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Abstract

Hashing is becoming increasingly popular for ap-
proximate nearest neighbor searching in massive
databases due to its storage and search efficiency.
Recent supervised hashing methods, which usu-
ally construct semantic similarity matrices to guide
hash code learning using label information, have
shown promising results. However, it is relatively
difficult to capture and utilize the semantic relation-
ships between points in unsupervised settings. To
address this problem, we propose a novel unsuper-
vised deep framework called Semantic Structure-
based unsupervised Deep Hashing (SSDH). We
first empirically study the deep feature statistics,
and find that the distribution of the cosine dis-
tance for point pairs can be estimated by two half
Gaussian distributions. Based on this observation,
we construct the semantic structure by consider-
ing points with distances obviously smaller than the
others as semantically similar and points with dis-
tances obviously larger than the others as seman-
tically dissimilar. We then design a deep architec-
ture and a pair-wise loss function to preserve this
semantic structure in Hamming space. Extensive
experiments show that SSDH significantly outper-
forms current state-of-the-art methods.

1 Introduction

The explosive growth of visual data (e.g., photos and videos)
has led to renewed interest in efficient indexing and search-
ing algorithms [Liu et al., 2016; Andoni and Indyk, 2006;
Weiss et al., 2009; Gong et al., 2013; Dai et al., 2017;
Ma et al., 2017; You et al., 2017a; Deng et al., 2018;
Li et al., 2018]. However, since exact nearest neighbor
searching is typically time-consuming and sometimes infea-
sible for big data applications, approximate nearest neighbor
(ANN) searching [Andoni and Indyk, 2006], which balances
retrieval performance and computational cost, has recently
become more popular. Representative ANN solutions include
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tree-based [Guttman, 1984] and hash-based methods [An-
doni and Indyk, 2006; Gui et al., 2017; Liu et al., 2014;
Weiss et al., 2009; Liu et al., 2012]. In real applications,
visual data are usually represented by high-dimensional fea-
tures, e.g., SIFT-based bag-of-words features [Lowe, 2004]

and deep features. Traditional tree-based methods are known
to suffer from high feature space dimensionality, and their
performance has been theoretically shown to degrade to that
of the linear scan in many cases[Toth et al., 2004]. Therefore,
focus has shifted to hash-based methods for large-scale ANN
searching.

Based on whether the hash learning processes are aware of
the data distributions, hashing methods can be divided into
data-independent hashing, also known as locality-sensitive
hashing (LSH), and data-dependent hashing, also called
learn-to-hash (L2H). The seminal LSH in [Andoni and In-
dyk, 2006] formulates a paradigm for the locality-sensitive
hashing technique and guarantees that similar data points
will be mapped to similar hash codes in Hamming space.
However, since the LSH hash functions are usually gen-
erated independently, long hash bits are often needed to
achieve a specific retrieval performance. Conversely, data-
dependent methods [Weiss et al., 2009; Liu et al., 2011;
2011; Gong et al., 2013; Dai et al., 2017], which learn hash
functions from data distributions, usually perform well with
shorter binary codes, increasing their value.

For data-dependent methods, several studies [Lin et al.,
2016; Yang et al., 2018] have focused on learning hash
codes under supervised settings in which data labels (e.g.,
instance labels, pair-wise labels, or triplet labels) are as-
sumed to be available. In these methods, the hash codes are
usually learned to be consistent with these high-level super-
vised signals. However, manually labeling data is often time-
consuming, laborious, and expensive, hindering the applica-
tions of these methods in practice. To make better use of
widely-available unlabeled data, efforts have been made to
exploit unsupervised hashing.

Most traditional unsupervised hashing methods are based
on shallow architectures that consider feature learning and
hash code learning as two separate processes. Representa-
tive unsupervised shallow methods include spectral hashing
(SH) [Weiss et al., 2009], anchor graph hashing (AGH) [Liu
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et al., 2011], iterative quantization (ITQ) [Gong et al., 2013],
and stochastic generative hashing (SGH) [Dai et al., 2017].
SH utilizes spectral graph partitioning to interpret the hash
code learning and then relax the original problem by using
a spectral method that can be solved efficiently. AGH at-
tempts to approximate the data structure by constructing an-
chor graphs, which can also accelerate the computation of
graph Laplacian eigenvectors. ITQ tries to map the data to
the vertices of a zero-centered binary hypercube by finding
an orthogonal rotation matrix that minimizes the quantiza-
tion error. SGH adopts a generative approach to compress the
dataset into hash codes using the minimum description length
principle. The learned hash codes can also be used to regen-
erate the inputs. Though these methods have progressed the
field, they usually depend on pre-defined features and cannot
simultaneously optimize the feature and hash code learning
processes, thus missing an opportunity to learn more effec-
tive hash codes.

Recently, deep learning has revolutionized computer vi-
sion, machine learning, and other related areas [You et
al., 2017b]. deep unsupervised hashing methods have also
been proposed, which adopt deep architectures to extract
features and perform hash mapping. Representative un-
supervised deep hashing methods include semantic hash-
ing [Salakhutdinov and Hinton, 2009], deep auto-encoder
hashing [Krizhevsky and Hinton, 2011], and deep binary de-
scriptors (DeepBit) [Lin et al., 2016]. Semantic hashing uses
pre-trained restricted Boltzmann machines (RBMs) to con-
struct an auto-encoder network, which is then used to gen-
erate efficient hash codes and reconstruct the original inputs.
Deep auto-encoder hashing designs very deep auto-encoders
to map inputs to binary codes, and a reconstruction loss is also
used to guide hash code learning. DeepBit considers original
images and the corresponding rotated images as similar pairs
and tries to learn hash codes to preserve this similarity. By in-
tegrating the feature and hash code learning processes, deep
unsupervised hashing methods usually produce better results.

However, most existing unsupervised deep hashing meth-
ods such as semantic hashing, deep auto-encoder hashing,
and DeepBit, usually learn hash codes based on the recon-
struction loss or by preserving the similarity between rotated
images. They cannot capture and utilize high-level seman-
tic relationships between different data points. In reality, in
supervised settings, most deep methods [Yang et al., 2017]

leverage the supervised signals to construct a semantic sim-
ilarity matrix and learn hash codes to preserve this semantic
relationship. However, these methods are unsuitable for un-
supervised settings.

Here we ask: can we learn semantic structures without la-
bels? Our approach is inspired by recent studies [Girshick
et al., 2014], which show that features extracted from pre-
trained deep architectures contain rich semantic information.
We empirically analyze the deep feature statistics for the
NUSWIDE and FLICKR25K datasets and find that the dis-
tribution of the cosine distance for different data points can
be estimated by two half Gaussian distributions. Since deep
features contain rich semantic information, we assume that
data points with distances obviously smaller than the others
are semantically similar and data points with distances obvi-

ously larger than the others are semantically dissimilar. Based
on the above observation and assumptions, we construct a se-
mantic structure that denotes whether data point pairs are sim-
ilar. We then design a pair-wise loss function to preserve this
semantic information. To integrate the feature and hash code
learning processes, we design a unified, end-to-end trainable
deep framework. Extensive experiments demonstrate that our
proposed method significantly outperforms the current state-
of-the-art.

2 Notation and Problem Definition

In this paper, boldface uppercase letters (such as A) are used
to denote matrices. A∗i denotes the i-th column of A. Aij

denotes the (i, j)-th element of A. Further, ‖A‖F and A⊤

are used to denote the Frobenius norm and the transpose of
matrix A, respectively. The ⊙ symbol is used to denote the
Hadamard product and sign(·) represents the element-wise
signum function as:

sign(x) =

{

1 if x ≥ 0,

−1 if x < 0.
(1)

Assume that we have m database points denoted X =
{xi}

m

i=1
. The goal of unsupervised hashing is to learn bi-

nary hash codes for database points and a hash function that
can be used to generate hash codes for query data points.
We use B = {bi}

m

i=1
to denote the hash codes for X , and

bi ∈ {−1,+1}
K

corresponds to the hash code for point xi,
where K denotes the hash code length.

3 Model Formulation

In this section, we introduce our Semantic Structure-based
unsupervised Deep Hashing (SSDH) approach in detail, in-
cluding its network architecture, semantic structure learning,
and hash code learning.

3.1 Network Architecture

We apply the VGG-F model from [Simonyan and Zisser-
man, 2014] to perform feature and hash code learning. This
model has been used in many other hashing methods [Lin et
al., 2016; Yang et al., 2018]. The original VGG-F model
contains five convolutional layers (conv1 - conv5) and three
fully-connected layers (fc6-fc8), the details of which can be
found in [Simonyan and Zisserman, 2014]. We modify the
original VGG-F model by replacing the last fully-connected
layer with a fully-connected layer with k hidden units to in-
corporate the hash code learning process in this deep learning
framework. Note that we adopt VGG-F network for illus-
tration purposes only, and any other network can easily be
integrated into our framework.

3.2 Semantic Structure Learning

Since hashing methods usually aim to map the original points
into Hamming space where the semantic relationship across
different data points can be preserved, constructing a seman-
tic similarity matrix using label information in supervised set-
tings is natural. However, for unsupervised hashing learn-
ing, it is difficult to capture the semantic structure without
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Figure 1: Statistics of the cosine distance. (a) Cumulative distribu-
tion. (b) Corresponding histogram distribution. (c) Gaussian esti-
mation for the histogram distribution of the left part. (d) Gaussian
estimation for the histogram distribution of the right part. For better
visualization, we complete (c) and (d) to make them symmetrical.

any supervised information. To address this problem, and in-
spired by recent studies [Girshick et al., 2014] showing that
features extracted from pre-trained deep architectures con-
tain rich semantic information, we first extract features from
a pre-trained deep architecture and analyze their statistics.
Based on this analysis, we can then learn a semantic struc-
ture that explicitly captures the semantic relationships across
different data points.

Specifically, we first randomly sample 10,000 data points
from the FLICKR and NUSWIDE datasets and then extract
their fc7-layer features from the VGG-F network pre-trained
with ImageNet [Deng et al., 2009]. To analyze the seman-
tic relationships between these data points, we calculate the
cosine distance for each pair of points based on the extracted
deep features. Figure 1(a) shows the distance cumulative his-
togram, and Figure 1(b) is the corresponding distance his-
togram over all data point pairs. It can be seen that most data
point pairs have relatively large distances, and each distance
histogram is similar to two half Gaussian distributions. Since
deep features contain rich semantic information, we assume
that data points with distances obviously smaller than the oth-
ers are semantically similar and data points with distances ob-
viously larger than the others are semantically dissimilar.

Based on the above observation and assumptions, we split
the distance histogram into two parts based on the maximum
value and fit each part with a half Gaussian distribution. The
results for the NUSWIDE dataset are shown in Figures 1(c)
and 1(d), which clearly show that the distance histogram can
be approximately estimated by two half Gaussian distribu-
tions. We use ml and σl to denote the mean and standard
deviation of the Gaussian distribution for the left part and mr

and σr for the right part. To obtain the semantically similar

0  -1  1     0  -1  1

-1  1  1     -1 0  1
Semantic Structure
1  -1  1     0  0  -1

1  -1  0     -1  1 0

1  -1  1     -1  1  -1

1  -1  1     -1  -1  1
Binary Codes

1  -1  1     -1  -1  1

1  1  -1     -1  1 - 1

Pairwise loss

Hash Code Learning

Semantic Structure 
Learning

Figure 2: The framework of SSDH.

data points, we set a distance threshold ds = (ml−ασl), and
consider data points with distance smaller than ds as semanti-
cally similar data points. α is a hyper-parameter to control the
value of the distance threshold ds, and it also dicates the per-
centage of similar points from all data point pairs. For exam-
ple, if we only consider points from the left part and choose
α as 2, then from the properties of Gaussian distributions we
know that only about 2.2% of the distances are smaller than
(ml − 2σl). To obtain semantically dissimilar data points,
we set a distance threshold as dd = (mr + βσr), and con-
sider data points with distance larger than ds as semantically
dissimilar. β is a hyper-parameter to control the value of the
distance threshold dd, which also dictates the percentage of
dissimilar points.

Based on the above two thresholds, we construct a seman-
tic structure S as:

Sij =







1, if d(i, j) ≤ ds,

0, if ds < d(i, j) < dd,

−1, if d(i, j) ≥ dd,

(2)

where d(i, j) represents the cosine distance of the deep rep-
resentations for points xi and xj , and Sij is set to 1 if xi and
xj are semantically similar, and −1 if they are semantically
dissimilar. If we cannot decide whether they are semantically
similar or dissimilar, we set Sij to 0.

3.3 Hash Code Learning

In order to preserve the learned semantic structure, we try to
map semantically similar data points into similar hash codes,
semantically dissimilar data points into dissimilar hash codes,
and discard pairs of data points if we cannot decide whether
they are semantically similar or dissimilar. We first construct
a similarity structure H by using the inner product of differ-
ent hash codes:

Hij =
1

K
bi⊤bj , bi ∈ {−1,+1}K , (3)

where bi is the hash code for data point xi. To explicitly
enforce semantic structure-preserving criteria, we minimize
the L2 loss between this similarity structure and the learned
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semantic structure, which can be formulated as:

min
B

J (B) =
1

m2

m
∑

i=1

m
∑

j=1

|Sij | (Hij − Sij)
2
. (4)

We set bi = sign(F (xi; Θ)), where F (xi; Θ) denotes the
output of the neural network, and Θ is the parameters. There-
fore we can integrate the above loss function into the deep
architecture. However, binary values make standard back-
propagation for the deep neural network infeasible, which is
known as the ill-posed gradient problem. So, here we relax
the binary constraint, use tanh(·) to approximate the sign(·)
function, and adopt the following objective function:

min
Θ

J (Θ) =
1

m2

m
∑

i=1

m
∑

j=1

|Sij | (Hij − Sij)
2
,

s.t. Hij =
1

K
vi⊤vj , vi = tanh(F (xi; Θ)),

(5)

where we use vi to denote the relaxed binary representation.

4 Optimization

To optimize the problem in Equation 5, we first extract
10,000 samples from the dataset before constructing the se-
mantic structure using Equation 2. Then, we minimize Equa-
tion 5 using the mini-batch stochastic gradient descent (SGD)
method. The whole learning procedure is summarized in Al-
gorithm 1.

When S is given, we use the mini-batch SGD method to
learn the neural network parameter Θ. Specifically, we first
sample a mini-batch of the training data points and then up-
date parameter Θ based on this mini-batch data. For the sake
of simplicity, we define zi = F (xi; Θ). Then we calculate
the gradient of the loss function with regard to zi as:

∂J (Θ)

∂zi
=

2

Km2

m
∑

i=1

(1− v2

i )⊙ (
m
∑

j=1

|Sij | (
1

K
vi⊤vj − Sij)

· vj + (
1

K
vi⊤vi − 1)vi).

(6)
The gradients for loss function J (Θ) with regard to other
parameters can be readily computed using the chain rule, and
all the parameters can be updated using mini-batch SGD.

We performed experiments to update the semantic struc-
ture based on updating image features in each epoch. Con-
structing this semantic structure was time-consuming, and the
update strategy did not significantly impact performance. So,
in this work, we first obtain the semantic structure and then
fix it when updating the the neural network parameters.

5 Out of Sample Extension

For any point qi not in the training set, we can obtain its hash
code bi by directly forward propagating it through the learned
neural network as follows:

bi = sign(F (qi; Θ)). (7)

Algorithm 1: SSDH

Training Stage

Input: Training images X, code length K, parameters α
and β, mini-batch size N .
Output: Parameters Θ for the neural network and hash
codes B for training images.
Procedure:
1. Initialize parameters for the VGG-F network Θ.
2. Extract their fc7-layer features based on the VGG-F
network.
3. Construct the semantic structure S by using
Equation 2.
repeat

3.1 Randomly sample N points from X to construct
a mini-batch.
3.2 Calculate the outputs by forward-propagating
through the VGG-F network.
3.3 Update parameters of the VGG-F network by (6).

until convergence;

Testing Stage

Input: Image query qi, parameters for the VGG-F
network.
Output: Hash codes for the query.
Procedure:
1. Calculate the output of the neural network by directly
forward-propagating the input images.
2. Calculate the hash codes by using Equation (7).

6 Experiments

We evaluate our method on two popular benchmark datasets,
NUSWIDE and FLICKR25K . We provide extensive evalu-
ations of the proposed hash codes and demonstrate their per-
formance. We first introduce the datasets and then present
and discuss our experimental results together with compara-
tive evaluations with current state-of-the-art methods.

6.1 Datasets

• NUSWIDE contains 269,648 images, with each data
point annotated with multiple labels based on 81 con-
cepts. The subset belonging to the 10 most popular con-
cepts are used here. We randomly select 5,000 images as
a test set. The remaining images are used as a retrieval
set, from which we randomly select 5,000 images as a
training set.

• FLICKR25K contains 25,000 images collected from
the Flickr website. Each image is manually annotated
with at least one of 24 unique provided labels. We ran-
domly select 2,000 images as the test set. The remaining
images are used as the retrieval set, from which we ran-
domly select 10,000 images as the training set.

For our proposed approach and deep learning-based compara-
tor methods, we use raw pixels as inputs. For traditional shal-
low methods, we extract 4096-dimensional feature vectors
from the fc7 layer using the VGG-F architecture pre-trained
on ImageNet for fair comparison.
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Method
FLICKR25K

16 bits 32 bits 64 bits 128 bits

ITQ 0.6492 0.6518 0.6546 0.6577
SH 0.6091 0.6105 0.6033 0.6014

DSH 0.6452 0.6547 0.6551 0.6557
SpH 0.6119 0.6315 0.6381 0.6451
SGH 0.6362 0.6283 0.6253 0.6206

DeepBit 0.5934 0.5933 0.6199 0.6349
Ours 0.7240 0.7276 0.7377 0.7343

Table 1: Comparison with baselines in terms of MAP. The highest
accuracy is shown in bold.

Method
NUSWIDE

16 bits 32 bits 64 bits 128 bits

ITQ 0.5270 0.5241 0.5334 0.5398
SH 0.4350 0.4129 0.4062 0.4100

DSH 0.5123 0.5118 0.5110 0.5267
SpH 0.4458 0.4537 0.4926 0.5000
SGH 0.4994 0.4869 0.4851 0.4945

DeepBit 0.3844 0.4341 0.4461 0.4917
Ours 0.6374 0.6768 0.6829 0.6831

Table 2: Comparison with baselines in terms of MAP. The highest
accuracy is shown in bold.

6.2 Implementation Details

We implement our approach using the open source Tensor-
Flow [Abadi et al., 2016], and optimize our model by mini-
batch SGD with momentum. The mini-batch size is set to
24 and momentum to 0.9. Training images are resized to
224 × 224 as the inputs. The first seven layers of our neu-
ral network are fine-tuned from the model pre-trained with
ImageNet, and the last fully-connected layer is learnt from
scratch. The learning rate is fixed at 0.001.

6.3 Protocols and Baseline Methods

Three evaluation criteria are adopted to evaluate our
method’s performance, namely mean average precision
(MAP), precision-recall, and TopN-precision.

MAP is one of the most widely-used criteria to evaluate re-
trieval accuracy. Given a query and a list of R ranked retrieval
results, the average precision (AP) for this query is defined as

AP =
1

N

R
∑

r=1

P (r)δ(r), (8)

where N is the number of ground-truth relevant instances in
the database for the query, and P (r) represents the precision
for the top r retrieved instances. δ(r) = 1 when the r-th
retrieval instance is relevant to the query, otherwise δ(r) = 0.
MAP is defined as the average of APs for all queries. R is
set to 5,000 in our experiments. The ground-truth relevant
instances for a query are defined as those sharing at least one
label with the query. Precision-recall reports recall and the
corresponding precision values. The TopN-precision denotes
the precision at different numbers of retrieved instances.

We compare SSDH with several other unsupervised hash-
ing methods including ITQ [Gong et al., 2013], SH [Weiss

et al., 2009], DSH [Jin et al., 2014], SpH [Heo et al., 2012],
DeepBit [Lin et al., 2016], and SGH [Dai et al., 2017], where
ITQ, SH, DSH, SpH and SGH are shallow architecture-based
methods, and DeepBit is a deep architecture-based method.
All codes of these methods are kindly provided by the au-
thors, and configurations for all methods are set according to
the original papers.

6.4 Results and Discussion

As a global evaluation, we first present the MAP values for
SSDH and all comparative methods across different hash
code lengths on the two datasets. We then draw precision-
recall and TopN-precision curves for SSDH and all baseline
methods with 32 and 64 hash code lengths as a more compre-
hensive comparison.

Table 1 shows the MAP results for SSDH and all com-
parative methods on FLICKR25K with code lengths varying
from 16 to 128. It can be seen that the proposed method
consistently obtains the best results across different hash bit
lengths. Specifically,the SSDH MAP obtains a relative im-
provement over the next-best baseline methods of 7.48%,
7.29%, 8.26%, and 7.66% for 16, 32, 64, and 128 bit lengths,
respectively. Table 2 shows the MAP results for all methods
on NUSWIDE. Again, our proposed method outperforms all
other baseline methods in all cases. Specifically, the MAP
of our proposed method obtains a relative improvement over
the next-best baseline methods of 11.04%, 15.27%, 14.95%,
and 14.33% for 16, 32, 64, and 128 bit lengths, respectively.
The results presented in Table 1 and 2 well demonstrate the
superiority of our proposed method.

Figures 3(c), 3(d), 4(c), and 4(d) show TopN-precision
curves of SSDH and all comparative methods on
FLICKR25K and NUSWIDE, respectively. It can clearly be
seen that SSDH always achieves the highest precision. Since
MAP values and TopN-precision curves are all based on
Hamming ranking, taken together the above analysis shows
that SSDH can achieve superior performance for Hamming
ranking-based evaluations. To illustrate hash lookup results,
we plot the recall-precision curves for SSDH and other
comparative methods, as shown in Figures 3(a), 3(b), 4(a),
and 4(b), where Figures 3(a) and 3(b) present the 32 bit
length results and Figures 4(a) and 4(b) presents the 64
bit length results. It can again be seen that SSDH always
achieves the best performance by a large margin, further
demonstrating the superiority of our proposed method.

6.5 Parameter Sensitivity

We next investigate the sensitivity of hyper-parameters α and
β. Figure 5 shows the effect of these two hyper-parameters
in SSDH on NUSWIDE dataset with hash code lengths of 32
and 64 bits. We first fix β to 1 and evaluate the MAP val-
ues by varying α between 0 and 3, the results are presented
in Figure 5(a). SSDH performance first increases and then
decreases as α varies, showing a desirable bell-shaped curve.
The best result is obtained when α is 2, so we fix α to 2
in our other experiments. According to a Gaussian distribu-
tion, only about 2.2% points are smaller than the threshold
(ml−2δl), consistent setting data points with distances obvi-
ously smaller than the others as semantically similar points.
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Figure 3: Precision-recall curves and topN-precision with code length 32.
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Figure 4: Precision-recall curves and topN-precision with code length 64.
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Figure 5(b) shows the MAP values when varying β between
−3 and 3, The performance of SSDH first increases and then
is kept at a relatively high level. The result is not sensitive to
β in the range of 0 ≤ β ≤ 3 . For other experiments in this
paper, we select β as 1.

6.6 Encoding Time

In this subsection, we compare the encoding time. For shal-
low methods, the overall time includes the time used for fea-
ture extraction. The results are shown in Figure 6, from which
we can see that SSDH takes almost the same amount of time
as DeepBit and both these two methods have comparative en-
coding time with ITQ, SH, DSH, and SpH. From the results,
we can get that deep learning based methods enable as effi-
cient encoding as most shallow methods.

7 Conclusion

Here we present a novel deep unsupervised hashing method
called semantic structure-based unsupervised deep hashing
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Figure 6: Encoding time on NUSWIDE with code length 32.

(SSDH). Our empirical study of the deep feature statistics
shows that the cosine distance histogram distributions can be
estimated by two half Gaussian distributions. Based on this
observation, we construct a semantic structure to capture the
semantic relationships and design a pair-wise loss function to
preserve the relationships in Hamming space. Comparative
studies on two bench-mark datasets show that SSDH signifi-
cantly outperforms current state-of-the-art methods.

Acknowledgements

This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61572388 and Grant
61703327, in part by the Key R&D Program-The Key Indus-
try Innovation Chain of Shaanxi under Grant 2017ZDCXL-
GY-05-04-02 and Grant 2017ZDCXL-GY-05-04-02, and in
part by ARC projects: FL-170100117, DP-140102164, and
LP-150100671.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1069



References

[Abadi et al., 2016] Martı́n Abadi, Ashish Agarwal, Paul
Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[Andoni and Indyk, 2006] Alexandr Andoni and Piotr Indyk.
Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium
on, pages 459–468. IEEE, 2006.

[Dai et al., 2017] Bo Dai, Ruiqi Guo, Sanjiv Kumar, Niao
He, and Le Song. Stochastic generative hashing. arXiv
preprint arXiv:1701.02815, 2017.

[Deng et al., 2009] Jia Deng, Wei Dong, Richard Socher, Li-
Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pat-
tern Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 248–255. IEEE, 2009.

[Deng et al., 2018] Cheng Deng, Zhaojia Chen, Xianglong
Liu, Xinbo Gao, and Dacheng Tao. Triplet-based deep
hashing network for cross-modal retrieval. IEEE Transac-
tions on Image Processing, 2018.

[Girshick et al., 2014] Ross Girshick, Jeff Donahue, Trevor
Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 580–587, 2014.

[Gong et al., 2013] Yunchao Gong, Svetlana Lazebnik, Al-
bert Gordo, and Florent Perronnin. Iterative quantization:
A procrustean approach to learning binary codes for large-
scale image retrieval. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 35(12):2916–2929, 2013.

[Gui et al., 2017] Jie Gui, Tongliang Liu, Zhenan Sun,
Dacheng Tao, and Tieniu Tan. Fast supervised discrete
hashing. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2017.

[Guttman, 1984] Antonin Guttman. R-trees: A dynamic in-
dex structure for spatial searching, volume 14. ACM,
1984.

[Heo et al., 2012] Jae-Pil Heo, Youngwoon Lee, Junfeng He,
Shih-Fu Chang, and Sung-Eui Yoon. Spherical hashing. In
Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pages 2957–2964. IEEE, 2012.

[Jin et al., 2014] Zhongming Jin, Cheng Li, Yue Lin, and
Deng Cai. Density sensitive hashing. IEEE transactions
on cybernetics, 44(8):1362–1371, 2014.

[Krizhevsky and Hinton, 2011] Alex Krizhevsky and Geof-
frey E Hinton. Using very deep autoencoders for content-
based image retrieval. In ESANN, 2011.

[Li et al., 2018] Chao Li, Cheng Deng, Ning Li, Wei Liu,
Xinbo Gao, and Dacheng Tao. Self-supervised adversarial
hashing networks for cross-modal retrieval. arXiv preprint
arXiv:1804.01223, 2018.

[Lin et al., 2016] Kevin Lin, Jiwen Lu, Chu-Song Chen, and
Jie Zhou. Learning compact binary descriptors with unsu-
pervised deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1183–1192, 2016.

[Liu et al., 2011] Wei Liu, Jun Wang, Sanjiv Kumar, and
Shih-Fu Chang. Hashing with graphs. In Proceedings
of the 28th international conference on machine learning
(ICML-11), pages 1–8, 2011.

[Liu et al., 2012] W. Liu, J. Wang, R. Ji, Y. Jiang, and S.-F.
Chang. Supervised hashing with kernels. In CVPR, pages
2074–2081, 2012.

[Liu et al., 2014] Xianglong Liu, Junfeng He, Cheng Deng,
and Bo Lang. Collaborative hashing. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 2139–2146, 2014.

[Liu et al., 2016] Xianglong Liu, Cheng Deng, Bo Lang,
Dacheng Tao, and Xuelong Li. Query-adaptive reciprocal
hash tables for nearest neighbor search. IEEE Transactions
on Image Processing, 25(2):907–919, 2016.

[Lowe, 2004] David G Lowe. Distinctive image features
from scale-invariant keypoints. International journal of
computer vision, 60(2):91–110, 2004.

[Ma et al., 2017] Chao Ma, Chen Gong, Yun Gu, Jie Yang,
and Deying Feng. Shiss: Supervised hashing with infor-
mative set selection. Pattern Recognition Letters, 2017.

[Salakhutdinov and Hinton, 2009] Ruslan Salakhutdinov
and Geoffrey Hinton. Semantic hashing. International
Journal of Approximate Reasoning, 50(7):969–978, 2009.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[Toth et al., 2004] Csaba D Toth, Joseph O’Rourke, and Ja-
cob E Goodman. Handbook of discrete and computational
geometry. CRC press, 2004.

[Weiss et al., 2009] Yair Weiss, Antonio Torralba, and Rob
Fergus. Spectral hashing. In Advances in neural informa-
tion processing systems, pages 1753–1760, 2009.

[Yang et al., 2017] Erkun Yang, Cheng Deng, Wei Liu, Xi-
anglong Liu, Dacheng Tao, and Xinbo Gao. Pairwise rela-
tionship guided deep hashing for cross-modal retrieval. In
AAAI, 2017.

[Yang et al., 2018] Erkun Yang, Cheng Deng, Chao Li, Wei
Liu, Jie Li, and Dacheng Tao. Shared predictive cross-
modal deep quantization. IEEE Transactions on Neural
Networks and Learning Systems, 2018.

[You et al., 2017a] Shan You, Chang Xu, Yunhe Wang, Chao
Xu, and Dacheng Tao. Privileged multi-label learning.
arXiv preprint arXiv:1701.07194, 2017.

[You et al., 2017b] Shan You, Chang Xu, Chao Xu, and
Dacheng Tao. Learning from multiple teacher networks. In
Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages
1285–1294. ACM, 2017.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1070


