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Due to the high availability and also the distributed nature of published web services on
the Web, efficient discovery and retrieval of relevant services that meet user requirements
can be a challenging task. In this paper, we present a semantics based web service re-
trieval framework that uses natural language processing techniques to extract a service’s
functional information. The extracted information is used to compute the similarity
between any given service pair, for generating additional metadata for each service and
for classifying the services based on their functional similarity. The framework also adds
natural language querying capabilities for supporting exact and approximate matching of
relevant services to a given user query. We present experimental results that show that
the semantic analysis & automatic tagging effectively captured the inherent functional
details of a service and also the similarity between different services. Also, a significant
improvement in precision and recall was observed during Web service retrieval when com-
pared to simple keyword matching search, using the natural language querying interface
provided by the proposed framework.
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sification; Natural language processing
Communicated by: M. Gaedke & O. Diaz

1. Introduction

Service orientation has played a very important role in the development and deployment
of distributed systems over the Web. As the standardized approach for implementing ser-
vice oriented systems on the Web platform, Web services have gained immense popularity in
multi-domain enterprise system integration. Given the tremendous potential that full service
orientation brings to enterprises, the number of published services available on the Web has
increased greatly in recent years [1]. Hence, there is a need for automated approaches for
improving tasks like service discovery and retrieval for seamless integration. However, dis-
covering these published services in a distributed environment is still a challenging task due
to their large numbers, the heterogeneous sources on the Web from which they are available
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and also the availability of mostly syntactic service descriptions.
At present, most Web search engines mainly rely on matching keywords from the user

query with those in the indexed webpages and returning a ranked list based on their own
proprietary algorithms. However, when applied to web services, keyword matching will result
in poor precision mainly because the documentation is not as content-rich as that of a normal
webpage. If the exact word is not present in the service’s natural language description, then
it would simply not be included in the generated results. Hence, potentially relevant services
may never be in the result set, while others with the same keywords used in different contexts
may feature on it, thus affecting precision. This was also the problem that was faced in the
UDDIa Universal Business Registry, as web service search result generation was primarily
by keyword matching. This problem is compounded by the fact that, in general, a service’s
natural language documentation provided by service providers is often insufficient. It is
usually less than 20 words in length, quite generic and sometimes even non-existent [2, 3, 4].

As services are openly accessible on the open Web, adapted conventional information
retrieval (IR) methods with additional semantics can be used to find published services and
discover relevant ones for given requirements. Popular search engines now employ emerging
new technology in the field of machine learning, natural language processing (NLP) and se-
mantics to provide better and more accurate results. Hence, these techniques can also be used
to enhance the efficacy of service discovery on the Web. Based on these concepts, we intend
to develop a framework for facilitating web service discovery based on semantics and NLP
techniques. In this paper, we present a framework for web service discovery by semantically
analyzing real world web service descriptions to capture their functional information. Using
the extracted functional semantics, services are tagged and classified. The framework also
supports natural language querying for exact and approximate matching of relevant services
for a given user request. The main contributions of the work presented in this paper are -

1. Similarity analysis of real world web services by using their functional information.

2. Automatic metadata generation using the extracted functional semantics of a service.

3. Similarity based classification of tagged services, and generation of metadata for each
class using the metadata of services belonging to that particular class.

4. Semantic analysis of the user query to capture user context to improve the matchmaking
and ranking process for effectively meeting user requirements.

The paper is organized as follows. Section 2 discusses existing work in the area of web
service search and discovery. In section 3, we discuss the proposed system, its components
and processes in brief. Section 4 presents a detailed description of the processes of feature
extraction, service similarity computation and automatic tagging of services. In section 5, we
describe the process of web service classification using the computed similarity and the tags
generated for each service. In section 6, the process of semantic analysis of user query and
service discovery using the semantically processed service dataset and query is discussed. The
experimental evaluation of the proposed methodology and the results obtained during web
service retrieval is presented in section 7, followed by conclusion & future work and references.
aUniversal Descriptions, Discovery and Integration, http://uddi.xml.org/



112 Semantic Similarity Based Context-Aware Web Service Discovery Using NLP Techniques

2. Related work

Many researchers have tried to tackle the problem of web service discovery and the lack
of semantics in service descriptions by proposing techniques for semi-automated annotation
of service interfaces. Patil et al [5] developed a framework called METEOR-S Semantic
Web Service Annotation Framework (MWSAF) for semi-automated annotation of web service
interfaces. Verma et al [6] used SAWSDLb service descriptions for semantics supported service
discovery. Several researchers focused on the problem of mapping WSDL to OWL-Sc to
semantically enhance and describe the functionalities, capabilities and profile information
of a service [7, 8]. Keller et al [9] used WSMOd to semantically define a service’s goals,
preconditions and effects to organize available services, for improving the service discovery
process.

However, the main issue with these approaches is that it is an extremely difficult task to
annotate all available service descriptions semi-automatically, especially since the number of
already published services available on the Web is large. Semi-automatic annotation of service
interfaces is time consuming even with the few tools that are available currently, as all of them
require manual intervention. It is clearly impractical to expect all service providers to make
available explicitly defined semantic descriptions for their published descriptions. Hence, any
service discovery method must be able to overcome the lack of semantics despite having to
deal with syntactic service descriptions.

In view of this problem, several researchers proposed various techniques to mitigate these
issues in service discovery. Dong et al [10] used WSDL operation similarity & other parameters
for clustering a given service dataset and experimentally showed that a clustering algorithm
to semantically cluster services resulted in a significant increase in precision and recall. They
also developed a specialized web service search engine called Woogle based on this technique,
which is not online anymore. Other efforts at building a service discovery engine, Seekda!
[11] and Service-finder [12] employed clustering of various functional parameters of services
for relevant service discovery and also similar service discovery. The system also allowed
Web 2.0 style user interaction by allowing users to tag services with their own tags. This
system reportedly contained the details of more than 15,000 services, but both Seekda! and
Service-finder are currently unavailable.

Recently, researchers have focused on using the inherent meaning in the natural language
terms in a service description for tasks like discovery, clustering and service matchmaking.
Nayak et al [13] used semantic processing of services using OWL-S and WordNet for enhancing
service retrieval efficiency and reported good results. Sajjanhar et al [14] applied Latent
Semantic Indexing (LSI) on the natural language documentation of a web Service descriptions
for understanding the functional capabilities of a service. Chan et al [15] and Hao et al [16]
applied the concepts of vector space model based indexing for extracting feature vectors
from each service. Paliwal et al [17] proposed a method for semantics based discovery that
first clusters service published in an UDDI using an ontology hierarchy. They also enhance
the service request using ontologies to achieve semantics based matchmaking between relevant
services and the service request. Others applied Probabilistic LSI [18] on WSDL documents in

bSemantic Annotations for WSDL and XML Schema http://www.w3.org/TR/sawsdl/
cWeb Ontology Language for Services http://www.w3.org/Submission/OWL-S/
dWeb Service Modeling Ontology, www.wsmo.org

http://www.w3.org/TR/sawsdl/
http://www.w3.org/Submission/OWL-S/
www.wsmo.org
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order to extract the inherent semantics about the service’s functional description for clustering
and fast retrieval [19, 20]. Fang et al [21] used handmade (manual) tags and tag enriching
methods to cluster web services and showed that their system achieved good results. Elgazzar
et al [22] used Normalized Google Distance [23] for computing the relative similarity between
various terms extracted from a dataset of 400 services and applied clustering to the services
as a preliminary step to web service discovery.

In the proposed approach, we focus on using the inherent functional semantics of published
real world web services for finding relevant services for a given query during service retrieval.
The extracted information is enhanced using semantics based approaches and NLP techniques
to generate additional metadata for each service in the form of tags. Services are then classified
into domain specific classes to reduce the search space, after which generated classes are also
tagged. The proposed system also incorporates a natural language querying interface to
capture user requirements and context for effective web service discovery.

3. Proposed System

Figure 1 depicts the system architecture of the proposed framework. The main processes of
the proposed system are discussed briefly below.

Fig. 1. Proposed system architecture

The methodology and processes can be divided into the offline processes and an online
processes

1. Offline Processes

• Web Service Similarity and Automatic Service Tagging: This process deals with
the extraction of functional information from a service’s WSDL document. Each
service document in the dataset is first parsed and the element names are pro-
cessed to generate natural language tokens, based on which the functional seman-
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tics is extracted and used in the form of tags for each service. It consists of three
sub-processes, namely - feature extraction, similarity computation and automatic
service tagging. We describe each one of these processes in detail in section 4.

• Web Service Classification: After computing the similarity between each service
pair and also generating tags for each service using its functional semantics, the
next process deals with categorizing the services using machine learning techniques.
After performing service classification, we also automatically generate tags for each
class, by taking into account the tags of its member services, which is discussed in
further detail in section 5.

2. Online Processes

• Semantic Analysis of Query & Service Matching: The natural language query sub-
mitted by the user is pre-processed using NLP techniques to capture user context.
During this process, the services, classes and the query that are represented in
vector space are used for similarity based exact and approximate service matching.
Section 6 presents a detailed view of the service discovery related processes.

4. Web Service Similarity & Automatic Service Tagging

4.1. Feature Extraction

During this phase, each WSDL is further processed in order to extract its functional infor-
mation. For every service in the repository, we parse the WSDL documents and extract the
various elements like service name, documentation, operation names, input/output messages
and types. For each of the features extracted from the service’s WSDL, we first split these
natural language names into tokens. These element names are mostly a combination of natu-
ral language words, as most service designers follow standard programming conventions and
good naming practices like camel-casing, pascal-casing & underscores to ensure maintainabil-
ity while naming such service elements. For example, one operation of a service that is used to
calculate scholarship based on the academic degree is named as getScholarship. This phrase
cannot be considered as one token as it is not a valid English word. To ensure that the name
of each service element is properly captured, we follow certain rules -

Case 1: Service element names are split into term tokens by considering capital letters as the
start of a new token and special characters as token separators.

Case 2: Contiguous capital letters are considered as a single token as these mostly represent
acronyms (e.g. SMS, SSN and ISBN).

Case 3: If no capital letters or special characters mark the beginning of a new word in the
element name, proper splitting positions cannot be found. In this case, these element
names need to be processed specially to identify tokens correctly, by using algorithm 1.

In the first two cases, splitting positions are easy to determine and terms can be ob-
tained. Once all the term tokens are extracted, the stop words (like ‘get’, ‘by’ etc., that do
not contribute to the semantics of a service) are filtered out and a term vector is obtained



Sowmya Kamath S and Ananthanarayama V.S. 115

for each feature. For example, the name of the service Academic-degreeScholarship is a fea-
ture, and will result in the term tokens ‘academic’, ‘degree’ and ‘scholarship’. Similarly, the
service’s operations are also considered as a feature, so after splitting, an operation named
‘getAcademic-degreeType’, will result in ‘get’, ‘academic’, ‘degree’ and ‘type’. Finally, words
like ‘get’, ‘type’ etc are discarded. We used the NLTK stopword list for English. In addition
to this, words used commonly in web services domain, referred to as function words (for e.g.
‘service’, ‘input’, ‘output’, ‘request’, ‘response’, ‘SOAP’, ‘parameter’ etc) are also filtered as
they contribute very little to the context of a service. A separate list of function words is
maintained, for lookup during function word removal process. After this, the term vector is
obtained for each feature of each service in the dataset.

As for the third case, we observed that some real world services in the dataset consid-
ered had quite unkempt element names. For example, consider a service named citycoun-
trySkilledoccupation_Service that does not follow standard naming conventions. It provides
operations such as ‘get_skilledoccupation’, which if considered as a single token will result in
incorrect similarity values, that can adversely affect the accuracy of classification. To cor-
rectly generate term tokens for this particular name, we need to split it into ‘city’, ‘country’,
‘skilled’, ‘occupation’ and ‘service’ tokens. For extracting tokens automatically from such
bad names, we used a dynamic programming approach to select the splitting positions by
exploiting relative word frequencies in English as per Zipf’s law [24].

Algorithm 1 Term token generation from badly named WSDL elements
Input:

List of badly named WSDL elements
D = custom dictionary consisting of words successfully extracted from the service dataset
(sorted by their relative frequencies).

Output: term-list
1: term-list = ϕ
2: for (each badly named element in the list) do
3: string str = element-name
4: start-index = 0
5: end-index = 0
6: for i = (str.length− 1) till i=0 do
7: end-index = i ▷ Start from the end of the element-name string
8: term = splice(str, start-index, end-index) ▷ check if spliced text exists in D
9: Check in dictionary D for occurrence of term

10: if found = true then
11: Add term to term-list
12: start-index = i ▷ Reset current position to end of extracted term
13: i = (str.length− 1) ▷ Find current length of element-name string
14: end if
15: Decrement i by 1 ▷ Start checking for next valid term
16: end for
17: end for

Algorithm 1 shows the approach used for determining correct splitting positions for badly
names WSDL elements. Zipf’s law states that - the probability of encountering the rth most
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common word in the English language is given roughly by P (r) = 0.1
r for r up to approximately

1000. Zipf also noted that the law does not hold good for less frequent words due to the
divergence of the harmonic series. Hence, assuming the relative word frequencies follow Zipf’s
law, one can obtain the probability of a word by 1

r·log N where r is the rank of the word in a
dictionary of N words sorted by their relative word frequencies. We use this concept in case
of bad naming conventions such as in the example discussed above.

We used a custom dictionary modeled specifically for our service dataset, containing words
successfully extracted from the services in the dataset. The dictionary consists of the words
extracted successfully from well-named service features (during case 1 and 2), which is then
used for inferring correct splitting positions for case 3. Assuming that all words in the corpus
are independently distributed, the words as sorted as per their relative frequency of occurrence.
Then, a word with rank r in the list of words will have a probability of occurrence as given by
Zipf’s Law. Using this approach, the splitting positions could be determined in linear time, as
the badly named service elements are small sized strings. Since, the proper domain i.e., a Web
service dataset itself was modeled, this method achieved nearly 94% accuracy. However, if a
generic corpus of English language words was used, then the results of this approach would
not be as effective due to ineffective domain modeling.

4.2. Similarity Computation

Once all the terms are extracted from each service’s features, the similarity between every
service pair is to be computed. To compute the similarity sim(ti, tj) between any two terms
ti and tj , we use WordNet [25]. WordNet is an online lexical database that can be used to
compute semantic relatedness between two concepts. WS4J [26] is the Java implementation of
WordNet::Similarity [27] for calculating synset similarity based on the path distance between
two words in the WordNet taxonomy.

The maximum similarity as given by WS4J between the pair wise combinations of synsets
of the two considered terms, extracted from each service is taken as the similarity value
between them. Terms from the service name, documentation, input/output messages and
operations are processed separately and the similarity between each token pair is recursively
computed. Finally, the similarity between 2 term vectors fs1 of service s1 and fs2 of service
s2 of a feature f is given by equation (1).

simf (s1, s2) =

∑i=|fs1 |·|fs2 |
i=1

{
α · (1− α)i−1 × simi(t1, t2)

}∑i=|fs1 |·|fs2 |
i=1 {α · (1− α)i−1}

(1)

where term t1 ∈ fs1 , t2 ∈ fs2 and α is a constant less than 1. |fs1 | and |fs2 | represents the
number of terms in fs1 and fs2 respectively. simi(t1, t2) is the similarity corresponding to the
ith index in an ordered list of decreasing values from the set S = {sim(tp, tq)|tp ∈ fs1 , tq ∈
fs2}. The main idea was to stress on similar pairs of tokens in the similarity computations.

We illustrate the need for an emphasis on similar pairs of tokens in the similarity computa-
tions, instead of taking the average value of S as was the case in [21] and [22] with an example.
Consider three term vectors, T1=[‘book’, ‘price’], T2=[‘horror’, ‘book’, ‘recommended’, ‘price’]
and T3=[‘car’, ‘price’] of services s1,s2 and s3 respectively. Intuitively, T1, T2 are more sim-
ilar in comparison to T1, T3. However, when similarities were computed by Fang et al’s [21]



Sowmya Kamath S and Ananthanarayama V.S. 117

approach, it was found that simT (s1, s2) = 0.42 < simT (s1, s3) = 0.55. Similarities com-
puted by equation (1) gave correct results i.e., simT (s1, s2) = 0.83 > simT (s1, s3) = 0.74.
Also, over a large set of similarity values computed, the values got by equation (1) were more
distributed in the range of 0 to 1.

The similarity between any two service descriptions s1 and s2 can be computed by -

simwsdl(s1, s2) = vw1 · simservicename(s1, s2) + vw2 · simdocumentation(s1, s2) +

vw3 · simoperations(s1, s2) + vw4 · simmessages(s1, s2) + vw5 · simtypes(s1, s2)

(2)

where vw1, vw2, vw3, vw4 and vw5 are variable weights whose summation should be equal to 1.
simservice(s1, s2) and simdocumentation(s1, s2) are calculated by equation 1. simoperation(s1, s2)

is calculated by equation 3.

simoperation(s1, s2) =

∑
oi∈Os1∪Os2 ,oi /∈Osj

,j∈{1,2} simoo(oi, Osj )

|Os1 |+ |Os2 |
(3)

where, similarity between oi and operation set of sj , Osj , ( simoo(oi, Osj )) is given by -

simoo(oi, Osj ) = Maxok∈Osj

(
0.4 · simo name(oi, ok) + 0.3 · simo input(oi, ok)

+ 0.3 · simo output(oi, ok)
) (4)

where simo name(oi, ok) is calculated using (1). Similarity simo i/o(oi, ok) between input/output
messages with operations oi, oj is computed as the average of simi/o name(oi, oj) (calculated
by eqn (1)) and simi/o type(oi, oj) is given by equation 5.

simo i/o type(oi, oj) =
2 · |typeoi ∩ typeoj |
|typeoi |+ |typeoj |

(5)

where typeoj is the set of data types of input or output used in operation oj .

4.3. Automatic Service Tagging

4.3.1. Obtaining tag candidates

In order to generate tags for service description, it is essential to ensure that tags denote the
functional information of a service to the maximum extent. As such, this information lies
in terms extracted from the service’s WSDL, which can be used as potential tag candidates.
We used the libraries provided by Python’s NLTK to discover noun phrases from the term
vectors obtained from the WSDL features. Noun phrases are found in a service’s natural
language description and in element names (e.g. operations, input/output messages etc) that
indicate the service’s purpose. For example, the natural language documentation for the
ZipCodeLookup service, given as “Returns latitude and longitude for a given US city zipcode”
contains the noun phrases ‘latitude’, ‘longitude’, ‘US city zipcode’. Similarly, from one of
its operations ‘getZipcodeforCityState’, the noun phrases ‘zipcode’, ‘city’ and ‘state’ were
extracted. These together with all the other noun phrases discovered from the WSDL forms
the potential tag candidate set.
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4.3.2. Tag Weighting

The tag candidate set of a service may contain several potential tags and all of these cannot
be used as a service’s tags. Since all the features in the generated vector cannot have equal
importance for a particular service, a term weighting or a suitable feature selection technique
should be applied. In order to rank the tag candidates and choose the top few as the tags
for a service, we used an integrated approach to generate a ranking for the tags. We used
a term weighting method called Tf-idf (term frequency-inverse document frequency) [28] to
compute the importance of a particular tag candidate to a given service when compared to
its importance in other services in the dataset. Tf-idf values are computed as follows.

weightfrequency = (0.5 +
tf

tfmax
) · log(0.5 + D

df
) (6)

where tf is the term frequency of a tag candidate t in the given WSDL document d;
tfmax is the highest frequency of any term in the WSDL document d, df is the frequency
of occurrence of the term t in other WSDL documents and D is the total number of WSDL
documents in the dataset. Using the computed values for each tag candidate, a TF-IDF matrix
is built to compute the relative importance of each term word in the service document.

After the list of potential tags is obtained, the Tf-idf matrix is calculated and both the
taglist and the matrix are stored in .csv files. In order to calculate the semantic relatedness
matrix of terms obtained in the previous step, we used Natural Language Toolkit library of
Python (NLTK) [29]. for obtaining synsets of a term as given by WordNet. For each pair
of tags, a list of associated words is constructed. Semantic similarity is calculated between
each pair of terms in the lists and a weighted average is produced. The computed semantic
relatedness matrix is also stored in a .csv file. In order to combine the syntactic score
(Tf-idf score) and semantic relatedness score, we perform matrix multiplication on the two
matrices and the result thus obtained is a vector for each service where, a value for a tag is a
combination of syntactic and semantic importance of that tag in the service.

4.3.3. Tag Ranking and Selection

The Tf-idf matrix will have a very high dimensionality as it captures the relative importance
of all tag candidates generated for a particular dataset, with respect to each service. However,
very few tags will be relevant for a given service, hence it is important to identify these terms
only. In order to obtain a feature vector made up of the most significant features, we used
Singular Value Decomposition (SVD) [30], a popular feature reduction method. SVD is a
Linear Algebra matrix decomposition technique, which is used to obtain factorization of a
complex matrix. SVD helps in factorizing the Tf-idf matrix to identify that set of features
which are most important for a particular service. We used Rapidminer Studio [31] for Tf-idf
matrix generation for the tag candidate set obtained after pre-processing and also for the
SVD process.

5. Web Service Classification

5.1. Weighted Service Feature Vectors

SVD was very effective in reducing the initial tag set and in identifying the tag candidates that



Sowmya Kamath S and Ananthanarayama V.S. 119

represented the functionality of a given service to the maximum extent. In our experiments,
we initially obtained more than 4785 tag terms. Applying SVD with a variance limit 0.95
(the allowed range is between 0 and 1), resulted in more than 700 attributes. With further
experiments, it was found that a variance value of 0.4 gave the most optimal results and
10 attributes were selected after the SVD process. Then, the tags were ranked as per their
relative importance. Based on their rank, the top 5 weighted terms were taken as the tag set
and also the feature vector of each service. After obtaining the tag set, we expanded the set
of tags by using cognitive synsets obtained from WordNet, in order to capture synonyms of
the words that were used as tags for each service.

5.2. Service Classification using Weka

The main processes in this module are applying various machine learning techniques to the
weighted service tag sets generated during the previous stage to categorize services into rele-
vant categories and finally generate class tags from the identified classes. After reducing the
dimensionality and obtaining an optimal weighted feature set for each service in the dataset,
we used various classifiers available in the Weka Data Mining Suite [32] for classification of
the services into domain specific categories. We used six different classifiers available in Weka,
the details of which are given below:

1. Naäve-Bayes: Naäve-Bayes is a simple probabilistic classifier based on Bayes’ theorem
that assumes strong independence between the considered features [33]. Here, the as-
sumption is that each feature has an independent contribution in the probability. For
example, consider that an animal can be called as a dog if it has four legs and it barks.
In Naäve Bayes, there is no correlation between the number of legs and barking features,
which can often lead to false results.

2. Decision tree: Decision tree classifier uses a decision tree for building a predictive model
[34]. Here, numerous test questions and conditions are modeled as a tree structure,
where each internal node and the root of the tree denote a testing attribute while each
leaf corresponds to a class label. When some input variables are given, the class label
can be predicted by traversing the tree such that the values of the given input variables
represent the path from the root to leaf.

3. Random forests: Random forests is an ensemble classifier which involves growing many
classification trees [35]. A service is classified by assigning its input vector to each of
the trees. Each tree assigns a class label to the service. This process is called as voting
as each tree votes for a class label. The forest then chooses the class label that obtained
the highest number of votes.

4. Bagging: Bagging is another ensemble classifier that applies base classifiers on random
subsets of the original dataset [36]. The subsets are made by drawing random samples
and replacing them at later stages of the classification. Each base classifier gives its
individual predictions and these are then aggregated either by averaging or voting.

5. Regression: Regression is a probabilistic statistical model which uses the relationship
between the categorical dependent variable (which needs to be predicted) and various
other independent variables [37].
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6. Artificial Neural Network (ANN): ANNs [38], also called Multilayer Perceptrons, are
inspired by biological nervous systems (i.e., the brain), and are modeled as a network
comprising of many highly interconnected processing elements called neurons, organized
in layers. Neurons work together in order to approximate a specific transformation
function. An ANN uses a learning process during which the weights of the inputs in
each neuron are updated, by a training algorithm, such as back-propagation, based on
previous iterations, to reduce the value of an error function.

We used Weka’s regression model in the work described in this paper. The classification
accuracy was determined using a 10-fold cross validation [39] method. Cross validation is a
method of accuracy estimation of a model when applied to a dataset and is very useful in
case of limited data availability. In such a situation, if enough data is held for training to
construct a good model then testing would not yield reliable results. The most common cross
validation technique is k-fold cross validation, where, the dataset is divided into k parts with
a homogeneous distribution of classes. Out of the k parts, one is retained for testing while
(k − 1) parts are used for training. This process is performed k times with different testing
partitions each time. The final accuracy is calculated by taking the average of k accuracy
scores for each fold. The results of the classification and accuracy achieved with various
classifiers is provided in subsection 7.2.

5.3. Automatic Service Class Tagging and Class Feature Vector Generation

After classification, we used the most optimal results as the service categorization. The ANN
classifier achieved the highest accuracy in classifying the service data with reduced feature
set (obtained after SVD). The classes as given by the ANN Classifier and the details of the
services belonging to each class are noted. The process of generating tags for these classes
is then carried out, based on each class’s member services. In order to generate class tags,
initially, we considered the tags of all services within a given class as potential tag candidates
to represent the class. These tags are then ranked based on two factors as below:

• how well a tag g describes a given service s (represented as simtag(g, s)). This is given
by the weighttotal for tag g in service s.

• how well a service s whose tag is being considered describes its class c (represented as
csimservice(s, c)). This is given by eq. 7, where |c| is the number of services in class c.

csimservice(s, c) =

i=|c|∑
i=1,si ̸=s

simwsdl(s, si)

|c| − 1
(7)

simclassTag(g, c) =
∑

g∈τ(s),s∈c

{
simtag(g, s)× csimservice(s, c)

}
(8)

The similarity simclassTag(g, c) between a class tag g & its class c is given by eq. 8, where
τ(s) is the set of tags for service s. Based on the resultant ranking, we consider the top-5
tags as class tags. In addition to this, we also enhance the final tag set with synsets provided
by WordNet for each tag phrase. These together form the feature vector of each class, which
will be utilized during the query to service matching process.
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6. Semantic Analysis of Query & Service Matching

Figure 2 depicts the process of web service discovery on the tagged dataset, with a semantically
enhanced service request. These are the online phase of the framework, and the main processes
are semantic analysis of query and service matching (as depicted in Fig. 1).

Fig. 2. Web Service Discovery process

6.1. Query Preprocessing

In order to understand user’s context and only display relevant results, it is necessary to
analyze the meaning and the structure of the query text entered by the user. In the proposed
framework, we first parse and process the input query phrase and perform tasks like special
character removal, word boundary detection etc. The query analysis process is composed of
several preprocessing tasks as below -

1. Case Conversion, Boundary Detection & Tokenization: Natural language query is taken
as a string (a single word or a phrase). All words are converted to lowercase and input is
tidied to retain only non-special characters. Boundary detection is used to get individual
words by considering a single space as the boundary between words (as is the case for
English language), after which the identified query words are tokenized. A sample query
“find weather by city” results in ‘find’, ‘weather’, ‘by’ and ‘city’ tokens.

2. POS tagging, Stopword Removal & Lemmatization: Part of Speech (POS) tagging is
performed for the query tokens. For the previous example, this would result in {find/VB
weather/NN by/IN city/NN}. We used the Stanford POS Tagger [40] for parts-of-
speech tagging, which follows the Pennstate Treebank tagset [41]. Stop words, if any,
are filtered out. Lemmatization is performed for the query in order to take care of the
different forms of a natural language word, so they can be analyzed as a single item.
Examples are words like ‘booking’, ‘booked’ etc which are different forms of the word
‘book’. However, the word ‘book’ may be used as a verb (e.g. “book tickets” or “ticket
booking”) or as a noun (e.g. “fiction book”). Since POS tagging is performed on the
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original query, the word will be appropriately tagged as noun or verb or adjective, based
on which the lemmatizer performs suffix stripping. This ensures that different variants
of a term can be reduced to only one. This also reduces the vector size, as the unique
terms that make up the document are reduced. We used the Wordnet Lemmatizer
available in Python’s NLTK for performing lemmatization.

3. Query Expansion: WordNet synsets of each final query term are retrieved to capture
the synonyms and morphological variants.

4. Query feature vector generation: The query terms and the synsets together form the
feature vector q⃗t that represents the enhanced query.

6.2. Query feature vector generation

For retrieving relevant services for a given user query, we represented the services, the service
classes and the query in the Vector Space Model (VSM), using their respective feature vectors.
As all are represented as vectors of weighted index terms in VSM, vector operations like dot
product can be performed. Thus, the process of web service discovery can be handled by
matching similar documents, that are ’close’ in the vector space. In VSM, services, classes
and queries are represented as vectors as shown below -

Class cj = (w1,j , w2,j , . . . , wn,j)

Service sk = (w1,k, w2,k, . . . , wn,k)

Query qt = (w1,t, w2,t, . . . , wn,t)

Each term tx,y corresponds to the weight of a word wi in that document (either class, ser-
vice or query). Since, each service is pre-processed and its functional information is expressed
as top 5 weighted tags, these form the service’s feature vector. Similarly, since each class has
class tags associated that capture the collective functionalities of its member services, we can
represent a class also in the VSM using its tag vector. The query also is represented in the
same way, i.e., the terms extracted after pre-processing the submitted user query form the
query vector. We use these three vectors for relevant web service retrieval for a given query.

6.3. Service Matching Process

The first step in generating search results consisting of relevant services, is to compute cosine
similarity of the query vector with the class vectors. The Cosine Similarity measure is used
compute the level of matching between each class/service and the query. As the similarity
between two vectors increases, the angle θ approaches zero, due to which cosine similar-
ity value is closer to one. Similarly, as the dissimilarity between a class/service and query
vector increases, the θ between their vector representations increases, due to which cosine
similarity value is nearer to zero, thus indicating that the class/service is irrelevant to the
query. In this way, the computed cosine similarity values can be used to generate a ranked
list of classes/services for a given query. Cosine similarity values between the query and a
class/service is computed using the equation (9) and (10).

cos θcj ,qt =
c⃗j · q⃗t

∥c⃗j∥∥q⃗t∥
=

∑n
i=1(wi,j . wi,qt)√∑n

i=1 w
2
i,j .

√∑n
i=1 w

2
i,qt

(9)
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cos θsk,qt =
s⃗k · q⃗t

∥s⃗k∥∥q⃗t∥
=

∑n
i=1(wi,k . wi,qt)√∑n

i=1 w
2
i,k .

√∑n
i=1 w

2
i,qt

(10)

where, cj represents a given service class, sk represents a given service, qt represents the terms
in the query and wx,y represents relative weight of a term with respect to entities x and y.

6.4. Relevant Service Selection and Ranking

Based on the computed cosine similarity values, a list of potentially relevant classes is gen-
erated and classes are ranked by their cosine similarity values. The first three classes from
this ranked list are considered and the cosine similarity values between query vector and the
member services of the three classes is computed. Again, a ranked list is generated based on
the computed service cos θ values, which gives us the relative relevancy of services for the
submitted query. This is displayed to the user in order of relevance. Algorithm 2 depicts the
service discovery process.

Algorithm 2 Service selection and ranking process
Input:

Feature vector of the Query Q
Weighted feature vectors of generated classes and services.

Output: Candidate set of most relevant services for Q
1: string Candidate-set = ϕ
2: Compute cosine similarity value for feature vectors of query and classes.
3: Rank classes by their cosine-similarity value
4: for each service in the top-3 candidate classes in ranked-list do
5: Compute cosine similarity with query vector
6: return cosine-similarity value of service
7: end for
8: if cosineSimilarity(queryV ector, service) > Threshold then
9: Add service to Candidate-set

10: end if
11: Rank services in Candidate-set by cosine similarity value.
12: Return Candidate-set

7. Experimental Evaluation

In this section, we present the experimental evaluation of the proposed approaches for func-
tional semantics extraction, metadata generation, service classification and web service re-
trieval. First, we evaluated the quality of service tagging based on the extracted functional
semantics using the approach discussed in section 4. After the processes of tag weighting and
ranking, it was seen that meaningful tags were generated for each service (discussed further
in subsection 7.1). Next, we evaluated the accuracy of service classification using the various
classifiers. The impact of dimensionality reduction on the classification results was analyzed.
After classification, class tags were generated automatically and the results of these processes
are described in subsection 7.2. Finally, we measured the performance of web service retrieval
using the basic keyword matching and with semantically analyzed query, and observed the
effect on precision and recall (details in subsection 7.3).
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7.1. Quality of Service Tagging

As stated earlier, the Zipf’s Law based approach for determining splitting positions for token
generation from badly named service elements achieved more than 94% accuracy. To evaluate
the efficiency and quality of tagging services and classes, we conducted several experiments.
Since tags are natural language text, we used manual inspection techniques for a sample
random subset. The service tag quality was checked manually for a set of randomly selected
services to determine relevancy of tags generated for each service. Table 1 lists the tags gener-
ated for one such sample service calculateDistanceInMiles and the corresponding tag weights.
As seen from Table 1, the system generated meaningful tags that effectively represented the
functionalities of individual web services.

Table 1. Tags generated and associated tag-weight for the service calculateDistanceInMiles

Tags Weight
miles 2.48886180264

calculate 2.32660625689
distance 1.5484550065

geographic 1.14360118508
latitude 0.715121673171

longitude 0.715121673171

7.2. Service Classification Accuracy

For the experimental evaluation of the proposed system, we used the OWL-S TC 4 datasete,
a publicly available dataset providing WSDL descriptions of real world web services. It was
seen during similarity calculation that, best results were obtained for vw1 = 0.3, vw2 =
0.25, vw3 = vw4 = vw5 = 0.15 and α = 0.4. Once the feature vectors for each service was
generated, SVD was performed and the reduced feature set was obtained for all the services
in the dataset. Next, we used six different classifiers available in Weka and the accuracy was
determined using 10-fold cross validation [39] method.

The Weka classifiers used for experimental evaluation of service classification accuracy
using the feature vectors generated before SVD were - Bagging, Näive-Bayes, Decision Tree,
Random Forest and Classification by Regression (CbR). An additional classifier, the Multi-
layer Perceptron (ANN) was also used after dimensionality reduction. It was seen that Näive
Bayes, Decision tree and Bagging achieved almost similar accuracy, in the range of 70-72%,
while Regression achieved an accuracy of around 77%. Since regression is based on assignment
of weights to features, it can be inferred that following a similar approach before classification
may result in higher accuracy. For Random Forests classifier, the observed accuracy is the
highest and it is around 79%. It is an ensemble approach and works with a randomly selected
set of features in each iteration. So, it can be inferred that some subsets of features tended to
have higher accuracy than other subsets. If a feature selection method is applied on the vec-
tors, it might achieve better accuracy. The accuracy obtained for service classification using
each classifier for the dataset before and after dimensionality reduction is shown in Figure 3.
ehttp://projects.semwebcentral.org/projects/owls-tc/
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Fig. 3. Service Classification Accuracy

After applying dimensionality reduction, the accuracy of each of the classifiers improved
by at least 10% in the case of all classifiers. We applied Multilayer Perceptron (ANN) as well
in the second case, i.e. after dimension reduction. ANN takes a lot of time for training over
a dataset with a large number of attributes, so it was not applied in the first case, when the
dimensionality of the features was very high. In the case of the reduced feature set, ANN
was very efficient and we achieved an accuracy of 91.14%. We used this class information
to generate tags for each of the classes, as per the strategy described in subsection 5.1.
Table 2 shows the tags generated for a few classes obtained after ANN classification with
dimensionality reduction. It can be seen that the term weighting applied to the tags of the
member services of each class resulted in good quality class tags.

Table 2. Some service classes and their corresponding tags

Domain Number of Services Class Tags
As per dataset After classification

Economy 395 372 price, account, purchase,
credit, tax, money.

Education 286 249 book, academic, author,
fund, degree, price.

Travel 197 174 city, hotel, country,
weather, destination, location.

Medical Care 73 71 medical, hospital, insurance,
care, patient, doctor.

Geography 60 57 location, address, distance,
zipcode, map, area, city.

7.3. Web Service Retrieval

Since the proposed system is modeled as per traditional IR methods, the most appropriate
metrics to evaluate the performance are precision and recall. In this context, precision can
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be defined as the fraction of retrieved services that are relevant for the given query. Recall is
the fraction of all relevant services successfully retrieved for the given query.

Precision =
|relevant services ∩ retrieved services|

|retrieved services|
(11)

Recall =
|relevant services ∩ retrieved services|

|relevant services|
(12)

In order to evaluate the service discovery process, we conducted some experiments using
different lengths of queries, i.e. by varying the number of keywords in the input query. Some
query categories and sample queries are given in table 3. Queries of length 1 to 10 terms
were submitted to the system. Since each query is pre-processed, an average of 3.4 keywords
were obtained per query. Enhancing the query by including each keyword’s WordNet synsets
in the query vector added an average of 8.1 more search terms per query. Due to this, each
query resulted in an average of 11.5 keywords to be submitted to the service retrieval module.
Using these, we tried different queries on the system to determine retrieval performance.

Table 3. Examples of Queries used for performance evaluation

Query Characteristics Example Query
Generalized query “search books”
Particular query “price of business class flight tickets”
Proper nouns “weather in Seattle”

Calculating recall for each query when the number of underlying documents is diverse
is somewhat problematic as the returned documents may be small when compared to the
size of the dataset itself. Hence, the recall numbers would always be small. So we used a
measure called relative recall [42]. In computing relative recall, we assume that the query
which returned the most number of documents in the set of queries executed on the system
is the one which achieved 100% recall. Therefore, the recall of all queries should be measured
against this value and hence the concept of relative recall. The calculated precision-relative
recall values are given in Table 4 and shown graphically in Figure 4.

Table 4. Observed precision & relative recall for Keyword Query and Semantic Query.

Query
Length

For Keyword Query For Semantic Query
Precision (%) Relative

Recall(%)
Precision (%) Relative

Recall(%)
1 82.73 6.31 81.19 27.90
2 79.17 19.98 85.38 58.41
3 74.60 24.75 91.63 69.42
4 69.97 28.40 89.29 78.40
6 65.21 34.71 83.14 85.51
8 59.44 39.48 77.69 90.37
10 53.12 43.65 73.38 100

As seen from Table 4, for the Keyword Query approach, it can be seen that precision is
reasonably high at 82.73% when a single keyword is used, but recall is the lowest at 6.31%.
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Fig. 4. Observed values of precision and relative recall for varied query lengths for Keyword Query
and Semantic Query Approaches

This is because the system literally matches the single keyword to the tags of the classes
formed and returns only those services having this tag. However, the precision is not 100%
as sometimes services in other classes representing related domains may also have the same
tag. Also, it can be observed that as the number of terms in the input query increases, the
recall values improve to a small extent as more services would match the terms in the query.
However, precision falls as the number of relevant services retrieved will continuously reduce.

The relative recall was 100% for a query length of 10 words, for the Semantic Query
approach, because this essentially retrieved about 659 services which was the maximum num-
ber of services for the considered dataset. Hence, as per the definition of relative recall, we
consider this as the query which resulted in 100% recall. However, due to this high recall,
the precision observed was only about 73%. The highest precision of 91.63% was observed
when the query length was 3, while the relative recall for this case was about 69.42%. This
is because, in order to successfully tag certain terms in the query as verb or noun-phrase etc,
the analysis of its nearest neighbor terms is required. For example, when the length of the
query is 1, a term like ‘book’ can be either a verb or a noun-phrase. Therefore, results will
differ and precision will suffer if the user meant it as either word. However, if we consider
the query “book author” which is a query of length 2, the context of the user is much clearer
and so the precision improves. We observed the best precision when the query length was
between 2 - 4, as the relationships between the words can be correctly captured and the most
relevant services can be retrieved. Overall, the semantic analysis of the query resulted in
approximately 16% increase in precision and 40% increase in recall, when compared to the
Keyword Query approach.

8. Conclusion and Future Work

In this paper, a semantics based web service retrieval framework employing NLP techniques
for the extraction of services’ functional information was proposed. We used this extracted
information for the computation of similarity between service pairs and for the generation of
service tags. The similarity and tags were used in the service classification process using Weka,
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after which generated classes are also tagged by taking the tags of all member services into
consideration. A classification accuracy of 91% was obtained with the ANN classifier and class
tags were generated for each class based on the tags of their member services. In addition,
the framework also provided a natural language interface for capturing user requirements and
context. Relevant services were retrieved based on the cosine similarity between the query
vector and the class/service vectors. Experimental results showed that a query size of 2-4
terms resulted in the highest precision, as the relationships between the user context could be
correctly captured and hence, the most relevant services could be retrieved. Also, a significant
improvement of 16% increase in precision and more than 40% increase in recall was observed
during service discovery when the Semantic Query approach was used.

As part of future work, we intend to also support complex querying, that will be required
for composite service discovery. The process of composite service discovery requires the iden-
tification of simple services that can be chained together in a sequence, in the right order,
to perform a given complex task. Such automatically identified composite service templates
will be helpful for application designers. In summary, the aim is to develop a comprehensive
web service discovery framework that provides an context-aware querying interface for both
simple and composite service discovery.
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