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Abstract
The integration of proteomics data with biological knowledge is a recent trend in bioinformatics. A lot of biological in-
formation is available and is spread on different sources and encoded in different ontologies (e.g. Gene Ontology).
Annotating existing protein data with biological information may enable the use (and the development) of algo-
rithms that use biological ontologies as framework to mine annotated data. Recently many methodologies and
algorithms that use ontologies to extract knowledge from data, as well as to analyse ontologies themselves
have been proposed and applied to other fields. Conversely, the use of such annotations for the analysis of protein
data is a relatively novel research area that is currently becoming more and more central in research. Existing
approaches span from the definition of the similarity among genes and proteins on the basis of the annotating
terms, to the definition of novel algorithms that use such similarities for mining protein data on a proteome-wide
scale.This work, after the definition of main concept of such analysis, presents a systematic discussion and comparison
of main approaches. Finally, remaining challenges, as well as possible future directions of research are presented.
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INTRODUCTION
Bioinformatics approaches to the study of proteins

lead to the introduction of different methodologies

and related tools for the analysis of different types of

data related to proteins, ranging from primary, sec-

ondary and tertiary structures to interaction data [1],

not to mention functional knowledge.

One of the most advanced tools for encoding and

representing functional knowledge in a formal way is

the Gene Ontology (GO) [2, 3]. It is composed of

three ontologies, named Biological Process (BP),

Molecular Function (MF) and Cellular Component

(CC). Each ontology consists of a set of terms (GO

terms) representing different functions, biological

processes and cellular components within the cell.

GO terms are connected to each other to form a

hierarchical graph. Terms representing similar func-

tions are close to each other within this graph.

Biological molecules are associated with GO terms

that represent their functions, biological roles and

localization. This process, usually referred to as an-

notation process, can be performed under the super-

vision of an expert or in a fully automated

way. Obviously, computationally inferred annota-

tions, commonly known as Electronically Inferred

Annotation (IEA), are not as reliable as experimen-

tally determined ones. For this reason, every anno-

tation is labelled with an Evidence Code (EC) that

keeps track of the type of process used to produce

the annotation itself. Considering the release of an-

notations of April 2010, �98% of all the annotations

is an IEA annotation [4].

The term annotation corpus is commonly used to

identify all the annotations involving a set of proteins

or genes, usually referring the whole proteomes and

genomes (i.e. the annotation corpus of yeast). For

lack of space we do not further describe the Gene

Ontology. A comprehensive review has been pro-

vided by du Plessis et al. [4].

The availability of well formalized functional data

enabled the use of computational methods to analyse

genes and proteins from the functional point of view.

For example, a set of algorithms, known as function-

al enrichment algorithms, have been developed to

determine the statistical significance of the presence

(or the absence) of a GO term in a set of gene prod-

ucts. A detailed review of these algorithms can be

found in Ref. [5].

An interesting problem is how to express quanti-

tatively the relationships between GO terms. Several

measures, referred to as (term) semantic similarity (SS)

measures, have been introduced in the last decade.

Given two or more GO terms, they try to quantify

the similarity of the functional aspects represented

by the terms within the cell. Exploiting annotation

corpora, SS measures have been further extended to

the evaluation of the similarity of genes and proteins

on the basis of their annotations.

Many different works have focused on the follow-

ing tasks: (i) the definition of ad-hoc SS measures

tailored to the characteristics of GO; (ii) the defin-

ition of measures of comparison of genes and pro-

teins; (iii) the introduction of methodologies for

the systematic assessment of SS measures and

(iv) the use of SS measures in many different contexts

and applications.

Despite its relevance, the application of semantic

similarity for the systematic analysis of protein data is

still an open research area. There are, in fact, two

main questions that have to be addressed: (i) the sys-

tematic assessment of SS with respect to other bio-

logical features, i.e. how much a high or a low value

of SS is biologically meaningful; (ii) how reliable are

the SS themselves, i.e. is there any systematic error or

bias in the calculation of SS? Both these problems are

relevant for the diffusion of SS measures; whereas in

the first case several approaches have been proposed,

comparing SS measures with a plethora of different

biological features, only few works dealt with

the second problem in a systematic way [6, 7, 8].

This article reviews SS measures and presents a com-

prehensive discussion of both problems that may

stimulate further discussions.

This article is structured as follows: The next sec-

tion briefly introduces and categorizes existing SS

measures; the next two sections integrate the results

of several assessment works and highlight the issues

of current SS measures, whereas, the last two sections

survey the main existing tools for SS calculation

and finally present some possible future directions,

respectively.

SSMEASURES
The landscape of current SS measures
A term SS measure is a formal instrument enabling

the quantification of the relatedness of two or more

terms within an ontology. Measures quantifying

the similarity of two terms are often referred to

as pairwise measures, whereas measures able to de-

scribe the relatedness of two sets of terms, yielding a
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global similarity of sets, are referred to as groupwise

measures.

In the biological field, term similarity measures

have been extended to objects (such as gene products

and proteins) that are annotated with terms belong-

ing to the ontology, allowing to draw conclusions

on the relationship of two proteins relying on the

similarity of GO terms.

In the following, we will give a generic but com-

plete overview on the different strategies adopted

to evaluate semantic similarity of terms and pro-

teins, classifying similarity measures according to dif-

ferent properties. We will not describe all the

measures in detail due to lack of space, but precise

references are provided to papers describing them

extensively.

Overview of term SS measures
SS measures can be categorized according to the pro-

perties of GO terms and annotation corpora on

which they rely, and the strategies and models on

which they are based. For instance in Ref. [6], a

broad categorization is based on GO topological

characteristics. Authors propose a first distinction be-

tween measures based on GO nodes properties and

measures exploiting edge paths within the GO.

However, this classification scheme does not cover

some measures, such as those based on Vector Space

Model, and it considers separately pairwise and

groupwise approaches, even though they are sub-

stantially similar.

We propose a different categorization grouping

together SS measures according to whether or not

they consider some aspects or use some common

strategies: (i) Term Information Content (IC), (ii)

Term Depth, (iii) based on a common ancestor,

(iv) based on all common ancestors, (v) Path

Length and (vi) Vector Space Models (VSM).

Figure 1 and Table 1 present a detailed classifica-

tion of Term SS measures according to their

characteristics.

Measures based on Term Depth and IC evaluate

terms similarity on the basis of the specificity of the

terms. While the former assigns specificity to terms

according to their depth in the GO directed acyclic

graph (DAG), the latter considers the popularity of

Figure 1: Classification of term SS measures. Each feature used for classifying measures inTable 1 is represented by
a circle. Solid and dashed bordered rectangles represent pairwise and groupwise term measures, respectively. Each
SS measure is assigned to sets according to its characteristics, summarized inTable 1.
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the term (and its descendants) in an annotation cor-

pus. More formally, given an annotation corpus, the

IC of a term c is defined as

ICðcÞ ¼ �log½pðcÞ�

where p(c) is the fraction of gene products that are

annotated with term c or its descendants in the an-

notation corpus.

Measures based on a common ancestor first select

a common ancestor of two terms according to its pro-

perties, and then evaluates the semantic similarity on

the basis of the distance among the terms and their

common ancestor and the properties of the common

ancestor. IC can be used to select the proper ances-

tor, yielding to the development of methods based

on the information content of common ancestor:

for instance, the Maximum Informative Common

Ancestor (MICA)-based approaches select the com-

mon ancestor of two terms t1 and t2 with highest IC:

MICA ðt1,t2Þ ¼ arg max, IC ðtjÞ

tj 2 ancestors ðt1,t2Þ
ð1Þ

Resnik’s measure [31] (simRes), one of the most

popular SS measures, is an exponent of this category.

Table 1: Summary of Term SS measures

Type Name References Term
IC

Some
common
ancestors
(MICA)

All common
ancestors

Path
Length

Term
Depth

VSM

Groupwise Ali and Deane [9] No Yes No No No No
Groupwise Cho [10] Yes Yes No No No No
Groupwise Cosine [11] No No No No No Yes
Groupwise Czekanowski-Dice [12] No No Yes No No No
Groupwise Dice [11] No No Yes No No No
Groupwise FMS [38] Yes No No No No No
Groupwise IntelliGO [13] Yes Yes No Yes Yes Yes
Groupwise Jaccard [11] No No Yes No No No
Groupwise Kappa statistics [14] No No Yes No No No
Groupwise NTO [15] No No Yes No No No
Groupwise PL [16] No No No Yes No No
Groupwise simGIC [17] Yes No Yes No No No
Groupwise simLP [18] No Yes No No Yes No
Groupwise simNLP [19] No Yes No No Yes No
Groupwise simUI [18] No No Yes No No No
Groupwise SSA [20] Yes Yes Depends on measure used
Groupwise TO [21] No No Yes No No No
Groupwise TAS [22] No Yes No No No No
Groupwise Weighted cosine [23] Yes No No No No Yes
Groupwise WJ [11] Yes No Yes No No No
Pairwise Annotation cosine [24] No No No No No Yes
Pairwise G-SESAME [25] No No Yes Yes No No
Pairwise GraSM [26] Yes Yes No No No No
Pairwise Jiang and Conrath [27] Yes Yes No No No No
Pairwise Lin [28] Yes Yes No No No No
Pairwise Othman [29] Yes Yes No Yes Yes No
Pairwise PS or PK-TS [30] No Yes No Yes Yes No
Pairwise Resnik [31] Yes Yes No No No No
Pairwise RSS [32] No Yes No Yes Yes No
Pairwise SB-TS [33] No No No No Yes No
Pairwise simIC [34] Yes Yes No No No No
Pairwise simRel [35] Yes Yes No No No No
Pairwise SSM [36] Yes Yes No Yes Yes No
Pairwise TCSS [37] Yes Yes No No No No
Pairwise Wu [38] No No Yes No No No
Pairwise Wu-Palmer [39] No Yes No Yes Yes No
Pairwise XOA [40] Depends on measure used Yes

ColumnsTerm IC, Some common ancestor (MICA), All common ancestors, Path length,Term depth and VSMrefer to the features of themeasures
described in the text.NTO, normalized term overlap; PL, path length; PS or PK-TS, pekar-staab term similarity; SSA, semantic similarity of annota-
tions;TO, term overlap;TAS, total ancestry similarity;WJ, weighted Jaccard; XOA, cross ontological analysis.
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The semantic similarity between two terms t1 and t2
is simply the IC of the MICA:

simRes ðt1,t2Þ ¼ IC½MICA ðt1,t2Þ� ð2Þ

Lin’s measure [41], simLin, considers both the infor-

mation content of the MICA and of the input terms:

simLin ðt1,t2Þ ¼
IC½MICAðt1,t2Þ�
ICðt1Þ þ ICðt2Þ

ð3Þ

In a similar way, Jiang and Conrath’s measure [27],

simJC, takes into account the MICA and the input

terms:

simJCðt1,t2Þ ¼1� ICðt1Þ þ ICðt2Þ � 2�

IC½ðMICAðt1,t2Þ�
ð4Þ

Also simGIC [42] is a measure based on IC, but in-

stead of focusing on only the most informative com-

mon ancestor of a pair of terms, it considers all the

common ancestors of two sets A and B of GO terms:

simGICðA,BÞ ¼

P
t2 GOðAÞ\GOðBÞf g ICðtÞ

P
t2 GOðAÞ[GOðBÞf g ICðtÞ

ð5Þ

where GO(X) is the set of terms within X and all

their ancestors in the GO hierarchy. In general, meas-

ures based on all common ancestors [18–20, 22,

26–32, 34–37, 39] collect all the ancestors of terms,

and then evaluate the overlap between the two sets,

sometimes using also other characteristics (e.g. IC) or

edge distance to determine term similarity.

Completely different from previous approaches

are those techniques based on Path Length [16, 25,

29, 30, 32, 36, 39]. In this case, similarity measures

are correlated to the length of the path connecting

the two terms. This approach usually considers the

length of the path from terms to their common an-

cestor (lowest common ancestor –LCA—or max-

imum common ancestor—MCA).

Finally, VSM-based measures [11, 14, 23, 24] are

based on a two-step strategy. Initially the annotation of

proteins are represented as vectors, each GO Term is a

component of such a vector. Then, the similarity is eva-

luated by considering the distance among vectors that

are defined using topological considerations (e.g. the

cosine of the induced angle), as well as semantic con-

siderations, (e.g. IC-based).

Protein SS measures
The underlying idea to calculate protein semantic

similarity is to evaluate the semantic similarity

between all the terms annotating two proteins, and

then combine them in some way.

Groupwise Term SS measures can be directly

extended to measure protein similarity, simply con-

sidering as input the two sets of GO terms annotating

the proteins. Instead, Pairwise Term SS measures

evaluate similarity of pairs of terms and therefore,

are not directly applicable to genes and proteins.

Consequently it is necessary to define a strategy,

called mixing strategy, that transforms all the pairwise

term similarities into a single representative value.

There are six mixing strategies reported in literature:

Average (avg): the average of all term pairwise simi-

larities [43];

Maximum (max): the maximum of all term pairwise

similarities [44];

Best Match Average (BMA): the average of similarity

between best matching terms [45];

funSim: first protein semantic similarities in MF and

BP ontologies are determined using max, avg or

BMA mixing strategies and then they are com-

bined together in a non-linear way [35];

Information Theory-based Semantic Similarity: best-

matching pairs are filtered on the basis of their simi-

larities, then the average is calculated [46];

FuSSiMeG: similar to max strategy; and the max-

imum of all term pairwise similarities weighted

by the ICs of the terms is selected [26]

ASSESSMENTAND COMPARISON
OF SSMEASURES
SS measures are substantially different from all the

other classical measures such as sequence similarity be-

cause they use information regarding the functions and

roles of proteins themselves. Conversely, classical simi-

larity measures such as sequence similarity, rely on the

assumption that sequence similarity implies functional

similarity. Therefore, semantic similarity ideally should

provide the true measure of functional similarity.

However, the comparison of gene product using se-

mantic similarity requires a well defined ontology and

a complete and reliable annotation corpus. By far, the

GO is still incomplete, and annotation corpora are

extremely far from being complete and reliable [4, 47].

For these reasons, semantic similarity measures

have to be compared with other measures and bio-

logical features in order to uncover the issues affect-

ing current SS measures and design more and more

reliable measures. In this section, we present an

Semantic similarity analysis of protein data 573
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/13/5/569/411449 by guest on 20 August 2022



overview of all the assessments of SS measures per-

formed in the literature relying on the following

classical similarity measures and biological features:

protein interaction, sequence similarity, Pfam-based

and EC-based similarity, functional modules and

complexes and expression profile similarity.

Use of semantic similarity to analyse
protein interaction data
Several works investigated the use of SS measures to

discern among interacting and non-interacting pro-

tein pairs under the assumption that interacting pairs

may have higher similarity values. The papers we

reviewed rely on different datasets and consider dif-

ferent SS measures, but all of them adopt the same

assessment procedure: (i) build a positive set of inter-

acting protein pairs and a negative set of non-

interacting protein pairs; (ii) determine semantic simi-

larities for each protein pair in both the positive and

negative datasets and (iii) evaluate the discriminative

power of each similarity measure, i.e. the ability of

scoring protein pairs in the positive set higher than

those in the negative set. All the protein pairs with

semantic similarity above a certain threshold are

assumed to be interacting. Specificity and sensitivity

at different cut-off thresholds are collected and com-

bined into a receiver operating characteristics (ROC)

curve that is used to compare prediction performance

with respect to the positive and negative sets.

SS measures have been verified to be good pre-

dictors of protein–protein interactions [48]. The ro-

bustness and generality of the analysis is certified by

the heterogeneity of data used in different assessment

methods. As expected, the best results are obtained

when using BP ontology, while CC ontology has

proven to be not particularly suited for this task

[49]. Moreover, few works coherently report that

ignoring IEA annotations leaves results almost un-

affected [37, 49].

With few exceptions [50], most of the works

identified Resnik as one of the best semantic simi-

larity measures [34, 37, 49], especially when com-

bined with the max mixing strategy [51]. This is not

unexpected, since max strategy favours protein pairs

sharing even only a part of their functions and, as we

reported previously, two proteins are likely to inter-

act even when they only have in common some of

their aspects. SimIC [34] and Topological Clustering

Semantic Similarity (TCSS) [37] achieve slightly

better results than Resnik. In particular, in Ref.

[37], a detailed comparison based on an extension

of ROC analysis, highlighting the differences be-

tween Resnik and TCSS is provided.

Relation between semantic and
sequence similarities
Sequence similarity has been one of the oldest

approaches used to establish relations among genes.

Nowadays it is clear that proteins with similar se-

quence are likely to accomplish similar functions.

Therefore, there should be a good correlation be-

tween sequence and semantic similarity, at least

when considering MF ontology. Three approaches

have been used to assess semantic similarity using

sequence similarity.

Many works determined Pearson’s linear correl-

ation between sequence and semantic similarity for a

set of protein pairs [7, 15, 34, 37, 43, 52]. Usually a

binning procedure is applied to raw data to reduce

noise and allow a pattern to emerge. It consists in

dividing sequence and semantic scores into some

intervals, and using averages within each interval as

data points. Pearson correlation has been evaluated

first directly on raw scores, and later on binned data.

Analyses based on Pearson correlation rely on the

assumption that the relationship between semantic

and sequence similarity is linear. Unfortunately, this

assumption proved to be false [17]. Pesquita et al.
proposed an assessment based on non-linear regres-

sion, i.e. trying to fit data with a function that closely

follows the behaviour of semantic similarity against

sequence similarity [17].

Finally, two papers [34, 35] analysed the distribu-

tion of semantic similarity values in four different

categories of protein pairs, corresponding to four dif-

ferent levels of evolutionary relationship ranging

from no sequence similarity to orthology.

In general, all the works discovered a positive cor-

relation between sequence and semantic similarity,

low for Pearson correlation on raw data and much

more defined on binned data. Non-linear regres-

sion analysis found that the normal cumulative

distribution fits data for many different semantic simi-

larity measures, confirming the positive yet, non-

linear agreement between sequence and semantic

similarity.

However, there are many cases in which the two

measures disagree, especially at low levels of se-

quence similarity. In fact, even though functionally

related proteins tend to have high sequence similar-

ity, there is a fraction of protein pairs with high se-

quence similarity but no functional similarity [35], as
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well as protein pairs with different sequences but

involved in the same biological process or even

accomplishing the same function.

Sequence similarity has been used to compare

different semantic similarity measures over several

different datasets and conditions.

This evaluation is not as straightforward as it is for

Protein-Protein Interactions (PPI) data, different

strategies have been used, and not always coherent

results are obtained. Interestingly, some of the most

recent works did not report big performance vari-

ations between different measures. In general, it

seems that BMA mixing strategy should be preferred

to max and avg approaches. Resnik BMA, simGIC

and sinIC BMA have often been identified as the

best measures [17, 34]. TCSS reported the highest

scores outperforming Resnik and simGIC, but due

to its recent introduction, it has only been assessed in

one work [37].

Pfam families
Proteins generally comprise one or more functional

regions, commonly termed domains. Since proteins

sharing the same domains are likely to have some

common functional aspects, assessing SS measures

using domain composition information is an appeal-

ing alternative to sequence similarity data. Couto

et al. [26] showed that, especially when using MF

ontology, semantic similarity significantly increases

as the number of shared families between two pro-

teins increases. Both Couto et al. [26] and CESSM

[7], a tool for automatic comparison of SS measures

performances, evaluate Pearson’s linear correlation of

semantic similarity and a Pfam-based similarity meas-

ure, and rank SS measures according to correlation

levels.

Surprisingly, the two works disagree with each

other: Couto concludes that Jang and Conrath meas-

ure with GraSM option is the best measure and out-

performs Lin and Resnik measures, whereas

according to CESSM, Jang and Conrath measures

do not behave well at all. Benabderrahmane et al.
[13] proposed a novel assessment strategy based on

a set of proteins encompassing 10 different Pfam

clans. They evaluated the ability of different semantic

measures to discriminate between protein pairs

within the same clan and protein pairs belonging

to different clans. They report that their measure,

IntelliGO, outperforms other SS measures.

However, this conclusions are in disagreement with

CESSM evaluation.

In conclusion, even though Pfam families are

suited to assess and compare SS measures, current

conclusions are not coherent, and further investiga-

tions should be performed before using Pfam families

to compare SS measures.

Functional modules
In a protein interaction network, a functional

module is a set of interacting proteins that share a

common biological goal or play a biological role. For

instance, a pathway or a protein complex is a func-

tional module. A biological pathway is a number of

biochemical steps, linked together, that perform a

process inside cells. Since proteins within the same

pathway are involved in the same biological process,

they are likely to be annotated with the same or

similar terms in the GO (at least in BP ontology)

and therefore having high semantic similarity.

Guo et al. [49] analysed the distribution of Resnik

scores when considering pairs of proteins belonging to

the same pathway. They showed that all protein pairs

within a Kyoto Encyclopedia for Genes and Genomes

(KEGG) pathway have significantly higher similarity

scores than randomly expected when considering BP

ontology. On the other side, semantic similarity on

MF and CC ontologies decays exponentially as pro-

teins became farther within the same pathway.

Wang et al. [25] performed a manual validation

and comparison of G- SESAME and Resnik meas-

ures (over the MF ontology) using Yeast pathways.

They used the scores to hierarchically cluster genes

within the same pathway, and by visually inspecting

clustering results, they concluded that G-SESAME

scores protein pairs consistently with human percep-

tion of protein relatedness.

Finally, Benabderrahmane et al. [13] evaluated the

difference between similarity scores between protein

pairs within the same pathway and protein pairs from

different pathways.

Even protein complexes have been used to assess

SS measures. Li et al. [34] and Wu et al. [32] first

reconstructed Yeast PPI network relying on BP-

and CC- based semantic similarity scores, and then

mapped manually annotated Munich Information

Center for Protein Sequences (MIPS) [53] complexes

on their networks. They evaluated how many MIPS

complexes were included in their reconstructed net-

work. Wu’s PPI network based on Relative

Specificity Similarity (RSS) measure (and max

mixing strategy) encompassed 120 out of 214

MIPS complexes, whereas Li’s PPI network, based
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on simIC (and max mixing strategy), extended the

coverage to 159 complexes. Such analysis revealed

the applicability of SS measures for PPI network

reconstruction problems and for biological

clustering.

Expression profiles
Several studies compared SS measures to gene ex-

pression profile similarity. As for sequence similarity,

for each gene pair within a set, both semantic simi-

larity and expression profile correlation is evaluated.

Wang et al. [54] compared semantic similarity to

expression profiles correlation for pairs of genes from

Eisen dataset [55]. They verified that for all the tested

similarity measures, high semantic similarity is signifi-

cantly associated with strong expression correlation.

More recently, Sevilla et al. [44] reported that se-

mantic similarity and expression profile correlation

show low levels of correlation when considering

raw data. As well as, in the case of sequence similar-

ity, binning data dramatically improves correlation

levels. High correlation levels have been reported

also in Refs. [34, 37]. Remarkably, in [37] no bin-

ning procedure has been applied on data, leading to a

more pure evaluation of agreement between the two

measures.

In agreement with Wang et al., a graphical inspec-

tion of Sevilla et al. results suggests that the correl-

ation of gene expression and semantic similarity at

low levels of semantic similarity values is negligible,

whereas at higher levels of semantic similarity values,

they are highly related. This behaviour has been con-

firmed by Xu et al. [51]; they show that semantic

similarity linearly increases with respect to expression

correlation when focusing only on gene pairs with

high levels of expression correlation. On the other

side, they show that for gene pairs with low levels of

expression profile semantic similarity correlation is

generally low and stationary.

Ranking SS measures according to their behaviour

compared with expression profile similarity, Li et al.
identify simIC as the best measure, followed by

Resnik (coupled with max mixing strategy) [34],

whereas in Ref. [37], TCSS is the best measure, fol-

lowed by Resnik (always coupled with max mixing

strategy).

SUMMARY
The several assessments reported provide a clear

vision of the extent to which SS measures correlate

with other biological features and similarity

measures.

Semantic similarity proved to be a good predictor

of PPIs. All the assessments followed a common and

clear procedure. It seems that max mixing strategy, as

well as groupwise term measures that favour protein

pairs also when they share only a part of their func-

tions, are the most suited for this task. According to

the studies presented, Resnik, simIC and TCSS are

the best measures in this case.

A different situation arises when considering

assessments based on Pfam data. In this case, there

are inconsistences between the conclusions reported

in different assessments, with Resnik, J&C and

IntelliGO being the best measures in some works

and the worst in some others. Further studies

should be performed in order to harmonize the dif-

ferent results and provide definitive conclusions.

Strong correlation has been reported in many

assessments based on sequence or expression similar-

ity data, indicating that in general, there is an agree-

ment between these measures. However, even

though protein pairs with high levels of sequence

or expression similarity tend to show high semantic

similarity, there are many protein pairs with

low sequence or expression similarity but high se-

mantic similarity. This highlights the fact that func-

tional similarity extends beyond sequence or

expression similarity, that are measures able to cap-

ture only some aspects of the biological similarity of

two proteins. BMA mixing strategy and groupwise

term measures that comprehensively compare all the

aspects of two proteins, achieved the highest correl-

ation levels in these assessments. In general, Resnik,

simGIC, simIC and TCSS are identified as the best

measures.

Assessing semantic similarity measures with

biological pathways uncovers the ability of these

measures in identifying strongly related protein

pairs. In this case, Guo et al. [49] confirmed that SS

measures for proteins within the same pathway

behave as expected over the three different ontolo-

gies. Benabderrahmane [13] proposed a comparison

based on biological pathways, but surprisingly many

measures such as Resnik or simGIC did not behave

as well as expected. As for Pfam data, further inves-

tigations should be provided.

In conclusion, different performances have been

reported for SS measures in different contexts.

Resnik, simGIC, simIC and TCSS are often identi-

fied as the best measures. Max mixing strategy should
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be used when looking for protein pairs sharing even

only a portion of their functions, while BMA

approaches should be considered when a more com-

prehensive comparison is required.

ISSUESOF SSMEASURES
In this section, the major problems affecting SS

measures are discussed. We distinguish between: ex-

ternal issues related to the properties of annotation

corpora (such as the shallow annotation problem),

internal issues inherent to the design of the single

measures (deriving for example from a misuse of

the IC) and despite this distinction, external and in-

ternal issues present many links, e.g. measures that

make wrong assumptions on the characteristics of

annotation corpora.

External issues
With external issues we indicate all those problems

related to annotation corpora and GO structure. The

most relevant exponents of this class are the shallow

annotation problem, the annotation lenght bias and

the use of Evidence Codes.

Shallow annotation problem
Biologically speaking, terms within an ontology have

different specificity, i.e. they describe more or less

particular functions, processes and cellular compo-

nents within the cell.

Many proteins are annotated with very generic

terms inside the GO (shallow annotations). These

annotations do not identify the specific role or func-

tion of the protein, but only suggest the area in

which the proteins operate.

Shallow annotations heavily affect the fact of SS

measures. Since proteins are often annotated with

very generic terms in the GO, many proteins will

share one or more very generic terms. However, the

fact that two proteins share generic terms does not

imply that they are closely related. SS measures have

to keep into account this fact.

Annotation length bias
Annotations are not uniformly distributed among the

proteins within an annotation corpus: some proteins

are sensibly more annotated than others, and many

proteins have just only one annotation term. Many

works revealed a correlation between semantic scores

and number of annotations [8, 26], clearly indicating

that annotation length biases similarity scores.

Moreover, the distribution of annotations sensibly

changes among different organisms and GOs, and

consequently some SS measures might behave differ-

ently on different annotation corpora.

Evidence codes
Protein annotations are assigned in many differ-

ent ways [4]. A big portion of term annotations

fall into the electronically inferred category.

Experimentally verified annotations are likely to be

correct, but only a small fraction of proteins are

annotated through this process. Electronically

inferred annotations drastically extend the coverage,

but at the expense of introducing a lot of noise and

the presence of more generic annotations. Table 2

summarizes the main characteristics of both classes of

annotations. Thus, there is a trade-off between reli-

ability of annotation and the number of annotated

proteins.

The problem of whether or not to ignore or

weight IEA annotations when using SS measures

has been investigated in the literature and the

impact on different datasets and various assessment

data has also been analysed.

Table 3 summarizes the assessment proposed, the

datasets used and the conclusions drawn in each

work. The considered datasets significantly differ in

terms of extension (ranging from few hundreds to

several thousands of genes) and specificity (some of

them are restricted to specific set of proteins, whereas

some others use the entire Uniprot database).

Many works focus on generic datasets of randomly

selected proteins from Uniprot database or other re-

sources including thousands of proteins (i.e. DIP [56]).

Couto et al. [26] considered the impact of ignoring

IEA annotations on the correlation with Pfam

family similarity between the most annotated proteins

within Uniprot. Correlation is lower and much more

variable when only manual annotations are con-

sidered. Even though they only consider J&C BMA,

it is reasonable to assume that the results would be the

same for other measures. CESSM [7] registers relevant

Table 2: Characteristics of IEA and non-IEA
annotations

IEA Non-IEA

Often generic annotations Usually more specific annotations
More uniform distribution
across the GO

Not uniform distribution across the
GO

Covers a bigger set of
proteins

Limited protein coverage.
Few annotations per protein

Error-prone High quality
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variations in the correlation with Pfam family similar-

ity when using max mixing strategy, with a significant

decrease of performance when considering IEA anno-

tations. This might be an effect of using the max strat-

egy, since it is more susceptible to incorrect

annotations. On the other side, no big variations

appear when using different mixing strategies, such

as best match approach, or groupwise SS measures,

with slightly better results obtained when considering

IEA annotations (in agreement with Couto etal. [26]).

The same conclusions follow from the assessments

with sequence similarity data. One of the first assess-

ments reports that using only Traceable Author

Statement (TAS) annotations in combination with

average mixing strategy leads to higher correlation

levels [43]. Consistently, Pesquita et al. [17] showed

that correlation with sequence similarity tends to be

sensibly higher if IEA annotations are ignored when

using max or average mixing strategy, providing a

further evidence of the impact of false annotations

on max mixing strategy. Performance are almost the

same when considering groupwise measures or BMA

strategy.

Again considering assessments on generic datasets,

Jain and Bader’s results [37] show that there is almost

no difference between using or ignoring IEA anno-

tations when comparing SS measures with PPI data

both in human and yeast proteome, surprisingly even

when using max mixing strategy.

Few works focused on specific sets of proteins. For

example, Sevilla et al. [44] reported lower correlation

levels with gene expression data when IEA annota-

tions are not considered, supporting the recommen-

dation of using IEA annotations.

Table 3: Conclusions of different assessment works about the usage of IEA annotations

References Assessment Dataset Conclusions

Benabderrahmane
et al. [13]

Pathways, Pfam
families, CESSM

NCBI annotation files;
human/MF: IEA �30.000 pp, non-IEA
16.243 pp

human/BP: IEA �27.000 pp, non-IEA
21.462 pp

yeast/MF: IEA �12.000 pp, non-IEA
9.564 pp

yeast/BP: IEA �9.000 pp, non-IEA
18.496 pp

For Pfam families: significantly
better results considering IEA.

For KEGG Pathways: almost the
same results for yeast, better
using IEA for human

Jain and Bader [37] PPI, Expression
profiles, CESSM

GOA release 2010. No significant variations registered.
Using IEA annotations is
recommended

Pesquita et al. [17] Sequence similarity GOA-UniProt [17] release of February
2007

Loss of resolution considering IEA
for maximum and average mixing
strategies. No big differences
otherwise. Possible data
circularity threat when using
IEA/ISS.

Couto et al. [26] Pfam families 500 proteins with the largest number of
GO annotations from the December
2004 releases of UniProt and GO

Significantly better and more stable
results using IEA annotations

Guo et al. [49] PPI 1649 human proteins within KEGG
pathways as positive interaction
dataset; negative random set from
Entrez Gene

No significant variations registered.

Lord et al. [43] Sequence similarity all human proteins in SwissProt (2002);
at least 1 annotation in GO (TAS
only); about 7000 proteins

Better results when using onlyTAS
annotations and avg mixing
strategy.

Pesquita et al. [7] Pfam families, Sequence
similarity, EC

random protein pairs from UniProt
with at least 1 annotation in each GO
with IC> 0.5, 1 annotation in EC
classes and 1 pf

Performance decays on avg and
max mixing strategies when
considering IEA. No big variation
in the other cases

Sevilla et al. [44] Expression profiles 754 annotated genes from MARSHA
Murine database (http://microarray
.cnmcresearch.org/pgadatatable.asp);
753 genes with annotations from
RAD database (http://cbil.upenn.edu)

Using IEA annotations improves
results
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An interesting analysis regards biological com-

plexes and pathways. Guo et al. [49] reported that

considering or ignoring non-TAS annotations does

not make a big difference on their anaylsis on KEGG

pathways. More recently, Benabderrahmane et al.
[13] extended the analysis on KEGG pathways and

specific Pfam families. They compared the ability of

different types of annotation to capture the similarity

between proteins within the same pathway or Pfam

clan. Results vary according to the organism, ontol-

ogy and assessment data considered, since the distri-

bution of annotations and the ratio between IEA and

non-IEA annotations sensibly varies within annota-

tion corpora and between different species and

ontologies. Considering the entire Gene Ontology

annotation corpus (released in August 2011), we

determined the ratios between IEA and non-IEA

annotations for several different species (see

Supplementary Data S2 and Ref. Rhee et al. [57]).

Our results are consistent with those reported in [13].

For Yeast organism and BP ontology, where the

ratio between non-IEA and IEA annotations is

�2:1, non-IEA annotations are enough to capture

similarity of proteins within the same KEGG path-

way, even though considering IEA annotations

almost does not affect the results. A different behav-

iour is observed for human proteins on BP ontology

(where the ratio is about 1:1), where neither IEA nor

non-IEA are enough to describe proteins involved in

KEGG pathways.

Consistently with CESSM [7] and Couto et al.
[26], worse results are obtained when ignoring IEA

annotation in the assessment with Pfam families on

MF ontology. In this case, most of the annotations

regarding MF ontology are electronically inferred,

and therefore considering IEA annotations generally

improves the quality of the similarity measures.

In order to extend this analysis, we repeated it on

biological complexes of Yeast organism reported in

CYC database [58] and Pfam families, testing Resnik

BMA and simGIC measures instead [59]. Results are

consistent with Benabderrahmane et al.
All the works presented, highlight an important

fact: the impact of IEA annotations is not uniform.

In particular cases (i.e. biological pathways) it is

almost non-existent, obviously especially when the

number of non-IEA annotations is high. In other

cases, IEA annotations play an important role.

According to almost all the works reviewed, con-

sidering IEA annotations leads to better results, or at

least does not influence results in a negative way.

Therefore, in general we suggest to use IEA anno-

tations, especially for large-scale studies. In fact, since

including IEA annotations increases the number of

proteins annotated, it allows to extend semantic

similarity measures over some parts of the

non-annotated proteome. This is particularly valid

for MF ontology and species with a low rate of

non-IEA to IEA annotations, such as human.

However, particular attention should be paid

when using max-like mixing strategies, since they

have proven to be badly affected by wrong annota-

tions. Interestingly, this is not the case when seman-

tic similarity measures are used to infer PPIs.

Internal issues
Almost every SS measure is built considering three

aspects:

(i) define a measure of term specificity;

(ii) use GO structure to establish the similarity of

terms and,

(iii) extend the similarity to protein pairs.

In the following, we discuss the main issues affect-

ing SS measures that are related to these aspects, fi-

nally reporting some other minor issues.

Define a measure of term specificity
Conceptually, genes annotated with similar specific

terms should score higher than genes annotated with

similar but generic ones. Due to the shallow anno-

tation problem, semantic similarity measures have to

keep into account term specificity. However, dealing

with it is not trivial. In fact by itself this information

is not quantitative, and thus not computationally

tractable. Two measures have been used to quanti-

tatively represent term specificity: Term IC over the

annotation corpus and Term Depth within the GO.

Many SS measures rely only on one of the two

properties, whereas few try to exploit both of them

(Table 1). Both IC and Term Depth have advantages

and drawbacks (Table 4).

Table 4: Comparison of advantages and drawbacks of
using term IC and term depth

Term IC Term depth

Annotation corpus dependent Independent from annotations
High even for generic terms with
few annotations (corpus bias)

Term specificity is not always
related to term depth

Alleviates shallow annotation
problem

Alleviates shallow annotation
problem
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IC is a measure based on the corpus of annotations

and therefore, the IC score for the same term varies

between different annotation corpora. As argued by

Wang et al. [25] the similarity scores between two

terms should be independent from the number of

proteins annotated with them. Therefore, semantic

similarity of GO terms should be based only on the

structure of GO ontologies, independently on the

distribution of annotations. Moreover, there are

rarely used generic terms that unavoidably end up

having high ICs. This means that in some cases IC

does not reflect the biological specificity of the term.

According to the nomenclature proposed by Mistry

etal. [15], we will refer to this phenomenon as corpus

bias.

On the other side, some similarity measures use

Term Depth within the GO to estimate term speci-

ficity (Table 1). This strategy has the advantage of

producing scores consistent over different annotation

corpora. However, Term Depth fails whenever there

are specific and generic terms at the same depth in

the GO. This is not a rare case, since some regions of

the GO are denser than others both in terms of

nodes and edges.

In general, the analysis suggests that measures

based on IC are more accurate than those based on

Term Depth [17, 34]. The fact that Resnik, that only

relies on IC, is often indicated as one of the best

measures despite its simplicity is a further evidence

of the good approximation of the biological specifi-

city obtained using IC. Several other measures based

on IC (i.e. simGIC, simIC, TCSS) reported even

better correlations with several biological features.

Other measures based on IC behave poorly because

they do not integrate IC properly: Lin and J&C

measures are relative measures that evaluate the dis-

tance between the IC of the terms and their MICA.

When two proteins share an annotation, the distance

is 0, leading to a similarity score equal to 1.

Obviously, this is not the proper behaviour in the

case of generic annotations. SimRel and simIC over-

come this problem weighting Lin and J&C scores

with a term directly proportional to the IC of the

common ancestor of the two terms

As reported in Table 1, there are also some simi-

larity measures that do not consider neither Term IC

nor Term Depth. Those measures perform worse

than the others in almost every assessment. It is

likely that the reason for this behaviour is that they

are unable to discern between generic and specific

terms. Consequently, the trade-off among term

specificity and shallow annotation problem should

be deeper addressed. Further works should address

this problem, trying to understand how to represent

biological specificity.

Use GO structure to establish the similarity of terms
Despite the continuous process of GO updating,

there are some common characteristics of the GO

DAG that causes some issues that afflict almost all

the SS measures. First of all, the distance (either if

it is based on the difference between ICs or on the

length of shortest path) is unable to capture the spe-

cifity of the terms [54]. Terms close to the root, i.e.

topologically non specific, may be biologically spe-

cific. Thus, they could score high, as well as very

specific terms.

Some regions of the GO are denser than others

both in terms of nodes and edges. This might be a

direct consequence of the incompleteness of the GO

itself, or an intrinsic characteristics of the GOs. In any

case, this characteristic influences measures that as-

sume that the GO is uniform. Moreover, Term

Depth and specificity is not a direct relationship.

Terms in denser regions might be more specific

than terms at the same depth but in sparser regions.

GO is not a balanced tree, having some regions

denser than others. Thus, terms with the same depth

in different regions of the GO are likely to have dif-

ferent specificity. This has impact on depth- or edge-

based measures. Most sophisticated measures keep

track of local density when evaluating term similarity

(i.e. Othman, SSM) but unfortunately this problem

has not been deeply addressed. TCSS somehow

addresses this problem reshaping the GO exploiting

terms IC in order to obtain a more balanced

ontology.

It has been objected that all the common ancestors

of two terms should be considered, since all of them

contribute to the functional similarity of the term.

Nevertheless, measures based on only one

common ancestor equally compete with measures

based on all the common ancestors. However,

using the set of shared ancestors without considering

their degree of contribution to the terms considered

is wrong as well, since far ancestors contribute less

than closer ones [54]. G-SESAME addresses this issue

by weighting the contribution of common ancestors.

On the other side many measures do not consider

the specificity of common ancestors. SimGIC is a

remarkable example of measure that uses IC to
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weight common ancestors in order to deal with dif-

ferent specificity.

Extend the similarity to protein pairs
A common objection moved against extending pair-

wise term measures to proteins with mixing strategies

is that they consider separately all the terms and then

merge results, and this might lead to a loss of infor-

mation. As an example, considering a pair of terms at

time does not keep into account how the terms are

spread over the GO. In general, many recent works

suggest that using groupwise approaches leads to

better results.

Pesquita et al. noticed that the average mixing

strategy does not behave well in terms of agreement

with sequence similarity, especially at high levels of

sequence similarity [17]. At high levels of sequence

similarity there is an increase of annotations, leading

to worse performance in the case of average

approach. In fact even proteins that share a large

fraction of same terms may contain terms highly dis-

similar among them thus decreasing the global aver-

age. In the non-IEA, average approach works better,

probably because the number of annotations is more

uniform. Average approaches scored the worst results

even in PPI prediction.

The maximum approach is a simple way to assign

protein–protein similarity score evaluating the most

similar pairs of terms. It shows low resolution be-

cause it simply finds the best term pair, ignoring

the others. Moreover, it seems to be tied to the num-

ber of annotations. In fact, the more annotations a

protein has, the more likely is that it shares a term

with another protein, resulting in a high score. In the

non-IEA dataset, this issue is less notable since many

proteins only have one annotation. Moreover, this

approach is extremely sensible to false annotations,

since an incorrectly annotated term might lead to a

wrong high score. For PPI prediction, however, this

approach seems to work well since proteins only

need to share a common function to be likely to

interact [37]. The Best Match Average approach

shows the best behaviour. When comparing two

proteins, it considers all terms but compares each

term with the most similar term annotated for the

other protein. It seems to be independent from the

number of annotations of the protein (or at least,

the most unaffected). In a more general framework,

where a more general measure of functional similar-

ity is required, the Best Match Average approach

might be better than maximum, since it considers

also the differences between two proteins.

Minor issues
It has been reported that the distribution of annota-

tions and the types of annotations varies a lot among

different organisms and GOs. It is not clear to which

extent the behaviour of the SS measures differs in

different scenarios, since all the assessments focus on

Human and Yeast organisms. In Benabderrahmane

et al.’s assessment [13] there is a strong variability

among similarity measures, so it is not possible

to make any conclusion about the use (or not) of

IEA annotations on different species. This fact is a

concrete evidence of the need of a systematic ana-

lysis on other organisms with different annotation

distributions.

Resnik has been reported as one of the best meas-

ures, almost always outperforming Lin and J&C

measures. Resnik only considers the IC of the

MICA. Since many term pairs share the same

MICA, this leads to step-like scores that tend to clus-

ter at some discrete levels of similarity. This is not a

desirable behaviour, especially for applications that

need to rank protein pairs. Moreover, this effect

would increase as the number of annotations in-

creases, and therefore it can only get worse as the

GO becomes more complete.

Finally, Resnik does not produce normalized

scores by itself.

Summary
Considering the issues presented above, we identi-

fied some critical points:

It is absolutely necessary to use the concept of

term specificity, whether it is represented by IC or

Term Depth. It seems that using IC leads to better

results, but the implications of using a measure inde-

pendent from annotation corpus, such as Term

Depth, are quite interesting.

Considering only one common ancestor might

not be the optimal choice, since it discards the con-

tribution of other terms. All the common ancestors

should be considered instead, but appropriately

weighted according to both their contribution to

the considered terms and their specificity.

Using Path Length between pairs of terms might

be a dangerous way, due to the unbalanced nature

of GOs.

Finally, groupwise approaches should be preferred

to pairwise approaches for evaluating protein pair
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similarity. However, most of groupwise approaches

do not take into account term specificity and behave

poorly. SimGIC is the only groupwise measure com-

peting with pairwise approaches.

Actually, Resnik is one of the most considered

semantic similarity measure, always included in as-

sessment works and behaving properly most of the

times. More recent approaches based on term speci-

ficity such as G-SESAME, simGIC, simIC and TCSS

seem to outperform Resnik in several cases, but with

the exception of simGIC they have not been

included in many assessment or comparison works.

Anyhow, we believe they represent the next gener-

ation of semantic similarity measures that should be

used. All of them offer improvements over Resnik in

different directions, resolving some of the issues pre-

sented above.

TOOLSANDAPPLICATIONS FOR
THE SEMANTICANALYSIS
This section presents some existing tools imple-

menting SS measures. The current scenario is char-

acterized from the absence of a tool that implements

all the SS measures or that is easily extendible.

Considering the distribution, tools are mainly avail-

able as web servers (Table 6) or as packages for

the R platform (Table 5). However, FuSSiMeG,

ProteInOn, FunSimMat, csbl.go and SemSim

together cover almost all the similarity measures. In

general, tools are based on GO and annotation cor-

pora. Some tools, such as the web servers, include

their own copy of annotation corpora and GO,

offering user-friendly and ready-to-go solutions.

However, they rely on maintainers for updated data,

and generally do not offer many possibilities of cus-

tomization or extension. On the contrary, other

tools such as stand-alone R-packages, are generally

more flexible and often easily extendable, but they

require the intervention of expert users. Usually they

require the user to provide annotations and ontolo-

gies as input data in more or less common formats.

While this enables the full control over data used and

guarantees the possibility to use most-updated data,

the preparation of input datasets may result in an

error-prone waste of time.

A possible future direction may regard the devel-

opment of a comprehensive platform for the inte-

grated semantic analysis of protein interaction

networks.

CONCLUSIONS
SS measures, i.e. the quantification of the similarity

of two or more terms belonging to the same ontol-

ogy, is a well established field. The application of SS

to proteins as well as to protein interaction data is still

a novel field, and there exist many open problems

and challenges that should be addressed.

In this work, we presented a survey of main SS

measures based on GO and the main issues discussed

in the scientific community regarding: (i) the assess-

ment of SSs in terms of biological features and (ii) the

biases on the calculation of SSs that arise in the bio-

logical field.

Table 6: Web servers for calculation of semantic simi-
larity measures

Web server Functions Measures

FuSSiMeG [47] SS measures, statistical tests Resnik, Lin,
JiangCon- rath,
GraSM

http://xldb.fc.ul.pt/biotools/rebil/ssm/
ProteInOn [17] SS measures, search for

assigned GOTerms and
annotated proteins,
representative of
GO Terms

Resnik, Lin,
JiangCon- rath,
simGIC,GraSM,
simUI

xldb.di.fc.ul.pt/tools/proteinon/
FunSimMat [63] SS measures, disease-related

genes prioritization
simRel, Lin,
Resnik,
JiangConrath

http://funsimmat.bioinf.mpi-inf.mpg.de/
GOToolBox [12] SS measures, clustering Si, Sp, SCD
http://genome.crg.es/GOToolBox/
G-SESAME [25] SS measures, clustering G-SESAME
http://bioinformatics.clemson.edu/G-SESAME

None of these tools requires input annotations or GOs.

Table 5: Packages for R

Functions Measures Input data

csbl.go [60]
SS measures,
Clustering
based on SS

Resnik, Lin, JiangConrath,
GRaSM, simRel, Kappa
Statistics, Cosine,
Weighted Jaccard,
Czekanowski-Dice

Genes and
Proteins
annotations

GOSemSim [61]
SS measures Resnik, Lin, Jiang, simRel,

G-SESAME
GOTerms

GOvis [62]
SS measures simLP, simUI Entrez gene

IDs,Gene
ontology
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The several assessments reported in this work pro-

vide a clear vision of the extent to which SS meas-

ures correlate with other biological features and

similarity measures. Furthermore, we identified

some critical points and issues regarding current

measures that may stimulate discussion and research

in the future. We concluded that Resnik, one of the

most considered SS measures, behaves properly most

of the times. More recent approaches based on term

specificity such as G-SESAME, simGIC, simIC and

TCSS seem to outperform Resnik in several cases.

We believe they represent the next generation of SS

measures that should be used, since all of them offer

improvements over Resnik in different directions,

resolving some of the issues presented above.

Finally, we point the attention to another problem

that is emerging. Recently, semantic similarity meas-

ures have been used as input or validation data in

several genome-wide and proteome-wide applica-

tions (i.e. PPI networks alignment problems), requir-

ing the computation of semantic similarity between

whole proteomes. Considering as an example the

yeast organism, containing more than 5000 proteins,

these applications require the calculation of more

than 25 millions of protein similarities. So far, there

is only one freely available tool, GS2 [64], that effi-

ciently generates proteome-wide SS scores. Further

work is necessary to design faster solutions for the

calculation of semantic similarity measures.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Comprehensive review of semantic similaritymeasures.
� Suggestions concerning the best uses of semantic similarity

measures tailored to different contexts.
� Assessmentwith biological features.
� Critical discussion of common issues.
� Outline of future direction of research.
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