
Semantic Structure Matching for Assessing Web-
Service Similarity

Yiqiao Wang and Eleni Stroulia

Computer Science Department, University of Alberta, Edmonton, AB, T6G 2E8, Canada
{yiqiao,stroulia}@cs.ualberta.ca

Abstract. The web-services stack of standards is designed to support the reuse
and interoperation of software components on the web. A critical step in the
process of developing applications based on web services is service discovery,
i.e., the identification of existing web services that can potentially be used in the
context of a new web application. UDDI, the standard API for publishing web-
services specifications, provides a simple browsing-by-business-category
mechanism for developers to review and select published services. To support
programmatic service discovery, we have developed a suite of methods that
utilizes both the semantics of the identifiers of WSDL descriptions and the
structure of their operations, messages and data types to assess the similarity of
two WSDL files. Given only a textual description of the desired service, a
semantic information-retrieval method can be used to identify and order the
most similar service-description files. This step assesses the similarity of the
provided description of the desired service with the available services. If a
(potentially partial) specification of the desired service behavior is also
available, this set of likely candidates can be further refined by a semantic
structure-matching step assessing the structural similarity of the desired vs. the
retrieved services and the semantic similarity of their identifier. In this paper,
we describe and experimentally evaluate our suite of service-similarity
assessment methods.

1 Introduction

The development of web-based applications in the service-oriented architecture style,
as implied by the web-services stack of standards, relies on a set of related
specifications, defining how reusable components should be specified (through the
Web-Service Description Language – WSDL [15]), how they should be advertised so
that they can be discovered and reused (through the Universal Description, Discovery,
and Integration API – UDDI [12]), and how they should be invoked at run time
(through the Simple Object Access Protocol API – SOAP [11]). A critical step in the
process of reusing existing WSDL-specified components for building web-based
applications is the discovery of potentially relevant components. UDDI servers are
essentially catalogs of published WSDL specifications of reusable components. These
catalogs are organized according to categories of business activities. Service providers
advertise services by adding their WSDL specifications to the appropriate UDDI

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!2

directory category. Through a well-defined API, software developers can browse the
UDDI catalog by category.
This category-based service-discovery method is clearly insufficient. It is quite
informal and relies, to a great extent, on the shared common-sense understanding of
the domain by publishers and consumers. It is the responsibility of the provider
developer to publish the services in the appropriate UDDI category. The consumer
developer must, in turn, browse the “right” category to discover the potentially
relevant services. More importantly, this discovery process does not provide any
support for selecting among competing alternative services that could potentially be
reused; prioritization of the candidates is again the responsibility of the consumer.

In this paper, we discuss a set of WSDL similarity-assessment methods, which can
be used, in conjunction with the current UDDI API, to support a more automated
service-discovery process, by distinguishing among the potentially useful and the
likely irrelevant services and by ordering the candidates in the first category
according to their relevance to the task at hand. This method utilizes both the
semantics of the identifiers of WSDL descriptions and the structures of their
operations, messages and types to assess the similarity of two WSDL files. Given
only a textual description of the desired service, a semantic information-retrieval
method can be used to identify and order the most similar service-description files.
This step assesses the similarity of the provided desired-service description, extended
to include semantically similar words according to wordNet [16], with the available
services. If a (potentially partial) specification of the desired service behavior is also
available, this set of likely candidates can be further refined by a semantic structure-
matching step assessing the structure and semantic similarity of the desired vs. the
retrieved services.

The intuition underlying this method is that a plausible means of querying UDDI
servers is “query by example”, i.e., by providing a (potentially partial) specification of
the desired service. The consumer developer may define various aspects of the desired
service, such as descriptions in natural language, the namespaces of its data types and
the input/output parameters of its operations, and the proposed method will return a
set of candidate services with an estimate of their similarity to the provided example.

The remainder of the paper is organized as follows: section 2 discusses related
work; section 3 explains in detail the design and implementation of our approach;
section 4 discusses the results of our experimentation; section 5 outlines our plans for
future work and concludes with a summary of our results to date.

2 Related Research

The problem of service discovery is similar to the well-studied problems of
component retrieval and information retrieval. On one hand, a WSDL specification is
the description of a “software component” including a description of its interface and
a description of where the actual implementation exists and how it can be used. On
the other, a WSDL specification usually includes a set of natural-language description
of the service itself and comments on its elements. Thus, we looked at both these

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!3

research areas for applicable results to the service-discovery and similarity-
assessment problem.

2.1 Component retrieval

In general, there are two categories of methods for component discovery: signature
matching [8, 18] and specification matching [1, 19].

Polylith [8] proposed one of the earliest signature-matching methods for interface
adaptation and interoperation. Through its NIMBLE language, coercion rules could
be specified so that the parameters of the invoking module could be matched to the
signature of the invoked module, including reordering, type mapping and parameter
elimination. Zaremski and Wing [18] described exact and relaxed signature matching
as a means for retrieving functions and modules from a software library.

Signature matching is an efficient means for component retrieval, for several
reasons. Function signatures can be automatically generated from the function code.
Furthermore, signature matching efficiently prunes down the functions and/or
modules that do not match the query, so that more expensive and precise techniques
can be used on the smaller set of remaining candidate components. However,
signature matching considers only function types and ignores their behaviors; and two
functions with the same signature can have completely opposite behaviors.
Specification matching aims at addressing this problem by comparing software
components based on formal descriptions of the semantics of their behaviors.
However, because these specifications are developed independently from the module
code, there is no guarantee that they correctly and completely reflect the component’s
behavior. Moreover, it is hard to motivate programmers to provide a formal
specification for each component they write.

Zaremski and Wing [19] extended their signature-matching work with a
specification-matching scheme.

WSDL [15], the Web-Services Definition Language, is an XML-based interface-
definition language. It describes “services” as a set of operations implemented by a
set of messages involving a given set of data types at a high level of abstraction.
WSDL specifications of service-providing components are published in UDDI
registries. UDDI [12] is designed as an online marketplace providing a standardized
format for general business discovery. Developers can browse and query a UDDI
registry using the UDDI API to identify businesses that offer services in a particular
business category and/or services that are provided by a certain service provider.

WSDL service specifications do not include semantics. On the other hand, DAML-
S [2] is a formal logic-based language that supports the specification of semantic
information in RDF format. As part of the “semantic web” effort, it is intended as the
means for specifying domain-specific semantics of ontologies. An extension of
DAML-S supports service specification, including behavioral specifications of their
operations; as a result, it enables discovery through specification matching, such as
the method proposed in LARKS [4]. If indeed services were specified in DAML-S
instead of WSDL it would be possible to formally prove that the requirements of the
desired service and a discovered service do not conflict. However, there is no
widespread adoption yet of DAML and DAML-S, and the high cost of formally

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!4

defining of provided and required services makes this adoption unlikely. This is the
underlying motivation for this research: to provide some lightweight semantic
comparison of syntactic specifications in WSDL, based on the syntactic structure of
the specifications and the natural-language semantics of their identifiers, comments
and descriptions.

2.2 Information retrieval

Traditional information-retrieval methods rely on textual descriptions of artifacts to
assess their similarity and organize them in clusters or retrieve them in a “query-by-
example” mode [3]. According to the vector-space model, documents and queries are
represented as t-dimensional vectors, where t is the number of distinct words in the
document; similarity assessment then becomes equivalent to vector-distance
calculation.

WordNet [16] is a lexical database, inspired by current psycholinguistic theories of
human lexical memory. English nouns, verbs, adjectives and adverbs are organized
into synonym sets, each representing one underlying lexical concept. Relationships
between conceptions such as hyponym and hypernym relations are represented as
semantic pointers linking between related concepts [5, 6]. WordNet has been used in
numerous natural language processing applications, hoping to ameliorate traditional
information-retrieval results [7, 9, 13] with limited success.

3 The Web-service Discovery Method

Our service-discovery method is aimed at enabling programmatic service discovery
and integrates information- and component-retrieval ideas. The method assumes as
input a (potentially partial) specification of the desired WSDL specification and a set
of WSDL specifications of available services, such as the services advertised in
UDDI. First, a traditional vector-space model information-retrieval step, enhanced
with WordNet, retrieves the most similar services according to their WSDL service
descriptions specified in natural language. Given the retrieved list of candidate
services, a structure-matching algorithm, extended by a second WordNet method that
calculates semantic distances between identifiers of WSDLs, further refines and
assesses the quality of the candidate service set.

3.1 WordNet-Powered Vector-Space Model Information Retrieval

In traditional vector-space model, documents and queries are represented as T-
dimensional vectors, where T is the total number of distinct words in the document
collection after the preprocessing step. Preprocessing includes eliminating stop words
(very commonly used words) and conflating related words to a common word stem.
Each term in the vector is assigned a weight that reflects the importance of a word in
the document. This value is proportional to the frequency a word appears in a
document and inversely proportional to number of documents in which this word

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!5

appears [10, 13]. A common term importance indicator is tf-idf weighting the
importance of a word i in document j is as follows:

wij = tfij idfi = tfijlog2 (N/dfi) (1)

In the above formula, tfij is the normalized term frequency across the entire document
collection, and idfi is the inverse document frequency of term i. N is total number of
documents in the collection, and Log is used to dampen the effect relative to tf.

The WordNet-powered vector-space model extension involves the maintenance of
three sub-vectors for each document and query: stems of original words in a
document, stems of words' synonyms for all word senses, and stems of words' direct
hypernyms, hyponyms and siblings for all word senses. All document terms' word
senses are included, and therefore we bypass the problem of lacking effective
automated word sense disambiguation techniques, frequently discussed in the
literature.

The WSDL syntax allows textual descriptions for services, their types and
operations, grouped under <documentation> tags. Given a natural language
description of the desired service, we employ the WordNet-powered vector space
model to retrieve published WSDL services that are most similar to the input
description on the respective vectors. Corresponding sub-vectors from documents and
queries are matched and we obtain three similarity scores accordingly. Different
weights are assigned to sub-vector matching scores: matching scores of original word
stems (first sub-vectors) are assigned twice the weight assigned to matching scores of
synonyms (second sub-vectors), hypernyms, hyponyms, and siblings (third sub-
vectors). A higher overall score indicates a closer similarity between the source and
target specifications.

3.2 WSDL Structure Matching

A straight-forward extension of the signature-matching method to WSDL
specifications involves the comparison of the operations’ set offered by the services,
which is based on the comparison of the structures of the operations’ input and output
messages, which, in turn, is based on the comparison of the data types of the objects
communicated by these messages.

The overall process starts by comparing the data types involved in the two WSDL
specifications. The result of this step is a matrix assessing the matching scores, i.e.,
the degree of similarity, of all pair-wise combinations of source and target data types.
It is interesting to note here that the data types of web services specified in WSDL are
XML elements; as such, they can potentially be highly complex structures.

The next step in the process is the matching of the service messages. The result of
this step is a matrix assessing the matching scores of all pair-wise combinations of
source and target messages. The degree to which two messages are similar is decided
on the basis of how similar their parameter lists are, in terms of the data types they
contain and their organization.

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!6

The third step of the process is the matching of the service operations. The result of
this step is a matrix assessing the matching score of all pair-wise combinations of
source and target operations. The degree to which two operations are similar is
decided on the basis of how similar their input and output messages are, which has
already been assessed in the previous level.

Finally, the overall score of how well the two services match is computed by
identifying the pair-wise correspondence of their operations that maximizes the sum
total of the matching scores of the individual pairs.

After all target WSDL specifications have been matched against the source WSDL
specification, they are ordered according to their “overall matching scores”: a higher
score indicates a closer similarity between the source and target specifications. For
each target specification, the algorithm also returns the mapping of its data types and
operations to the corresponding data types and operations of the source specification
as an “explanation” of its assigned match score. This algorithm is described in detail
in [14].

3.3 Semantic WSDL Structure Matching

The WSDL structure-matching algorithm of section 3.2 aims at optimizing the
mapping of the corresponding service structures. The semantic WSDL structure-
matching algorithm is an extension to it: it also tries to find an optimal mapping
between source and target service components based both on the similarity of their
syntactic structures and also the semantic similarity between the identifiers of data
types, operations and services to assess service similarities. The intuition behind it is
that the chosen names of the types, operations, and services usually reflect the
semantics of the underlying capabilities of the service.

The identifier-matching process is similar to that of the original WSDL structure
matching. It starts by comparing the names of the data types (identifiers) involved in
the two WSDL specifications. The result of this step is a matrix assessing the
matching scores of all pair-wise combinations of source and target data-types. The
next step in the process is the matching of the service operations. The result of this
step is a matrix assessing the matching scores of all pair-wise combinations of source
and target operations. The degree to which two operations are similar is decided on
the semantic distance between operations' names and how similar their parameter lists
are, in terms of the identifiers they contain. Finally, the overall score for how well the
two services match is computed by matching the services' names and by identifying
the pair-wise correspondence of their operations that maximizes the sum total of the
matching scores of the individual pairs.

Figure 1 lists the algorithm matchDocumentTerms that explains the WordNet-
based “cost structure” for assessing the similarity of two identifiers. If two words are
identical or synonymous (regardless of words' senses), they are assigned a maximum
score of 10 and 8 respectively. Otherwise, if two words are in a hierarchical semantic
relation, i.e. they are hypernyms, hyponyms or siblings to each other we count the
number of semantic links between these words along their shortest path in WordNet
hierarchy. The identifier-similarity score between two such terms is calculated by
dividing 6 by the number of links found between them. Thus, the term-similarity

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!7

score is a function of the terms’ semantic distance in the WordNet hierarchy: terms
that are farther away from each other have smaller similarity scores than terms that
are located closer to each other in WordNet. Similar to the WordNet-based
information-retrieval step, word senses are not disambiguated.

double matchDocumentTerms (term1, term2) {
 maxScore = 10;
 if (term1 is identical to term2)
 score = maxScore;
 else if (term1 and term2 are synonymous)
 score = 8;
 else if (term1 and term2 have hierarchical relations)
 score = 6 / number of hierarchical links;
 else score =0;
 return score; }

Fig. 1. Matching Document Terms Using WordNet.

In the end, the semantic structure-matching score between a web service S and a
query service Q, Simsemantic-structure-matching(S,Q), is a function of its structure matching
score and its identifier matching score as follows:

Simsemantic-structure-matching(S,Q) = Simstructure-matching(S,Q) + Simidentifier-matching(S,Q) (2)

In the above formula, Simstructure-matching (S,Q) and Simidentifier-matching (S,Q) are similarity
scores calculated by the structure matching and the identifier matching method
respectively. We assume that programmers follow Java-style naming conventions and
use meaningful names for methods and data types. Under this assumption, all
identifiers and names are broken into tokens by identifying delimiter characters such
as underscores and capital letters.

4 Evaluation

To evaluate our service-discovery method as a whole and the effectiveness of its
constituent elements, we had to obtain families of related specifications in order to
evaluate the degree to which our algorithm can distinguish among them. We found
such a collection published by XMethods [17]. The XMethods collection provided us
with nineteen service descriptions from five categories: currency rate converter (three
services), email address verifier (three services), stock quote finder (four services),
weather information finder (four services), and DNA information searcher (five
services).

In this section, we report on four sets of experiments: service discovery with
WordNet-powered vector space model, discovery with structure matching, discovery
with semantic structure matching, and discovery with WordNet-powered vector space
model combined with semantic structure matching.

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!8

4.1 WordNet-Powered Vector-Space Model

In this experiment, we matched service descriptions specified in natural language of
each service from each category (requests) against the text descriptions of all other
services from all categories (candidates).

Table 1. WordNet-Powered Vector Space Model on the XMethods collection

Requests Retrieved Matching Advertisements
(Category: service name)

Currency rate
converter

Precision: 33%
Recall: 100%

Currency: CurrencyExchangeService
Currency: PwspNoCentrebankCurRates
Currency: Currencyws
Weather: TemperatureService
DNA: TxSearch
Stock: StockQuotes1
Weather: WeatherService
Email: advancedemailcheckService
Stock: StockQuotes (2)

DNA info
Searcher

Precision: 55%
Recall: 100%

DNA: TxSearch
DNA: Fasta
DNA: ClustalW
DNA: Blast
Email: advancedemailcheckService
Email: DOTSEmailValidate
DNA: SRS
Currency: pwspNoCentrebankCurRates
Stock: StockQuotes (1)

Email Address
Verifier

Precision: 33%
Recall: 100%

Email: AdvancedemailcheckService
Email: DOTSEmailValidate
Email: ValidateEmail
Stock: MBSoapService(1)
Stock: MBSoapService (2)
DNA: Blast
Stock: StockQuotes1
Stock: StockQuotes2
Weather: getCAWeatherService

Stock Quote
Finder

Precision: 44%
Recall: 100%

Stock: MBSoapService(2)
Stock: MBSoapService (1)
Stock: StockQuotes1
Stock: StockQuote2
Weather: WeatherService
Weather: TemperatureService
Email: DOTSEmailValidate
Weather: getCAWeatherService
Weather: USWeather

Weather Info
Finder

Precision: 44%
Recall: 100%

Weather: USWeather
Weather: TemperatureService
Stock: StockQuotes (1)
Weather: WeatherService
Stock: StockQuotes (2)
Weather: getCAWeatherService
Currency: CurrencyExchangeService

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!9

Currency: Currencyws
Stock: MBSoapService (2)

The similarity score between a given web service S and service requests from a
given category C is the average of the similarity scores calculated between S and each
request from category C. The candidate web services are ranked according to their
similarity to the requests and the top 50% of services in the list are returned. We
assume that if a web service ranks in the second half of the list, chances are that this
web service is irrelevant to the request. Table 1 summarizes the results of this
experiment.

We evaluate the effectiveness of our retrieval methods by calculating their
precision and recall. “Precision is the proportion of retrieved documents that are
relevant, and recall is the proportion of relevant documents that are retrieved” [13].
Average precision and recall for each test collection from each category of service
requests are calculated and are listed in the first column of Table 1. Retrieved
matching service advertisements are listed in column 2 of Table 1. They are sorted
according to their similarity to requests from a given category. The WordNet-powered
vector space model achieves a precision of 41.8% at 100% recall on average on this
set of experiments.

4.2 Structure Matching

Experiments with structure matching were conducted in a similar manner: we
matched the structure of each service from each category (requests) against the
structures of all other services from all categories (candidates). Averages are
calculated between service requests from each category and all candidate services.
The candidate web services are ranked according to their similarity scores to the
requests, and the top 70% of the list are returned. The results of this set of
experiments are listed in Table 2.

Table 2. Structure Matching on the XMethods Collection

Requests Retrieved Matching Advertisements
(Category: service name)

Currency rate
converter

Precision: 14%
Recall: 67%

Email: AdvancedemailcheckService
Stock: StockQuote1
DNA: TxSearch, Blast, Fasta
Stock: MBSoapService(1)
Stock: MBSoapService (2)
DNA: ClustalW, SRS
Stock: StockQuote2
Email: ValidateEmail
Currency: Currencyws
Weather: USWeather
Currency: pwspNoCentrebankCurRates

DNA info
Searcher

Precision: 36%

DNA: Fasta
Stock: MBSoapService(1)
Stock: MBSoapService (2)
DNA: Blast

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!10

Recall: 100% Currency: Currencyws
DNA: ClustalW
DNA: SRS
DNA: TxSearch
Email: DOTSEmailValidate
Stock: StockQuote1, StockQuote2
Weather: USWeather
Email: ValidateEmail
Weather: WeatherService

Email Address
Verifier

Precision: 14%
Recall: 67%

Email: DOTSEmailValidate
Stock: StockQuote1
DNA: TxSearch
DNA: Blast
Currency: pwspNoCentrebankCurRates
DNA: SRS
Currency: Currencyws
Stock: MBSoapService(1),
Stock: MBSoapService(1)
DNA: ClustalW, SRS, TxSearch
Email: DOTSEmailValidate
Stock: StockQuote1, StockQuote2
Weather: USWeather
Email: ValidateEmail
Weather: WeatherService

Stock Quote
Finder

Precision: 28%
Recall: 100%

Email: DOTSEmailValidate
DNA: Fasta, SRS, ClustalW, TxSearch
Stock: MBSoapService(1)
Stock: MBSoapService(2)
Weather: USWeather
DNA: Blast
Stock: MBSoapService(1)
Stock: MBSoapService(1)
Currency: CurrencyExchangeService
Currencyws, PwspNoCentrebankCurRates

Weather Info
Finder

Precision: 7%
Recall: 25%

Email: DOTSEmailValidate
Stock: MBSoapService(1)
Currency: Currencyws
Stock: MBSoapService(2)
DNA: Blast, TxSearch
Stock: MBSoapService(1)
Stock: MBSoapService(2)
DNA: ClustalW, Fasta, SRS
Email: ValidateEmail
Currency: CurrencyExchangeService
Weather: USWeather

Average precision and recall are calculated for each set of queries, and on average,
structure matching achieves a precision of 20% at 72% recall. Both precision and
recall are considerably poor in this set of experiments because some related services
have substantially different structures and some irrelevant services can often have
higher matching scores because they have many spurious substructures that happen to
match the query structure.

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!11

4.3 Semantic Structure Matching

In this experiment, we matched the services' structures and their chosen identifiers.
The experiments were conducted in a similar manner as the experiments of sections
4.1 and 4.2 described above. Web services are ranked according to their similarity
scores to the requests, and top 50% of web services on the lists are considered to be
relevant to the requests and are returned to the users. The results of this set of
experiments are listed in Table 3.

Semantic structure matching method achieves a precision of 35.2% at 81.8% recall
on average. Please note that compare to performance of pure structure matching
method, precision is improved by 15.2% from 20% and recalled is improved by 9.8%
from 72%. Based on this experiment, we can infer that considering the implicit
semantics of the WSDL identifiers is, in fact, enabling a more precise service
matching.

Table 3. Semantic Structure Matching on the XMethods collection

Requests Retrieved Matching Advertisements
(Category: service name)

Currency rate
converter

Precision: 22%
Recall: 67%

Email: DOTSEmailValidate
Stock: StockQuotes (1)
Weather: WeatherService
Currency: Currencyws
DNA: Blast, TxSearch, Fasta
Stock: StockQuotes (2)
Currency: pwspNoCentrebankCurRates

DNA info
Searcher

Precision: 55%
Recall: 100%

DNA: Blast, Fasta, SRS, ClustalW, TxSearch
Currency: Currencyws
Stock: MBSoapService (1)
Stock: MBSoapService (2)
Email: DOTSEmailValidate

Email Address
Verifier

Precision: 22%
Recall: 67%

Stock: StockQuotes (1)
Email: DOTSEmailValidate
Currency: pwspNoCentrebankCurRates
Email: ValidateEmail
Currency: Currencyws
Weather: USWeather
Stock: StockQuotes (2)
Weather: WeatherService
DNA: Blast

Stock Quote
Finder

Precision: 44%
Recall: 100%

Email: DOTSEmailValidate
Stock: MBSoapService (1)
Stock: MBSoapService (2)
Currency: Currencyws
Stock: StockQuotes (2)
Stock: StockQuotes (1)
Currency: pwspNoCentrebankCurRates
DNA: Blast
DNA: Fasta

Weather Info
Finder

Email: DOTSEmailValidate
Stock: StockQuotes (1)
Weather: USWeather

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!12

Precision: 33%
Recall: 75%

Currency: Currencyws
Weather: WeatherService
Currency: pwspNoCentrebankCurRates
Stock: StockQuotes (2)
Email: ValidateEmail
Weather: getCAWeatherService

4.4 WordNet-Powered Vector-Space Model and Semantic Structure Matching

Looking at the services retrieved with each query in the various experiments, we
noticed that each method “picks” different types of similarity, which led us to
hypothesize that their combination might be more effective than the best one of them.
To investigate this hypothesis we conducted a fourth set of experiments where
WordNet-powered vector space model and semantic structure matching method are
combined. The WordNet-powered vector-space model was first used on all services
as described in section 4.1 to obtain relevant web services compared to the query (top
50% of the services in the ranked list). Then, semantic structure matching was applied
to the pruned list of candidates as described in section 4.3. The candidate services
were matched and re-ranked, and the top 50% of the services in the list were returned.
Therefore, after the two-step matching and refining, only the top 25% of all web
services are returned as relevant services. The results of these experiments are shown
in Table 4.

Table 4. WordNet-Powered Vector Space Model and Semantic Structure Matching on the
XMethods Collection

Requests Retrieved Matching Advertisements
(Category: service name)

Currency rate
converter

Precision: 60%
Recall: 100%

Currency: CurrencyExchangeService
Currency: Currencyws
Stock: StockQuotes (1)
Currency: pwspNoCentrebankCurRates
Weather: WeatherService

DNA info
Searcher

Precision: 100%
Recall: 100%

DNA: Fasta
DNA: ClustalW
DNA: TxSearch
DNA: Blast
DNA: SRS

Email Address
Verifier

Precision: 60%
Recall: 100%

Email: DOTSEmailValidate
Email: ValidateEmail
Stock: StockQuotes (1)
Email: advancedemailcheckService
Stock: StockQuotes (2)

Stock Quote
Finder

Precision: 80%
Recall: 100%

Stock: MBSoapService (2)
Stock: MBSoapService (1)
Email: DOTSEmailValidate
Stock: StockQuotes (1)
Stock: StockQuotes (2)

Weather Info
Finder

Weather: USWeather
Stock: StockQuotes (1)

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!13

Precision: 60%
Recall: 75%

Weather: TemperatureService
Weather: WeatherService
Currency: Currencyws

 On average, this retrieval method that uses both the WordNet-powered vector
space model and the semantic structure matching achieves a precision of 72% at 95%
recall. Compared to the performance of WordNet-powered vector space model,
precision is increased by 30.2% from 41.8% and recall dropped by 5% from 100%.
Both precision and recall improved significantly compared to the results obtained by
semantic structure matching method alone.

5 Conclusions and Future Work

In this paper, we described a web-service discovery method that combines two
WordNet-based techniques with a structure-matching algorithm leveraging the
structure of the XML-based service specification in WSDL. Currently developers can
only browse UDDI registries and query the advertised services by business category.
This is a very blunt and imprecise service-discovery mechanism.

Our web-service discovery method is inspired by traditional information retrieval
methods, signature matching methods and many experiments conducted with
WordNet for component retrieval. It is designed to calculate semantic and structural
similarity between a desired service and a set of advertised services. WordNet-based
methods do not attempt to resolve word senses; this problem has been proven difficult
by current research, but fortunately it does not apply in the case of the WSDL
descriptions, comments and identifiers, which are not likely to be complete
grammatical sentences. WordNet is used as a “query expansion” mechanism: it
includes semantically similar words retrieved from WordNet database for all
documents and queries to ameliorate information retrieval results. The structure-
matching algorithm respects the structural information of data types and is flexible
enough to allow relaxed matching and matching between parameters that come in
different orders in parameter lists. Our web service discovery method that combines
WordNet-powered vector space model with semantic structure matching constitutes
an important extension to the UDDI API, because it enables a substantially more
precise service-discovery process.

We have conducted various experiments to evaluate the effectiveness of our
retrieval system with very positive results. In the future, we plan to extend this
algorithm to exploit the full WSDL syntax. Currently, we are not considering some of
the syntax WSDL offers such as minOccurs, maxOccurs that indicate minimum and
maximum occurrences of data types, and some other attributes of element tags. We
also plan to experiment with larger sets of web services.

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!14

Acknowledgements

The authors wish to thank Tu Hoang for his help in developing parts of these
algorithms. This research was supported by an IRIS grant.

References

1. I. Cho, J. McGregor, and L. Krause. "A protocol-based approach to specifying
interoperability between objects". In Proceedings of the 26th Technology of Object-
Oriented Languages and Systems (TOOLS'26), 3–07 August 1998, Santa Barbara,
CA, 84-96. IEEE Press.

2. The DARPA Agent Markup Language Homepage. http://www.daml.org/
3. C. Faloutsos, and D.W. Oard. "A survey of Information Retrieval and Filtering

Methods, University of Maryland". Technical Report CS-TR-3514, August 1995.
4. K. Sycara, S. Widoff, M. Klusch and J. Lu. "LARKS: Dynamic Matchmaking

Among Heterogeneous Software Agents in Cyberspace". Autonomous Agents and
Multi-Agent Systems, 5, 173–203, 2002.

5. G.A. Miller, R. Beckwith, C. Felbaum, D. Gross and K. Miller, "Introduction to
WordNet: An On-line Lexical Database", International Journal of Lexicography, Vol.
3, No.4, 1990, 235-244.

6. G.A. Miller, "Nouns in WordNet: A Lexical Inheritance System", International
Journal of Lexicography, Vol3, No.4, 1990, 245-264.

7. R. Mandala, T. Takenobu and T. Hozumi. "The Use of WordNet in Information
Retrieval," in Proceedings of the COLING/ACL Workshop on Usage of WordNet in
Natural Language Processing Systems, Montreal, 1998, 31-37.

8. J. Purtilo and J.M. Atlee. "Module Reuse by Interface Adaptation". Software Practice
and Experience, Vol. 21, No. 6, 1991, 539-556.

9. R. Richardson and A.F. Smeaton. "Using WordNet in a knowledge-based approach to
information retrieval." Dublin City University School of Computer Applications
Working Paper CA-0395.

10. G. Salton, A. Wong and C.S. Yang. "A vector-space model for information retrieval",
In Journal of the American Society for Information Science, Vol. 18. November
1975, 13-620. ACM Press.

11. Simple Object Access Protocol (SOAP) http://www.w3.org/TR/2003/REC-soap12-
part0-20030624/

12. U D D I t e c h n i c a l p a p e r ,
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

13. E. Voorhees. "Using WordNet for Text Retrieval", in C.Fellbaum (ed.), WordNet: An
Electronic Lexical Database 1998, The MIT Press, Cambridge, MA. 1999, 285-303.

14. Y. Wang and E. Stroulia. “Flexible Interface Matching for Web-Service Discovery”.
In Proceedings of 4th International Conference on Web Information Systems
Engineering, December!10th - 12th, 2003 (to appear).

15. Web Services Description Language (WSDL) (WSDL) http://www.w3.org/TR/wsdl
16. WordNet http://www.cogsci.princeton.edu/~wn/
17. XMethods homepage. http://www.xmethods.com/
18. A. M. Zaremski and J. M. Wing. "Signature Matching: a Tool for Using Software

Libraries". ACM Transactions on Software Engineering and Methodology, Vol. 4
No. 2, 146-170, Apr. 1995.

Semantic Structure Matching for Assessing Web-Service Similarity!!!!!!15

19. A. M. Zaremski and J. M. Wing. "Specifications Matching of Software Components".
ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, 333-
369, Oct. 1997.

