
Semantic Specification using Two-Level Grammars:
Labels and GOTO Statements

Frank G. Pagan
Department of Computer Science, Southern Illinois University, Carbondale, Illinois 62901, USA

The metalinguistic formalism of two-level grammars (W-grammars) is known to be capable of precisely defining the
dynamic semantics of certain features of programming languages in a fairly understandable fashion. This paper
demonstrates that its application to low-level control facilities—labels and goto statements—is not only possible but
also reasonably straightforward and manageable. Moreover, the extra definitional complexity that arises when there
is a mixture of low-level and high-level (if-then-else, while-do, etc.) facilities does not appear to be any worse than it
is with other approaches to semantic specification.

INTRODUCTION

In an earlier paper1 the author presented a two-level
grammar (W-grammar) defining the complete syntax and
complete semantics of an Algol-like language fragment
incorporating block structure, (recursive) procedures,
and the three standard parameter mechanisms known as
call-by-value, call-by-reference, and call-by-name. The
present paper contains a similar treatment of another
common but nontrivial-to-define language facility: labels
and goto statements.

The published use of two-level grammars as a formal-
ism for syntax goes back to the original Report on Algol
68.,2 Later, use of the formalism was extended to
specification of context conditions ('static semantics')3

and of dynamic semantics.4'5 The fact that the latter
application is possible raises the method to the level of
being a potential competitor for other approaches to
formal semantics, such as the Vienna Definition Lan-
guage and the denotational approach. Whether it will
actually see widespread use for this purpose depends in
large part on how readily it can be applied to different
linguistic features and on how clear and readable are the
resulting specifications. The construction of diverse case
studies, such as the one presented in the following
sections, is a necessary step in the process of making a
final judgment on these matters.

To reiterate briefly the basic idea underlying the use of
a two-level grammar for defining dynamic semantics, the
terminal strings are considered to be of a form such as

PeofFleofF2eof
where P is a syntactically valid program, Fl is an input
file, and F2 is an output file, such that the execution of P
with Fl terminates normally and results in the creation
of F2. The grammar must generate all and only the
strings (here termed 'programmes' to distinguish them
from the proper 'programs' P contained in them)
satisfying these constraints. The semantics of each valid
program P is then completely defined by the set of all
pairs of files (F1,F2) occurring in those programmes
containing P.

As in the previous paper,' it is assumed that the reader
has a basic knowledge of the two-level grammar
formalism and notation. In particular, familiarity with

the following metalinguistic concepts and their use is
assumed: protonotion, notion, metanotion, hypemotion,
hyper-rule, metarule, predicate. The following two special
devices will serve to enhance the readability of the hyper-
rules, (a) Parentheses will be used to enclose the 'noun
phrases' that constitute the significant parts of predicates;
formally, the parentheses act as extra lower-case letters,
(b) Hyphens will frequently be used to join together the
words in certain logically connected segments of long
hypernotions; formally, the hyphens are like blanks and
add nothing to the meaning of the rules.

DEFINITION OF LOW-LEVEL CONTROL
FACILITIES

The following is a BNF grammar for a trivially small
language in which conditional and unconditional jumps
constitute the only control facilities:

<program> :: = <series>
<series> :: = <statement> | <series> (statement)
(statement) :: = (command) | (label) :

(command)
(command) :; = read (variable) | write (variable) |

goto (label) | if (variable) = 0 goto (label)
( v a r i a b l e ) '.'.= a\.. .\z
(label) :: = (digit) | (label) (digit)
(digit) :: = 0 | . . . | 9

(All variables initially have the value zero.) If it were not
possible to define the semantics of this trivial language
by means of a reasonably short and clear two-level
grammar, then the whole approach would obviously have
to be rejected as inadequate for the treatment of any
language containing jumps. The appendix, however,
contains a complete grammar for this language, with the
rules numbered and cross-referenced in a self-explanatory
manner. Some of the salient points are explained below.

The following metarules (lj-n in the appendix) define
protonotions which serve as suitable metalinguistic
analogs of textual constructs (and hence constitute a kind
of abstract syntax):

STMTSETY :: STMTS; EMPTY.
STMTS :: STMT; STMTS STMT.
STMT :: OPTLAB CMD.

CCC-0010-4620/82/0025-0063 $02.50
© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 6 3

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/63/527413 by guest on 21 August 2022



F. G. PAGAN

OPTLAB :: EMPTY; lab LABEL.
CMD :: read TAG; write TAG; goto LABEL; test

TAG goto LABEL.

(There are additional metarules (1 a-i) which define TAGs
as analogs of variables, LABELs as analogs of labels, and
EMPTY as the empty protonotion.) An abstract syntax
for files is provided by the metarules (lu-w)

FILE : : DATETY eof.
DATETY : : DATA; EMPTY.
DATA : : datum VALUE; datum VALUE DATA.

Most of the hyper-rules for the program portion of a
programme (2d-m) define hypernotions of the form

VARS STMT part-of-STMTS statement

where STMT is the metalinguistic analog of the textual
statement and STMTS is the metalinguistic analog of the
entire program. For example, the syntax of goto state-
ments is given by the hyper-rule (2i)

VARS goto-LABEL part-of-STMTS statement:
goto symbol,

LABEL string,
where (LABEL) defined once in (STMTS).

The last part of the rule refers to a set of auxiliary rules
(3e-m) for predicates which enforce the context condition
that there must be precisely one statement in the program
with the specified label. A VARS protonotion serves to
record the names and values of all variables used in a
program and is characterized by the metarules (lq-s)

VARS :: VAR; VARS VAR.
VAR : : var TAG value VALUE.
VALUE :: EMPTY; VALUE i.

Another set of auxiliary rules (3a-d) constrains all initial
values to be zero (EMPTY).

The 'topmost' hyper-rule of the grammar is (2a)

programme:
VARS1 STMTS part-of-STMTS series,
eof symbol,
FILE1 file,
FILE2 file,
where (state VARS1 stcount-i infile-FILEl outfile-

eof) becomes (state VARS2 stcount-COUNT infile-
FILEl outfile-FILE2) given (STMTS).

The last part of this rule is a predicate referring to a set
of hyper-rules (4a-d) which define the semantics of the
language in terms of state transformations. Here there is
a noteworthy contrast with previous case studies. If the
language had high-level control structures (if-then-else,
while-do, etc.) instead of low-level ones, then a STATE
protonotion could simply record the values of variables,
the unread portion of the input file, and the portion of the
output file produced so far, and the semantic predicates
could take a form such as

where (STMT) transforms (STATE1) into (STATE2).

But when control is expressed in terms of goto statements,
the semantics of an individual statement cannot be
expressed in isolation from the rest of the program. Thus
the predicates contain a metalinguistic analog of the
entire program and a STATE (lo,t) includes a statement

counter giving the ordinal number of the statement to be
executed:

STATE :: state VARS stcount COUNT infile FILE
outfile FILE.

COUNT :: i; COUNT i.

Now in a semantic predicate of the form

where (STATED becomes (STATE2) given (STMTS),

STATE2 always represents the final state of execution
rather than the state that exists after the execution of the
current statement.

The effect of the first part of rule 4a is to define program
termination in terms of the statement counter in the
current state exceeding the number of statements in the
program. The other five parts of the rule define the
semantics of the four types of command (the fifth and
sixth parts both deal with conditional jumps). For
example, the second part specifies that the effect of
executing an input statement (OPTLAB-read-TAG) is to
remove a value (VALUE2) from the input file (infile-
datum-VALUE2-FILEl), assign it to the relevant varia-
ble (var-TAG), and increment the statement counter
(stcount-COUNT) by one (i). The fourth part specifies
that the effect of executing an unconditional jump
(OPTLAB-goto-LABEL) is to reset the statement counter
(stcount-COUNTl) to the ordinal number (COUNT2) of
the statement (lab-LABEL-CMD) with the relevant label.

MIXED LOW- AND HIGH-LEVEL CONTROL
FACILITIES

Thus the semantics of languages with only low-level
control facilities can be successfully defined by means of
two-level grammars. The question now is whether the
same is true when there is a mixture of low-level and
high-level control, which is the case in many common
languages and which is known to give rise to appreciable
complexity in other approaches to formal semantics. To
explore this a little way, let us consider the effect of
adding a command of the form loop <series> end to the
language treated above. Both jumps into and jumps out
of any number of such loops are allowed (in fact, jumping
out is the only means of termination).

It turns out that this extension does not lengthen the
grammar by an undue amount (most of the expansion is
in the auxiliary predicate rules 3e-m and 4b-c), but
several alterations to the semantic rule 4a are necessary.
The simple counting of statements must be abandoned in
favor of a counting of 'positions', where a position is
either the beginning of a non-loop command, the
beginning of a loop command, or the end of a loop
command. A STMTS protonotion can no longer be
decomposed as STMTSETY1 STMT STMTSETY2; it
now has the form PRELUDE STMT POSTLUDE,
where PRELUDE and POSTLUDE are defined by the
additional metarules

PRELUDE : : STMTSETY; PRELUDE loop
STMTSETY.

POSTLUDE .: STMTSETY; STMTSETY end
POSTLUDE.

The semantics of the loop construct is defined by the

6 4 THE COMPUTER JOURNAL, VOL 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/63/527413 by guest on 21 August 2022



SEMANTIC SPECIFICATION USING TWO-LEVEL GRAMMARS: LABELS AND GOTO STATEMENTS

following additional hyper-rules (which could be com-
bined with the modified rule 4a):

where (STATE1) becomes (STATE3) given (STMTS):
where (STMTS) is (PRELUDE OPTLAB-loop-

STMTS2-end POSTLUDE),
where (PRELUDE OPTLAB-loop) has length

(COUNT),
where (STATE1) is (state VARS psncount-

COUNT infile-FILEl
outfile-FILE2),

where (STATE2) is (state VARS psncount-
COUNT-i infile-FILEl outfile-FILE2),

where (STATE2) becomes (STATE3) given
(STMTS).

where (STATE1) becomes (STATE3) given (STMTS):
where (STMTS) is (PRELUDE OPTLAB-loop-

STMTS2-end POSTLUDE),
where (PRELUDE OPTLAB-loop-STMTS2-

end) has length (COUNT1),
where (STATE1) is (state VARS psncount-

COUNT1 infile-FILEl outfile-FILE2),
where (STATE2) is (state VARS psncount-

COUNT2 infile-FILEl outfile-FILE2),
where (PRELUDE OPTLAB-loop) has length

(COUNT2),
where (STATE2) becomes (STATE3) given

(STMTS).

In effect, then, loop is treated as a null statement and end
is treated as a jump back to the corresponding loop. A

while construct would have to be dealt with in a similar
way, whereas in the absence of goto's it would be defined
in terms of high-level composition of statements, with no
position counts involved. It is not surprising that the low-
level facilities should drag the high-level ones down to
their semantic level—a similar effect is seen in other
contexts.

CONCLUSION

A metalanguage should have wide applicability as far as
the range of language features it is readily able to define
is concerned; the preceding two sections help to establish
such a property for the two-level grammar formalism as
applied to semantics. The first section together with the
appendix treats the specification of languages with only
low-level control facilities. The simple exercise with
mixed control described in the second section encourages
one to believe that the formalism could cope with other
mixed control regimes, such as jumps out of procedures,
with no more extra complexity than is involved in other
approaches to semantic specification.

Acknowledgement

This material is based upon work supported by the National Science
Foundation under Grant No. MCS-7902962.

REFERENCES

1. F. G. Pagan, Semantic specification using two-level grammars:
blocks, procedures, and parameters. Computer Languages 4,
171-185(1979).

2. A van Wijngaarden et al., Report on the algorithmic language
ALGOL 68. Numerische mathematik 14, 79-218 (1969).

3. A. van Wijngaarden et al., Revised Report on the Algorithmic
Language ALGOL 68. Springer-Verlag, Berlin (1976). Also in
Ada Informatica 5, 1-236 (1975) and ACM Special Interest-
Group on Programming Languages (SIGPLAN) Notices, 12
(No. 5), 1-70(1977).

4. J. C. Cleaveland and R. C. Uzgalis, Grammars for Programming
Languages, Elsevier North-Holland, New York (1977).

5. M. Marcotty, H. F. Ledgard and G. V. Bochmann, A sampler of
formal definitions. Computing Surveys 8, 191-276 (1976).

Received November 1980

© Heyden & Son Ltd, 1982

APPENDIX

1. Metarules

a) ALPHA :: a; b ; . . . ; z.
b) BETA :: zero; one; . . . ; nine.
c) LETTER :: letter ALPHA.
d) DIGIT :: digit BETA.
e) EMPTY::.
0 NOTION :: ALPHA; NOTION ALPHA.
g) NOTETY :: NOTION; EMPTY.
h) TAG :: LETTER.
i) LABEL :: DIGIT; LABEL DIGIT.
j) STMTSETY :: STMTS; EMPTY.
k) STMTS ::STMT; STMTS STMT.
1) STMT :: OPTLAB CMD.
m) OPTLAB :: EMPTY; lab LABEL.
n) CMD :: read TAG; write TAG; goto LABEL; test

TAG goto LABEL.

o) STATE : : state VARS stcount COUNT infile FILE
outfile FILE.

p) VARSETY :: VARS; EMPTY.
q) VARS :: VAR; VARS VAR.
r) VAR :: var TAG value VALUE.
s) VALUE :: EMPTY; VALUE i.
t) COUNT : : i ; COUNT i.
u) FILE::DATETYeof.
v) DATETY :: DATA; EMPTY.
w) DATA :: datum VALUE; datum VALUE DATA.

2. Main syntactic hyper-rules

a) programme:
VARS1 STMTS part-of-STMTS series {d,e},
eof symbol,

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 65

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/63/527413 by guest on 21 August 2022



F. G. PAGAN

FILE1 file {b,c},
FILE2fiIe{b,c},
where (state VARS1 stcount-i infile-FILEl outfile-

eof) becomes (state VARS2 stcount-COUNT
infile-FILEl outfile-FILE2) given (STMTS)
{4a}.

b) datum-VALUE-FILE file:
VALUE constant { . . . } ,

point symbol,
FILE file {b,c}.

c) eof file: eof symbol.
d) VARS STMTS1-STMT part-of-STMTS2 series:

VARS STMTS1 part-of-STMTS2 series {d,e},
VARS STMT part-of-STMTS2 statement {f-j}.

e) VARS STMT part-of-STMTS series:
VARS STMT part-of-STMTS statement {f-j}.

f) VARS lab-LABEL-CMD part-of-STMTS
statement:

LABEL string {l,m},
colon symbol,
VARS CMD part-of-STMTS statement {f-j},
where (LABEL) defined once in (STMTS) {3e}.

g) VARS read-TAG part-of-STMTS statement:
read symbol,

VARS identifier with TAG {k}.
h) VARS write-TAG part-of-STMTS statement:

write symbol,
VARS identifier with TAG {k}.

i) VARS goto-LABEL part-of-STMTS statement:
goto symbol,

LABEL string {l,m},
where (LABEL) defined once in (STMTS) {3e}.

j) VARS test-TAG-goto-LABEL part-of-STMTS
statement:

if symbol,
VARS identifier with TAG {k},
equals symbol,
zero symbol,
goto symbol,
LABEL string {l,m},
where (LABEL) defined once in (STMTS) {3e}.

k) VARS identifier with TAG:
TAG symbol,

where (TAG) occurs once in (VARS) {3a}.
1) LABEL-DIGIT string:

LABEL string {l,m},
DIGIT symbol.

m) DIGIT string:
DIGIT symbol.

3. Syntactic predicates

a) where (TAG) occurs once in (VARSETY1 var-TAG-
value-EMPTY VARSETY2):

where (TAG) not occurring in (VARSETY1)
{b-d},

where (TAG) not occurring in (VARSETY2)
{b-d}.

b) where (TAG) not occurring in (VARS VAR):
where (TAG) not occurring in (VARS) {b,d},

where (TAG) not occurring in (VAR) {d}.
c) where (TAG) not occurring in (EMPTY):

EMPTY.
d) where (TAG1) not occurring in (var TAG2 value

EMPTY):
where (TAG1) is not (TAG2) {j}.

e) where (LABEL) defined once in (STMTSETY1 lab-
LABEL-CMD STMTSETY2):

where (LABEL) not defined in^STMTSETYl)

where (LABEL) not defined in (STMTSETY2)
{f-i}.

f) where (LABEL) not defined in (STMTS STMT):
where (LABEL) not defined in (STMTS) {f,h,i},

where (LABEL) not defined in (STMT) {h,i}.
g) where (LABEL) not defined in (EMPTY):

EMPTY.
h) where (LABEL) not defined in (CMD):

EMPTY.
i) where (LABEL1) not defined in (lab-LABEL2-

CMD):
where (LABEL1) is not (LABEL2) {j}.

j) where (NOTETY1 ALPHA1) is not (NOTETY2
ALPHA2):

where (NOTETY1) is not (NOTETY2) {j-1};
where (ALPHA1) precedes (ALPHA2) in

(abcdefghijklmnopqrstuvwxyz) {m};
where (ALPHA2) precedes (ALPHA1) in

(abcdefgbjjklmnopqrstuvwxyz) {m}.
k) where (NOTION) is not (EMPTY):

EMPTY.
1) where (EMPTY) is not (NOTION):

EMPTY.
m) where (ALPHA1) precedes (ALPHA2) in

(NOTETY1 ALPHA1 NOTETY2 ALPHA2
NOTETY3):

EMPTY.
4. Semantic hyper-rules

a) where (STATE1) becomes (STATE3) given
(STMTS):

where (STMTS) has length (COUNT) {b,c},
where (STATE1) is (state VARS stcount-

COUNT-i infile-FILEl outfile-FILE2)
{d},

where (STATE3) is (STATE1) {d};
where (STMTS) is (STMTSETY1 OPTLAB-read-

TAG STMTSETY2) {d},
where (STMTSETY1 OPTLAB-read-TAG) has

length (COUNT) {b,c},
where (STATED is (state VARSETYl-var-

TAG-value-VALUEl-VARSETY2 stcount-
COUNT infile-datum-VALUE2-FILEl
outfile-FILE2) {d},

where (STATE2) is (state VARSETYl-var-
TAG-value-VALUE2-VARSETY2 stcount-
COUNT-i infile-FILEl outfile-FILE2)
{d},

where (STATE2) becomes (STATE3) given
(STMTS) {a};

where (STMTS) is (STMTSETY1OPTLAB-
write-TAG STMTSETY2) {d},

where (STMTSETY1 OPTLAB-write-TAG)
has length (COUNT) {b,c},

where (STATE1) is (state VARSETYl-var-
TAG-value-VALUE-VARSETY2 stcount-
COUNT infile-FILEl outfile-DATETY-
eof) {d},

where (STATE2) is (state VARSETYl-var-
TAG-value-VALUE-VARSETY2 stcount-
COUNT-i infile-FILEl outfile-FILE2) {d},

6 6 THE COMPUTER JOURNAL, VOL. 25, NO. 1.1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/63/527413 by guest on 21 August 2022



SEMANTIC SPECIFICATION USING TWO-LEVEL GRAMMARS: LABELS AND GOTO STATEMENTS

where (STATE2) becomes (STATE3) given
(STMTS) {a};

where (STMTS) is (STMTSETYl OPTLAB-goto-
LABEL STMTSETY2) {d},

where (STMTSETYl OPTLAB-goto-LABEL)
has length (COUNT1) {b,c},

where (STATE1) is (state VARS stcount-
COUNT1 infile-FILEl outfile-FILE2) {d},

where (STATE2) is (state VARS stcount-
COUNT2 infile-FILEl outfile-FILE2) {d},

where (STMTS) is (STMTSETY3 lab-LABEL-
CMD STMTSETY4) {d},

where (STMTSETY3 lab-LABEL-CMD) has
length (COUNT2) {b,c},

where (STATE2) becomes (STATE3) given
(STMTS) {a};

where (STMTS) is (STMTSETYl OPTLAB-test-
TAG-goto-LABEL STMTSETY2) {d},

where (STMTSETYl OPTLAB-test-TAG-goto-
LABEL) has length (COUNT1) {b,c},

where (STATED is (state VARSETYl-var-
TAG-value-EMPTY-VARSETY2 stcount-
COUNT1 infile-FILEl outfile-FILE2) {d},

where (STATE2) is (state VARSETYl-var-
TAG-value-EMPTY-VARSETY2 stcount-
COUNT2 infile-FILEl outfile-FILE2) {d},

where (STMTS) is (STMTSETY3 lab-LABEL-
CMD STMTSETY4) {d},

where (STMTSETY3 lab-LABEL-CMD) has
length (COUNT2) {b,c},

where (STATE2) becomes (STATE3) given
(STMTS) {a};

where (STMTS) is STMTSETYl OPTLAB-test-
TAG-goto-LABEL STMTSETY2) {d},

where (STMTSETYl OPTLAB-test-TAG-goto-
LABEL) has length (COUNT) {b,c},

where (STATED is (state VARSETYl-var-
TAG-value-VALUE-i-VARSETY2
stcount-COUNT infile-FILEl outfile-
FILE2) {d},

where (STATE2) is (state VARSETY2-var-
TAG-value-VALUE-i-VARSETY2
stcount-COUNT-i infile-FILEl outfile-
FILE2) {d},

where (STATE2) becomes (STATE3) given
(STMTS) {a}.

b) where (STMTS STMT) has length (COUNT i):
where (STMTS) has length (COUNT) {b,c}.

c) where (STMT) has length (i):
EMPTY.

d) where (NOTETY) is (NOTETY):
EMPTY.

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 6 7

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/63/527413 by guest on 21 August 2022


