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Semantic segmentation 
of COVID‑19 lesions 
with a multiscale dilated 
convolutional network
Jianxiong Zhang, Xuefeng Ding, Dasha Hu * & Yuming Jiang

Automatic segmentation of infected lesions from computed tomography (CT) of COVID‑19 patients 
is crucial for accurate diagnosis and follow‑up assessment. The remaining challenges are the obvious 
scale difference between different types of COVID‑19 lesions and the similarity between the lesions 
and normal tissues. This work aims to segment lesions of different scales and lesion boundaries 
correctly by utilizing multiscale and multilevel features. A novel multiscale dilated convolutional 
network (MSDC‑Net) is proposed against the scale difference of lesions and the low contrast between 
lesions and normal tissues in CT images. In our MSDC‑Net, we propose a multiscale feature capture 
block (MSFCB) to effectively capture multiscale features for better segmentation of lesions at 
different scales. Furthermore, a multilevel feature aggregate (MLFA) module is proposed to reduce 
the information loss in the downsampling process. Experiments on the publicly available COVID‑19 
CT Segmentation dataset demonstrate that the proposed MSDC‑Net is superior to other existing 
methods in segmenting lesion boundaries and large, medium, and small lesions, and achieves the 
best results in Dice similarity coefficient, sensitivity and mean intersection‑over‑union (mIoU) scores 
of 82.4%, 81.1% and 78.2%, respectively. Compared with other methods, the proposed model has an 
average improvement of 10.6% and 11.8% on Dice and mIoU. Compared with the existing methods, 
our network achieves more accurate segmentation of lesions at various scales and lesion boundaries, 
which will facilitate further clinical analysis. In the future, we consider integrating the automatic 
detection and segmentation of COVID‑19, and conduct research on the automatic diagnosis system of 
COVID‑19.

In early 2020, coronavirus disease 2019 (COVID-19) broke out and quickly became a global epidemic, caus-
ing infections, deaths, and economic losses on a massive  scale1. According to statistics from the World Health 
Organization (updated 23 February 2021), there have been 110.7 million global cumulative cases and more than 
2.4 million deaths since the start of the  pandemic2. Rapid screening of suspected patients plays a crucial role in 
preventing and controlling this global  pandemic3. Reverse transcription-polymerase chain reaction (RT-PCR) is 
currently considered the gold standard for diagnosing COVID-19. However, with the rapid spread of the virus, 
RT-PCR testing faces a massive shortage of test kits and high false negative  rates4. Computed tomography (CT) 
imaging can provide quantitative measurement of disease progression and has become an essential supplemen-
tary tool for RT-PCR tests to screen suspected patients and diagnose  diseases5.

In practice, segmenting lesions form CT images can provide crucial information for doctors to diagnose 
and quantify lung diseases. The manual segmentation of infected regions is performed by radiologists based on 
their experience and suffers from inter- and intra-observer variabilities. Compared with manual segmentation, 
deep learning methods can automatically learn more distinguishable features from the input image, avoiding 
human subjectivity and other  factors6. In recent years, deep convolutional neural networks (DCNNs) have 
become an important tool to assist radiologists in  diagnosis7,8. Khan et al.9 explained that various CNNs have 
been widely used in medical image processing problems, because CNN has hierarchical feature extraction capa-
bilities for extracting features at different levels, such as higher, mid and low-level features. For example, Chen 
et al.10 used the U-net++ network to obtain the infected regions and then classified these infected regions. Wang 
et al.11 used a more complex 3D U-Net++ network to segment the lesion regions and then used a classifier to 
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determine whether each region is COVID-19-alike. Hassantabar et al.12 proposed a deep neural network and a 
convolutional neural network to diagnose COVID-19 patients, then a segmentation method is designed for the 
location of COVID-19 infected tissues in lung X-ray images. Ahmadi et al.13 used the Quantum Matched-Filter 
Technique method to find noise of MRI images and reduce it, then integrated the deep spiking neural network 
with conditional random field to segment brain tumors from MRI images. Khan et al.14 proposed a CNN-based 
two-stage method for classification and segmentation of COVID-19 infected areas, in which a CoV-CTNet was 
proposed to classify COVID-19 samples, and a segmentation model was provided to segment and analyze the 
infectious regions. Considering that high-quality labeled data and clean labels are usually difficult to acquire, 
Fan et al.15 proposed a segmentation network that utilizes the attention mechanism to help the network identify 
infected regions. Wang et al.16 proposed a novel framework introducing a noise-robust Dice loss function to learn 
from noisy labels to segment the infected regions from CT images. Zheng et al.17 proposed a weakly supervised 
deep learning framework using 3D CT volumes to detect COVID-19. Ahmadi et al.18 used robust principal 
component analysis to find brain tumor location and separate them from MRI images, then used the resulting 
images as ground truth images of convolutional neural network to segment brain tumors. Hussain et al.19 built a 
large dataset of chest X-ray images of COVID-19 patients, and proposed a CNN-based method to discriminate 
COVID-19 patients from healthy individuals. Moreover, in the work proposed  in20, the authors use machine 
learning algorithms to evaluate the effect of statins on the severity of COVID-19 based on clinical characteristics, 
and concluded that decision tree is an effective method for predicting the severity of COVID-19.

Although some methods have been proposed to segment infected lesions from CT images, the difficult prob-
lems have not been completely solved. The scale of different infected lesions varies greatly in CT images. As shown 
in column 4 of Fig. 1, the ground glass occupies almost the entire lung area, while the size of the pleural effusion 
is only more than 10 pixels. Our motivation stems from the fact that existing methods ignore the importance of 
multi-scale features for segmentation of objects of different sizes. Therefore, the network needs to acquire the 
image features of lesions at different  scales21,22, which have a great influence on the segmentation  accuracy23. 
These multiscale features will determine the accuracy of pixel classification during the lesion segmentation. In 
fact, the above methods do not fully consider the multiscale feature information of infected lesions. Moreover, 
it can also be seen from Fig. 1 that the appearance of infected lesions is quite similar to that of normal tissues on 
the same CT. To accurately segment the lesion boundaries, the above methods usually use skip connections to 
recover the detailed information during the upsampling process, while ignoring the downsampling process. To 
address above issues, we proposed several key modules in our multiscale dilated convolutional network (MSDC-
Net) to gather and integrate more multiscale information and replenishing the loss of context information in 
downsampling operations.

In this paper, we propose a MSDC-Net for precise segmentation of infected lesions from COVID-19 chest 
CT. Our motivation stems from the fact that the multiscale features contribute the network to accurately seg-
ment objects of different sizes and detailed information in low-level features promotes network to segment 
object boundaries accurately. Inspired by the excellent performance  of24–26, shown in Fig. 2, we also use an 
encoder–decoder structure but extend it with several key components. In contrast to the above methods, we take 
advantage of the multiscale and multilevel features to improve the segmentation of infected regions at different 
scales and lesion boundaries. The dilated convolution is introduced in the downsampling path to extract more 
extensive context information. Meanwhile, a multiscale feature fusion (MSFF) module is proposed to fuse features 
captured by previous layers in a more effective way, which allows the network to capture multiscale features of 
lesions. Furthermore, unlike existing methods usually only utilize low-level features in the upsampling path, 
we propose a multilevel feature aggregate (MLFA) module to aggregate the features of different levels before 
upsampling to reduce the loss of spatial and structural information.

In this work, we focus on multiscale and multilevel feature learning. To sum up, the contributions of this 
paper are as threefold:

(1) We propose a multiscale feature capture block (MSFCB) which employs a series of dilated convolutions to 
capture contextual features at different scales and a MSFF module to fuse the learned features of different 
convolutional layers in a more effective way.

Figure 1.  Samples and corresponding labels, where the ground-glass, consolidation, and pleural effusion are 
marked in dark gray, bright gray, and white, respectively.
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(2) A MLFA module is used to aggregate feature learned in several different blocks. Therefore, a reinforced 
aggregation of low- and high-level features is used to improve the accuracy of segmentation, especially for 
lesion boundaries.

(3) We propose a novel MSDC-Net for precise segmentation of infected lesions at different scales and lesion 
boundaries with a combination of MSFCB and MLFA module. Extensive experiments on COVID-19 CT 
segmentation dataset demonstrate the effectiveness of the proposed MSDC-Net.

The rest of the paper is organized as follows. The framework of the proposed MSDC-Net and the structure 
of various modules are presented in section “Methods”. In section “Experiments and analysis”, the performance 
of the proposed module is evaluated and verified and the performance of the proposed model is compared with 
other state-of-the-art models. We then discuss the experimental results and the limitations of this paper in sec-
tions “Discussion” and “Limitations”. Section “Conclusion” concludes the paper.

Methods
In this section, we first introduce the dilated convolution in details. We then present the architecture of our 
MSDC-Net and MSFCB and clarify how to use them to extract multiscale features. Finally, we provide the details 
of our MSFF module and MLFA module and illustrate the working process.

Our proposed MSDC-Net is shown in Fig. 3. First, differently  from24,27,28 that only use regular convolution 
for extracting features, we introduce a new MSFCB, which uses dilated convolution to gather context informa-
tion of different scales. Then, we add an MSFF module at the bottleneck of the MSFCB, where the MSFF module 
introduce parallel inter-linking among dilated convolutions to fuse multiscale features. Finally, to better segment 
boundaries of lesions, we add a MLFA module at the bottleneck of the encoder–decoder structure to aggregate 
low- and high-level features though using inter-linking among different MSFCBs.

Dilated convolution for multiscale feature extraction. As shown in Fig. 4, the black squares repre-
sent the elements of the kernel. Compared with a regular convolution with size of 3 × 3, the dilated convolution 
with rate r enlarges the kernel size to (2r + 1)× (2r + 1) by inserting holes in the filter. This allows the network 
to capture extensive context information of the COVID-19 lesions.

MSDC‑Net model and MSFCB architecture. The architecture of our MSDC-Net is shown in Fig. 3. We 
use the proposed MSFCB to replace the sequence of two regular convolutions in the original U-Net. The first 
three blocks are composed of regular convolutions, and the last two blocks are composed of dilated convolu-
tions with different rates. In addition, we use the MSFF module in each block to effectively fuse the features 
learned from different layers to obtain multiscale features. As shown in Fig. 3, the input images are fed to first 
three blocks to extract low-level features with high-resolution detail information. Then, the extracted features 
are input into last two blocks, where a series of dilated convolutions with different rates are utilized to obtain the 
complement of the receptive field, capturing high-level features with context information. Then, we use a MLFA 
module to aggregate features learned in several different blocks to replenish information loss in the final feature 
map. Considering that the dilated convolution can enlarge the receiving field without increasing the parameters, 
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Figure 2.  The architecture of U-Net. The network consists of a downsampling path and an upsampling path.
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we remove the pooling layer after the last two blocks to further reduce the loss of information in the downsam-
pling process.

In contrast to previous  studies8–11 which simply use two 3 × 3 regular convolutions, we use a novel MSFCB to 
effectively capture multiscale features of lesions, as shown in Fig. 5. Therefore, it allows the network to improve 
the accuracy of network segmentation, especially for lesions of different scales. We also add batch normalization 
before the convolution operation to speed up the convergence of the network by using much higher learning 
rates. The input of MSFCB is a feature map generated by previous MSFCB or input image. As shown in Fig. 5, 
dilated convolutions with different receptive fields are used to cover the corresponding size features, which can 
capture lesion features of various scales. Then, we use MSFF module to obtain multiscale lesion features by fusing 
the features learned at different scales. At the end, we add a Dropout to randomly drop units from the neural 
network during the training. This can avoid overfitting when network with a large number of parameters or a 
small amount of training data.

Multiscale feature fusion (MSFF) module. Compared with the existing methods, we add a MSFF mod-
ule to fuse the output of all the layers in the block after the last layer. Let xl be the output of the last layer in the 
block:

where H is defined as a batch normalization (BN), followed by a 3 × 3 convolution and a ReLU, and ⊗ represents 
the feature fuse operation.

Different from the simple fusion method of existing methods, we propose a more effective fusion method. 
As shown in Fig. 6, we use three 3 × 3 convolution layers to learn from the feature maps of different dilated 
convolutions before fusion for a better fusion effect. Then, three feature maps generated by the different dilated 

xl = H(xl−1)⊗H(xl−2)⊗H(xl−3)
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Figure 3.  Proposed MSDC-Net architecture. The convolutional blocks are replaced by the proposed MSFCB. 
Moreover, an MLFA module is proposed to aggregate features of different levels in the downsampling process, 
instead of using only low-level features during upsampling.

Figure 4.  Comparison of receptive fields between regular convolution and dilated convolution. From left to 
right: (1) regular convolution, (2) dilated convolution (r = 2), and (3) dilated convolution (r = 3).



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1847  | https://doi.org/10.1038/s41598-022-05527-x

www.nature.com/scientificreports/

convolutions are summarized point to point. Finally, we used a ReLU to reduce the interdependence between 
parameters and alleviate the occurrence of overfitting problems. This module fuses features captured by dilated 
convolutions to obtain the multiscale features but also permits the gradient to flow directly to earlier layers, 
which makes the network easy to train.

Multilevel feature aggregate (MLFA) module. Several works have shown that detailed information in 
low-level features helps network to segment object boundaries. However, most existing methods usually use all 
low- and high-level features in the upsampling path. Hence, we aggregate the features of different levels in the 
downsampling path with a MLFA module, as shown in Fig. 3. Features learned in different layers are aggregated 
to alleviate the loss of information in the downsampling process, so that the final feature map contains more 
spatial and location information.

As shown in Fig. 7, three feature maps containing different levels of features are concatenated along their 
channel axis. The semantic information contained in these feature maps is quite different, and the features of 
each level are critical to the segmentation of the boundaries. So, we concatenate them along their channel axis to 
obtain more semantic information. Then, three 3 × 3 convolutions are used to learn features from feature maps 
adaptively for better fusion effects. After concatenating the feature maps in the above manner, we employ another 
1 × 1 convolution to reduce the channels of the fusion results and recombine features, avoiding the possible heavy 
computation complexity and memory footprint.

Experiments and analysis
Dataset description. In this work, we use the publically available “COVID-19 CT Segmentation dataset”29, 
which contains 100 axial CT images from 40 different COVID-19 patients. The resolution of images is 512 × 512. 
Segmentation was performed by a radiologist using three labels: dark gray, bright gray, and white. To avoid over-
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Figure 5.  The architecture of multiscale feature capture block (MSFCB).
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Figure 6.  Illustration of the multiscale feature fusion (MSFF) module. Eltw-SUM refers to point-to-point 
addition of feature maps containing different levels of features.
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fitting, we augment the original dataset using flips and rotations, and the resolution of images is still 512 × 512. 
We randomly divide the dataset into three sub-sets: training set, test set and validation set, the proportions of 
which are 50%, 30%, and 20% respectively.

Experimental setup. Loss function. We adopted the categorical cross entropy loss function:

where θ is the set of parameters of the model, M denotes the number of samples, N denotes the number of pixels, 
C denotes the total number of categories, and y corresponds to the one-hot encoding of the sample label. pij is 
calculated by Softmax, which denotes the probability of assigning the label i to the pixel j. The network is trained 
by using adaptive moment estimation (Adam) to minimize the loss function. Compared with stochastic gradient 
descent, the Adam optimization algorithm designs independent adaptive learning rates for different parameters 
by calculating the first-order and second-order moments of the gradient.

Evaluation metrics. For a quantitative evaluation, we use the four widely adopted metrics, i.e., the mean inter-
section-over-union (mIoU), Dice similarity coefficient, sensitivity, and specificity.

where k represents the number of pixel categories, pii represents the number of pixels whose actual category is i 
and the predicted category is also i, pij represents the number of pixels whose actual category is i but predicted 
category is j, and pji represents the number of pixels whose actual category is j but predicted category is i. Fur-
thermore, TP, FP, and FN represent true positive, false positive, and false negative predictions, respectively.

Ablation study. In this subsection, we conduct several experiments to evaluate the effectiveness of key com-
ponents of our MSDC-Net, including the dilated convolution, MSFCB, and MLFA module.

Effectiveness of dilated convolution. First, we trained a network containing only regular convolutions as the 
baseline. Then, we replace the regular convolutions of the last convolution block with dilated convolutions. 
Quantitative results are reported in Table 1. As can be seen, the baseline equipped with the ResNet-50 backbone 
network outperforms that with VGG-16. We attribute this performance gap to the stronger model capacity of 
ResNet-50. When we replace the regular convolutions of the last convolution block with dilated convolution, we 
can see further accuracy improvement, where the mIoU increased from 65.2% and 68.3% to 67.5% and 70.8%, 
respectively. Hence, the dilated convolution contributes considerable improvements over the baseline model by 
capturing multiscale context information.

In addition, the advantage of the dilated convolution is also confirmed by Fig. 8. We can observe that the 
network using dilated convolution remarkably outperforms the baseline methods. This demonstrates the ability 
of dilated convolution to capture and analyze infected lesions of different scales.
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Figure 7.  Illustration of the multilevel feature aggregation (MLFA) module.
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Number of the dilated convolutions. To further analyze the effectiveness of the dilated convolution, we conduct 
experiments on how many dilated convolutions can achieve the best segmentation results. In the encoder of our 
network, there are five blocks, as shown in Fig. 3. In practice, we start with the last block and use the dilated 
convolution in each block successively. As shown in Table 2, if the dilated convolution is only used in one block, 
the improvement is marginal (the mIoU score increased from 68.3 to 70.8%). When dilated convolution is used 
in two blocks, the segmentation performance of the network is obviously improved and achieves the best result 
in the Dice and mIoU scores. It is worth noting that the use of three dilated convolutions will cause performance 
degradation, which means that the receptive field of the network is saturated with respect to the input image 
size. After that, the network performance begins to decline and when dilated convolution is used in the entire 
encoder, the performance becomes the worst.

Table 1.  Comparison of networks containing regular convolution and dilated convolution based on different 
backbones.

Backbone Methods Dice (%) Sen. (%) Spec. (%) mIoU (%)

VGG-16
Baseline 70.7 69.9 87.5 65.2

Dilated convolution 72.6 70.2 87.4 67.5

ResNet-50
Baseline 72.5 71.7 88.5 68.3

Dilated convolution 74.2 75.1 91.1 70.8

Figure 8.  Lung infection segmentation results of different networks, where the ground-glass, consolidation, 
and pleural effusion are marked in dark gray, bright gray, and white, respectively. The first column is the ground 
truth. The second column is the segmentation result of the ResNet-50 network using dilated convolution. The 
last column is the segmentation result of the baseline based on ResNet-50.
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When excessively dilated convolutions are used in the encoder, the overlarge receptive field of the shallow 
convolution will weaken its ability to capture local information. In addition, when the receptive field size of the 
deep convolution is larger than the size of the input image, the filter will degenerate to a 1 × 1 convolution, lead-
ing to a decrease in the network performance. In the following experiments, we will use the network in which 
dilated convolution is utilized within the last two blocks unless stated otherwise.

Effectiveness of the MSFCB and MLFA module. To explore the contribution of the proposed MSFCB and MLFA 
module, we train a network that only uses the original two 3 × 3 convolutions and skip connections as the base-
line. Then, we sequentially add the MSFCB, MLFA module, and their combination for joint learning. The experi-
mental results are shown in Table 3. When using MSFCB to replace the original 3 × 3 convolution operation, the 
mIoU and Dice scores increased from 74.2% and 76.4% to 75.7% and 78.1%, respectively. Moreover, the addition 
of the MLFA module provides 1.9% and 4.2% improvement of the mIoU and Dice score, while adding both of 
them can increase mIoU and Dice scores by 4% and 6%, respectively. These improvements demonstrate that our 
modules are essential to improve performance.

Comparisons with the state‑of‑the‑arts methods. We compare the proposed MSDC-Net with four 
state-of-the-art networks of semantic segmentation. Quantitative comparison results of these networks are 
shown in Table 4. Our MSDC-Net outperforms the compared networks in teams of Dice, sensitivity, and mIoU 
by a large margin and provides 7.2% and 7.9% higher Dice and mIoU compared to the second-highest score 
(Dilated-10). It should be noted that the method proposed  by30 achieves a significant increase in Dice and mIoU 
values but has a lower specificity score than U-Net24 and  SegNet28, which indicates that the methods proposed 
 by24,28 are more conservative. In Table 4, the computational efficiency of different networks is also summarized. It 
can be noticed that our MSDC-Net has a slightly higher number of parameters compared to other networks but 
providing a large improvement of performance. In addition, our MSDC-Net also achieved the fastest inference 
speed among these comparison methods.

Moreover, quantitative performances on multi-class lesion segmentation, including separate ground-glass, 
consolidation and pleural effusion region, are summarized in Table 5, where 7.2% improvement in dice score is 
obtained in ground-glass segmentation, 9.3% improvement in consolidation segmentation and 8.6% improve-
ment in pleural effusion segmentation using our MSDC-Net over the other best-performing methods.

Table 2.  Comparison of networks using a different number of dilated convolutions.

Dilated convolutions used

Dice (%) Sen. (%) Spec. (%) mIoU(%)MSFCB1 MSFCB2 MSFCB3 MSFCB4 MSFCB5

72.5 71.7 88.5 68.3

✓ 74.2 75.1 91.1 70.8

✓ ✓ 76.4 76.1 94.7 74.2

✓ ✓ ✓ 74.4 75.9 90.6 70.1

✓ ✓ ✓ ✓ 68.9 66.5 85.4 64.3

✓ ✓ ✓ ✓ ✓ 63.8 61.4 82.7 60.2

Table 3.  Comparison of networks with different modules.

Network configuration Dice (%) Sen. (%) Spec. (%) mIoU (%)

Baseline 76.4 76.1 94.7 74.2

Baseline + MSFCB 78.1 75.6 96.6 75.7

Baseline + MLFA module 80.6 78.5 96.3 76.1

Baseline + MSFCB + MLFA module 82.4 81.1 97.7 78.2

Table 4.  Comparisons with existing methods.

Network Number of parameters (M) Inference time (ms) Dice (%) Sen. (%) Spec. (%) mIoU (%)

FCN27 3.8 156 67.9 70.7 85.3 62.5

U-Net24 2.4 100 73.3 76.6 98.6 67.1

SegNet28 3.1 89.2 70.5 77.8 94.8 65.6

Dilated-1030 6.5 78 75.2 78.1 92.3 70.3

MSDC-Net (ours) 5.7 63 82.4 81.1 97.7 78.2
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The segmentation results of our MSDC-Net and other methods, shown in Fig. 9, indicate that our MSDC-Net 
outperforms other methods remarkably. For example, the first row in Fig. 9 shows the segmentation results of 
three different sizes of lesions by different methods. It is worth noting that the large, medium, and small-scale 
lesions marked by three different boxes in Fig. 9 are accurately segmented by our MSDC-Net, which further 
proves the advantage of our network. In contrast, FCN gives unsatisfactory results, where lesions of various scales 
cannot be accurately segmented. Dilated-10 and U-Net have improved the segmentation of large lesions and 
small lesions respectively, but neither of them can accurately segment lesions of various scales at the same time. 

Table 5.  Comparison of performances on different types of infections (ground-glass, consolidation and 
pleural effusion).

Network

Ground-glass Consolidation Pleural effusion

Dice (%) Sen. (%) IoU (%) Dice (%) Sen. (%) IoU (%) Dice (%) Sen. (%) IoU (%)

FCN27 59.8 65.4 57.4 50.2 60.4 50.0 54.3 65.3 52.6

U-Net24 63.5 65.6 60.8 51.1 62.6 50.3 58.3 71.8 53.4

SegNet28 62.0 70.5 58.6 55.2 65.5 52.4 60.6 73.3 55.6

Dilated-1030 68.6 73.1 66.9 56.2 63.6 53.6 61.6 69.7 59.8

MSDC-Net (ours) 75.8 82.4 71.8 65.5 69.6 62.6 70.2 74.2 67.7

Figure 9.  Segmentation results of different scale lesions, where the dark gray, bright gray, and white labels 
indicate the ground-glass, consolidation, and pleural effusion, respectively.
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In addition, the advantage of our MSDC-Net is also confirmed by Fig. 9. As can be seen, our MSDC-Net yields 
better segmentation result of lesion boundaries than other methods. The success of our MSDC-Net is attributed 
to the effective use of multiscale and multilevel features, where MSFCBs first capture the multiscale features and 
then MFA module is employed to aggregate multilevel features for fine segmentation.

Discussion
In summary, several key components are proposed to enable our network to achieve significant improvements in 
lesions segmentation of different scales and lesion boundaries. Compared with only recognizing COVID-19 in 
CT images, lesion segmentation can quantify the number of lesions, lesion volume changes, and lesion density 
changes, allowing radiologists to quickly understand changes in lesions, and greatly improve the efficiency of 
radiologists in analyzing changes in the patients’ condition. Compared with  FCN27, the encoder–decoder struc-
ture of our method could recover the detailed information during the upsampling process, where the mIoU and 
Dice scores increased from 62.5% and 67.9% to 78.2% and 82.4%, respectively. Although U-Net24 and  SegNet28 are 
also based on encoder–decoder structures, MSFCB helps to extract and analyze lesion features of different scales 
in CT images. Compared with U-Net and SegNet, the mIoU of the proposed model is increased by 11.1% and 
12.6%, respectively. Furthermore, unlike Dilated-1030, we use a combination of regular convolution and dilated 
convolution to reduce the computational complexity and add two modules to segment the lesions of different 
scales more accurately. It is worth noting that compared with other networks, the proposed MSDC-Net has much 
faster inference speed (0.59 times the average inference time) while providing a great performance improvement 
(The values of Dice and mIoU increased by 10.6% and 11.8% on average). For example, the proposed MSDC-
Net provides the best achievable Dice score (82.4%) and mIoU (78.2%) while consisting of 0.63 × parameters of 
Dilated-10. The inference time is reduced by 0.093 s compared with FCN. In the case of obtaining the highest 
performance, the significant increase in inference speed is mainly achieved by frequently adding cross-layer and 
cross-block connection operations in the network. Therefore, this scheme has a greater advantage over other 
networks in terms of inference speed.

Limitations
One of the limitations in this work is that our MSDC-Net focuses on lesion segmentation of COVID-19. Although 
the accurate segmentation of infected lesions is critical to making treatment decisions, it is often necessary to 
identify COVID-19 patients before this. Therefore, in the future, we will study a computer-aided diagnosis system 
that consists of the following three stages: (a) automatic detection of COVID-19 lesions, (b) segmentation of 
lesions, and (c) quantitative analysis of lesions.

Conclusion
This paper proposed a MSDC-Net for precise segmentation of infected lesions from CT images. The goal of this 
paper is to provide an effective and economical tool for faster infection analysis to greatly reduce the spread and 
massive death toll of COVID-19 through mass-screening and quickly grasp the changes of lesions by quantifying 
the number, volume and density of lesions. The significant scale difference between different types of COVID-19 
lesions and the similarity between the lesions and normal tissues make it different to accurately segment infected 
lesions. Therefore, we proposed an MSFCB with a series of dilated convolutions to gathering more multiscale 
context information and introduced an MLFA module for the effective integration of captured multiscale features. 
Moreover, a MLFA module is used to aggregate features of different levels, which not only effectively replenish 
context information loss in the repeated downsampling operations but also substantially reduce the semantic 
gaps between subsequent encoder–decoder. Extensive experiments have been conducted on COVID-19 CT 
Segmentation dataset analyze the effectiveness of the proposed key modules. The proposed MSDC-Net with 
several key modules overcomes the limitations of traditional methods that achieved a significant improvement 
of performance. The results demonstrate that MSFCB can obtain multiscale features of lesions and improve 
the segmentation accuracy of lesions at different scales, while MLFA module can reduce the information loss 
in the downsampling process and provide more spatially detailed information when upsampling. Quantitative 
comparison results showed that our MSDC-Net achieved the best results in the Dice, sensitivity and mIoU and 
increased the Dice and mIoU values by 10.6% and 11.8%, respectively, on average when compared with the other 
methods. Qualitative comparison results showed that our MSDC-Net is superior to most existing methods in the 
segmentation of lesion at various sizes and lesion boundaries. Moreover, it is found that the proposed network 
is not only effective in COVID lesion segmentation, but also provides a new method and idea for accurately 
segmenting objects of different sizes at the same time.

Data availability
We use a publically dataset of 40 Covid-19 patients, and are available at http:// medic alseg menta tion. com/ covid 
19/.

Code availability
We will upload code to Github in the future.
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