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Abstract

We present a novel approach for image semantic seg-

mentation of street scenes into coherent regions, while si-

multaneously categorizing each region as one of the prede-

fined categories representing commonly encountered object

and background classes. We formulate the segmentation on

small blob-based superpixels and exploit a visual vocabu-

lary tree as an intermediate image representation. The main

novelty of this generative approach is the introduction of

an explicit model of spatial co-occurrence of visual words

associated with super-pixels and utilization of appearance,

geometry and contextual cues in a probabilistic framework.

We demonstrate how individual cues contribute towards

global segmentation accuracy and how their combination

yields superior performance to the best known method on

the challenging benchmark dataset which exhibits diversity

of street scenes with varying viewpoints, large number of

categories, captured in daylight and dusk.

1. Introduction

Combining object segmentation and recognition is one

of the fundamental problems in computer vision. This area

has been particularly active in recent years, due to the devel-

opment of methods for integration of object specific tech-

niques, with various contextual cues and top down informa-

tion. Despite notable progress in this area, challenges re-

main, when large number of classes occurs simultaneously,

objects vary dramatically in size and shape, often compris-

ing of small number of pixels, and scene varies dramati-

cally in viewpoint. In this work we focus on the semantic

segmentation of street scenes, which poses all the difficult

characteristics mentioned above.

Recent development in large scale modeling of cities

and urban areas has predominantly focused on the creation

of 3D models. Attempts to detect objects in the images

of urban areas mainly focused on cars, pedestrians, faces,
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Figure 1. Semantic segmentation of a street sequence. Left: An in-

put image with ground-truth in-set. Right: Output of the proposed

method.

car plates, and used standard window based object detec-

tor pipelines. In this paper we present a novel approach for

semantic labeling of street scenes, with a goal of automat-

ically annotating different regions by labels of commonly

encountered object and background categories, see Fig. 1.

The work presented here naturally extends multi-class seg-

mentation methods, where one seeks to simultaneously seg-

ment and associate semantic labels with individual pixels.

It is also closely related to approaches for scene analysis,

where one aims at integration of local, global and contex-

tual information across image regions of varying size to fa-

cilitate better object recognition.

The main contribution of our approach is in i) exploita-

tion of large visual vocabularies for representation and seg-

mentation of object and background categories, ii) a novel

representation of local contextual information using spatial

co-occurrence of visual words, and iii) use of an image seg-

mentation into small superpixels for selection of locations

where the descriptors are computed. These ingredients are

integrated in a probabilistic framework yielding a second-

order Markov Random Field (MRF), where the final label-

ing is obtained as a MAP solution of the labels given an

image. We show how the effort to capture the local spa-

tial context of visual words is of fundamental importance,

providing interesting insight into part based representation.

The street scenes are particularly challenging and of interest

to a variety of applications which strive to associate meta-
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data with the street scene imagery. We show a substantial

gain in the global segmentation accuracy compared to the

best known method on the street benchmark dataset.

Related work Our work is related to several efforts

in multi-class segmentation, visual representations of ob-

ject/background categories, context modeling for scene

analysis. The existing work on multi-class segmentation

typically differs in the choice of elementary regions for

which the labels are sought, the types of features which are

used to characterize them, and means of integrating the spa-

tial information. We will next elaborate on all of these as-

pects and point out the differences between previous work

and the approach presented here.

In [1, 16, 8, 9] authors used larger windows or super-

pixels, which are characterized by specific features such

as color, texture moments or histograms, dominant orienta-

tions, shape etc., where the likelihoods of the observations

are typically obtained in discriminative setting. Another di-

rection is to use highly discriminative features defined on

sampled isolated pixels in associated windows, obtained by

training randomized trees [10, 19]. We instead choose as

features the SIFT descriptors [11] augmented with color in-

formation. These features are computed at centers of small

blob-based superpixels, which are obtained by watershed

segmentation on LoG interest points as seeds. The descrip-

tors are then organized hierarchically in a vocabulary tree.

The choice of this generative model enables us to benefit

from the extensive body of work [11, 21, 15] on invariance

properties, quantization, and retrieval utilizing large visual

vocabularies to further improve efficiency and scalability of

the method.

While the SIFT features have been used previously in

the context of semantic labeling, object detection and seg-

mentation, their informationwas either integrated over large

super-pixels [16] or large rectangular regions over a regular

point grid [7]. Integration of the descriptors over large spa-

tial regions has been shown to improve performance on the

Graz-2, MSRC21 and PASCAL datasets, where the super-

pixels were represented by histogram of signatures of SIFT

descriptors. The images in these data sets have mostly small

number (2-5) of object/background classes in the image and

there is typically one object in the center, which takes dom-

inant portion of the image, see Fig. 2. In the presence of

larger number of smaller objects, the approach of [7] is

not suitable and the strategy of [16] critically depends on

the initial segmentation as its success relies on superpix-

els having boundaries aligned with object/background. This

is very challenging in street scenes, due to the presence of

large number of small and narrow structures, such as col-

umn poles, signs etc.

At last, several means of integrating spatial relationships

between elementary regions have been proposed in the past,

Figure 2. Class-class co-occurrence matrices with example images

for the 11-class CamVid and 21-class MSRC21 dataset. Rows and

columns of the matrices correspond to class labels and the num-

bers stand for class-class co-occurrence frequency in the datasets.

White color stands for zero occurrence. Notice the sparsity of the

matrix for the MSRC dataset, meaning that usually only 2-5 ob-

jects are present in the image while in the CamVid usually all 11

objects appear simultaneously.

e.g. correlograms [18], texture layout filters [20], CRF with

relative location prior [8], enforcing full CRF connectivity

between large superpixels [16], enforcing object appearance

and position in a probabilistic graphical model [22], initial

scene alignment by global image features [17], or utiliza-

tion of higher order potentials [9]. The higher order poten-

tials, motivated by overcoming the smoothing properties of

the CRFs with pairwise potentials, has been used to inte-

grate results from multiple segmentations, to obtain crisper

boundaries, and to improve the error due to an incorrect

initial segmentation. The majority of approaches for ex-

ploiting spatial relationships use either class co-occurrence

information between regions [16, 8] or use large spatial sup-

port from neighboring regions as an additional evidence for

the region label [18, 20]. These approaches for capturing

global contextual information about spatial co-occurrence

of different class label are meaningful when the number

of classes per image and the change of the viewpoint are

relatively small as in the MSRC21. There, the cars/cows

typically appear next to road/grass and below the sky. In

the street scenes with the larger number of object categories

and larger changes in viewpoint, these types of contextual

relationships are no longer so persistent. For example, cars

can appear next to sky, building, tree, another car, pedes-

trian, all simultaneously at different locations in the images

and are often of very small size. That makes also the lo-

cation prior [8] less feasible. This can be seen in Fig. 2,

where the spatial class co-occurrences of the two datasets

are compared. It has also been demonstrated in [3] that

performance of the TextonBoost [20] on the CamVid street

dataset drops by 6% compared to the MSRC21. This in-

dicates that the considered class of street scenes deserves

special attention. In our approach we, instead of modeling

co-occurrences or spatial locations of class labels, exploit

spatial co-occurrences between visual words of neighbor-

ing superpixels.



2. Semantic segmentation

We formulate the semantic segmentation on an image

oversegmented into a disjoint set of small superpixels. Our

elementary regions are computed by watershed segmenta-

tion on LoG interest points as seeds and can be seen in

Figure 4. These elementary regions typically do not strad-

dle boundaries between different classes and naturally cor-

respond to semantically meaningful object (scene) primi-

tives/parts. Furthermore, they dramatically reduce compu-

tational complexity of an MRF inference. Superpixels have

been used in the past extensively as intermediate primitives

in various formulations of image parsing and object recog-

nition tasks.

The output of the semantic segmentation is a labeling

vector L = (l1, l2, . . . lS)! with hidden variables assign-

ing each superpixel i one unique label, l i ∈ {1, 2, . . . , L},
where L and S is total number of the labels/classes and su-
perpixels respectively. The posterior probability of a label-

ing L given the observed appearance and geometry feature

vectors A = [a1,a2, . . . ,aS ], G = [g1,g2, . . . ,gS ] for each
superpixel can be expressed as

P (L|A, G) =
P (A, G|L)P (L)

P (A, G)
. (1)

The appearance features in our case are SIFT descriptors

computed at the centers of small superpixels and quantized

using commonly used vocabulary tree. This yields a visual

vocabulary with V words and we can associate with each

descriptor ai an index corresponding to the nearest visual

word from the vocabulary. Hence in the subsequent discus-

sion we approximate the matrix A by the vector of scalar

indexes V = (v1, v2, . . . , vS)!. Details of the vocabulary
tree construction are described in Sec. 3.2.

We estimate the labeling L as a Maximum Aposteriori

Probability (MAP),

argmax
L

P (L|V, G) = argmax
L

P (V|L)P (G|L)P (L).

(2)

We assume independence between the appearance and ge-

ometry features factorizing the likelihood into two parts, the

appearance P (V|L) and geometry P (G|L) likelihood. All
terms, the observation likelihoods and joint prior, are de-

scribed in the following subsections.

2.1. Appearance Likelihood

The observation appearance likelihood P (V|L) can be
expressed using a chain rule as

P (v1|l1)P (v2|v1, l1, l2) . . . P (vS |v1, v2, . . . , vS−1,L).
(3)

However, learning or just setting of the high-order condi-

tional dependencies is intractable. Commonly utilized and

also the simplest approximation is to make a Naive Bayes

assumption, yielding

P (V|L) ≈

S
∏

i=1

P (vi|li). (4)

Such an approximation assumes independence between vi-

sual words (SIFT descriptors) of superpixels given their la-

bels.

This assumption may be partially overcome by a proper

design of the smoothness term P (L) enforcing class co-
occurrence prior. However, the smoothness term is typi-

cally pairwise because of commonly utilized second-order

Markov Random Field capturing thus only local relations of

neighboring superpixels.

Alternative strategy, investigated in the past when evalu-

ating P (vi|li), is to gather measurements from superpixels
farther from the investigated one. An example is a relative

location prior [8] used in a CRF based framework where

each superpixel gets votes from all the remaining. An-

other example are spatial layout filters capturing texton co-

occurrence [20]. Alternative solution is to explicitly model

the dependencies between the visual words which co-occur

in the image, by treating them as random variables and try-

ing to approximate the dependencies between them. A ver-

sion of this alternative was to employ a tree based approx-

imation of the distribution using e.g., the Chow-Liu depen-

dence tree [4]. The tree approximates a discrete distribu-

tion by the closest tree-structured Bayesian network and

is obtained as a maximum spanning tree on a fully con-

nected graph with visual words as vertices and mutual co-

occurrence gathered from a training set as edge weights.

With this type of approximation, the appearance observa-

tion likelihood would read as

P (V|L) ≈ P (Z|L) = P (zr|lr)

V
∏

i=2

P (zi|zpi
, li, lpi

), (5)

where Z = (z1, . . . , zV )! is a vector of binary variables

indicating presence or absence of the i-th word of the vo-
cabulary, zr is a root, zpi

is a parent of zi in the Chow-

Liu tree, and V is the total number of visual words. This

strategy watches whether: ”When a particular visual word

is observed, is the most likely word from the learned tree

observed too?” It has been shown in [4] in connection of

location recognition that, if using a vocabulary tree and im-

age signatures, such an approximation yields substantially

better results than the Naive Bayes.

In their setting they do not perform any image segmenta-

tion and gather co-occurrences between visual words which

appear simultaneously in the image without considering

spatial relationships. Furthermore in the presence of mul-

tiple labels L per image as in our case, the learning and



keeping the CPD tables becomes intractable. Motivated by

drawbacks of previously discussed methods, we propose a

new way of representing the likelihood as

P (V|L) ≈

S
∏

i=1

P (vi|Bi, li), (6)

where Bi is a subset of most likely visual words associated

with superpixels from a 2-depth neighborhood which ap-

pear together with the superpixel i. The 2-depth neighbor-
hood of a superpixel i contains superpixels which are its
direct neighbors and superpixels which are neighbors of the

direct neighbors. Two superpixels are said to be neighbors

if they share at least one pixel in an 8-point neighborhood

connectivity. In particular for each class label we learn in

the training stage a probability of co-occurrence of differ-

ent visual words, which are encountered in the same spatial

neighborhood. The details of this stage are given in Sec. 2.2.

The conditional probability P (vi|Bi, li) is set as an av-
erage of the CPDs P (vi|li) of the investigated superpixel i
and its most likely class neighbors from Bi,

P (vi|Bi, li) =
1

|Bi| + 1

(

P (vi|li) +
∑

j∈Bi

P (vj |lj)
)

, (7)

where the CPDs P (vi|li) are set according to the learned
vocabulary tree, more in Sec. 3.2.

We show that this model with spatial co-occurrence

statistics outperforms the Naive Bayes from Eq. (4). It is

very important to notice that our formulation takes into ac-

count spatial co-occurrence of visual words as we collect

statistics over a controlled neighborhood of the superpixel.

In contrary to the Chow-Liu tree when evaluating likeli-

hood of a particular superpixel we consider more superpix-

els, resp. visual words, than just one (node - parent relation

only, see Eq. (5)). That gives us more robust measurement

and still enables to encode spatial co-occurrence informa-

tion.

2.2. Word co-occurrence matrix

Mutual spatial appearance of visual words in an image is

not random but depends on the scene and especially on ob-

jects we observe. For example, a visual word corresponding

to a car front light has a high probability to appear together

with a car plate or a bumper. It logically follows that when

inferring a class label for each superpixel, taking into ac-

count also neighboring superpixels can resolve many ambi-

guities. The question arises how to select the most informa-

tive neighbors when inferring a label for a given superpixel.

Such an observation is not surprising and many authors

have proposed partial solutions. In [16] they propose to

use large superpixels and create superpixel signatures from

all the SIFTs points [11] detected in the superpixel. The

problem is that on one side the superpixels must be large

and contain enough SIFTs from one object class to get a

meaningful signature, on the other hand, they must be small

enough to capture small structures and to avoid overseg-

mentation. In the sequences we are interested in, the objects

(cars, pedestrians, bicyclists) are small comprising of small

number of pixels and therefore very small superpixels are

needed to capture them. Another way to compute a signa-

ture is to encompass all points in a large fixed squared win-

dow around the point [7]. It is clear that such strategy fails

when most of the square pixels are drawn from another ob-

ject/class than the inferring pixel. This happens especially

for pixels on the object boundaries.

We therefore propose a different strategy, accounting for

the aforementioned drawbacks, by employing visual word

co-occurrence statistics. When computing an observation

likelihood of a particular label li of a superpixel we con-
sider only those neighbors which are most likely to appear

in the close proximity of the investigated superpixel given

a particular class. To evaluate this, we learn in the train-

ing stage the statistics of words with same labels appearing

together in some pre-defined neighborhood. This requires

ground truth labels being associated with all regions of the

training images.

We learn a visual word co-occurrence matrix Cd with a

dimension Vd × Vd × L, where Vd stands for number of vi-

sual words at d-th depth of the vocabulary tree and L for

number of classes/labels. Learning the co-occurrence at a

single depth is sufficient as the information overlaps when

traversing the vocabulary tree. The depth level selection is

a trade-off between memory requirements and distinctive-

ness. Going down the tree, the matrix becomes larger and

sparser; going up the tree, the matrix looses distinctiveness.

Given the depth d the matrix Cd is constructed as follows.

1. Repeat steps 2, 3 for all training images and their super-

pixels having assigned a class label.

2. Consider a superpixel i and find all itsN 2-depth neigh-

bors j = 1 . . . N . Push the descriptors ai and aj down

the vocabulary tree, yielding corresponding visual words

vd
i , v

d
j at the depth d.

3. Increment Cd[vd
i , vd

j , li] for all j which have li = lj .

4. After building the Cd, normalize it such that each row

sums to one. Each row is then an approximation of the

probability P (vj |vi, li, li = lj).

The co-occurrence matrix C
d is employed in the eval-

uation of Eq. (7) and is used to find the set Bi of most

likely neighbors of a particular superpixel i when evalu-
ating the observation likelihood given a label l i. The set

is obtained by taking the top B best candidates from the 2-

depth neighborhood of superpixels j, in sense of the highest
co-occurrence probability Cd[v

d
i , vd

j , li].
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Figure 3. Superpixel co-occurrence. When inferring superpixels in query images, shown in red and centered in the cutouts, for a given

class (car, building) the neighboring superpixels being most likely the same class are found by the learned co-occurrence matrix and

further utilized in setting of the superpixel likelihood. The top 2 most likely superpixels are shown in green and blue. Notice the semantic

dependency captured by the co-occurrence matrix. Last three images in each set show incorrect neighboring superpixels coming from

different class than the inferring superpixel.

To demonstrate the co-occurrence dependencies, Fig. 3

shows the top B = 2 neighbors for some superpixels from
test images corresponding to a car and a building class.

One can see a clearly structural dependency of the parts

captured by the learned co-occurrence matrix. For exam-

ple, visual words corresponding to car elements like lights,

bumpers, windows, plates, tires are learned to appear to-

gether. The same is observed for the building class and de-

pendencies between facade elements, window inner struc-

tures, roof shapes. In all our experiments we computed

the visual word co-occurrence matrix at one before the last

depth level d of the tree with 1k leaves, thus Vd = 1000. We
experimentedwith one higher and one lower level, however,

both got worse results.

2.3. Geometry Likelihood

Since we are interested in sequences we can gain from

additional information than just appearance. Similarly

to [3] we propose to employ 3D information from SfM es-

timation to improve the recognition accuracy. We adopted

one most discriminative feature from [3], the height of re-

constructed 3D points above a camera center, to show the

benefit of 3D geometric information.

Let us assume that we know 3D positions of some im-

age points expressed in a common coordinate system along

the sequence and that we can compute the height of these

points above the camera center. Since 3D information is

recovered at a sparse set of points, each superpixel has a

binary geometry observation variable o, indicating whether
there was any point projected in the superpixel. The geom-

etry likelihood reads as

P (G|L) =

S
∏

i=1

P (gi|li, oi), (8)

where P (g|l, o = 1) is learned from the training set from

reconstructed 3D points with known labels. The probability

distribution is estimated as a normalized histogram on the

3D point heights for each class l separately utilizing Parzen
windows with the Gaussian kernel. If there are more recon-

structed points in the superpixel, we consider the average

height ḡi of all of the points and evaluate P (ḡi|li, oi). If
there are no reconstructed 3D points in the superpixel, indi-

cated by o = 0, then P (gi|l, o = 0) is set to uniform prior
1/L for all l.

2.4. Joint Prior

The joint prior P (L), or the smoothness term, is approx-
imated by pairwise potentials as

P (L) ≈ exp
(

∑

(i,j)∈E

g(i, j)
)

, (9)

where the pairwise affinity function g is defined as

g(i, j) =

{

1 − e, iff li = lj

δ + e, otherwise,
(10)

with e = exp(−‖ci − cj‖
2/2σ2), where ci and cj are 3-

element vectors of mean colors expressed in the Lab color



space for i-th and j-th superpixel, respectively, and σ is a

parameter set to 0.1. The set E contains all neighboring
superpixel pairs.

The smoothness term is a combination of the Potts model

penalizing different pairwise labels by the parameter δ and

a color similarity based term. The aim is on one side to

keep the same labels for neighboring superpixels, and on the

other, to penalize same labels if they have different color.

We have set δ to 0.8 in our experiments.

2.5. Inference

We formulated both, the observation likelihood and joint

prior from Eq. (2), as unary and binary functions used in a

second-orderMRF framework. The maximization in Eq. ( 2)

can be re-written in a log-space and the optimal labeling L∗

achieved as

argmin
L

(

S
∑

i=1

Eapp + λg

S
∑

i=1

Egeom + λs

∑

(i,j)∈E

Esmooth

)

,

(11)

where Eapp = − log P (vi|Bi, li) from Eq. (6), Egeom =
− logP (gi|li, oi) from Eq. (8), andEsmooth = g(i, j) from
Eq. (9). The scalars λg , λs are the weighting constants of

importance of the terms (set to 1 and 0.2 in our experi-
ments).

We perform the inference in the MRF, i.e. a search for

a MAP assignment, by efficient and fast publicly available

MAX-SUM solver [24] based on linear programming relax-

ation and its Lagrangian dual. Although, finding a global

optimum of Eq. (11) is not guaranteed, as the problem is

NP-hard, it has been shown that the provided solution is of-

ten a strong optimum.

3. Image representation

3.1. Superpixels

In a search for good superpixels, we were motivated by

a success and popularity of SIFT features built on LoG (ap-

proximated by DoG) extrema points [11] in bag-of-feature

based image retrieval systems [21]. In semantic segmenta-

tion we face slightly different problem. We need to assign

a class label to each pixel and not only to DoG extrema

points. We therefore utilize a segmentation method [5, 25]

where a superpixel boundaries are obtained as watersheds

on negative absolute Laplacian image with LoG extremas

as seeds. Watershed transformation has been employed in

the successful MSER detector [12], widely used to com-

plement DoG extrema points for SIFT feature computation.

Such blob-based superpixels are effective to compute, are

regularly shaped and follow image edges, see Fig. 4. As

we will show those superpixels are superior than regular or

widely used Felzenszwalb’s [6] superpixels.

Figure 4. The watershed LoG based superpixels shown on a part

of the image from Fig. 1.

Each superpixel is assigned a 131-dimensional feature

vector ai consisting of 128 dimensional SIFT [11] and of

3 mean color components over the superpixel pixels ex-

pressed in the Lab color space to preserve color informa-

tion. The SIFTs are computed on superpixel centroids at

a fixed scale (support region of 12 × 12 pixels) and ori-
entation using implementation from [23]. The absence of

non-rotation invariance is a desired property as it increases

distinctiveness, however, requiring a rich training set with

large variations in a viewpoint.

3.2. Vocabulary tree

Recent work in an object based image retrieval has

shown significant progress by utilizing a bag-of-feature

model based on quantization of high-dimensional region de-

scriptors into visual words [21, 14, 15]. The model exhibits

high discriminative power, scalability to large datasets and

computational efficiency in the inference stage. The same

bag-of-feature model has been adapted recently for seman-

tic segmentation [16, 7] and has been shown as a promising

way of object representation.

We adapted the bag-of-feature model based on hierar-

chical K-means proposed by [14] for representing super-
pixels by their visual word indeces vi. A vocabulary tree is

created from large representative set of superpixels by K-
mean clustering of region descriptors ai into K clusters at

each level of the tree; givingK d nodes at the depth level d.
In our experiments, we use max depthD = 4 with 10k leaf
nodes, using implementation of [23]. To reduce high com-

putational burden ofK-mean clustering in the tree building
stage we use only superpixels from 10% of all training im-

ages. Then, we push all the superpixel feature vectors from

the training set with known class labels down the tree and

count the occurrence of labels at each tree leaf. To get the

probability P (v|l), stored as a L × V matrix M, one needs

to normalize the leaf-class occurrences over rows such that

∀l = {1, . . . , L} :
∑V

v=1 P (v|l) = 1.
In the inference stage, to find an approximate nearest leaf

cluster to a given superpixel i, we let the feature vector de-
scend the tree and consider the approached leaf as the cor-

responding visual word vi. Then, the probability P (vi|li),
utilized in Eq. (7), is a number corresponding to the column

vi and the row li in the matrix M. The quantization and ap-



proximation effects of the vocabulary trees in connection to

image retrieval have been studied in [15, 13] with some par-

tial solutions which potentially offers a room for a further

improvement.

4. Experiments

We evaluated our semantic segmentation on a chal-

lenging new publicly available database of complex driv-

ing scenes, the Cambridge-driving Labeled Video Database

(CamVid) introduced by [2]. This database is the first col-

lection of videos with object class semantic labels and SfM

data obtained by tracking. The database provides ground

truth labels that associate each pixel with one of 32 seman-

tic classes which we grouped into 11 larger ones for our ex-

periments to better reflect the statistically significant classes

and to be consistent with the results published in [3]. The

CamVid dataset was captured from the perspective of a driv-

ing automobile in daylight and dusk. The driving scenario

increases the number and heterogeneity of the observed ob-

ject classes. Over 10 min of 30 Hz footage is being pro-

vided, with corresponding semantically labeled images at 1

Hz and in part, 15 Hz. In our experiments, we downsampled

the images to 320x240 pixels. We speculate that full resolu-

tion would improve scores for some of the smaller classes.

We trained our method on 305 day and 62 dusk images,

and tested on 171 day and 62 dusk images, same setup as

has been presented in [3]. Qualitative and quantitative re-

sults are shown in Fig. 5 and in Tab. 1, respectively. Fig. 5

shows the same images as in [3] to demonstrate visually

more plausible segmentations, reader is referred to the re-

sults in that paper. The accuracy in Tab. 1 is computed by

comparing the ground truth pixels to the automatically ob-

tained segmentations. We report per-class accuracy as the

normalized diagonal of the pixel-wise confusion matrix, the

class average accuracy, and the global segmentation accu-

racy.

We compare our results to the state-of-the-art method re-

ported in [3] where they utilize an appearance model based

on the TextonBoost [20] and five geometry features. Em-

ploying our appearance model and only one geometry fea-

ture we are better in 6 classes and get an important 8%

gain in the global accuracy, see Tab. 1. The reason why

we achieve only the same average accuracy is due to weak

performance in two classes, a fence, a sign-symbol. The

average accuracy measure applies equal importance to all

classes and is thus more strict than the global accuracy con-

sidering class prevalence. We presume that the weakness of

recognizing those classes is their very small proportion in

the training set, where each class is captured by only 1% of

all pixels in the set. Since our approach falls into the cate-

gory of generative techniques, the use of a vocabulary tree

as an approximation of the distribution might underperform

for classes with small number of training examples despite

the proper normalization.

Tab. 1 shows an important contribution of this paper how

employing the co-occurrence matrix significantly helps to

increase accuracy of most classes, and obtain higher av-

erage and global accuracy. The row “Our, co-occ. &

wshedLoG splxs“ represents full model with co-occurrence

statistics involved, whereas “Our, no co-occ. & wshedLoG

splxs” stands for a Naive Bayes model. We experimented

with value of B in Eq. (7), i.e. the number of considered

most likely neighboring superpixels, and choice of B = 5
for all our tests gave us the best performance in sense of the

highest average accuracy.

Furthermore, we experimented with different superpix-

els. First, with the regular ones obtained by splitting the

image into 10 × 10 squares, motivated by the regular point
grid for SIFT computation utilized in the semantic segmen-

tation in [7]. Second, with widely used Felzenswalb’s [6]

superpixels based on minimum spanning tree on color dif-

ferences with tuned parameters to get, in average, the same

area of superpixels as the watershed based superpixels. The

results shows that the watershed LoG based superpixels out-

performs the others. At last, bottom of the Tab. 1 shows

comparison when using only the appearance model. Com-

pared to the state-of-the art appearance model, the Texton-

Boost [20], we are better in 6 classes by 8% in global seg-

mentation accuracy, however, because of the weak fence

and sign-symbol classes, slightly worse in the average ac-

curacy.

5. Conclusion

Capturing the co-occurrence statistics of visual words

has been shown here to be an important cue towards improv-

ing semantic segmentation in difficult street view scenes.

We have presented a novel unified framework capturing

both, the appearance and geometry features, defined at su-

perpixels and have demonstrated superior results than the

previous technique. The semantic segmentation of the

street view scenes requires special attention because of their

practical importance, difficulty, and impossibility of stan-

dard techniques to score equally well as on standard object

datasets.

References

[1] A. C. Berg, F. Grabler, and J. Malik. Parsing images of ar-

chitectural scenes. In ICCV, pages I: 44–57, 2007. 2

[2] G. Brostow, J. Fauqueur, and R. Cipolla. Semantic object

classes in video: A high-definition ground truth database.

Pattern Recognition Letters, 30(2):88–97, 2009. 7

[3] G. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Seg-

mentation and recognition using structure from motion point

clouds. In ECCV, pages I: 44–57, 2008. 2, 5, 7, 8



(a) DayTest #0450 (b) DayTest #2460 (c) DuskTest #8550 (d) DuskTest #9180

Figure 5. Sample segmentation results on the CamVid dataset. On top the input images with ground-truth in-sets are shown.
b
u
il
d
in
g

tr
ee

sk
y

ca
r

si
g
n
-s
y
m
b
o
l

ro
ad

p
ed
es
tr
ia
n

fe
n
ce

co
lu
m
n
-p
o
le

si
d
ew
al
k

b
ic
y
cl
is
t

A
v
er
ag
e

G
lo
b
al

Appearance + Geometry

Textonboost + SfM [3] 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 53.0 69.1

Our, co-occ & wshedLoG splxs 71.1 56.1 89.5 76.5 12.5 88.4 59.1 4.8 11.4 84.7 28.8 53.0 77.1

Our, no co-occ & wshedLoG splxs 81.1 53.7 85.7 74.3 1.9 93.7 22.7 2.0 9.3 65.7 7.9 45.3 76.7

Our, co-occ & regular splxs 75.0 56.9 90.9 68.1 2.2 87.9 38.5 3.4 7.1 78.4 26.4 48.6 77.0

Our, co-occ & Felz. splxs [6] 61.9 60.0 94.2 72.4 12.9 89.6 56.5 2.8 26.1 83.1 15.0 52.2 76.4

Appearance only

Textonboost [20] 38.7 60.7 90.1 71.1 51.4 88.6 54.6 40.1 1.1 55.5 23.6 52.3 66.5

Our, co-occ & wshedLoG splxs 66.1 62.6 88.2 70.8 9.4 84.0 49.3 3.1 18.1 79.2 32.3 51.2 74.5

Table 1. Semantic segmentation results in pixel-wise percentage accuracy on the CamVid dataset.

[4] M. Cummins and P. Newman. FAB-MAP: Probabilistic Lo-

calization and Mapping in the Space of Appearance. Int.

Journal of Robotics Research, 27(6):647–665, 2008. 3

[5] H. Deng, W. Zhang, E. Mortensen, T. Dietterich, and

L. Shapiro. Principal curvature-based region detector for ob-

ject recognition. In CVPR, pages 1–8, 2007. 6

[6] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based

image segmentation. IJCV, 59(2):167–181, 2004. 6, 7, 8

[7] B. Fulkerson, A. Vedaldi, and S. Soatto. Localizing objects

with smart dictionaries. In ECCV, pages I:179–192, 2008. 2,

4, 6, 7

[8] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller.

Multi-class segmentation with relative location prior. IJCV,

80(3):300–316, 2008. 2, 3
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