 % 1 kernel. By usinga 1 X 1 convolutional
kernel, the model projects the best features by transfusing
local and global features to produce a more accurate segmen-
tation map. The flow of images in the network is mathemati-
cally represented as:

mg € RT*W>3 = feature matrix e R7TW*! (7)

img € R = feature matrix € R**W*! (8)

RIWHL o RIXWXL — concatenated matrix € RT"*? (9)

RIWX2 — i qske R W1 (10)
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Transformer Encoder

[a]

Convolution Based Decoder

Unet Based Encoder

/

Fully Convolutional Ensemble Decoder

[b]

Convolution Based Decoder

I
Transformer Encoder

Conv2D Conv
ensemble Decoder

Upsampling Maxpooling

Neueeunl O

Unet Based Encoder

[c]

INDEX

Q ] % >

Skip Connection

Transformer
Encoder

Conv2D + Batch Normalisation +
Relu + Upsample

Fig. 2 Schematic of the proposed architecture (a) USegTransformer-P, (b) USegTransformer-S, and (c¢) index for the figure

where Eq. (7) represents the output of transformer-based
encoder-decoder, (8) represents the outputs UNet inspired en-
coder decoder. The Egs. (9) and (10) explain the image trans-
formations in the fully convolution ensemble decoder. This
model is trained using Algorithm-1.

Algorithm-1: Training of a USegTransformer-P Model

Input: A batch of image tensors
Output: Trained USegTransformer-P model
for stept=1,2...T do

for batchb=1,2...N do
X « image tensor [b]
x1 «—x
for layer 1=1,2...L do

x1 « transformer_encoder(x1)
End
x1 « convolution_based_decoder(x1)
x2 < unet_based encoder decoder block(x)
y_predicted[b] < fully conv_ensemble decoder(x1,x2)

End
loss < loss_function (y_predicted, y_true)
Backpropagating loss error and weight update

End

The above training Algorithm-1 runs for T epochs, each
step training on N batches making up the whole dataset.

Each image in a batch runs through L layers of transformer
encoder. The encoder applies attention to its input at each
layer giving out a feature space that has considered and
attended to the correlation between the image tokens. The
final feature map is decoded using a convolutional decoder.
In parallel, the image is also passed through a UNet based
encoder-decoder to capture the spatial features and correla-
tions. The two feature maps from both branches are combined
and decoded to produce the output. The ensemble decoder
combines the two feature spaces from the two branches and
considers long range dependencies as well as spatially close
dependencies to decide what features are more important
where and then produces the segmented mask, which is an
amalgamation of both branches. The output is compared to
the ground truth and the error is backpropagated to update
weights. The error is calculated using a loss function.

2.4 USegTransformer-S: Sequential stacking

The USegTransformer-S is a sequential stacked model of the
UNet based model and inspired by the transformer-based self-
attention model. The activation map produced by the
transformer-based encoder-decoder is multichannel (in the
proposed experiments, it has two channels). This multichannel
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activation map is then input to the UNet based encoder-de-
coder. We intend to progressively down sample the number of
channels in the output of each decoder. This helps in the trans-
fusion of global features obtained by Transformer encoder and
local feature obtained by Unet based encoder-decoder. The
flow of the image in the network is mathematically represent-
ed as:

ReHxW><3:Reh><w><c:>ReH><W><2_1 (11)

ReH><W><2:>Reh/xw"xc/jReHxle_l (12)

The USegTransformer-S is trained using Algorithm-2.

Algorithm-2: Training of a USegTransformer-S Model
Input: A batch of image tensors
Output: Trained USegTransformer-S model
for stept=1,2...T do

for batchb=1,2...N do
X « image tensor [b]
for layer 1=1,2...L do

x « transformer encoder(x)
end
X < convolution_based decoder(x)
x <« unet_based encoder decoder block(x)
y_predicted[b] «— x

end
loss < loss_finction (y predicted, y_true)
Backpropagating loss error and weight update

end

The above training Algorithm-2 runs for T epochs, each
step training on N batches making up the whole dataset.
Each image in a batch runs through L layers of transformer
encoder. The encoder applies attention to its input at each
layer giving out a feature space that has considered and
attended to the correlation between the image tokens. The
final feature map is decoded using a convolutional decoder
to give a multi-channel feature space. This feature space is
further passed through a UNet based encoder decoder that
capture the spatial features and relations in the high-level
long-range feature space. The feature space also goes through
a change in number of channels incorporating features at mul-
tiple levels. The output is, hence, a convoluted output of in-
dependent long-range features. This output is then compared
to the ground truth and the error is backpropagated to update
weights. The error is calculated using a loss function.
Experimentally, as discussed in the next section, we have
found that both ensembling methods perform better or at
par with the previous state-of-the-art models wherein, the
parallel model achieves superior results. Therefore, the
fully convolutional ensemble decoder exploits the feature
extraction abilities of both networks in a better way.
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3 Experimental results

In order to investigate the capabilities of the proposed models,
we test them on benchmark datasets. Each dataset chosen have
a different set of challenges with a unique application in the
field of medical imaging. The following section discusses in
detail the various intricacies of each dataset as well as analyzes
the results obtained on each dataset.

3.1 Dataset description
3.1.1 MRI dataset

The dataset [28] consists of MRI scans and corresponding
segmentation masks of 110 patients obtained from the cancer
imaging archive (TCIA). The patients are from the cancer
Genome Atlas (TCGA) with low-grade glioma with fluid-
attenuated inversion recovery (FLAIR) sequence. We have
divided the chosen data into 70% training set(2838 images),
15% validation set(501 Images) and 15%(510 Images) testing
set.

3.1.2 Lungs segmentation dataset

The dataset [29] is from the Lung Nodule Analysis (LUNA)
competition from 2016. The competition aims to obtain auto-
matic module detection algorithms. It contains 267 2D CT
scans of lungs and their corresponding segmentation masks.
We train the proposed models on 216 images (80%), validate
the proposed models on 24 images (~10%), and test on 27
images (~10%).

3.1.3 Nuclei segmentation dataset

This dataset was part of the prestigious annual Kaggle data
science bowl 2018 competition [30]. The dataset provides us
with 670 images and along with them the segmented mask of
each nucleus. The dataset contains images captured under
varied conditions such as magnification, brightfield and fluo-
rescence. The difference in quality images makes this dataset a
true challenge for any deep learning model. In this paper, we
use 603 (90%) images for training and 67 (10%) images for
testing.

3.1.4 Skin lesion segmentation dataset

We use the dataset provided by the annual ISIC competition in
2018 [31, 32]. This dataset is meant to accomplish three tasks
namely Lesion segmentation, lesion attribute detection and
Disease classification. But since we intend to show our pro-
posed models’ proficiency in segmenting medical images, we
concentrate on the first task. The dataset contains 2694 images
and their corresponding masks. The masks are annotated by a
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committee of experts. In this paper, we train our model on
75% of the data which is 2075 images and test the model’s
efficiency on 20% which is 518 images of the data and vali-
dated our model on 5% ~ 100 images.

3.1.5 COVID-19 CT scan segmentation dataset

This is a part of COVID-19 CT Image Segmentation compe-
tition hosted on Kaggle [33]. The dataset consists of 9 seg-
mented axial volumetric CTs from Radiopedia. This dataset
contains entire quantities and hence both positive and negative
slices (373 out of the total of 829 slices have been evaluated
by a radiologist as positive and segmented). These slices are
then converted and normalized. Here the masks in the dataset
consists of 4 classes or channels (ground glass, consolidations,
lungs other, and background) out which 2 of those (ground
glass and consolidations) have been used for evaluation of our
proposed model. We trained the proposed model of 85% of
these slices i.e., 704 slices and tested on 15% i.e., 125 slices.

The data sample splitting is conducted in the experiments
for the different medical segmentation datasets as shown in
Fig. 3. The split is made such that they are similar to splits in
previous state-of-the-art and baseline results for the most ap-
propriate comparison.

3.2 Pre-processing and training

All the experiments have been conducted in the PyTorch [34]
framework on Google Collaboratory Pro. The GPU used was
Tesla P-100. All the models were trained using the Ams grad
[35] variant of Adam optimizer with the most appropriate
learning rate and model hyperparameters according to the
available resources. The data was pre-processed with a

Fig. 3 Split in datasets

combination of some primary image augmentations like
Random rotate, Random flip, Random Affine, and more.
These augmentations were applied using Torchvision and
Albumentations libraries in python. All the experiments were
conducted under major resource constraints. Improvement in
the following results might be seen by changing and tuning
various variables given the required resources are available
such as better GPUs, more disk space, and RAM.

3.2.1 Metrics

Three metrics are used for quantifying the performance of the
proposed model which are Dice similarity coefficient, inter-
section over union and pixel accuracy [36]. The pixel accura-
cy is the percentage of pixels in the predicted mask that match
the expected pixel class in the ground truth mask. It is the most
simple and primitive metric which is prone to class imbalance.
The mathematical formula to determine pixel accuracy is pre-
sented as:

N7p+ Ny
Nrp+Ngv +Npp+ Npy

Pixel Accuracy = (13)
where, Ntp, Ntn, Npp, and Ngy are the correctly classified
pixels as Class A, correctly classified pixels as not Class A,
incorrectly classified pixels as class A, and incorrectly classi-
fied pixels as not Class A, respectively. The intersection over
union (IoU) is one of the widely accepted metrics of measur-
ing the efficacy of the segmentation algorithm. It measures the
overlap between the ground truth and the predicted masks by
dividing the area of overlap by the area of union. The mathe-
matical expressions to determining IoU is given as:

Data Split

0
COVID-19 15
85
5

Dataset
z
o
)
<
]
&

Split Percentage

m Validation mTest mTrain
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INANNg|

loU = ———
|NAUNB|

(14)
where, Ns, Ng. Ny N Np, and Ny u Np are the pixels of
Image A, pixels of Image B, area of overlap and area of union,
respectively. The Dice coefficient is one of the best metrics to
measure the efficacy of segmentation algorithm. It measures
the similarity between the ground truth and predicted masks
by dividing the number of overlapping pixels by total number
of pixels in both images and multiplying the results by two.
Equation (15) shows the mathematical expressions for deter-
mining Dice.

_ 2%N4NNg|

Dice = —"——=
INal + |Ng|

(15)
where, Ny N and N4 N Np are the pixels of image A, pixels
of image B, and the area of overlap, respectively.

3.2.2 Loss functions

Binary cross entropy loss function is a standard loss function
used in classification and segmentation task. The primary ad-
vantage of binary cross entropy loss function is that it provides
smooth loss curves which contributes towards faster training
of models.

BCE = —IN é ¥ log(?,») + (1=) '10g<1‘?t> (16)

The Dice Loss is a loss function that makes the model strive
towards producing images which are similar to the ground
truth. It is slowly becoming a popular choice owing to its
inherent maximization of dice coefficient and its salubrious
effect on class imbalance. Mathematically dice loss is calcu-
lated by simply subtracting dice coefficient from 1.

i=N 2%
Dice Loss = 1— ) ———
=0yl + i

yimjj\i (17)

All the models are trained using the standard binary cross-
entropy (BCE) Dice loss, since both BCE loss and Dice loss
when combined are observed to have a symbiotic relationship.
The combined loss has relatively smooth loss curves owing to
the component contributed by BCE loss as well Dice Loss’s
inherent tendency to maximize Dice coefficient and handle
class imbalance which is prevalent in medical imaging
datasets.

@ Springer

1 ~
Combined Loss = —NZL) y; - log (yi) + (1=y,)

2%y
(1) + 1y
il + ‘J’i

(18)

3.3 Results

In this subsection, we have discussed in detail as well as an-
alyze the prediction made by the models on various datasets.
The quantitative analysis is done on the aforementioned met-
rics however, only one metric could be used for comparative
analysis with prior models since most datasets were a part of a
competition which required reporting that specific metric.
Further visual predictions made by proposed model are also
presented in order to analyze the performance of the proposed
model qualitatively.

3.3.1 Brain tumor segmentation

One of the most crucial application of medical image segmen-
tation is Brain tumor segmentation from Brain MRI. We
choose Brain MRI LGG dataset from Kaggle to evaluate our
proposed model. From Table 1, it is depicted that the
USegTransformer-P performs the best across all segmentation
metrics, that is, Dice score, Intersection over union and accu-
racy. The USegTransformer-P achieves an accuracy of 99.71
while achieve an IOU score of 0.9734 and a dice of 0.8934
while converging approximately at the same time with trans-
former backbone as seen in Fig. 4b. Figure 4c shows the
validation curve (BCE Dice Loss Vs Epoch) for all three
models, here even though the transformer backbone outper-
forms USegTransformer-S and USegTransformer-P on BCE
Dice loss, yet USegTransformer-S and USegTransformer-P
achieve a better dice coefficient and a better IoU score on
validation split as well. Furthermore, these results can be vi-
sually analyzed from Fig. 4a. The transformer Backbone also
performs efficiently achieving a dice score §770, an IOU of
0.9381 and an accuracy of 0.9961. It is interesting to note that

Table 1 Key performance indicator of MRI segmentation

Model Dice IoU Accuracy
U-Net [17] 0.8200 - -
SynthSeg [37] 0.8610 - -
Transformer Backbone 0.8770 0.9381 0.9961
USegTransformer-P 0.8934 0.9746 0.9971
USegTransformer-S 0.8504 0.9634 0.9954
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Fig. 4 The Brain MRI Input UNET Transformer Useg Useg Ground
Image Backbone  Transformer-s Transformer-P Truth

segmentation (a) visual depiction,

(b) train loss convergence and (c)
validation Loss
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on this particular dataset transformer backbone performs bet-
ter than the USegTransformer-S which is a deeper model. The
USegTransformer-S achieves a dice score of 0.8504, an IOU
0f0.9634 and an accuracy of 0.9954.The subpar performance
of the USegTransformer-S on this dataset can be attributed to
the lack of images in the dataset in comparison to the depth of
the model. As shown by Table 1, the model outperforms state-
of-the-art of models by a considerable overhead.

3.3.2 Lung nodule segmentation

Another crucial application where an artificial intelligence can
revolutionize medical diagnosis is Lung Nodule analy-
sis. We choose the dataset provided in the famous chal-
lenge LUNA to evaluate the proposed model’s efficacy
in segmentation of lung nodules. As presented in Table 2, the
USegTransformer-P performs the best amongst Transformer
Backbone, the USegTransformer-S and USegTransformer-P.
The USegTransformer-P achieves a Dice score of 0.9807, an
IOU of 0.9462 and an accuracy of 0.9913. While the
USegTransformer-S achieves a Dice score 0.9777, an IOU
0f 0.9316 and an accuracy of 0.9913. Figure 4b and Fig. 4c
shows the convergence of the models on BCE Dice Loss. The
loss convergence and the results on the test split clearly show
how USegTransformer-P generalizes on the dataset. The re-
sults are visualized in Fig. 5a. The Transformer Backbone,
which is the least complex model achieves a Dice score of
0.9582, an IOU of 0.8946 and an accuracy of 0.9816. It can
be observed from the Table 2 that the proposed model either
outperforms most of the state-of-the-art models while per-
forming at par with others.

Additionally, we performed 3-fold cross validation on the
lungs segmentation dataset resulting in the model to be trained
and tested on the data being divided into 2:1 ratio (66% train-
ing and 33% testing split). The results in Table 3 showcases
that the model upholds its high dice, IoU and accuracy metrics
with very low standard deviation across the 3 folds. This
proves that the proposed architectures are robust to the data
split.

Table 2 Key performance parameters of lungs segmentation

Model Dice IoU Accuracy
U-Net [17] - - 0.9872
RU-Net [38] - - 0.9836
CE-Net [24] - - 0.9900
ET-Net [39] - - 0.9868
BCDU-Net [21] - - 0.9946
Transformer Backbone 0.9582 0.8946 0.9816
USegTransformer-P 0.9807 0.9462 0.9913
USegTransformer-S 0.9777 0.9316 0.9894
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3.3.3 Skin lesion segmentation

The Skin Lesion Segmentation is a vital process in medical
diagnosis since it forms the basis for more complex analysis.
Table 4 presents the key performance parameters of proposed
model on the ISIC 2018 competition dataset. The
USegTransformer-P is the most effective in skin lesion seg-
mentation achieving an accuracy of 0.9514, an IOU of 0.8672
and a Dice score of 0.8701. Figure 6a provides a visual depic-
tion of these results. Further, the USegTransformer-P shows
better and faster convergence and does not overfit on the data
as evident Fig. 6b and Fig. 6¢c. The performance of
Transformer Backbone and USegTransformer-S is similar.
The USegTransformer-S achieves a Dice score of 0.8420, an
IOU of 0.8374 and an accuracy of 0.9431. While the
Transformer Backbone achieves a Dice score of 0.8503, an
IOU of 0.8511 and an accuracy of 0.9447. As evident by
Table 3, the best model proposed in this paper is able to sig-
nificantly outperform various state of segmentation
architectures.

3.3.4 Nuclei segmentation

An automation in the field of nuclei segmentation can prove to
be a game changer in bio-medical research and thus is an
important area of research. We evaluate the efficacy of pro-
posed model in segmenting nuclei using the dataset provided
in Kaggle 2018 data science bowl. From Table 5, it is evident
that the proposed model that is USegTransformer-P has
outperformed all the other models by achieving a Dice score
of 0.9004, an accuracy of 0.9761 and IoU of 0.8470. These
exemplary results can be seen in Fig. 7a. On the other hand,
USegTransformer-S has achieved a dice score of 0.8517, ac-
curacy of 0.9653 and an IoU of 0.7949. The Transformer
Backbone has however outperformed the USegTransformer-
S model, achieved a Dice score of 0.8780, accuracy of 0.9694
and IoU of 0.8287. The results explained above are reiterated
by analyzing loss curves in Fig. 7b which shows that the
USegTransformer-P is able to converge better.

Further, we performed 3-fold cross validation on the nuclei
segmentation dataset resulting in the model to be trained and
tested on the data being divided into 2:1 ratio (66% training
and 33% testing split). The results in Table 6 showcase that
the model upholds its high dice, IoU and accuracy metrics
with very low standard deviation across the 3 folds. This
proves that the proposed architectures showcase high degree
of robustness.

3.3.5 Covid —19 CT-scan segmentation
An automatic segmentation also proves to be a boon to the

bane of humanity that is Covid-19 pandemic. A major effect
of Covid —19 is consolidation in chest CT. We believe that



Semantic segmentation in medical images through transfused convolution and transformer networks

1143

Input
Image

Fig. 5 The lungs segmentation
(a) visual depiction (b) train loss
convergence and (c) validation
loss convergence

08

o
=Y

BCE Dice Loss
o

02

0.12

0.10

o
o
@

BCE Dice Loss
o
o
=)

0.04

0.02

segmenting these consolidations will lead to better qualitative

analysis of patients. Table 7 shows the quantitative analysis of

the COVID-19 Consolidation mask dataset. The
USegTransformer-P achieved a Dice score of 0.8295, an

Transformer Useg Useg Ground

UNET Backbone Transformer-s Transformer-P Truth

Lungs Segmentation Loss Convergence
— USegTransformer-P
— USegTransformer-S
— Transformer Backbone

2 40 60 80 100
Epochs

(b)
Lungs Segmentation Val Loss Convergence
—— USegTransformer-P
—— USegTransformer-S
—— Transformer Backbone

20 40 60 80 100
Epochs

(c)

accuracy of 0.9981 and an IoU of 0.9685. The
USegTransformer-P has achieved a Dice score of 0.6811, ac-
curacy of 0.9919 and IoU of 0.9218 for ground class predic-
tions. Figure 8a provides a qualitative analysis of these results.
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. . . Input Transformer Use: Use Ground
Table 3  3-Fold Cross Validation Performance on lungs segmentation Image UNET Backbone Transiorg)er-s Transforr?\er-P Truth
Model Mean Metric + Std Deviation

Dice ToU Accuracy

USegTransformer-P  0.9728+0.0052 0.9333+0.0046 0.9901+0.0013
USegTransformer-S 0.9601+0.0083 0.9256+0.0066 0.9811+0.0023

The trend is also reiterated in the loss convergence graph in
Fig. 8b.

Moreover, we performed 3-fold cross validation on the
COVID-19 segmentation dataset resulting in the model to be
trained and tested on the data being divided into 2:1 ratio (66%
training and 33% testing split). The results in Table 8 show-
case that the model upholds its high dice, IoU and accuracy
metrics with very low standard deviation across the 3 folds.
This proves that the proposed architecture is robust to the data
split.

4 Discussions

The medical image segmentation is one of most crucial tasks
in the diagnosis obtained from analyzing medical images. The
current trend in automated image segmentation is to improve
the performance of traditionally used fully convolution net-
works by optimizing skip connection, increasing the strength
of convolution encoders. However, one area where very lim-
ited research has been done is making deep learning models
account long range dependencies. We believe that such con-
sideration of such long-range dependencies holds the key to a
fully independent deep learning based medical segmentation
system. In the proposed work, we try to account long range
dependencies by virtue of transformer encoders. The two pro-
posed models in this study utilize both, spatial and global
features and transfuse them in two unique manners. The first
model, the USegTransformer-P theoretically lets the image
run through the transformer as well as the UNet encoder

Table 4  Performance on skin lesion segmentation

Model Dice IoU Accuracy
BCDU-Net [21] - - 0.937
U-Net [17] - - 0.890
R2U-Net [38] - - 0.880
Attention R2U-Net [38] - - 0.904
Attention U-Net [40] - - 0.897
Transformer Backbone 0.8503 0.8511 0.9447
USegTransformer-P 0.8701 0.8671 0.9514
USegTransformer-S 0.8420 0.8374 0.9431
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Fig. 6 The skin lesion segmentation (a) visual depiction, (b) train loss
convergence and (c) validation loss convergence

decoders and finally combines and chooses between the local
and global features through the novel ensemble decoder, from
their respective feature maps. On the other hand, the second
model, USegTransformer-S, first outputs a multichannel fea-
ture map considering long range features which is then used to
find local features. This leads to an affective transfusion of
both types of features. On analysing Fig. 9, specifically the
third row, the effects that global features induce in the quality
of masks becomes clearer. We can observe from Fig. 9, that
the masks produced in UNET have very detailed boundaries
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Table 5 Key performance indicators on nuclei segmentation Table 6 3-Fold Cross Validation Performance on nuclei segmentation
Model Dice ToU Accuracy Model Mean Metric + Std Deviation

U-Net [17] 0.7573 - - Dice IoU Accuracy
U-Net++ [20] 08974 - -

32xU-Net/FPN (top coders) [30]* _ 3 06316 USegTransformer-P  0.8887+0.0095 0.8351+0.0073 0.9703+0.0031
1XFC-FPN (Jacobkie) [30]* _ B 06147 USegTransformer-S 0.8311+0.0114 0.7790+0.0098 0.9588+0.0054
1xMask-RCNN (Deep Retina) [30]*  — - 0.6140

Transformer Backbone 0.8780  0.8287  0.9694

USegTransformer-P 0.9004  0.8470  0.9761 input has a large scope which leads to better understanding of
USegTransformer-S 0.8517  0.7949  0.9653 general shape. The mask produced by USegTransformer-P.

*Winning teams from the original competition

while the masks produced by transformer backbone model
have plain boundary. However, masks produced UNET are
not able to emulate the broader shape of mask as effectively as
the transformer. Such observation can be attributed to the type
of features each model is using, UNET uses convolution
which is able to exploit the local information and explicitly
determine sharp edges present in boundaries while transform-
er which use attention mechanism to form correlation between

Ground
Transformer-s Transformer-P Truth

Transformer Useg Useg
Backbone

Nuclei Segmentation Loss Convergence
— USegTransformer-P
12 — USegfransformer-S
—— Transformer Backbone

BCE Dice Loss

0 5 10 15 20
Epochs

(b)
Fig. 7 The nuclei segmentation (a) visual depiction, and (b) loss
convergence

An important trend, we try to set through the proposed
model is to expand the use of deep learning models to seg-
mentation for detection of COVID-19 which was earlier on
limited to classification problem statements. It has been illus-
trated that the USegTransformer-S model which is a product
of sequential stacking performed at par with the existing
models and didn’t perform better than that of the
USegTransformer-P model. Since, the sequential model is a
relatively deeper model and for the benchmark datasets, we
have smaller amounts of data. Hence, we hypothesize that this
model holds the capacity to work much better ifit is trained on
huge industrial datasets with resources much greater than
ours. In the proposed research work, we have been able to
propose a novel model that holds various advantages over
other networks that makes the proposed models much more
suitable for the task of medical image segmentation. As ex-
plained earlier, the proposed models have the capacity to out-
perform other previous state-of-the-art networks qualitatively
and quantitatively. It has the capacity to produce segmentation
masks with accurate high-level form and precise boundaries
and spacings which entitles these predicts to be more trust-
worthy and reliable for real world applications. On the flip
side, it is important to note that the USegTransformer-P and
USegTransformer-S are large computationally complex
models that require huge training data to function at their best
capacities.

5 Conclusion

In this paper, we have proposed an end-to-end deep learning
frameworks for segmenting medical images named
USegTransformer-P and USegTransformer-S which are capa-
ble of aiding medical professionals as well as accelerating the

Table 7 Key Performance indicators on COVID-19 segmentation
Model Mask Feature Dice IoU Accuracy
USegTransformer-P  Consolidations  0.8295  0.9685  0.9981
USegTransformer-P ~ Ground Glass ~ 0.6811 09218  0.9919
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Fig. 8 The COVID-19 CT scan
segmentation (a) visual depiction,
and (b) loss convergence

BCE Dice Loss

0.9

08

process of medical diagnoses. Further, we illustrated the effi-
ciency of utilizing transformer-based encoding and FCN
based encoding together in the model. Also, we have present-
ed two different techniques of stacking FCN-based segmenta-
tion models and transformer-based segmentation models.
Furthermore, we have presented the efficiency of proposed
model by evaluating it on varied benchmark datasets like
LGG, LUNA, ISIC, and Data Science Bowl 2018 Dataset
where the proposed model USegTransformer-P beat the

Ground

Predicted

COVID-19 Loss Convergence

—— USegTransformer-P, Ground Glass Opacities
USegTransformer-P, Consolidations

5 10 15 20
Epochs

(b)

current state of the models by achieving accuracies of
99.71%, 99.13%, 95.14% and 97.61% as well as
USegTransformer-S achieved accuracies of 99.54%,
98.94%, 94.31% and 96.53%, respectively. Moreover, we
have proved that the localized features obtained from FCN
based networks and global context features obtained from
transformer-based networks complement each other in im-
proving a model’s segmentation ability of medical datasets.
By the virtue of these qualitative and quantitative

Table 8 3-Fold Cross Validation

Performance on COVID-19 Mask Feature

Mean Metric + Std Deviation

segmentation

USegTransformer-P (Consolidations)
USegTransformer-P (Ground Glass)

Dice IoU Accuracy
0.7854+0.0141 0.9746=0.0029  0.9989+0.0001
0.6776+0.0159 0.9149+0.0131  0.9910+0.0014
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Fig. 9 Effects of global and local
features

Input

UNET
Image

.

‘

improvements, the proposed models are trustable and appro-
priate for real-world clinical applications. These predictions
have the capacity to work in a diagnosis system to help ana-
lyze medical scans and reports to facilitate medical workers in
the process of making health infrastructure accessible, avail-
able, and fruitful potential users.

In the future, experiments can be conducted on developing
amore complex patching strategy in order to make the process
of patching dynamic. Currently, the patching in a transformer
branch is rigid and depends on manually parameterized sizes
which can hold the transformer back in however more optimal
patches can produce better results. In order to make the pro-
cess of patching dynamic, we have to develop and conduct a
more complex patching strategy. Further, an experiment could
be conducted to develop an attention which is optimized for
vision tasks instead of the self-attention mechanism which is a
direct translation of the concept originally establish in the NLP
domain that forces the transformer to look at a series of image
tokens as a sentence with positional encoding. Moreover, dif-
ferent variants of UNet could be used to experiment with
different types of feature extraction since the improvement
of image segmentation is by respecting different types of fea-
tures. Further, the full potential of USegTransformer-S can be
analyzed by evaluating the model on more complex and large
datasets.
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