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Abstract

Ambiguous or open-ended requests to a di-
alogue system result in more complex dia-
logues. We present a semantic-specificity met-
ric to gauge this complexity for dialogue sys-
tems that access a relational database. An ex-
periment where a simulated user makes re-
quests to a dialogue system shows that seman-
tic specificity correlates with dialogue length.

1 Introduction

A dialogue system (DS) and its users have asymmet-
ric knowledge. The DS has access to knowledge the
user is not privy to, and the user has intentions that
the DS attempts to recognize. When the user’s inten-
tions are difficult for her to specify fully, the user and
DS must collaborate to formulate the intention. The
thesis of this work is that a DS can assess the speci-
ficity of its knowledge with respect to the user inten-
tions it is designed to address. Our principal result
is that, for a DS that queries a relational database,
measures of the ambiguity of database attributes can
be used both to assess the scope of the DS’s task
and to guide its dialogue strategy. To demonstrate
our thesis, we have developed a semantic specificity
metric applicable to any DS that queries a relational
database. This metric measures the degree to which
one or more attributes can uniquely specify an item
in the database. Attributes whose values are more
often ambiguous have lower semantic specificity.

CheckItOut is a book request DS that references
a copy of the catalogue at the Heiskell Braille and
Talking Book Library with its 71,166 books (Epstein

et al., In Press). We focus on three book attributes:
AUTHOR, TITLE and CALL NUMBER. Only the lat-
ter is guaranteed to identify a unique book. Of the
64,907 distinct TITLE values, a large majority return
a unique book (N=59,236; 91.3%). Of the 28,045
distinct AUTHOR values, about two thirds return a
unique book (N=17,980; 64.1%).

Query return Distinct Distinct
size TITLE values AUTHOR values

1 59236 17980
2 5234 4377
3 345 1771
...
10 2 168
...

184 – 1
Total 64907 28045

Table 1: When used as a query, many TITLE values return
unique books, but AUTHOR values are less specific.

To compare the specificity of TITLE and AUTHOR,
we calculated query return size, the number of dis-
tinct books in the Heiskell database returned by each
possible attribute value. Table 1 tallies how many
attribute values have the same query return size. TI-
TLE partitions the books into 10 subsets, where the
two most ambiguous TITLE values, Collected Sto-
ries and Sanctuary, each return 10 distinct books.
AUTHOR produces 89 subsets; its most ambiguous
value, Louis L’Amour, returns 184 distinct books.
Clearly, TITLE has higher specificity than AUTHOR.

After a survey of related work, this paper defines a
semantic specificity metric that is a weighted sum of



the number of query return sizes for one or more at-
tributes. We show through simulation that dialogue
length varies with semantic specificity for a DS with
a simple system-initiative dialogue strategy.

2 Related Work

Little work has been reported on measures of the
relationship between dialogue complexity and the
semantic structure of a DS application’s database.
Zadrozny (1995) proposes Q-Complexity, which
roughly corresponds to vocabulary size, and is es-
sentially the number of questions that can be asked
about a database. Pollard and Bierman (2000) de-
scribe a similar measure that considers the number
of bits required to distinguish every object, attribute,
and relationship in the semantic space.

Gorin et al. (2000) distinguish between semantic
and linguistic complexity of calls to a spoken DS.
Semantic complexity is measured by inheritance re-
lations between call types, the number of type labels
per call, and how often calls are routed to human
agents. Linguistic complexity is measured by utter-
ance length, vocabulary size and perplexity.

Popescu et al. (2003) identify a class of “seman-
tically tractable” natural language questions that can
be mapped to an SQL query to return the question’s
unique correct answer. Ambiguous questions with
multiple correct answers are not considered seman-
tically tractable. Polifroni and Walker (2008) ad-
dress how to present informative options to users
who are exploring a database, for example, to choose
a restaurant. When a query returns many options,
their system summarizes the return using attribute
value pairs shared by many of the members.

3 Semantic Specificity

The database queried by a DS can be regarded as
the system’s knowledge. Consequently, the seman-
tic structure of the database and the way it is popu-
lated constrain the requests the system can address
and how much information the user must provide.
Intuitively, Table 1 shows that TITLE has a higher
semantic specificity than AUTHOR. Our goal is to
quantify the query ambiguity engendered by the in-
stantiation of any database table.

Often a user does not know in advance which
combination of attribute values uniquely communi-

cates her intent to the system. In addition, the DS
does not know what the user wants until it has of-
fered an item that the user confirms, whether ex-
plicitly or implicitly. The remainder of this section
defines the specificity of individual and multiple at-
tributes with respect to a set of database instances.

3.1 Specificity for Single Attributes
When a user requests information about one or more
entities, the request can map to many more database
instances than intended. Let I be a set of instances
(rows) in a database relation, and let α be an attribute
of I with values V that occur in I . Denote by q(v,α)
the query return size for v ∈ V on α, the number of
instances of I returned by the query α = v. When-
ever q(v,α) = 1, the query returns exactly one in-
stance in I; attributes with more such values have
higher specificity. If q(v,α) = 1 for every v, then α
is maximally specific with respect to I .

Let Qα be the set of dα distinct query return sizes
q(v,α) returned on I . We call Qα the query return
size partition for α. Qα induces a partition of V
into subsets Vj , j ∈ Qα such that a query on every
value in a given subset returns the same number of
instances. Table 1 shows two such partitions. We
now define the specificity S(α, I) of attribute α with
respect to I as a weighted sum of the sizes of the
subsets in the partition induced by α, normalized by
|I|, the number of instances in I:

S(α, I) =
1

|I|
∑

j∈Qα

w(j) · |Vj | (1)

The weight function w in (1) addresses the num-
ber of distinct values in each subset of Qα. A larger
query return size indicates a more ambiguous at-
tribute, one less able to distinguish among instances
in I . To produce specificity values in the range [0, 1],
w(j) should decrease as j increases, but not penal-
ize any query that returns a single instance, that is,
w(1) = 1. The faster w decreases, the more it pe-
nalizes an ambiguous attribute. Here we take as w
the inverse of the query return size, w(j) = 1

j .
For our CheckItOut example, equation (1) scores

TITLE’s specificity as 0.871 and AUTHOR’s speci-
ficity much lower, at 0.300. This matches our intu-
ition. The third attribute with which a user can order
a book, CALL NUMBER, was designed as a primary
key and so has a perfect specificity of 1.000.



3.2 Specificity for Multiple Attributes
The specificity of a set β = {α1,α2, ...,αk} of k at-
tributes on a set of instances I measures to what de-
gree a combination (one value for each attribute in
β) specifies a restricted set of instances in I . Let V
be the combinations for β that occur in I , and let
q(v,β) be the query return size for v ∈ V . Then
Qβ , the set of dβ distinct query return sizes, induces
a partition on V into subsets Vj , j ∈ Qβ where com-
binations in the same subset return the same number
of instances. We take w(j, k) = 1

jk
to penalize am-

biguity more heavily when there are more attributes.
Then the specificity of β with respect to I is

S(β, I) =
1

|I|
∑

j∈Qβ

w(j, k) · |Vj | (2)

Using this equation, the specificity of β =
{TITLE, AUTHOR} is 0.880. Interestingly, this is not
much higher than the 0.871 TITLE specificity alone,
which indicates that, in this particular database
instantiation, AUTHOR has little ability to disam-
biguate a TITLE query. This is because many
“books” in the Heiskell catalog appear in two for-
mats, Braille and audio. This duplication creates an
ambiguity that is better resolved by prompting the
user for CALL NUMBER or FORMAT. In some cases,
a value for FORMAT might still result in ambiguity;
for example, different recorded readers produce dif-
ferent audio versions of the same title and author.
In contrast, the large difference between AUTHOR’s
very low specificity (0.300) and that of {TITLE, AU-
THOR} (0.880) suggests that, given an ambiguous
author, it would in general be a good strategy for the
DS to then prompt the user for the title.

Because specificity is a function of a database in-
stantiation, specificity can be used to guide dialogue
strategy. For the books in Heiskell’s catalogue that
cannot be uniquely identified by AUTHOR and TITLE
alone, it can be determined a priori that some book
requests cannot be disambiguated without additional
attribute values.

4 Specificity in Simulated Dialogues

A DS faced with an ambiguous query should enter
a disambiguation subdialogue. It can either offer a
list of matching instances that must be individually
confirmed or rejected by the user, or indicate to the

user that an attribute value is ambiguous and request
additional information. In general, a less specific
user request should increase the dialogue length.

We tested this hypothesis with a simulated user
that interacted with the CheckItOut book-order DS
through a text interface. As in our work where hu-
man subjects called CheckItOut, a new scenario for
each call included “patron” identification data and a
list of four books with their authors, titles, and call
numbers. In each dialogue, the simulator received
a scenario, the DS confirmed the simulator’s “iden-
tity,” and then the simulator requested the books.

The simulator uses a rule-based dialogue strat-
egy with some parameters, such as persistence in
re-ordering the same book, that can be set or ran-
domized to represent a set of real users more real-
istically. For this experiment, the simulator was set
to request books only by author, and to be willing to
engage in a disambiguation subdialogue of arbitrary
length. When the system cannot uniquely identify a
requested book, it begins a disambiguation subdia-
logue, an example of which is shown in Figure 1.
To avoid addressing information presentation issues
such as those explored in (Polifroni and Walker,
2008), CheckItOut followed a simple strategy of of-
fering each next candidate book in a query return,
and user studies with CheckItOut restricted query re-
turn size to a maximum of three books. For the sim-
ulations, we expect an inverse relationship between
specificity and dialogue length.

S: NEXT BOOK?
U: Dan Simmons
S: DID YOU SAY DAN SIMMONS?
U: Yes
S: WOULD YOU LIKE ENDYMION BY THIS AUTHOR?
U: No
S: WOULD YOU LIKE THE CROOK FACTORY

BY THIS AUTHOR?
U: Yes

Figure 1: Sample disambiguation subdialogue.

We randomly sampled Heiskell’s full set of
71,166 books to create five smaller instantiations
of 1000 books each. We deliberately sampled
at different frequencies within each subset of the
original partition induced by AUTHOR, so that
S(AUTHOR, T ) for instantiation T ranged from
0.3528 to 1.000. For each instantiation we simulated
25 dialogues. Conditions of relatively lower speci-



Figure 2: Dialogue length averaged across 25 simulated
dialogues for each run of 5 different attribute specificity
levels, shown with 95% confidence intervals.

ficity result in more dialogues like the one shown in
Figure 1, with multiple turn exchanges where the DS
offers the simulator different books by the requested
author. As specificity approaches 1.0, the first book
offered by the DS is more frequently the requested
book, so no disambiguation is required, and the min-
imum dialogue length of 43 turns is achieved. Fig-
ure 2 compares the mean dialogue length for each
sub-instantiation to its author specificity, and clearly
shows that dialogue length increases as author speci-
ficity decreases. The error bars shrink as specificity
increases because there is less variation in dialogue
length when there are fewer candidate books for
CheckItOut to offer.

5 Conclusion and Future Work

Semantic specificity has two important applications.
Because it predicts how likely a value for a database
attribute (or a combination for a set of attributes) is
to return a single database instance, semantic speci-
ficity can help formulate subdialogues with a prior-
ity order in which the DS should prompt users for
attributes. Because it is a predictor for dialogue
length, semantic specificity could also be used to
evaluate whether a DS dialogue strategy incurs the
expected costs. Of course, many factors other than
semantic specificity affect DS dialogue complexity,
particularly the relation between users’ utterances
and the semantics of the database. In the examples
given here, the way users refer to books corresponds
directly to attribute values in the database. Other
domains may require a more complex procedure to
map between the semantics of the database and the

semantics of natural language expressions.
Finally, how well semantic specificity with re-

spect to a database instantiation predicts dialogue
length depends in part on how closely the database
attributes correspond to information that users can
readily provide. Here, AUTHOR and TITLE are con-
venient both for users and for the database seman-
tics. However, the maximally specific CALL NUM-
BER is often unknown to the user. For DSs where
the database attributes differ from those that can be
extracted from user utterances, we intend to explore
enhanced or additional metrics to predict dialogue
length and guide dialogue strategy.
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