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Abstract

Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they
are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide
background knowledge in similarity-based analysis and machine learning models. The methods employed to combine
ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that
use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how
semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how
ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are
available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/
bio-ontology-research-group/machine-learning-with-ontologies.
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Introduction

Machine learning methods are now applied widely across life
sciences to develop predictive models [1]. Domain-specific
knowledge can be used to constrain search and find optimal
or near-optimal solutions faster, or to find better solutions;
this observation has led Feigenbaum in 1977 to suggest that
the power of Artificial Intelligence systems lies in the domain-
specific knowledge they encode and are able to exploit, leading
to the paradigm that ‘in the knowledge lies the power’ [2].

In the life sciences, domain-specific knowledge is often
encoded in ontologies and in the database and knowledge base
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that use ontologies for annotation. Hundreds of ontologies have
been developed, spanning almost all domains of biological and
biomedical research. The main features biomedical ontologies
provide are controlled vocabularies for characterizing biological
phenomena and as formalized knowledge bases that formally
describe the phenomena within a domain and link them to other
related domains [3]. For example, phenotype ontologies are used
for characterizing the phenotypes observed in a variety of model
organism databases [4–7] as well as in human genetics [8, 9], and
these ontologies provide a controlled set of classes, their labels
and definitions for the purpose of annotating the phenotypes
observed in conditions recorded in databases. Moreover,
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phenotype ontologies are also interlinked with other ontologies
through the use of formal axioms and can be used to relate
the phenotype observations to biological functions, anatomical
locations, developmental stages or chemical substances [10,
11]. The majority of biomedical ontologies are formalized using
the Web Ontology Language (OWL) [12], a language based on
Description Logic (a decidable fragment of first order predicate
logic). OWL comes with an explicit semantics that defines
how statements made in OWL constrain the world in which
these statements are interpreted—the ‘models’ in which these
statements are true.

The background knowledge contained in ontologies can be
used in several ways. Some important applications include the
automatic and consistent construction of ontologies based on
axioms and querying domain knowledge or data associated
with ontology classes using the axioms. Constructing ontologies
based on axioms, and in particular referencing classes from
other ontologies in these axioms [3, 13, 14], allows reuse of
existing knowledge and enables verification of consistency (i.e.
absence of contradictions). For example, an ontology of phe-
notypes can be constructed by referencing axioms in anatomy
ontologies [4, 11] so that phenotype classes are structured con-
sistently with anatomy ontologies. This also enables querying
phenotypes based on anatomy ontologies; for example, pheno-
types such as cardiomyopathy can be retrieved as phenotypes of
the heart or of parts of the cardiovascular system.

The combination of classes from different ontologies in
ontology axioms can also be used to induce background
knowledge in predictive analysis; axioms can be used to expand
or enrich features in machine learning or to constrain the
search for a solution to an optimization problem. Expanding
or enriching features may make information available to a
machine learning model that it would not be able to access
without relying on ontologies. For example, linking phenotypes
such as cardiomyopathy to the anatomical structures that are
affected (i.e. the heart) can create novel and direct associations
with other datasets that do not otherwise exist. In the example
of cardiomyopathy, the link to heart as the anatomical structure
can be used to relate the phenotype to gene expression in heart
tissue or in cardiomyocytes or to biological processes such as
heart development. Such connections are given a priori through
the axioms in phenotype, anatomy and cell-type ontology and
do not need to be discovered from data.

The knowledge in ontologies may be used to constrain the
search for solutions to an optimization problem and thereby
finding a solution faster, finding a better solution or finding
a solution that is generalized better. One example of such a
constraint is the ‘true path rule’ that was originally proposed
in the Gene Ontology [15], which states that if a gene product
G has the potential to be involved in a process P1, and every
process P1 is a part of another process P2, then G must also
be involved in P2. This constraint is ‘hard’ in that it is not an
empirical law or observation, but should hold in virtue of the
definition of P1 and P2—it is impossible for G to participate in
P1 but not P2. For example, a gene product involved in cardiac
muscle tissue development ( GO:0048738) must be involved in heart
development ( GO:0007507) simply based on the definition of the
two classes in the Gene Ontology.

With the rapid growth of methods to build predictive mod-
els in biology, in particular machine learning methods [16, 17],
biomedical ontologies can now play a role in systematically
providing domain knowledge to enable or improve the predictive
models. It is a challenge to identify general ways in which
ontologies, and their underlying formalisms based on OWL, can

be combined with the modern machine learning and optimiza-
tion methods that are becoming so widespread. This challenge is
not only one of the researches in Artificial Intelligence but also
a new challenge in Bioinformatics research as well due to the
widespread use of ontologies and formalized knowledge bases
in biology and biomedicine and the unique characteristics of
biomedical ontologies such as their large size and the manually
created axioms.

Here, we describe and review the state-of-the-art and recent
advances in accessing and exploiting background knowledge in
ontologies to build predictive models in biomedicine, including
similarity-based predictions and machine learning models. We
use as a starting point in our review more traditional semantic
similarity measures applied to ontologies; semantic similarity
measures are a method from Artificial Intelligence that can
determine the similarity between two or more entities using the
formalized background knowledge in ontologies. We continue
to introduce unsupervised, representation learning methods on
ontologies that generate ‘embeddings’ for entities in ontologies,
and we show that these embeddings can be used like semantic
similarity measures while additionally allowing to overcome
some of their limitations. Third, we highlight methods that use
ontologies as constraints in optimization problems or to design
architectures of machine learning models. We continue by intro-
ducing a novel benchmark dataset for prediction of protein–
protein interactions (PPIs) with ontologies and demonstrate the
methods we discuss on this dataset. We also make all experi-
ments available as executable notebooks which can be adopted
to other use cases. We finish by reviewing some of the main
limitations and future research directions for the combination
of ontologies and machine learning.

Fundamentals: axioms, graphs
and knowledge graphs
An ontology is an ‘explicit specification of a conceptualization
of a domain’ [18], i.e. an ontology is an artifact used to formally
specify the intended meaning of a vocabulary within a domain.
Ontologies contain domain knowledge, encoded in the form
of axioms, natural language labels, synonyms, definitions and
other types of annotation properties. The majority of ontologies
in the life sciences are encoded using the OWL [12], a lan-
guage that is a part of the Semantic Web stack [19] and based
on Description Logics [20]. Description Logics enable a formal,
machine-readable description of the types of entities within a
domain and the relations in which they stand [20]. Syntactic
constructs are assigned an interpretation in a mathematical
structure that resembles a world in which these constructs
are true. For example, if we want to assert that one class of
entities C is more specific than another class D, i.e. C is a D,
we can (syntactically) write C � D using the common syntax of
Description Logics. Semantically, we interpret each class C and
D as a set of entities CI and DI (coming from a domain �) and
say that C � D is true when CI ⊆ DI . Depending on the choice
of CI and DI , there are many (algebraic) structures in which
C � D can be true. In general, ·I is an interpretation function that
assigns symbols to their extension in an algebraic structure, and
the structures in which a statement is true is called a model of
the statement.

The semantics of logical languages gives rise to entailment;
a statement φ is logically entailed by a set of statements O if
all the structures in which all statements in O are true also
make φ true. For example, the two statements {C � D, D � E}
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Table 1. OWL2Vec rules for the projection of OWL axioms into an RDF graph. Q is any quantifier (∃, ∀, ≤ n, ≥ n, = n); A, B, Bi and Ci are named
classes; Si, Ro and R− are object properties; b is an individual name

Condition 1 Condition 2 Edge

A � QRo.D or QRo.D � A D ≡ B|B1 	 ... 	 Bn|B1 
 ... 
 Bn A
Ro−→ B or A

Ro−→ Bi for i ∈ 1...n

Domain(Ro) = A Range(Ro) = B A
Ro−→ B

A � ∃Ro.{b} b : B A
Ro−→ B

Ro = R− A
R−→ B in the graph B

Ro−→ A

S1 ◦ ... ◦ Sn ⊆ Ro A
S1−→ C1, ..., Cn

Sn−→ B in the graph A
Ro−→ B

B � A B
is−a−−→ A, A

is−a−−−−→ B

entail the statement C � E (because no matter the choice of
CI , DI and EI , CI ⊆ DI and DI ⊆ EI implies CI ⊆ EI ). The
process of computing entailments—deduction or logical infer-
ence—plays a crucial role in using ontologies because it allows to
automatically derive statements that are not explicitly asserted
in a knowledge base and can also be used to detect whether
a set of statements is contradictory. In general, from a finite
number of axioms, an infinite number of additional statements
(the ‘deductive closure’ of the axioms) is entailed, and from a
set of contradictory axioms, all statements are entailed (and,
consequently, a contradiction can be detected by testing for the
entailment of two contradictory statements). While this property
makes logic-based methods a powerful means for storing and
reasoning about knowledge, it also makes it more challenging
to fully exploit this knowledge in computational models due to
the possibly infinite amount of statements that can be generated
through entailments.

Although ontologies in OWL are primarily sets of axioms,
many ontology-based analysis methods, including machine
learning methods and semantic similarity measures, rely on
generating some form of graph structures from the axioms in an
ontology. There are several ways in which axioms can be used
to generate a graph structure, and many can be formulated as
computing entailments. An important ontology for generating
graphs from biomedical ontologies is the OBO Relation Ontology
[14] which provides a set of axiom patterns that must hold true
for two classes if an edge between them should be created [21–
23]. An axiom pattern is an axiom with variables for classes
or individuals; X � Y is an axiom pattern in which X and Y
are variables and if this statement is true for two classes X
and Y, an edge labels is-a should be created between them:

X
is-a−−→ Y. More complex axiom patterns involve quantifiers,

such as X � ∃part-of.Y which gives rise to the edge X
part-of−−−−→ Y.

Axioms can also express disjointness between two classes such
as X 	 Y � ⊥ based on which a disjoint edge can be created
(X ↔ disjointY). For a conversion of axioms into nodes and
edges to be generally applicable, it must be possible for it to be
generated using entailments; for example, if X � ∃part-of.Y and
Y � ∃part-of.Z are a part of an ontology, and the relation part-of

is transitive (part-of ◦ part-of ⊆ part-of), then X � ∃part-of.Z
would be entailed and consequently a part-of edge between X

and Z created (X
part-of−−−−→ Y).

The types and complexity of axiom patterns giving rise to
edges is an active research area [24, 25], and the translation
patterns that are used depend not only on the axioms but also
on the algorithms that use the graphs generated from ontolo-
gies. For example, OWL2Vec [26] uses the set of transformation
rules shown in Table 1 to transform syntactic axiom patterns
into edges. Depending on the algorithm that uses the graph,

these patterns can be applied to the asserted or entailed set of
axioms.

The graphs generated from ontologies also interact with
graph-based representations of data, in particular using the
Resource Description Framework (RDF) [27]. Graphs in which
nodes represent entities within a domain and edges represent
the relations between the nodes are sometimes called knowledge
graphs [28], and they correspond to a subset of the formalism
underlying OWL in which only relations between individuals,
and possibly certain axioms for relations, are considered. How-
ever, graph-based representations of the axioms in ontologies
can also be considered knowledge graphs, in particular when
both individuals and classes are included in the graph [24].
For example, a graph in which different types of interactions
between proteins are expressed could be generated from relation
assertions such as binds(P1, P2) (indicating that protein P1 binds
P2) where P1 and P2 are individuals and translate directly into an
edge between nodes P1 and P2, or the graph can be generated
from more complex axioms such as P1 � ∃coex.P2 in which P1

and P2 are classes and all instances of P1 are co-expressed with
some instance of P2. Similarly, a statement that a protein P has
a function F can be a direct relation assertion hasFunction(P, F)
(which is, for example, used in the RDF representation of the
UniProt knowledge base [29] and translates directly into a corre-
sponding edge between P and F), or a more complex axiom such
as P � ∃hasFunction.F [30]. The latter representation gives rise
to entailments directly when combined with an axiom such as
F � F′, while the first representation needs additional rules to
achieve the same result.

Figure 1 shows a graph in which interactions between pro-
teins, the associations between proteins and their functions and
some axioms from the Gene Ontology are included. There are
several ways in which such a graph could have been represented
in OWL and then converted into such a graph representation
using axiom patterns [25]; for example, the edge between MET
and MAPK3 could arise from an axiom MET � ∃ activates.MAPK3
and the edge between FOXP2 and GO:0071625 from the axiom
FOXP2 � ∃ hasFunction .GO:0071625. The dashed edge between
FOXP2 and GO:0044708 is an edge that would be generated
through entailment based on these axioms.

Semantic similarity
In many biomedical and computer science applications it is
useful to determine how similar two concepts are. Measures that
compute similarity between concepts are semantic similarity
measures, and semantic similarity measures have received
renewed interest recently with the development of novel
methods based on representation learning [31, 32]. Semantic
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Figure 1. A knowledge graph centered around protein–protein interactions and

functions of FOXP2.

similarity measures are used to compare words and terms in
natural language texts [32], entities represented in graphs and
knowledge graphs [33–36] and ontology classes based on the
knowledge within the ontologies [37].

Semantic similarity measures can be used as unsupervised
methods for association prediction, as features in supervised
learning models or in clustering algorithms. Ontology-based
similarity measures have been applied to a variety of tasks such
as predicting protein–protein interactions [38–41], gene–disease
associations [42–44], diagnosing patients [45–47], determining
sequence similarity [48] or evaluating computational methods
which predict ontology class annotations [49].

In ontologies, we can compute semantic similarity between
classes, individuals and annotated entities. A function sim : D×D
is a similarity function on a domain D if it is non-negative
(sim(x, y) ≤ 0), symmetric (sim(x, y) = sim(y, x)) and if self-
similarity yields the highest similarity values within the domain
(sim(x, x) = maxD), or—as a weaker version—if self-similarity is
higher than similarity to any other domain entity (sim(x, x) >

sim(x, y)) [50].
A simple similarity measure, simRada, can be based on the

shortest path between two nodes in the graph [51]. It can be
defined as

simRada(x, y) = 1
distSP(x, y) + 1

.

This similarity measure is useful when edges in a graph cor-
respond mostly uniformly to some kind of semantic distance.
However, when comparing ontology classes, edges represent
axioms involving two classes which may not correspond to
this assumption. For example, is-a edges order classes from
general to more specific, such as in the ontology in Figure 2a.
In this figure, simRada(Color, Shape) will have the same value as
simRada(Red, Green) since these two classes have the same dis-
tance in the graph. However, in many applications Red and Green
should be more similar than Color and Shape because they are

both colors. In this case, distance-based similarities might not
be very intuitive and a measure of class specificity needs to be
considered.

There are many ways to compute class specificity. For
instance, we can compute specificity as a function of the
depth, number of children or the information content of a class.
Formally, class specificity is a function σ : C �→ R which meets
the condition that for all x, y ∈ C, if x � y then σ (x) ≥ σ (y) [52].
The specificity measure can be defined using only the classes
within an ontology (such as measures that consider the number
of super-classes a class has, or the distance of a class to the root),
or using information such as the number of instances of a class,
or the number of annotations of a class within a database.

One widely used methods to determine class specificity is the
Resnik measure [53], which defines the specificity of a class as
its information content:

ICResnik(x) = − log p(x),

where

p(x) = |I(x)|
|I(�)|

and I(x) is the set of instances of x (or the set of annotations of a
class within a database).

Overall, a large number of semantic similarity measures have
been developed [52]. Pairwise similarity measures compute the
similarity value between two classes. Examples of pairwise sim-
ilarities used in the biomedical field include Resnik’s [53], Lin’s
[50], Jiang & Conrath’s [54] and Schlicker’s [42] similarity mea-
sures. Many of these measures are variations of the Resnik
measure which defines the similarity between classes x and y as
the information content of their most informative common ancestor
(MICA):

SimResnik(x, y) = IC(MICA(x, y)).

In the example in Figure 2a, SimResnik(Red, Green) is equal to 1.0
and SimResnik(Color, Shape) is equal to 0.0 although they have the
same distance. The downside of this similarity measure is that
it does not take into account the specificity of the compared
classes and all classes under the same MICA will have the same
similarity value. For instance, in Figure 2b SimResnik(Green, Square)
is equal to 0.0 which is the same as SimResnik(Color, Shape) and in
Figure 2c SimResnik(Red, Green) and SimResnik(Orange, Green) are both
equal to 1.0. To solve this issue, Lin’s measure [50] also considers
information content of the compared classes:

SimLin(x, y) = 2 · IC(MICA(x, y))
IC(x) + IC(y)

.

With this measure, SimLin(Red, Green) is equal to 0.5 whereas
SimLin(Orange, Green) is equal to 0.4 which is more intuitive.

When comparing two instances of ontology classes, or two
entities annotated with classes in an ontology, we usually need
to compare sets of classes. For example, we would have to com-
pute the similarity of the set of all Gene Ontology annotations
of one protein with the set of all Gene Ontology annotations of a
second protein. There are two ways of determining the similarity
between two sets of classes A and B. First, we can compute the
pairwise similarities between all pairs of classes (a, b) such that
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Figure 2. A fragment of the PATO ontology focusing on colors and shapes. Numbers near classes indicate the specificity of the classes.

a ∈ A and b ∈ B, and then combine similarity values according
to some combination strategy (such as computing the average).
Second, we can directly define a similarity measure between the
two sets A and B using a set similarity measure. For instance, we
can use the Jaccard index between the two sets:

SimJaccard(X, Y) = |X ∩ Y|
|X ∪ Y| .

To make this a semantic similarity, we would at least close each
of the sets X and Y with respect to superclass axioms, i.e. if C �
D and C ∈ X then D ∈ X. Figure 2d depicts the propagation of
ontology classes for computing the similarity between a square-
and-orange thing and a round-and-red thing. Set similarity can
also incorporate class specificity, such as the weighted Jaccard
index in the SimGIC [55] measure.

Semantic similarity measures have a variety of applications
and a large number of software packages have been developed
to ease their use [56]. One prominent example is the Semantic

Measures Library [57] which is a comprehensive Java library that
allows to compute hundreds of different semantic similarity
measures.

A common problem of semantic similarity measures is that
it is difficult to choose the right measure for a particular applica-
tion. Similarity measures behave differently depending on their
applications. For example, using different similarity measures to
predict PPIs will result in different performance [37, 55] depend-
ing on the organisms. Similarity measure are also not immune to
biases in data and different similarities may react to the biases
differently [44, 58]. Furthermore, they are hand-crafted measures
that are not able to adapt automatically to the underlying data
or application.

Embedding ontologies
Another option to define similarity measures on ontolo-
gies is through the use of embeddings. An embedding is a
structure-preserving map from one mathematical structure
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to another. The idea behind using embeddings is that the
second structure may enable different or additional operations
which are not possible in the first structure. For example, if we
take ontologies or graphs that are discrete entities and map
them into a continuous space (or real-valued vector space),
we can apply machine learning or continuous optimization
algorithms which operate on continuous data; there are also
natural similarity measures between real-valued vectors such
as the cosine similarity or other distance measures and metrics.

While there are many structures in which ontologies may
be embedded (such as embedding axioms within the natural
numbers so that proofs by diagonalization become possible [59,
60]), we are mainly interested in embedding ontologies within
real-valued vector spaces so that we can apply modern opti-
mization and machine learning algorithms. The key question
when embedding ontologies is which structure (of the ontol-
ogy) to preserve within R

n and under which operations in R
n

this structure is preserved. We classify approaches of embed-
ding ontologies in three main types, based on what aspects of
the ontologies are preserved in R

n. First, there are graph-based
approaches which treat ontologies as graphs similar to how
ontologies are treated by many semantic similarity measures,
and the embeddings preserve this graph structure within R

n.
Second, syntactic approaches treat axioms similar to sentences
and preserve syntactic regularities (such as frequencies of co-
occurrences) in R

n. Third, we consider model-theoretic approaches
which preserve model-theoretic properties within R

n as a part of
the embedding.

Graph-based ontology embeddings

Graph-based embedding methods preserve a graph structure
within R

n. One form of graph embeddings is based on random
walks. In these methods, graphs are generated from ontologies
using the methods we described in Section 2 (Fundamentals:
axioms, graphs and knowledge graphs), then random walks are
used to explore the neighborhood of each node in the graph, and
finally the set of walks is used as the basis of the embeddings.

One of the first methods for learning graph embeddings
through random walks was DeepWalk [61] which generates
a corpus of sentences (i.e. sequences of nodes in the graph)
through random walks starting from each node in the graph,
and then applies Word2Vec [32] on the resulting corpus to obtain
embedding vectors; the embeddings generated by Word2Vec
preserve co-occurrence relations within a context window.
DeepWalk can also be extended to include labeled edges and
be applied to knowledge graphs [62]; walk-based methods have
been used to embed graphs generated from ontologies [26, 63]
or combinations of knowledge graphs and ontology-generated
graphs [64].

For example, for the graph in Figure 1, the random walks can
generate sentences such as

• FOXP2 cooex ST7 hasFunction GO:0044708...
• FOXP2 hasFunction GO:0071625 is-a GO:0044708...

and Word2Vec will then embed each node and edge label
while preserving co-occurrence relations within this corpus [65].
Node2Vec [66] is a modified model that does explore the original
graph through biased random walks and therefore can force
walks to remain within a certain distance of the origin node, or
explore further away, depending on the choice of a parameter.
OWL2Vec uses the biased random walks from Node2Vec to
embed graphs generated from axioms [26].

Random walks have long been used as a model that simulates
diffusion of information within a network [67–69] and can be
used to identify and score node importance. In graph embed-
dings, these walks explore node neighborhood and generate
a ‘linear’ representation (i.e. sequences of symbols); the walks
account for graph structure such that nodes that are reached
more often by a random walk also occur more often in the result-
ing corpus (and co-occur more often with the original node).
Word2Vec, as a model that embeds sequences of symbols while
maintaining this co-occurrence [65], generates embeddings that
maintain this syntactic structure within the walks, and therefore
aspects of the graph structure as well. Furthermore, some of
the semantics of the axioms in the ontology can be encoded
as constraints on the random walks or encoded in the graph;
for example, symmetry can be modeled as a bi-directional edge,
disjointness as a ‘barrier’ preventing a walk’s transition, etc. It
is obvious that the graph that is generated from the ontology
axioms, and the information it captures, is crucial for generating
useful embeddings [26].

Translational embeddings methods are a family of represen-
tation learning methods on knowledge graphs which model rela-
tions in the knowledge graph as translation operations between
graph node embeddings. The methods have been successfully
applied for several tasks such as link prediction, knowledge-
graph completion and others. The methods represent knowledge
graphs as a set of edges (s, p, o) (triples) and define a translation
operation which translates fη(s) to fη(o) depending on the relation
p. Here, fη is a graph embedding.

TransE [70] was an early translational embedding method. It
uses a vector representation for relations that have the same
dimensions as vectors representing nodes, and defines the
translation operation as the addition of the relation vector to
the node vector:

fη(s) + fη(p) ≈ fη(o)

and further defines a scoring function for an edge based on the
translation operation:

fsc(s, p, o) = ∥∥fη(s) + fη(p) − fη(o)
∥∥ .

Then, it minimizes the following loss function to learn fη:

∑

(s,p,o)∈KG

∑

(s′ ,p,o′ )∈KG′

[
γ + fsc(s, p, o) − fsc(s′, p, o′)

]
+,

where KG′ is a set of negative or corrupted triples that are not
in the graph,

[
x
]
+ indicates the positive part of x and γ is a

hyperparameter. This model can only accurately represent one-
to-one relations and it is not suitable for one-to-many and many-
to-many relations while in graphs generated from ontologies,
even when focusing only on the subclass hierarchy, there are
many such relations. Furthermore, TransE does not support tran-
sitive, symmetric or reflexive relations which are all important
for faithfully embedding ontologies.

Many TransE successors have been developed to overcome
the original model’s limitations. For example, TransH [71]
extended TransE by moving the translation operation to a
relation-specific hyperplane. TransH represents each relation
by two embedding vectors, the norm vector of the hyperplane
(denoted as a function wη) and a translation vector (denoted as
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a function dη). The scoring function is then defined as follows:

fsc(s, p, o) =‖(fη(s) − w�
η (p)fη(s)wη(p)) + dη(p)−

(fη(o) − w�
η (p)fη(o)wη(p))‖.

With an additional vector, TransH performs translation oper-
ation on an augmented hyperplane and can therefore model
one-to-many and many-to-many relations better than TransE.
There are also many other models with various advantages and
disadvantages [33, 34].

Some translational models are specifically designed to cap-
ture some properties of ontologies such as hierarchical relation.
On2Vec [72] embeds taxonomic relations by adding an additional
scaling parameter to the loss function so that embeddings of
more specific classes are in closer proximity than embeddings of
more general classes, i.e. the class embeddings converge along
the subclass hierarchy. JOIE [73] embeds instances and ontol-
ogy classes using an ontology hierarchy loss function in which
hierarchical relations between classes are embedded based on
a non-linear transformation of the subclass into the super-
class. TransC [74] and TransFG [75] embed classes as regions
instead of points within R

n and define hierarchical relations
between classes as relations between the regions in which they
are embedded; for example, if C is a subclass of D, the manifold
which is the embedding of C should lie within the manifold
corresponding to D.

Translational embeddings are able to explicitly capture the
graph structure and preserve some interpretability through the
use of vector operations; however, they cannot always capture
axioms such as transitivity, symmetry or reflexivity of relations.
Furthermore, any graph-based method will focus on a set of
axioms that are encoded by graph patterns and lose some infor-
mation that is not captured by these patterns; many ontological
axioms such as disjointness and axioms involving combinations
of different logical operators often cannot be fully converted to
a graph.

Syntactic approaches

Ontologies in OWL format provide a structured representation
of biological knowledge in the form of logical axioms, and not
all the axioms in an ontology can be represented naturally in a
graph; this limits the ability of these methods to utilize all infor-
mation encoded in the ontology. Syntactic embeddings embed
ontologies in R

n considering only the set of axioms without
creating an intermediate graph-based representation.

Onto2Vec [76] is a method that generates embeddings for
ontology classes and instances taking into account the logical
axioms that define the semantics of ontology classes. Onto2Vec
takes an ontology O as input, uses an automated reasoner
to entail additional logical axioms, mainly subclass axioms
between named classes; it then treats each asserted or inferred
axiom as a sentence and embeds the set of axioms using the
Word2Vec language model. This allows Onto2Vec to embed
ontologies directly based on their axioms while considering all
axiom types, no matter how complex they are.

OPA2Vec [77] extends Onto2Vec to not only include logical
axioms but also OWL annotation properties as well. OWL
annotation properties in ontologies relate classes and relations
to their labels, synonyms, definitions, and other types of
information. OPA2Vec combines the corpus generated from
the asserted and entailed logical axioms in Onto2Vec with
a corpus generated from selected annotation properties (or

all annotation properties). For example, from the annotation
assertion that an OWL class C has a label L (using the rdfs:label
annotation property in the OWL annotation axiom), OPA2Vec
generates the statement C rdfs:label L, using the complete
identifier for C and rdfs:label, and expressing L as a string
literal; for instance, the annotation assertion of the class
Nuclear periphery ( GO:0034399) and its label is expressed as the
sentence “<http://purl.obolibrary.org/obo/GO_0034399> <http://
www.w3.org/2000/01/rdf-schema#label> nuclear periphery”.
The identifier for the class C occurs within the ontology axioms
and obtains parts of its meaning through the axioms; to
ensure that the natural language terms used in the annotation
properties have their ‘natural’ meaning as used in biomedical
texts, OPA2Vec uses transfer learning and pre-trains a Word2Vec
language model on biomedical literature texts, and then updates
the model to generate the embeddings from the axioms plus
annotation property assertions.

Model-theoretic or semantic

None of the embedding methods discussed so far are semantic
in the sense that they use the semantics of the underlying logic
(as discussed in Section 2). Instead, the embedding methods are
based on syntactic co-occurrences or preserving certain graph
properties. However, the main advantage of using languages
with an explicit semantics is that they provide constrains on how
symbols should be interpreted.

EL Embeddings [78] aim to embed ontologies by mapping the
symbols in the ontology into one specific interpretation, i.e. the
embedding is identical to, or approximates, the interpretation
function I discussed in Section 2. Given an ontology O, let �(O)
be the class, relation, and instance symbols in O. EL Embeddings
find an embedding that maps �(O) into R

n, fe : �(O) �→ R
n such

that fe(�(O)) is an interpretation of the axioms in O (i.e. all axioms
in O are true in fe(�(O)), fe(�(O)) |� O). Such an embedding yields
a faithful representation of logical operators and quantifiers.

Formally, EL Embeddings embed classes as n-balls in n-
dimensional space and relations as n-dimensional vectors.
The correspondence with the semantics of the axioms in the
ontology is established by setting the domain of discourse to R

n

and the following condition: for all classes C ∈ �(T) and relations
r ∈ �(T) it defines fe(C) = CI :

CI = {x ∈ R
n| ∥∥fe(C) − x

∥∥ < re(C)},

where re(C) is the radius of the n-ball that corresponds to C, and
fe(r) = rI :

rI = {(x, y)|x + fe(r) = y}

The latter condition is similar to the TransE translation operation
applied to instances.

The embeddings are generated through optimization using a
set of loss functions that correspond to different normal forms
of the axioms in ontologies; such normal forms can be generated
for ontologies formalized in the Description Logic EL [79], but
may not exist for other, more expressive logics. Using these
embeddings it is possible to approximate the intended seman-
tics of the language within the embedding space. In particular, it
can be shown that if the loss can be reduced to zero, the resulting
embedding corresponds to a model of the ontology [78]. Similar
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approaches to EL Embeddings are also investigated for querying
knowledge graphs using logic formulas [80].

Using embeddings as semantic similarity measures
and in machine learning methods

Embeddings can generate (distributed) representations of the
symbols in ontologies while preserving syntactic or seman-
tic properties. These representations—vectors in R

n—can be
visualized using dimensionality reduction techniques such as
principal component analysis or tSNE [81]. They can also be
used to compute similarity using any kind of similarity or dis-
tance measure applicable to real-valued vectors, in particular the
cosine similarity or the Euclidean distance. For example, ontol-
ogy embeddings generated for proteins based on their associa-
tions with classes in the Gene Ontology can be used to determine
whether two proteins are (functionally) similar; this functional
similar can then be used to predict interactions between proteins
based on the hypothesis that similar proteins are more likely to
interact [37, 82].

Another useful applications of ontology embeddings is as
a part of machine learning models in which either a single
embedding is used as input or multiple embeddings are used
as input. Single embeddings can be used in classification and
related tasks. Given an ontology O with individuals I, classes C
and relations R, a (binary) classification function is a function
c : I ∪ C ∪ R �→ {0, 1}, and the task of a machine learning model is
to approximate c. Since I, C and R consist of symbols, machine
learning algorithms that approximate c need to approximate
functions from symbols into {0, 1}. Alternatively, using vector
space embeddings fe : I ∪ C ∪ R �→ R

n, the classification function
c approximated by a machine learning model will be a different
function: c : R

n �→ {0, 1}; overall, the objective to optimize will
be based on the combined function c ◦ fe. The introduction of
fe as part of such problems has several advantages. First, while
the vocabulary of O may be large and consist of thousands of
class, relation and individual symbols, fe usually embeds these
entities in a space of relatively small size (depending on the
chosen parameter n); the embedding preserves certain structural
characteristics of the ontology O similar to a ‘module’ [83] in the
ontology, thereby making this local information available to an
optimization algorithm that finds c; and embeddings in R

n allow
gradient descent methods to be applied directly which are used
in many modern machine learning methods.

Machine learning can also be used to approximate func-
tions that take more than one embeddings as input, and these
functions can then be used to predict relations between the
entities that were embedded [34], or to learn similarity measures
between ontology entities. For example, if the similarity between
two protein embeddings is supposed to be a measure of whether
or not they interact, using a set of proteins that interact can be
used to learn a function that predicts, given two embeddings as
an input, whether the proteins they represent should interact.
Many neural network architectures and other machine learning
models can be used for this task; architectures that are used for
similarity learning, such as Siamese neural networks, seem to
perform well in practice [63].

Machine learning with embeddings generated from ontolo-
gies has been used successfully in several biological applications,
including classifying genes and genetic variants into cancer
driver and non-driver genes/variants [84], detecting (causative)
relations between genes and diseases based on comparing phe-
notypes (and other ontology-based features) [63, 77], predicting
PPIs, as well as identifying drug–target interactions [85].

Ontologies as constraints
Ontologies embeddings are a useful technique to make informa-
tion in ontologies available as background knowledge to define
similarity measures or to learn features for machine learning
models. In these cases, ontologies are used as the input of a simi-
larity function or a machine learning model. However, ontologies
can also be used as an output of a machine learning model and
the axioms in the ontology used to constrain the output of a
function, such as in the case when determining if the predictions
of a machine learning model are consistent with the axioms in
the ontology, or the aim of the model is to predict associations
of an entity with ontology classes.

Ontologies are used as structured output in many domains in
which the primary task is to predict whether some entity has a
relation with one or more ontology classes, such as predicting
genotype–phenotype relations (using phenotype ontologies as
output), predicting gene–disease or drug–disease associations
(using disease ontologies as output), or predicting protein func-
tions (using the Gene Ontology as output). At the very least, these
tasks need to satisfy the hierarchical constraints imposed by the
ontologies in the output space: if an entity e is predicted to be
associated with a class C, and that class C is a subclass of D, then
e must also be associated with D. Similar constraints arise from
other axioms in the ontology [15].

In general, there are at least five different approaches to
using hierarchical relationships as constraints in classification
models: flat, local per node, local per parent, local per level, and
global hierarchical classification [86]. Flat classification is when
the hierarchical constraints are not used during the prediction
or training and the classification is done only using individual
classes, and the consistency with the hierarchical constraints is
enforced by propagating scores along the hierarchy only after
predictions are made. This approach employs the constraints
imposed by the ontology independently from the training or
prediction process. In a local per node setting, a binary classi-
fier is built for every class and predictions are made starting
from the most general classes first and then moving to more
specific ones, and stopping the prediction process once classes
are predicted as negative. In a local per parent and local per
level setting, multi-class classifiers are used for children classes
of a parent or classes at the same level, respectively. Similarly
to local per node classifiers, the prediction is performed in a
step-wise manner from the most general class to more specific
ones, and terminated once predictions are negative. The main
drawback of local classifiers is that all classification models are
trained independently from each other, and during the predic-
tion process errors will propagate from general classes to more
specific ones. Global hierarchical classifiers include the hierar-
chical constraints during training of a machine learning model,
either as soft constraints or hard constraints, and also during
prediction so that the output labels are forced to be consistent
with the ontology axioms. The advantages of these models are
that they take the semantics into account during training and
therefore potentially reduce the search space; and that they
can exploit dependencies between classes during training and
prediction; the disadvantage is often the increased complexity
of these classifiers [86].

While hierarchical machine learning models are used across
many different application domains, life science ontologies are
standing out with their large size and complex set of axioms; it
is no surprise that constrained optimization methods applicable
to large ontologies have emerged from research in bioinfor-
matics. In particular prediction of functions and phenotypes
benefits from machine learning models that are constrained by
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ontologies, as the goal of these methods is to predict the asso-
ciations of a gene or gene product with a set of classes in an
ontology.

The long-running Computational Assessment of Function
Prediction (CAFA) challenge [49] evaluates the state of the art of
computational function and phenotype prediction methods in
regular intervals, and has also established evaluation measures
for measuring performance of predictive models which consider
some of the axioms in an ontology [87]. CAFA is also one of the
drivers in developing novel ontology-based prediction methods.
The key challenge of function prediction related to ontologies
and constraints is the large number of classes; with over 40,000
classes in the Gene Ontology, and a protein potentially having
any combination of these classes as functions, there is a lower
bound of over 9.8 × 104059 possible combinations of functions
a protein may have while remaining consistent with the Gene
Ontology [88]; it is clear that novel methods must be investigated
to reduce the size of this problem space.

Some computational function prediction methods do not use
information about the ontology during training or prediction but
combine and propagate information afterwards [89–91]; others
use hierarchical top-down prediction methods in which the
subclass hierarchy of the ontology is exploited [92]. There are,
however, dedicated machine learning methods that rely on the
ontology structure during training and testing of the models.
A structured Support Vector Machine (SVM) [93] generalizes
an SVM by allowing different structures (sets, trees, graphs,
sequences, etc.) as output. Structured SVMs utilize similarity
measures between the structured objects (such as tree similarity
or graph similarity) in loss functions, and use a cutting plane
method [94] to significantly reduce the number of constraints
that need to be examined. Structured SVMs have been applied
both to the prediction of functions based on the Gene Ontology
[95] and phenotypes based on the Human Phenotype Ontology
[96].

More recently, the focus in function prediction has been on
using different neural network architectures that use ontolo-
gies as part of their structure or optimization objective. In the
context of function prediction using neural networks, research
is primarily done on feature learning (or deep learning) with
neural networks so that it becomes possible to recognize pat-
terns in protein sequences that may be indicative of functions
[16, 17]. However, several methods have also been developed
that specifically incorporate the ontology structure as part of
neural networks. One of the first such models was DeepGO [97]
which used a convolutional neural network for feature learning
and a constrained classifier based on the Gene Ontology for its
predictions. Using sigmoid functions as classifiers, the DeepGO
neural network classifier enforced that the output of the sig-
moid classifier for a class C would be less than the sigmoid
output for any of its superclasses: if C � D then σ (C) ≤ σ (D).
In DeepGO, this constraint is used both during training and
prediction, thereby ensuring that classifications with DeepGO
are consistent (with respect to the subclass axioms in the Gene
Ontology), and also reducing the search space for an optimal
solution. This hierarchical classifier significantly improved pre-
diction performance when compared to “flat” classifiers that do
not consider ontology structure. Further research added several
improvements to the DeepGO classifier, both with respect to
computational complexity [98] and by reformulating the ‘hard’
constraints implemented in DeepGO as “soft” constraints using
Bayesian networks [99]. There are several further methods that
incorporate hierarchical constraints in artificial neural networks

[100–102], mostly using a variation of the methods employed by
ontology-based predictors.

A related research direction uses ontologies to structure
machine learning models themselves. A pioneering study used
the Gene Ontology to form the structure of a neural network
model which was then used to simulate cell growth based on
genotype [103]. The resulting system, DCell [103], creates a small
linear layer of neurons for each class in the Gene Ontology
(or one of its subsets) and connects them according to the
ontology’s subclass hierarchy. DCell not only makes predictions
from genotype to growth phenotype; the direct correspondence
that DCell establishes between an interpretable system like
the Gene Ontology and the neural network architecture used
for DCell’s predictions allows investigating which parts of
the neural network were active in a prediction, and therefore
generate hypotheses about the underlying biological processes
and structures which are active on the pathways that lead
from a genotype to phenotype. The DCell system shows how
ontologies can be used to make the inner workings of neural
networks “visible” and how ontologies can be used to turn
blackbox prediction models into interpretable models. This
correspondence can even be exploited in both directions; the
mathematical relations between different parts of the DCell
model have been used to find relations between biological
systems that function like logic operators, i.e. parts of biological
systems that behave in a Boolean manner [103], and predict
epistatic interactions between complex genotypes involving
three or more genes [104].

Use case and application
Ontologies are used in almost every major biological database.
There are more than 800 ontologies in ontology repositories
such as BioPortal [117] which are used to describe different
biological and biomedical entities. Consequently, ontologies play
a role in many different biomedical machine learning tasks
such as genotype–phenotype association prediction [45, 46, 118],
protein function prediction [49], drug–target prediction [119, 120],
protein–protein interaction prediction [37, 48, 112], gene–disease
association prediction [44, 121] and many others.

Here, we evaluate ontology embedding methods on the task
of predicting interactions between proteins based on the hypoth-
esis that functionally related proteins are more likely to interact.
We demonstrate how different ontology embedding methods
can be applied, and we provide Jupyter Notebooks for all our
experiments at https://github.com/bio-ontology-research-grou
p/machine-learning-with-ontologies. The software needed to
reproduce all results as well as additional useful tools to develop
predictive models with ontologies are summarized in Table 2.

Proteins do not function in isolation, and many biological pro-
cesses and functions are regulated by multiple proteins and their
interactions. Databases such as String [122] collect information
about PPIs from different sources with experimental evidence as
well as PPIs that are computationally inferred and automatically
assigned, and the functions of proteins are described using the
Gene Ontology [15].

We created two PPI datasets, one for interactions occurring
in humans and one for yeast, based on data from the String
database [122]. We filtered out interactions with a confidence
score less than 700 to retain only high confidence interactions.
Table 3 provides the total number of proteins and interactions in
each dataset. We split the two datasets consisting of interaction
pairs into train and test sets, with a ratio of 80% and 20%,

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa199/5922325 by guest on 21 August 2022

https://github.com/bio-ontology-research-group/machine-learning-with-ontologies
https://github.com/bio-ontology-research-group/machine-learning-with-ontologies


10 Kulmanov et al.

Ta
b

le
2.

A
n

ov
er

vi
ew

of
so

ft
w

ar
e

to
ol

s
an

d
ap

p
li

ca
ti

on
s

in
vo

lv
ed

in
co

m
p

u
ti

n
g

se
m

an
ti

c
si

m
il

ar
it

y
an

d
bu

il
d

in
g

m
ac

h
in

e
le

ar
n

in
g

m
et

h
od

s
w

it
h

on
to

lo
gi

es

Ty
p

e
M

et
h

od
/t

oo
l

D
es

cr
ip

ti
on

U
R

L

Pr
oc

es
si

n
g

an
d

p
re

p
ro

ce
ss

in
g

on
to

lo
gi

es
O

W
LA

PI
R

ef
er

en
ce

li
br

ar
y

to
p

ro
ce

ss
O

W
L

on
to

lo
gi

es
,s

u
p

p
or

ts
m

os
t

O
W

L
re

as
on

er
s

[1
05

]
h

tt
p

s:
//

gi
th

u
b.

co
m

/o
w

lc
s/

ow
la

p
i

fu
n

ow
l

Py
th

on
li

br
ar

y
to

p
ro

ce
ss

O
W

L
on

to
lo

gi
es

h
tt

p
s:

//
gi

th
u

b.
co

m
/h

so
lb

ri
g/

fu
n

ow
l

ow
lr

ea
d

y2
Py

th
on

li
br

ar
y

to
p

ro
ce

ss
O

W
L

on
to

lo
gi

es
h

tt
p

s:
//

p
yp

i.o
rg

/p
ro

je
ct

/O
w

lr
ea

d
y2

/
A

p
ac

h
e

Je
n

a
R

D
F

li
br

ar
y

w
it

h
O

W
L

su
p

p
or

t
h

tt
p

s:
//

je
n

a.
ap

ac
h

e.
or

g/
rd

fl
ib

Py
th

on
R

D
F

li
br

ar
y

w
it

h
O

W
L

su
p

p
or

t
h

tt
p

s:
//

gi
th

u
b.

co
m

/R
D

FL
ib

/r
d

fl
ib

Pr
ot

ég
é

O
n

to
lo

gy
ed

it
or

an
d

kn
ow

le
d

ge
en

gi
n

ee
ri

n
g

en
vi

ro
n

m
en

t
[1

06
]

h
tt

p
s:

//
p

ro
te

ge
.s

ta
n

fo
rd

.e
d

u
/

C
om

p
u

ti
n

g
en

ta
il

m
en

ts
,r

ea
so

n
in

g
EL

K
V

er
y

fa
st

re
as

on
er

fo
r

th
e

O
W

L
2

EL
p

ro
fi

le
w

it
h

p
ol

yn
om

ia
l

w
or

st
-c

as
e

ti
m

e
co

m
p

le
xi

ty
[1

07
]

h
tt

p
s:

//
gi

th
u

b.
co

m
/l

iv
eo

n
to

lo
gi

es
/e

lk
-r

ea
so

n
er

H
er

m
iT

A
u

to
m

at
ed

re
as

on
er

su
p

p
or

ti
n

g
m

os
t

of
O

W
L

ax
io

m
s

w
it

h
ex

p
on

en
ti

al
w

or
st

-c
as

e
co

m
p

le
xi

ty
[1

08
]

h
tt

p
:/

/w
w

w
.h

er
m

it
-r

ea
so

n
er

.c
om

/

Pe
ll

et
O

W
L

re
as

on
er

su
p

p
or

ti
n

g
m

os
t

of
th

e
O

W
L

co
n

st
ru

ct
s

an
d

su
p

p
or

ti
n

g
se

ve
ra

la
d

d
it

io
n

al
fe

at
u

re
s

[1
09

]
h

tt
p

s:
//

gi
th

u
b.

co
m

/s
ta

rd
og

-u
n

io
n

/p
el

le
t

G
en

er
at

in
g

gr
ap

h
s

fr
om

on
to

lo
gi

es
O

B
O

G
ra

p
h

s
Sy

n
ta

ct
ic

co
n

ve
rs

io
n

of
on

to
lo

gi
es

to
gr

ap
h

s,
ta

rg
et

ed
at

O
B

O
on

to
lo

gi
es

h
tt

p
s:

//
gi

th
u

b.
co

m
/g

en
eo

n
to

lo
gy

/o
bo

gr
ap

h
s

O
n

to
2G

ra
p

h
Se

m
an

ti
c

co
n

ve
rs

io
n

of
O

W
L

on
to

lo
gi

es
to

gr
ap

h
s,

fo
ll

ow
in

g
th

e
ax

io
m

p
at

te
rn

s
of

th
e

O
B

O
R

el
at

io
n

O
n

to
lo

gy
[1

10
]

h
tt

p
s:

//
gi

th
u

b.
co

m
/b

io
-o

n
to

lo
gy

-r
es

ea
rc

h
-g

ro
u

p
/O

n
to

2G
ra

p
h

C
om

p
u

ti
n

g
se

m
an

ti
c

si
m

il
ar

it
y

Se
m

an
ti

c
M

ea
su

re
s

Li
br

ar
y

C
om

p
re

h
en

si
ve

Ja
va

li
br

ar
y

to
co

m
p

u
te

se
m

an
ti

c
si

m
il

ar
it

y
m

ea
su

re
s

ov
er

on
to

lo
gi

es
[5

7]
h

tt
p

:/
/w

w
w

.s
em

an
ti

c-
m

ea
su

re
s-

li
br

ar
y.

or
g/

sm
l/

se
m

at
ch

Py
th

on
li

br
ar

y
to

co
m

p
u

te
se

m
an

ti
c

si
m

il
ar

it
y

on
kn

ow
le

d
ge

gr
ap

h
s

[1
11

]
h

tt
p

s:
//

gi
th

u
b.

co
m

/g
si

-u
p

m
/s

em
at

ch

D
iS

h
In

Py
th

on
li

br
ar

y
fo

r
se

m
an

ti
c

si
m

il
ar

it
y

on
on

to
lo

gi
es

[1
12

]
h

tt
p

s:
//

gi
th

u
b.

co
m

/l
as

ig
eB

io
T

M
/D

iS
h

In
Em

be
d

d
in

g
gr

ap
h

s
O

W
L2

V
ec

M
et

h
od

th
at

co
m

bi
n

es
ge

n
er

at
io

n
of

gr
ap

h
s

fr
om

on
to

lo
gi

es
,

ra
n

d
om

w
al

ks
on

th
e

ge
n

er
at

ed
gr

ap
h

s
an

d
ge

n
er

at
io

n
of

em
be

d
d

in
gs

u
si

n
g

W
or

d
2V

ec
.S

yn
ta

ct
ic

al
ly

p
ro

ce
ss

es
m

os
t

O
W

L
ax

io
m

s
[2

6]

h
tt

p
s:

//
gi

th
u

b.
co

m
/o

h
ol

te
r/

m
at

ch
er

-w
it

h
-w

o
rd

-e
m

be
d

in
gs

D
L2

V
ec

M
et

h
od

th
at

co
m

bi
n

es
ge

n
er

at
io

n
of

gr
ap

h
s

fr
om

on
to

lo
gi

es
,

ra
n

d
om

w
al

ks
on

th
e

ge
n

er
at

ed
gr

ap
h

s
an

d
ge

n
er

at
io

n
of

em
be

d
d

in
gs

u
si

n
g

W
or

d
2V

ec
.S

yn
ta

ct
ic

al
ly

p
ro

ce
ss

es
m

os
t

O
W

L
ax

io
m

s
[6

3]

h
tt

p
s:

//
gi

th
u

b.
co

m
/b

io
-o

n
to

lo
gy

-r
es

ea
rc

h
-g

ro
u

p
/D

L2
V

ec

W
al

ki
n

g
R

D
F&

O
W

L
M

et
h

od
th

at
co

m
bi

n
es

ge
n

er
at

io
n

of
gr

ap
h

s
fr

om
on

to
lo

gi
es

,
ra

n
d

om
w

al
ks

on
th

e
ge

n
er

at
ed

gr
ap

h
s

an
d

ge
n

er
at

io
n

of
em

be
d

d
in

gs
u

si
n

g
W

or
d

2V
ec

.O
n

ly
co

n
si

d
er

s
th

e
on

to
lo

gy
ta

xo
n

om
y.

[6
4]

h
tt

p
s:

//
gi

th
u

b.
co

m
/b

io
-o

n
to

lo
gy

-r
es

ea
rc

h
-g

ro
u

p
/w

al
ki

n
g-

rd
f-

an
d

-o
w

l

R
D

F2
V

ec
M

et
h

od
to

em
be

d
R

D
F

gr
ap

h
s

[6
2]

h
tt

p
s:

//
gi

th
u

b.
co

m
/I

B
C

N
Se

rv
ic

es
/p

yR
D

F2
V

ec
,

h
tt

p
s:

//
gi

th
u

b.
co

m
/d

w
sl

ab
/j

R
D

F2
V

ec
N

od
e2

V
ec

M
et

h
od

to
em

be
d

gr
ap

h
s

u
si

n
g

bi
as

ed
ra

n
d

om
w

al
ks

[6
6]

h
tt

p
:/

/s
n

ap
.s

ta
n

fo
rd

.e
d

u
/n

od
e2

ve
c/

Py
K

EE
N

,B
io

K
EE

N
To

ol
ki

t
fo

r
ge

n
er

at
in

g
kn

ow
le

d
ge

gr
ap

h
em

be
d

d
in

gs
u

si
n

g
se

ve
ra

l
d

if
fe

re
n

t
ap

p
ro

ac
h

es
[1

13
,1

14
]

h
tt

p
s:

//
gi

th
u

b.
co

m
/S

m
ar

tD
at

aA
n

al
yt

ic
s/

Py
K

EE
N

O
p

en
K

E
Li

br
ar

y
an

d
to

ol
ki

t
fo

r
ge

n
er

at
in

g
kn

ow
le

d
ge

gr
ap

h
em

be
d

d
in

gs
h

tt
p

s:
//

gi
th

u
b.

co
m

/t
h

u
n

lp
/O

p
en

K
E

C
on

ti
nu

ed

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa199/5922325 by guest on 21 August 2022

https://github.com/owlcs/owlapi
https://github.com/hsolbrig/funowl
https://pypi.org/project/Owlready2/
https://jena.apache.org/
https://github.com/RDFLib/rdflib
https://protege.stanford.edu/
https://github.com/liveontologies/elk-reasoner
http://www.hermit-reasoner.com/
https://github.com/stardog-union/pellet
https://github.com/geneontology/obographs
https://github.com/bio-ontology-research-group/Onto2Graph
https://github.com/bio-ontology-research-group/Onto2Graph
http://www.semantic-measures-library.org/sml/
https://github.com/gsi-upm/sematch
https://github.com/lasigeBioTM/DiShIn
https://github.com/oholter/matcher-with-word-embedings
https://github.com/oholter/matcher-with-word-embedings
https://github.com/bio-ontology-research-group/DL2Vec
https://github.com/bio-ontology-research-group/DL2Vec
https://github.com/bio-ontology-research-group/walking-rdf-and-owl
https://github.com/bio-ontology-research-group/walking-rdf-and-owl
https://github.com/IBCNServices/pyRDF2Vec
https://github.com/dwslab/jRDF2Vec
http://snap.stanford.edu/node2vec/
https://github.com/SmartDataAnalytics/PyKEEN
https://github.com/thunlp/OpenKE


Semantic similarity and machine learning with ontologies 11

Ta
b

le
2.

C
on

ti
n

u
e

Ty
p

e
M

et
h

od
/t

oo
l

D
es

cr
ip

ti
on

U
R

L

Py
To

rc
h

G
eo

m
et

ri
c

Li
br

ar
y

fo
r

gr
ap

h
n

eu
ra

ln
et

w
or

ks
w

h
ic

h
ca

n
be

u
se

d
to

ge
n

er
at

e
gr

ap
h

em
be

d
d

in
gs

[1
15

]
h

tt
p

s:
//

gi
th

u
b.

co
m

/r
u

st
y1

s/
p

yt
or

ch
_g

eo
m

et
ri

c

Em
be

d
d

in
ga

xi
om

s
O

n
to

2V
ec

Em
be

d
d

in
gs

ba
se

d
on

tr
ea

ti
n

g
lo

gi
ca

la
xi

om
s

as
a

te
xt

co
rp

u
s

[7
6]

h
tt

p
s:

//
gi

th
u

b.
co

m
/b

io
-o

n
to

lo
gy

-r
es

ea
rc

h
-g

ro
u

p
/o

n
to

2v
ec

O
PA

2V
ec

Em
be

d
d

in
gs

th
at

co
m

bi
n

e
lo

gi
ca

la
xi

om
s

w
it

h
an

n
ot

at
io

n
p

ro
p

er
ti

es
an

d
th

e
li

te
ra

tu
re

[7
7]

h
tt

p
s:

//
gi

th
u

b.
co

m
/b

io
-o

n
to

lo
gy

-r
es

ea
rc

h
-g

ro
u

p
/o

p
a2

ve
c

EL
Em

be
d

d
in

gs
Em

be
d

d
in

gs
th

at
ap

p
ro

xi
m

at
e

th
e

in
te

rp
re

ta
ti

on
fu

n
ct

io
n

an
d

p
re

se
rv

e
se

m
an

ti
cs

fo
r

in
te

rs
ec

ti
on

,e
xi

st
en

ti
al

q
u

an
ti

fi
er

s
an

d
bo

tt
om

[7
8]

h
tt

p
s:

//
gi

th
u

b.
co

m
/b

io
-o

n
to

lo
gy

-r
es

ea
rc

h
-g

ro
u

p
/e

l-
em

be
d

d
in

gs

O
n

to
lo

gy
-b

as
ed

co
n

st
ra

in
ed

le
ar

n
in

g
D

ee
p

G
O

Im
p

le
m

en
ts

an
on

to
lo

gy
-b

as
ed

h
ie

ra
rc

h
ic

al
cl

as
si

fi
er

fo
r

fu
n

ct
io

n
p

re
d

ic
ti

on
.T

h
e

h
ie

ra
rc

h
ic

al
cl

as
si

fi
ca

ti
on

m
od

u
le

is
ge

n
er

ic
an

d
ca

n
be

u
se

d
w

it
h

ot
h

er
on

to
lo

gi
es

an
d

ap
p

li
ca

ti
on

s
[9

7]

h
tt

p
s:

//
gi

th
u

b.
co

m
/b

io
-o

n
to

lo
gy

-r
es

ea
rc

h
-g

ro
u

p
/d

ee
p

go

D
EE

Pr
ed

A
u

to
m

at
ed

Pr
ot

ei
n

Fu
n

ct
io

n
Pr

ed
ic

ti
on

w
it

h
M

u
lt

i-
ta

sk
Fe

ed
-f

or
w

ar
d

D
ee

p
N

eu
ra

lN
et

w
or

ks
[1

16
]

h
tt

p
s:

//
gi

th
u

b.
co

m
/c

an
sy

l/
D

EE
Pr

ed

D
C

el
l,

O
n

to
ty

p
e

D
ee

p
n

eu
ra

ln
et

w
or

ks
st

ru
ct

u
re

d
ba

se
d

on
on

to
lo

gy
ax

io
m

s
to

en
ab

le
in

te
rp

re
ta

bi
li

ty
an

d
en

co
d

e
th

e
bi

ol
og

ic
al

st
ru

ct
u

re
of

a
ce

ll
w

it
h

in
th

e
n

eu
ra

ln
et

w
or

k
[1

03
,1

04
]

h
tt

p
:/

/d
-c

el
l.u

cs
d

.e
d

u
/

D
ee

p
M

iR
2G

O
In

fe
rr

in
g

Fu
n

ct
io

n
s

of
H

u
m

an
M

ic
ro

R
N

A
s

U
si

n
g

a
D

ee
p

M
u

lt
i-

La
be

lC
la

ss
if

ic
at

io
n

M
od

el
[1

02
]

h
tt

p
s:

//
gi

th
u

b.
co

m
/J

C
h

an
d

er
/D

ee
p

M
iR

2G
O

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa199/5922325 by guest on 21 August 2022

https://github.com/rusty1s/pytorch_geometric
https://github.com/bio-ontology-research-group/onto2vec
https://github.com/bio-ontology-research-group/onto2vec
https://github.com/bio-ontology-research-group/opa2vec
https://github.com/bio-ontology-research-group/opa2vec
https://github.com/bio-ontology-research-group/el-embeddings
https://github.com/bio-ontology-research-group/el-embeddings
https://github.com/bio-ontology-research-group/deepgo
https://github.com/bio-ontology-research-group/deepgo
https://github.com/cansyl/DEEPred
http://d-cell.ucsd.edu/
https://github.com/JChander/DeepMiR2GO


12 Kulmanov et al.

Table 3. The total number of proteins and number of unique interaction pairs in training, testing, and validation datasets.

Organism Proteins Total Training Validation Testing

Yeast 6,157 119,051 76,193 19,048 23,810
Human 17,185 420,534 269,143 67,285 84,106

respectively, and we used 20% of the training set as a validation
set. We used these two datasets as benchmark sets for evaluating
ontology embedding and semantic similarity methods, and we
made the datasets with documentation publicly available for
download and provided the links in our public repository so
that anybody can use the same data to benchmark and com-
pare ontology-based prediction methods; we intend to keep the
benchmark updated when we become aware of new results.
The training and validation sets should be used to train and
tune model parameters and select the best models, while the
evaluation results and comparisons should be reported using the
test set.

We predicted PPIs based on the associations of proteins with
their functions and cellular locations represented in the Gene
Ontology [15, 123], known interactions between proteins and
the axioms contained in the Gene Ontology. One key question
is how to represent these three types of knowledge as axioms
in an ontology or knowledge base. We adopted a representa-
tion scheme in which all entities (proteins, functions, cellular
locations) are classes and the relations between the entities
are expressed as axioms [30, 124]. Specifically, if there is an
interaction between proteins P1 and P2, we asserted the axioms
P1 � ∃interacts-with.P2 and P2 � ∃interacts-with.P1; if protein
P is associated with a Gene Ontology class C, we asserted the
axiom P � ∃has-function.C. We combined this set of axioms with
the Gene Ontology (released on 22 February 2020) to form our
knowledge base.

For graph-based embedding methods, we generated a graph
by creating an edge for existential restrictions in subclass
axioms: if X � ∃R.Y is an (asserted) axiom in the knowledge
base (consisting of the Gene Ontology together with the axioms
we added), we created nodes X and Y, and an edge from X
to Y labeled R. For the Onto2Vec and OPA2Vec embedding
methods, we use the Gene Ontology together with the set
of protein associations as input; Onto2Vec and OPA2Vec also
compute the deductive closure of the resulting axioms (with
respect to subclass axioms) and adds the entailed axioms to
the knowledge base. The Jupyter Notebook data.ipynb in our
repository provides source code to generate the datasets, the
splits, and the input files for the different embedding methods.

We then generated ontology embeddings using EL Embed-
dings, Onto2Vec and OPA2Vec, and used the generated graph
to produce embeddings through random walks, biased random
walks (Node2Vec) and TransE. Only Onto2Vec and OPA2Vec use
an automated reasoner to explicitly compute and add entail-
ments while the other embedding methods either do not use
any entailed axioms or generate and use them only implicitly.
We then use these embeddings, as well as two semantic simi-
larity measures (Resnik’s [53] and Lin’s [50]), to predict PPIs. For
embeddings based on random walks, Onto2Vec and OPA2Vec,
we use cosine similarity to compute the pairwise similarity of
all pairs of proteins in our dataset, including the proteins in
the training, test, and validation sets. TransE embeddings and
EL Embeddings use a prediction function that not only depends
on the embeddings of the entities but also the relation that
should hold between them (see Section 4.1), and we use the

prediction functions for interacts-with edges and compute
a prediction score for all pairs of proteins in our dataset. We
further use the semantic similarity measures to compute the
similarity between all pairs of proteins. We use the similarity,
or the values of the prediction functions for EL Embeddings and
TransE, as predictions for an interactions between two proteins.

These predictions methods all rely exclusively on the embed-
dings generated and a similarity function between the embed-
dings (cosine similarity in most cases). However, the embeddings
can also be used as part of a supervised machine learning model
to predict the relations between protein; such an approach has
the potential to improve the predictive performance results [76,
77], depending on the chosen machine learning model [63].
There are many possible machine learning methods and neural
network architectures to use for these predictions and we cannot
review all of them here. We only include a single example of
using the ontology annotations in a Siamese neural network
within the executable notebooks we provide. We train two mod-
els which use Gene Ontology classes as features represented as
a binary vector and predict PPIs. The first model (SiameseNN in
Table 4 and Table 5) uses classes that are specifically used in the
annotations as input, and the second model (SiameseNN (Ont) in
Table 4 and Table 5) adds all the superclasses and other related
classes according to the true path rule in the Gene Ontology; both
models use three dense layers of size 1024, 512 and 256 followed
by the dot product and a sigmoid activation function to predict
associations. Our results show that using the ontology structure
improves performance of these predictions; furthermore, this
model is the only one in which the prediction function itself is
generated through machine learning while the other methods
use a fixed similarity function; even without incorporating much
of the ontology structure as features this approach performs
well. Instead of binary vectors, a similar neural network archi-
tecture could be used with embedding vectors as inputs, and this
approach can further improve the performance [77].

In the evaluation, for each protein p we rank all other pro-
teins pi based on their similarity (or the value of the prediction
function) to p. We then consider positives as pairs (p, pk) which
are PPIs included in our test set, and we report hits (recall)
at ranks 10 and 100, mean rank at which the PPIs are found,
and the ROCAUC (using micro-averages per protein). Results
are separated in Raw and Filtered; Raw results evaluate all pairs
of proteins while Filtered results evaluate all pairs of proteins
except the pairs that are included in the training or validation
sets. Filtered results are usually better since training pairs are
not considered in the evaluation. We made Jupyter Notebooks
available for all our experiments, and Table 4 summarizes the
results for yeast and Table 5 for human; all results in these tables
can be reproduced using the Jupyter Notebooks.

Overall, while our results are by no means a comprehensive
evaluation and are limited to the task of predicting PPIs, and
most of the methods we use rely on unsupervised methods, we
can obtain some information from our experiments. Traditional
semantic similarity measures, in particular Resnik’s measure
[53], perform well across many evaluations, in particular in
recall at the first ranks, and often has better performance than
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Table 4. Prediction performance for yeast PPIs. Best-performing results are highlighted in bold

Method Raw
Hits@10

Filtered
Hits@10

Raw
Hits@10

Filtered
Hits@100

Raw mean
rank

Filtered
mean rank

Raw AUC Filtered AUC

TransE 0.06 0.13 0.32 0.40 1125.4 1074.8 0.82 0.83
SimResnik 0.09 0.17 0.38 0.48 757.8 706.9 0.86 0.87
SimLin 0.08 0.15 0.33 0.41 875.4 824.5 0.84 0.85
SiameseNN 0.06 0.17 0.46 0.68 674.3 622.2 0.89 0.90
SiameseNN (Ont) 0.08 0.19 0.50 0.72 543.6 491.6 0.91 0.92
EL Embeddings 0.08 0.17 0.44 0.62 451.3 394.0 0.92 0.93
Onto2Vec 0.08 0.15 0.35 0.48 641.1 587.9 0.79 0.80
OPA2Vec 0.06 0.13 0.39 0.58 523.3 466.6 0.87 0.88
Random walk 0.06 0.13 0.31 0.40 612.6 587.4 0.87 0.88
Node2Vec 0.07 0.15 0.36 0.46 589.1 522.4 0.87 0.88

Table 5. Prediction performance for human PPIs. Best-performing results are highlighted in bold

Method Raw
Hits@10

Filtered
Hits@10

Raw
Hits@10

Filtered
Hits@100

Raw mean
rank

Filtered
mean rank

Raw AUC Filtered AUC

TransE 0.05 0.11 0.24 0.29 3960.4 3890.6 0.78 0.79
SimResnik 0.05 0.09 0.25 0.30 1933.6 1864.4 0.88 0.89
SimLin 0.04 0.08 0.20 0.23 2287.9 2218.7 0.86 0.87
SiameseNN 0.05 0.15 0.41 0.64 1881.10 1808.8 0.90 0.89
SiameseNN (Ont) 0.05 0.13 0.38 0.59 1838.31 1766.3 0.89 0.89
EL Embeddings 0.01 0.02 0.22 0.26 1679.72 1637.7 0.90 0.90
Onto2Vec 0.05 0.08 0.24 0.31 2434.6 2391.2 0.77 0.77
OPA2Vec 0.03 0.07 0.23 0.26 1809.7 1767.6 0.86 0.88
Random walk 0.04 0.10 0.28 0.34 1942.6 1958.6 0.85 0.86
Node2Vec 0.03 0.07 0.22 0.28 1860.5 1813.1 0.86 0.87

ontology embedding methods combined with cosine similarity;
this property has also been observed in other applications where
Resnik’s measure performs better than most other unsuper-
vised methods [58, 76]. Moreover, exploiting more of the axioms
generally yields better results as can be seen when comparing
EL Embeddings with other embedding methods. Furthermore,
exploiting longer, or more indirect, relations, either through
random walks on graphs or through utilizing the semantics,
usually improves results over methods that are based on local
properties or simple adjacency.

While there is no ontology embedding method which is
clearly superior to others, each of the methods has its own
advantages and disadvantages. Representing ontologies as
graphs leads to some loss of the information encoded in axioms
which cannot be naturally represented in a graph. Syntactic
embedding methods, on the other hand, have the advantage of
being able to use all axioms in the ontology, including the ones
which cannot be represented in a graph, and are not limited to
particular axiom types or expressivity of the formal language.
Semantic (model-based) embeddings such as EL Embeddings
can use the model-theoretic semantics of formal languages
but cannot easily be extended to new languages since they
require specific loss functions to be designed which may prove
challenging for some languages. An advantage of embeddings
that rely on language models such as Word2Vec is that they
can easily be combined with information in natural language,
while different extensions for multi-modal embeddings exist
for other methods [125] which usually require extending the
model. Natural language texts can have information that is
complementary to the structured information in ontologies, and
combining structured information with text can often improve
predictive model performance [126].

There are also different ways in which embeddings and
ontologies can be used to predict associations, and they have
different advantages and disadvantages as well. Semantic
similarity measures determine similarity between entities in
ontologies, are usually hand-crafted and interpretable. Ontology
embeddings can be used with vector similarity measures such
as cosine similarity, but interpretability is difficult to obtain as
the embeddings are not generally invertible (i.e. given the image
of an embedding, it is not possible to reconstruct its domain).
Embeddings can also be used with additional machine learning
algorithms to generate associations; these supervised methods
usually perform better than using a fixed similarity measure
as supervised learning can find functions that account for the
specific features of the data and application of interest.

Limitations and future work
Machine learning using ontologies involves a set of emerging
techniques that have their roots in computer science and major
applications in the life sciences where a large amount of ontolo-
gies have been developed and are applied to characterize data.
Currently, several methods that allow background knowledge to
be used by machine learning models are based on knowledge
graphs and graph embeddings, and while these methods can
be very successful, they lack the ability to utilize the model-
theoretic semantics underlying ontologies. Ontologies, and rep-
resentation artifacts based on similar formalisms, have the abil-
ity to represent more complex forms of knowledge, including
using quantifiers, intersection, negation, and have the ability to
represent inconsistent knowledge. Strong negation, for exam-
ple, is crucial in constraining search and cannot be substituted
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with the limited form of negation that is sometimes applied in
knowledge graphs (i.e. the closed world assumption in which
facts that are not stated are considered false). However, while
ontologies are able to express strong negation and other complex
facts or rules, most ontology embedding methods are not yet
able to adequately utilize them. Most syntactic and graph-based
approaches do not interpret negation as constraints, or use any
of the semantics associated with it, and can therefore not use
negation to restrict search; and while model-based embeddings
can utilize negation as part of the embedding they do not interact
with the similarity measures or machine learning models that
utilize the resulting embeddings.

Several approaches aim to systematically integrate symbolic
representations and machine learning. Neuro-symbolic systems
and neuro-symbolic integration [127, 128] provide a framework
in which machine learning is integrated with symbolic repre-
sentations; in the neuro-symbolic cycle, deductive inference is
applied on the symbolic representations; embeddings project
these representations into some space where they can be com-
bined with data and where machine learning and optimization
methods can be applied; and a knowledge extraction process
maps the results back into the symbolic space. How to imple-
ment either of these projections is an active research area several
of which we have reviewed here, and neuro-symbolic systems
aims to put them together into a single framework. One crucial
component in this cycle is the knowledge extraction which can
be formulated as inverting an embedding (i.e. if fη is an embed-
ding mapping the symbols �(O) occurring in an ontology O into
R

n, find f−1
η that maps from R

n into �(O)); while there are invert-
ible linear embeddings into vector spaces [129, 130] they have
not been explored in the context of symbolic representations
such as ontologies. There is also recent interest in implementing
the entire neuro-symbolic cycle, for example in vision [131];
however, with the rich set of formalized knowledge bases and
the large amounts of data produced in the life sciences, we
expect these systems to have major impact on how AI is applied
in biology and biomedicine in the future.

Approaches to improve learning with ontologies while
preserving and exploiting their semantics do not only include
investigating embeddings into vector spaces (which, arguably,
are mainly inspired by the needs of modern machine learning
systems) but also approaches based on formal languages and
logic, including Markov logic [132] and probabilistic inference
[133]. Similarly, for extracting knowledge from data, new
paradigms such as ‘reinforcement learning as inference’ [134]
are increasingly being applied to generate explanations and
representations that can be verified for consistency with
background knowledge [135–137]. These methods signifi-
cantly extend research that has been done in inductive logic
programming and are another active area of research.

One main limitation of all the approaches we discussed here
is their inability to consider quantitative information or data. In
all cases, ontologies are used to model qualitative information
and then possibly combined with other quantitative informa-
tion after an embedding is generated; methods that can jointly
learn on ontologies and quantitative information mapped to
them include graph neural networks [138] which will likely see
increasing adoption in the coming years.

Here, we reviewed methods that use ontologies as back-
ground knowledge to solve biomedical problems. The meth-
ods we reviewed range from semantic similarity over various
forms of unsupervised feature learning (embedding) methods to
constraining machine learning models using ontologies. These
methods have in common that they use ontologies to solve

biomedical problems that reside outside the domain of research
on the ontologies themselves. However, there can be substantial
methodological overlap with research on ontology engineer-
ing, ontology learning, quality control, querying, and reasoning
with ontologies, as ontology embeddings can also be used for
ontology alignment [139–141], as part of automated reasoning
systems [142, 143] or to query knowledge bases [80, 144]. In the
future, we expect to see even more integrated research on devel-
oping ontologies, ontology infrastructure and novel biomedical
applications to which they can be applied.

Key Points
• Ontologies provide background knowledge that can be

exploited in machine learning models.
• Ontology embeddings are structure-preserving maps

from ontologies into vector spaces and provide an
important method for utilizing ontologies in machine
learning. Embeddings can preserve different struc-
tures in ontologies, including their graph structures,
syntactic regularities or their model-theoretic seman-
tics.

• Axioms in ontologies, in particular those involving
negation, can be used as constraints in optimization
and machine learning to reduce the search space.
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