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Abstract

Sentence matching is widely used in various natural language
tasks such as natural language inference, paraphrase identifi-
cation, and question answering. For these tasks, understand-
ing logical and semantic relationship between two sentences
is required but it is yet challenging. Although attention mech-
anism is useful to capture the semantic relationship and to
properly align the elements of two sentences, previous meth-
ods of attention mechanism simply use a summation opera-
tion which does not retain original features enough. Inspired
by DenseNet, a densely connected convolutional network,
we propose a densely-connected co-attentive recurrent neu-
ral network, each layer of which uses concatenated informa-
tion of attentive features as well as hidden features of all the
preceding recurrent layers. It enables preserving the original
and the co-attentive feature information from the bottommost
word embedding layer to the uppermost recurrent layer. To al-
leviate the problem of an ever-increasing size of feature vec-
tors due to dense concatenation operations, we also propose
to use an autoencoder after dense concatenation. We evaluate
our proposed architecture on highly competitive benchmark
datasets related to sentence matching. Experimental results
show that our architecture, which retains recurrent and atten-
tive features, achieves state-of-the-art performances for most
of the tasks.

Introduction

Semantic sentence matching, a fundamental technology in
natural language processing, requires lexical and compo-
sitional semantics. In paraphrase identification, sentence
matching is utilized to identify whether two sentences have
identical meaning or not. In natural language inference
also known as recognizing textual entailment, it determines
whether a hypothesis sentence can reasonably be inferred
from a given premise sentence. In question answering, sen-
tence matching is required to determine the degree of match-
ing 1) between a query and a question for question retrieval,
and 2) between a question and an answer for answer selec-
tion. However identifying logical and semantic relationship
between two sentences is not trivial due to the problem of
the semantic gap (Liu et al. 2016).

Recent advances of deep neural network enable to learn
textual semantics for sentence matching. Large amount of
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annotated data such as Quora (Csernai 2017), SNLI (Bow-
man et al. 2015), and MultiNLI (Williams, Nangia, and
Bowman 2017) have contributed significantly to learning
semantics as well. In the conventional methods, a match-
ing model can be trained in two different ways (Gong, Luo,
and Zhang 2018). The first methods are sentence-encoding-
based ones where each sentence is encoded to a fixed-sized
vector in a complete isolated manner and the two vectors for
the corresponding sentences are used in predicting the de-
gree of matching. The others are joint methods that allow to
utilize interactive features like attentive information between
the sentences.

In the former paradigm, because two sentences have no
interaction, they can not utilize interactive information dur-
ing the encoding procedure. In our work, we adopted a
joint method which enables capturing interactive informa-
tion for performance improvements. Furthermore, we em-
ploy a substantially deeper recurrent network for sentence
matching like deep neural machine translator (NMT) (Wu
et al. 2016). Deep recurrent models are more advantageous
for learning long sequences and outperform the shallower
architectures. However, the attention mechanism is unstable
in deeper models with the well-known vanishing gradient
problem. Though GNMT (Wu et al. 2016) uses residual con-
nection between recurrent layers to allow better information
and gradient flow, there are some limitations. The recurrent
hidden or attentive features are not preserved intact through
residual connection because the summation operation may
impede the information flow in deep networks.

Inspired by Densenet (Huang et al. 2017), we propose
a densely-connected recurrent network where the recurrent
hidden features are retained to the uppermost layer. In ad-
dition, instead of the conventional summation operation, the
concatenation operation is used in combination with the at-
tention mechanism to preserve co-attentive information bet-
ter. The proposed architecture shown in Figure 1 is called
DRCN which is an abbreviation for Densely-connected Re-
current and Co-attentive neural Network. The proposed
DRCN can utilize the increased representational power of
deeper recurrent networks and attentive information. Fur-
thermore, to alleviate the problem of an ever-increasing fea-
ture vector size due to concatenation operations, we adopted
an autoencoder and forwarded a fixed length vector to the
higher layer recurrent module as shown in the figure. DRCN
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Figure 1: General architecture of our Densely-connected Recurrent and Co-attentive neural Network (DRCN). Dashed arrows
indicate that a group of RNN-layer, concatenation and AE can be repeated multiple (N ) times (like a repeat mark in a music
score). The bottleneck component denoted as AE, inserted to prevent the ever-growing size of a feature vector, is optional for
each repetition. The upper right diagram is our specific architecture for experiments with 5 RNN layers (N = 4).

is, to our best knowledge, the first generalized version of
DenseRNN which is expandable to deeper layers with the
property of controllable feature sizes by the use of an au-
toencoder.

We evaluate our model on three sentence matching tasks:
natural language inference, paraphrase identification and
answer sentence selection. Experimental results on five
highly competitive benchmark datasets (SNLI, MultiNLI,
QUORA, TrecQA and SelQA) show that our model sig-
nificantly outperforms the current state-of-the-art results on
most of the tasks.

Related Work

Earlier approaches of sentence matching mainly relied on
conventional methods such as syntactic features, transfor-
mations or relation extraction (Romano et al. 2006; Wang,
Smith, and Mitamura 2007). These are restrictive in that they
work only on very specific tasks.

The developments of large-scale annotated datasets
(Bowman et al. 2015; Williams, Nangia, and Bowman 2017)
and deep learning algorithms have led a big progress on
matching natural language sentences. Furthermore, the well-
established attention mechanisms endowed richer informa-
tion for sentence matching by providing alignment and
dependency relationship between two sentences. The re-
lease of the large-scale datasets also has encouraged the
developments of the learning-centered approaches to se-
mantic representation. The first type of these approaches
is sentence-encoding-based methods (Conneau et al. 2017;
Choi, Yoo, and goo Lee 2017; Nie and Bansal 2017; Shen
et al. 2018) where sentences are encoded into their own sen-
tence representation without any cross-interaction. Then, a
classifier such as a neural network is applied to decide the
relationship based on these independent sentence represen-

tations. These sentence-encoding-based methods are simple
to extract sentence representation and are able to be used for
transfer learning to other natural language tasks (Conneau
et al. 2017). On the other hand, the joint methods, which
make up for the lack of interaction in the former methods,
use cross-features as an attention mechanism to express the
word- or phrase-level alignments for performance improve-
ments (Wang, Hamza, and Florian 2017; Chen et al. 2017b;
Gong, Luo, and Zhang 2018; Yang et al. 2016).

Recently, the architectural developments using deeper
layers have led more progress in performance. The resid-
ual connection is widely and commonly used to increase the
depth of a network stably (He et al. 2016; Wu et al. 2016).
More recently, Huang et al. (Huang et al. 2017) enable the
features to be connected from lower to upper layers using
the concatenation operation without any loss of information
on lower-layer features.

External resources are also used for sentence matching.
Chen et al. (Chen et al. 2017a; 2017b) used syntactic parse
trees or lexical databases like WordNet to measure the se-
mantic relationship among the words and Pavlick et al.
(Pavlick et al. 2015) added interpretable semantics to the
paraphrase database. Unlike these, in this paper, we do
not use any such external resources. Our work belongs to
the joint approaches which uses densely-connected recur-
rent and co-attentive information to enhance representation
power for semantic sentence matching.

Methods

In this section, we describe our sentence matching architec-
ture DRCN which is composed of the following three com-
ponents: (1) word representation layer, (2) attentively con-
nected RNN and (3) interaction and prediction layer. We
denote two input sentences as P = {p1, p2, · · · , pI} and
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Q = {q1, q2, · · · , qJ} where pi/qj is the ith/jth word of the
sentence P /Q and I/J is the word length of P /Q. The over-
all architecture of the proposed DRCN is shown in Fig. 1.

Word Representation Layer

To construct the word representation layer, we concate-
nate word embedding, character representation and the ex-
act matched flag which was used in (Gong, Luo, and Zhang
2018).

In word embedding, each word is represented as a d-
dimensional vector by using a pre-trained word embedding
method such as GloVe (Pennington, Socher, and Manning
2014) or Word2vec (Mikolov et al. 2013). In our model,
a word embedding vector can be updated or fixed during
training. The strategy whether to make the pre-trained word
embedding be trainable or not is heavily task-dependent.
Trainable word embeddings capture the characteristics of
the training data well but can result in overfitting. On the
other hand, fixed (non-trainable) word embeddings lack flex-
ibility on task-specific data, while it can be robust for over-
fitting, especially for less frequent words. We use both the
trainable embedding etrpi

and the fixed (non-trainable) em-

bedding efixpi
to let them play complementary roles in en-

hancing the performance of our model. This technique of
mixing trainable and non-trainable word embeddings is sim-
ple but yet effective.

The character representation cpi
is calculated by feeding

randomly initialized character embeddings into a convolu-
tional neural network with the max-pooling operation. The
character embeddings and convolutional weights are jointly
learned during training.

Like (Gong, Luo, and Zhang 2018), the exact match flag
fpi

is activated if the same word is found in the other sen-
tence.

Our final word representational feature pwi for the word pi
is composed of four components as follows:

etrpi
= Etr(pi), efixpi

= Efix(pi)

cpi
= Char-Conv(pi)

pwi = [etrpi
;efixpi

; cpi
; fpi

].

(1)

Here, Etr and Efix are the trainable and non-trainable
(fixed) word embeddings respectively. Char-Conv is the
character-level convolutional operation and [· ; ·] is the con-
catenation operator. For each word in both sentences, the
same above procedure is used to extract word features.

Densely connected Recurrent Networks

The ordinal stacked RNNs (Recurrent Neural Networks) are
composed of multiple RNN layers on top of each other, with
the output sequence of previous layer forming the input se-
quence for the next. More concretely, let Hl be the lth RNN
layer in a stacked RNN. Note that in our implementation, we
employ the bidirectional LSTM (BiLSTM) as a base block
of Hl. At the time step t, an ordinal stacked RNN is ex-
pressed as follows:

hl
t = Hl(x

l
t, h

l
t−1

), xl
t = hl−1

t . (2)

While this architecture enables us to build up higher level
representation, deeper networks have difficulties in training
due to the exploding or vanishing gradient problem.

To encourage gradient to flow in the backward pass, resid-
ual connection (He et al. 2016) is introduced which bypasses
the non-linear transformations with an identity mapping. In-
corporating this into (2), it becomes

hl
t = Hl(x

l
t, h

l
t−1

), xl
t = hl−1

t + xl−1

t . (3)

However, the summation operation in the residual connec-
tion may impede the information flow in the network (Huang
et al. 2017). Motivated by Densenet (Huang et al. 2017), we
employ direct connections using the concatenation opera-
tion from any layer to all the subsequent layers so that the
features of previous layers are not to be modified but to be
retained as they are as depicted in Figure 1. The densely
connected recurrent neural networks can be described as

hl
t = Hl(x

l
t, h

l
t−1

), xl
t = [hl−1

t ;xl−1

t ]. (4)

The concatenation operation enables the hidden features to
be preserved until they reach to the uppermost layer and
all the previous features work for prediction as collective
knowledge (Huang et al. 2017).

Densely-connected Co-attentive networks

Attention mechanism, which has largely succeeded in many
domains (Wu et al. 2016; Vaswani et al. 2017), is a tech-
nique to learn effectively where a context vector is matched
conditioned on a specific sequence.

Given two sentences, a context vector is calculated based
on an attention mechanism focusing on the relevant part of
the two sentences at each RNN layer. The calculated atten-
tive information represents soft-alignment between two sen-
tences. In this work, we also use an attention mechanism. We
incorporate co-attentive information into densely connected
recurrent features using the concatenation operation, so as
not to lose any information (Fig. 1). This concatenated recur-
rent and co-attentive features which are obtained by densely
connecting the features from the undermost to the upper-
most layers, enrich the collective knowledge for lexical and
compositional semantics.

The attentive information api
of the ith word pi ∈ P

against the sentence Q is calculated as a weighted sum of
hqj ’s which are weighted by the softmax weights as follows:

api
=

J∑

j=1

αi,jhqj

αi,j =
exp(ei,j)∑J

k=1
exp(ei,k)

ei,j = cos(hpi
, hqj )

(5)

Similar to the densely connected RNN hidden features,
we concatenate the attentive context vector api

with trig-
gered vector hpi

so as to retain attentive information as an
input to the next layer:

hl
t = Hl(x

l
t, h

l
t−1

), xl
t = [hl−1

t ; al−1

t ;xl−1

t ]. (6)
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Bottleneck component

Our network uses all layers’ outputs as a community of
semantic knowledge. However, this network is a structure
with increasing input features as layers get deeper, and has a
large number of parameters especially in the fully-connected
layer. To address this issue, we employ an autoencoder as a
bottleneck component. Autoencoder is a compression tech-
nique that reduces the number of features while retaining the
original information, which can be used as a distilled seman-
tic knowledge in our model. Furthermore, this component
increased the test performance by working as a regularizer
in our experiments.

Interaction and Prediction Layer

To extract a proper representation for each sentence, we ap-
ply the step-wise max-pooling operation over densely con-
nected recurrent and co-attentive features (pooling in Fig.
1). More specifically, if the output of the final RNN layer is
a 100d vector for a sentence with 30 words, a 30× 100 ma-
trix is obtained which is max-pooled column-wise such that
the size of the resultant vector p or q is 100. Then, we aggre-
gate these representations p and q for the two sentences P
and Q in various ways in the interaction layer and the final
feature vector v for semantic sentence matching is obtained
as follows:

v = [p; q; p+ q; p− q; |p− q|]. (7)

Here, the operations +, − and | · | are performed element-
wise to infer the relationship between two sentences. The
element-wise subtraction p − q is an asymmetric operator
for one-way type tasks such as natural language inference
or answer sentence selection.

Finally, based on previously aggregated features v, we use
two fully-connected layers with ReLU activation followed
by one fully-connected output layer. Then, the softmax func-
tion is applied to obtain a probability distribution of each
class. The model is trained end-to-end by minimizing the
multi-class cross entropy loss and the reconstruction loss of
autoencoders.

Experiments

We evaluate our matching model on five popular and well-
studied benchmark datasets for three challenging sentence
matching tasks: (i) SNLI and MultiNLI for natural language
inference; (ii) Quora Question Pair for paraphrase identifi-
cation; and (iii) TrecQA and SelQA for answer sentence se-
lection in question answering. Additional details about the
above datasets can be found in the supplementary materials.

Implementation Details

We initialized word embedding with 300d GloVe vectors
pre-trained from the 840B Common Crawl corpus (Penning-
ton, Socher, and Manning 2014), while the word embed-
dings for the out-of-vocabulary words were initialized ran-
domly. We also randomly initialized character embedding
with a 16d vector and extracted 32d character representation
with a convolutional network. For the densely-connected re-
current layers, we stacked 5 layers each of which have 100

Premise two bicyclists in spandex and helmets in a race
pedaling uphill.
Hypothesis A pair of humans are riding their bicycle
with tight clothing, competing with each other.
Label {entailment; neutral; contradiction}
Premise Several men in front of a white building.
Hypothesis Several people in front of a gray building.
Label {entailment; neutral; contradiction}

Table 1: Examples of natural language inference.

hidden units. We set 1000 hidden units with respect to the
fully-connected layers. The dropout was applied after the
word and character embedding layers with a keep rate of 0.5.
It was also applied before the fully-connected layers with a
keep rate of 0.8. For the bottleneck component, we set 200
hidden units as encoded features of the autoencoder with a
dropout rate of 0.2. The batch normalization was applied
on the fully-connected layers, only for the one-way type
datasets. The RMSProp optimizer with an initial learning
rate of 0.001 was applied. The learning rate was decreased
by a factor of 0.85 when the dev accuracy does not improve.
All weights except embedding matrices are constrained by
L2 regularization with a regularization constant λ = 10−6.
The sequence lengths of the sentence are all different for
each dataset: 35 for SNLI, 55 for MultiNLI, 25 for Quora
question pair and 50 for TrecQA. The learning parameters
were selected based on the best performance on the dev set.
We employed 8 different randomly initialized sets of param-
eters with the same model for our ensemble approach.

Experimental Results

SNLI and MultiNLI We evaluated our model on the
natural language inference task over SNLI and MultiNLI
datasets. Table 2 shows the results on SNLI dataset of
our model with other published models. Among them,
ESIM+ELMo and LM-Transformer are the current state-
of-the-art models. However, they use additional contextual-
ized word representations from language models as an ex-
ternel knowledge. The proposed DRCN obtains an accu-
racy of 88.9% which is a competitive score although we
do not use any external knowledge like ESIM+ELMo and
LM-Transformer. The ensemble model achieves an accuracy
of 90.1%, which sets the new state-of-the-art performance.
Our ensemble model with 53m parameters (6.7m×8) out-
performs the LM-Transformer whose the number of param-
eters is 85m. Furthermore, in case of the encoding-based
method, we obtain the best performance of 86.5% without
the co-attention and exact match flag.

Table 3 shows the results on MATCHED and MIS-
MATCHED problems of MultiNLI dataset. Our plain DRCN
has a competitive performance without any contextualized
knowledge. And, by combining DRCN with the ELMo, one
of the contextualized embeddings from language models,
our model outperforms the LM-Transformer which has 85m
parameters with fewer parameters of 61m. From this point
of view, the combination of our model with a contextualized
knowledge is a good option to enhance the performance.
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Models Acc. |θ|
Sentence encoding-based method

BiLSTM-Max (Conneau et al. 2017) 84.5 40m
Gumbel TreeLSTM (Choi, Yoo, and goo Lee 2017) 85.6 2.9m
CAFE (Tay, Tuan, and Hui 2017) 85.9 3.7m
Gumbel TreeLSTM (Choi, Yoo, and goo Lee 2017) 86.0 10m
Residual stacked (Nie and Bansal 2017) 86.0 29m
Reinforced SAN (Shen et al. 2018) 86.3 3.1m
Distance SAN (Im and Cho 2017) 86.3 3.1m
DRCN (- Attn, - Flag) 86.5 5.6m

Joint method (cross-features available)

DIIN (Gong, Luo, and Zhang 2018) 88.0 / 88.9 4.4m
ESIM (Chen et al. 2017b) 88.0 / 88.6 4.3m
BCN+CoVe+Char (McCann et al. 2017) 88.1 / - 22m
DR-BiLSTM (Ghaeini et al. 2018) 88.5 / 89.3 7.5m
CAFE (Tay, Tuan, and Hui 2017) 88.5 / 89.3 4.7m
KIM (Chen et al. 2017a) 88.6 / 89.1 4.3m
ESIM+ELMo (Peters et al. 2018) 88.7 / 89.3 8.0m
LM-Transformer (Radford et al. 2018) 89.9 / - 85m
DRCN (- AE) 88.7 / - 20m
DRCN 88.9 / 90.1 6.7m

Table 2: Classification accuracy (%) for natural language in-
ference on SNLI test set. |θ| denotes the number of parame-
ters in each model.

Models
Accuracy (%)

MATCHED MISMATCHED

ESIM (Williams, Nangia, and Bowman 2017) 72.3 72.1
DIIN (Gong, Luo, and Zhang 2018) 78.8 77.8
CAFE (Tay, Tuan, and Hui 2017) 78.7 77.9
LM-Transformer (Radford et al. 2018) 82.1 81.4
DRCN 79.1 78.4

DIIN* (Gong, Luo, and Zhang 2018) 80.0 78.7
CAFE* (Tay, Tuan, and Hui 2017) 80.2 79.0
DRCN* 80.6 79.5
DRCN+ELMo* 82.3 81.4

Table 3: Classification accuracy for natural language infer-
ence on MultiNLI test set. * denotes ensemble methods.

Quora Question Pair Table 4 shows our results on the
Quora question pair dataset. BiMPM using the multi-
perspective matching technique between two sentences re-
ports baseline performance of a L.D.C. network (Wang,
Hamza, and Florian 2017). We obtained accuracies of
90.15% and 91.30% in single and ensemble methods, re-
spectively, surpassing the previous state-of-the-art model of
DIIN.

TrecQA and SelQA Table 5 shows the performance of
different models on TrecQA and SelQA datasets for an-
swer sentence selection task that aims to select a set of can-
didate answer sentences given a question. Most competi-
tive models (Shen, Yang, and Deng 2017; Bian et al. 2017;
Wang, Hamza, and Florian 2017; Shen et al. 2017) also
use attention methods for words alignment between ques-
tion and candidate answer sentences. However, the pro-
posed DRCN using collective attentions over multiple lay-
ers, achieves the new state-of-the-art performance, exceed-
ing the current state-of-the-art performance significantly on
both datasets.

Analysis

Ablation study We conducted an ablation study on the
SNLI dev set as shown in Table 6, where we aim to ex-

Models Accuracy (%)

L.D.C. (Wang, Hamza, and Florian 2017) 85.55
BiMPM (Wang, Hamza, and Florian 2017) 88.17
pt-DecAttchar.c (Tomar et al. 2017) 88.40
DIIN (Gong, Luo, and Zhang 2018) 89.06
DRCN 90.15

DIIN* (Gong, Luo, and Zhang 2018) 89.84
DRCN* 91.30

Table 4: Classification accuracy for paraphrase identification
on Quora question pair test set. * denotes ensemble methods.

Models MAP MRR

Raw version

aNMM (Yang et al. 2016) 0.750 0.811
PWIM (He and Lin 2016) 0.758 0.822
MP CNN (He, Gimpel, and Lin 2015) 0.762 0.830
HyperQA (Tay, Luu, and Hui 2017) 0.770 0.825
PR+CNN (Rao, He, and Lin 2016) 0.780 0.834
DRCN 0.804 0.862

clean version

HyperQA (Tay, Luu, and Hui 2017) 0.801 0.877
BiMPM (Wang, Hamza, and Florian 2017) 0.802 0.875
Comp.-Aggr. (Bian et al. 2017) 0.821 0.899
IWAN (Shen, Yang, and Deng 2017) 0.822 0.889
DRCN 0.830 0.908

(a) TrecQA: raw and clean

Models MAP MRR

CNN-DAN (Santos, Wadhawan, and Zhou 2017) 0.866 0.873
CNN-hinge (Santos, Wadhawan, and Zhou 2017) 0.876 0.881
ACNN (Shen et al. 2017) 0.874 0.880
AdaQA (Shen et al. 2017) 0.891 0.898
DRCN 0.925 0.930

(b) SelQA

Table 5: Performance for answer sentence selection on
TrecQA and selQA test set.

amine the effectiveness of our word embedding technique
as well as the proposed densely-connected recurrent and co-
attentive features. Firstly, we verified the effectiveness of the
autoencoder as a bottleneck component in (2). Although the
number of parameters in the DRCN significantly decreased
as shown in Table 2, we could see that the performance was
rather higher because of the regularization effect. Secondly,
we study how the technique of mixing trainable and fixed
word embeddings contributes to the performance in mod-
els (3-4). After removing Etr or Efix in eq. (1), the per-
formance degraded, slightly. The trainable embedding Etr

seems more effective than the fixed embedding Efix. Next,
the effectiveness of dense connections was tested in models
(5-9). In (5-6), we removed dense connections only over co-
attentive or recurrent features, respectively. The result shows
that the dense connections over attentive features are more
effective. In (7), we removed dense connections over both
co-attentive and recurrent features, and the performance de-
graded to 88.5%. In (8), we replace dense connection with
residual connection only over recurrent and co-attentive fea-
tures. It means that only the word embedding features are
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Models Accuracy (%)

(1) DRCN 89.4

(2) − autoencoder 89.1

(3) − Etr 88.7

(4) − Efix 88.9

(5) − dense(Attn.) 88.7
(6) − dense(Rec.) 88.8
(7) − dense(Rec. & Attn.) 88.5
(8) − dense(Rec. & Attn.)

88.7
+ res(Rec. & Attn.)

(9) − dense(Rec. & Attn. & Emb)
88.4

+ res(Rec. & Attn.)

(10) − dense(Rec. & Attn. & Emb) 87.8
(11) − dense(Rec. & Attn. & Emb) - Attn. 85.3

Table 6: Ablation study results on the SNLI dev sets.

Figure 2: Comparison of models on every layer in ablation
study. (best viewed in color)

densely connected to the uppermost layer while recurrent
and attentive features are connected to the upper layer us-
ing the residual connection. In (9), we removed additional
dense connection over word embedding features from (8).
The results of (8-9) demonstrate that the dense connection
using concatenation operation over deeper layers, has more
powerful capability retaining collective knowledge to learn
textual semantics. The model (10) is the basic 5-layer RNN
with attention and (11) is the one without attention. The re-
sult of (10) shows that the connections among the layers are
important to help gradient flow. And, the result of (11) shows
that the attentive information functioning as a soft-alignment
is significantly effective in semantic sentence matching.

The performances of models having different number of
recurrent layers are also reported in Fig. 2. The models (5-9)
which have connections between layers, are more robust to
the increased depth of network, however, the performances
of (10-11) tend to degrade as layers get deeper. In addi-
tion, the models with dense connections rather than resid-
ual connections, have higher performance in general. Fig-
ure 2 shows that the connection between layers is essential,
especially in deep models, endowing more representational
power, and the dense connection is more effective than the
residual connection.

Word Alignment and Importance Our densely-
connected recurrent and co-attentive features are connected

Category ESIM DIIN CAFE DRCN

Matched

Conditional 100 57 70 65
Word overlap 50 79 82 89
Negation 76 78 76 80
Antonym 67 82 82 82
Long Sentence 75 81 79 83
Tense Difference 73 84 82 82
Active/Passive 88 93 100 87
Paraphrase 89 88 88 92
Quantity/Time 33 53 53 73
Coreference 83 77 80 80
Quantifier 69 74 75 78
Modal 78 84 81 81
Belief 65 77 77 76

Mean 72.8 77.46 78.9 80.6
Stddev 16.6 10.75 10.2 6.7

Mismatched

Conditional 60 69 85 89
Word overlap 62 92 87 89
Negation 71 77 80 78
Antonym 58 80 80 80
Long Sentence 69 73 77 84
Tense Difference 79 78 89 83
Active/Passive 91 70 90 100
Paraphrase 84 100 95 90
Quantity/Time 54 69 62 80
Coreference 75 79 83 87
Quantifier 72 78 80 82
Modal 76 75 81 87
Belief 67 81 83 85

Mean 70.6 78.53 82.5 85.7
Stddev 10.2 8.55 7.6 5.5

Table 7: Accuracy (%) of Linguistic correctness on
MultiNLI dev sets.

to the classification layer through the max pooling operation
such that all max-valued features of every layer affect
the loss function and perform a kind of deep supervision
(Huang et al. 2017). Thus, we could cautiously interpret the
classification results using our attentive weights and max-
pooled positions. The attentive weights contain information
on how two sentences are aligned and the numbers of
max-pooled positions in each dimension play an important
role in classification.

Figure 3 shows the attention map (αi,j in eq. (5)) on each
layer of the samples in Table 1. The Avg(Layers) is the aver-
age of attentive weights over 5 layers and the gray heatmap
right above the Avg(Layers) is the rate of max-pooled posi-
tions. The darker indicates the higher importance in classi-
fication. In the figure, we can see that tight, competing and
bicycle are more important words than others in classifying
the label. The word tight clothing in the hypothesis can be
inferred from spandex in the premise. And competing is also
inferred from race. Other than that, the riding is matched
with pedaling, and pair is matched with two. Judging by the
matched terms, the model is undoubtedly able to classify the
label as an entailment, correctly.

In Figure 3 (b), most of words in both the premise and
the hypothesis coexist except white and gray. In attention
map of layer 1, the same or similar words in each sentence
have a high correspondence (gray and white are not exactly
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(a) entailment

(b) contradiction

Figure 3: Visualization of attentive weights and the rate of max-pooled position. The darker, the higher. See supplementary
materials for a comparison with other models that use the residual connections.

matched but have a linguistic relevance). However, as the
layers get deeper, the relevance between white building and
gray building is only maintained as a clue of classification
(See layer 5). Because white is clearly different from gray,
our model determines the label as a contradiction.

The densely connected recurrent and co-attentive fea-
tures are well-semanticized over multiple layers as collec-
tive knowledge. And the max pooling operation selects the
soft-positions that may extract the clues on inference cor-
rectly.

Linguistic Error Analysis We conducted a linguistic er-
ror analysis on MultiNLI, and compared DRCN with the
ESIM, DIIN and CAFE. We used annotated subset pro-
vided by the MultiNLI dataset, and each sample belongs
to one of the 13 linguistic categories. The results in table
7 show that our model generally has a good performance
than others on most categories. Especially, we can see that
ours outperforms much better on the Quantity/Time cate-
gory which is one of the most difficult problems. Further-
more, our DRCN shows the highest mean and the lowest std-
dev for both MATCHED and MISMATCHED problems, which
indicates that it not only results in a competitive perfor-
mance but also has a consistent performance.

Conclusion
In this paper, we introduce a densely-connected recurrent
and co-attentive network (DRCN) for semantic sentence
matching. We connect the recurrent and co-attentive features
from the bottom to the top layer without any deformation.

These intact features over multiple layers compose a com-
munity of semantic knowledge and outperform the previous
deep RNN models using residual connections. In doing so,
bottleneck components are inserted to reduce the size of the
network. Our proposed model is the first generalized ver-
sion of DenseRNN which can be expanded to deeper lay-
ers with the property of controllable feature sizes by the use
of an autoencoder. We additionally show the interpretabil-
ity of our model using the attentive weights and the rate of
max-pooled positions. Our model achieves the state-of-the-
art performance on most of the datasets of three highly chal-
lenging natural language tasks. Our proposed method using
the collective semantic knowledge is expected to be applied
to the various other natural language tasks.
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