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ABSTRACT 
Research on predicting movements of mobile users has attracted a 
lot of attentions in recent years. Many of those prediction 
techniques are developed based only on geographic features of 
mobile users’ trajectories. In this paper, we propose a novel 
approach for predicting the next location of a user’s movement 
based on both the geographic and semantic features of users’ 
trajectories. The core idea of our prediction model is based on a 
novel cluster-based prediction strategy which evaluates the next 
location of a mobile user based on the frequent behaviors of 
similar users in the same cluster determined by analyzing users’ 
common behavior in semantic trajectories. Through a 
comprehensive evaluation by experiments, our proposal is shown 
to deliver excellent performance.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
Mining, Spatial Databases and GIS 

General Terms 
Measurement, Experimentation. 

Keywords 
Trajectory Database, Trajectory Pattern, Semantic Prediction, 
Data mining. 

1. INTRODUCTION 
The market of location based services, including navigational 
services, traffic management and location-based advertisement, 
have grown rapidly in recent years.  Due to the needs of effective 

marketing and efficient system operations, it is beneficial for 
these LBSs to be able to forecast the activities a user may perform 
at the next location to visit. Thus, effective and effective location 
prediction techniques for LBSs targeting on mobile users are 
desirable.  

In recent years, a new breed of location prediction methods, 
called general-pattern-based prediction, have emerged. Such 
prediction methods usually use the frequent common behaviors of 
users mined from collections of mobile users’ GPS trajectories, to 
predict the next move of a user. Figure 1 shows some examples of 
the GPS trajectory, which typically consists of a sequence of 
spatio-temporal points (in form of latitude, longitude, and time). 
Among the general-pattern-based prediction methods, mobile 
sequential pattern mining techniques [6] [9] have been widely 
used for analyzing patterns in mobile user movement data sets. 
However, they tend to predict popular locations where most 
people visited, leading to the imbalanced data problem [13]. 
Additionally, these pattern-based prediction methods usually 
make a prediction only if an anticipated movement has a full 
match with the prefix of a pattern, leading to loss of recall in 
predictions. 

Although the issues of discovering mobile users’ frequent patterns 
in their trajectories have been discussed in the literature, existing 
studies mostly consider only on  the geographic features of user 
trajectories [6] [9]. Notice that a geographic trajectory typically 
consists of a sequence of geographic points (represented as 
<latitude, longitude>) tagged with timestamps. As a result, the 
frequent pattern of user movement behavior based on geographic 
trajectory is constrained by the geographic properties of the 
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Figure 1. An example of semantic trajectory.



 

trajectory data. For example, as Figure 1 shows, the geographic 
distance and shape between Trajectory1 and Trajectory2 is closer 
and more similar than that between Trajectory1 and Trajectory3. 
Thus, some location prediction techniques would predict the 
destination of Trajectory1 based on its geographical similarity to 
Trajectory2. Additionally, such prediction strategies only consider 
the previously visited locations and thus do not work well when 
previously unvisited locations are considered. We argue that 
merely using geographic information to predict the destination of 
a trajectory or a user’s next location is not sufficient.  

The notion of semantic trajectory has been proposed by Alvares 
et al. [1] [2]. Basically, a semantic trajectory consists of a 
sequence of locations labeled with semantic tags (called semantic 
locations) to capture the landmarks passed by [5]. These semantic 
tags of locations imply the activities being carried out in the 
trajectory. Consider Figure 1 where trajectories are tagged with a 
number of semantic tags such as School, Park, etc. We observe 
that both Trajectory2 and Trajectory3 can be denoted by the 
sequence <School, Bank, Hospital>, implying that the semantic 
behaviors of users in Trajectory2 and Trajectory3 are quite the 
same. Thus, we exploit their similarity in visited semantic 
locations to predict the next locations of mobile users. 

To support location prediction based on the semantic trajectories 
of mobile users, we propose a novel location prediction 
framework, called SemanPredict, to evaluate the next location of 
a user’s movement. The framework consists of two major 
modules: i)  offline mining module, and ii) on-line prediction 
module. In the offline mining module, we adopt the notion  of 
stay locations to represent the users’ movement behavior. To 
extract the semantic feature from individual user’s movement 
behavior, we mine the semantic trajectory patterns for each 
individual user. Moreover, we form user clusters based on the 
notion of semantic trajectory similarity we proposed. Furthermore, 
we mine the frequent trajectory patterns of users in the same 
cluster based on their geographic features. In the on-line 
prediction module, based on these semantic and geographic 
patterns, we develop a novel cluster-based prediction technique to 
predict a mobile user’s next location. To our best knowledge, this 
is the first work on predicting a mobile user’s next location by 
exploiting both geographic and semantic features of trajectories. 
Through an experimental evaluation, we show that the proposed 
location prediction approach delivers excellent performance. 

The contributions of our research are six-fold. 
 We propose the SemanPredict framework, a new approach 

for mobile users’ movement behavior mining and prediction. 
The problems and ideas in SemanPredict have not been 
explored previously in the research community. 

 We develop data mining algorithms to discover semantic 
trajectory patterns for individual users and geographic 
trajectory patterns for clusters of similar users.  

 We employ the notion of semantic trajectory similarity we 
proposed to cluster similar users together. 

 We develop index structures based on prefix tree to 
represent semantic and geographic trajectory patterns in a 
compact form in order to facilitate efficient prediction 
computation. 

 Based on the semantic and geographic trajectory patterns, 
we propose a novel location prediction strategy to predict a 

user’s next location.  
 We use a real dataset, namely, MIT reality dataset [3], in a 

series of experiments to evaluate the performance of our 
proposal. The results show superior performance over other 
location prediction techniques in terms of precision and 
recall. 

The rest of this paper is organized as follows. We briefly review 
the related work in Section 2 and provide an overview of our 
prediction framework in Section 3. We detail the proposed 
Semantic Mining and Geographic Mining in Section 4 and 
describe our location prediction technique in Section 5. Finally, 
we present the evaluation result of our empirical performance 
study in Section 6 and discuss our conclusions and future work in 
Section 7. 

2. RELATED WORK 
Many data mining studies have discussed the problems of 
predicting the next location where a mobile user moves to. 
Personal-based prediction [4] [11] [12] and general-based 
prediction [7] [8] [9] [16] [17] are two approaches often adopted 
in this problem domain. The personal-based prediction approach 
considers movement behavior of each individual as independent 
and thus uses only the movements of an individual user to predict 
his/her next location. On the contrary, the general-based 
prediction makes a prediction based on the common movement 
behavior of general mobile users. In [4], Jeung et al. propose an 
innovative approach which forecasts future locations of a user by 
combining predefined motion functions, i.e., linear or non-linear 
models that capture object movements as sophisticated 
mathematical formulas, with the movement patterns of the user, 
extracted by a modified version of the Apriori algorithm. In [11], 
Yavas et al. mine the movement patterns of an individual user to 
form association rules and use these rules to make location 
prediction. Additionally, they consider the support and confidence 
in selecting the association rules for making predictions.  In [12], 
Ye et al. propose a novel pattern, called Individual Life Pattern, 
which is mined form individual trajectory data, and they uses such 
pattern to describe and model the mobile users’ periodic 
behaviors. In [7], Morzy uses a modified version of Apriori 
algorithm to generate association rules, and in [8], he uses a 
modified version of PrefixSpan algorithm to discover frequent 
patterns of users’ movements for generating the prediction rules. 
The matching functions employed in these previous works are 
based on the notions of support and confidence. Although all of 
Morzy’s approaches have considered temporal information and 
location hierarchy, they do not take into account the semantic tags 
of locations. In [9], Monreale et al. proposes a method aiming to 
predict with a certain level of accuracy the next location of a 
moving object. The movement patterns extracted for prediction 
covers three different movement behaviors, including order of 
locations, travel time, and frequency of user visits. In [16], Zheng 
et al. uses a HITS-based model to mine users’ interesting location 
and detect users’ travel sequence to make locations prediction, 
and in [17], they consider the location correlation for generating 
the users’ interesting locations and travel sequence. Note that the 
above-mentioned prediction methods are based on geographic 
information only. On the contrary, our proposal predicts the next 
location of a user based on both geographic and semantic 
information in trajectories.  



 

In recent years, a number of studies on semantic trajectory data 
mining have appeared in the literature [1] [2]. In [1], Alvares et al. 
propose to explore the geographic semantic information to mine 
semantic trajectory patterns from mobile users’ movement 
histories. First, they discover the stops of each trajectory and map 
these stops to semantic landmarks to transform geographic 
trajectories into semantic trajectories. By applying a sequential 
pattern mining algorithm on semantic trajectories, they obtain 
frequent patterns, namely, semantic trajectory patterns, to 
represent the frequent semantic behaviors of mobile users. In [2], 
Bogorny et al. use a hierarchy of geographic semantic 
information to discover more interesting patterns. Notice that  the 
notion of stops in the above-mentioned works only considers  the 
aspect of ‘stay’ in stops  but not the ‘positions’ of these stops in 
geographic space. As a result, many unknown stops are generated. 
For example, as shown in Figure 2, stop1c, stop2c, and stop3b are 
not associated with any semantic landmark and thus marked as 
Unknown. Hence, Trajectory1 is transformed as the sequence 
<School, Park, Unknown, Restaurant>. From the figure, it is clear 
that stop1c is near the Restaurant. Thus, in our work, by taking 
into account the geometric distribution of these stops, stop1c and 
stop1d are grouped together such that the Trajectory1 is 
transformed as the sequence <School, Park, Restaurant> instead.  

Besides, a feature vector is proposed by Zheng to describe the 
semantics of each location. Based on the feature vector, the 
semantic similarity between two mobile users could be calculated.  
In addition to the GPS trajectory, Ying et al. [14] also exploit the 
cell trajectory to derive the semantic similarity between two 
mobile users. The cell trajectory consists of a sequence of spatio-
temporal points in form of cell station ID, arrive time, and leave 
time as shown in Figure 3. They propose a novel similarity 
measurement, namely, Maximal Semantic Trajectory Pattern 
Similarity (MSTP-Similarity) to evaluate the user similarity. As 
such, the similarity of two mobile users, even if they live in 
different cities, may be evaluated based on their similar semantic 
trajectory patterns. 

3. OVERVIEW OF SemanPredict 
With the notion of semantic trajectory, we propose a novel 
location prediction framework, namely, SemanPredict, based on 
both the geographic and semantic features in trajectories.  The 
proposed approach works for locations where the users may have 
never visited, e.g., a location in other cities. The SemanPredict 
framework consists of 1) an offline training module, and 2) an 

online prediction module.  

Figure 4 shows the framework and its flow of data processing.   
The idea is to explore the activities of mobile users, captured in 
semantic trajectories, to improve accuracy of location prediction. 
As shown, the training module includes three steps. The first step, 
called data preprocessing, transforms each user’s trajectories as 
stay location sequences. The second step, called semantic mining, 
extracts users’ semantic behaviors (as ‘semantic trajectory 
patterns’ which will be detailed later). It also obtains user clusters 
based on the semantic behavior similarity of users. The third step, 
called geographic mining, extracts the geographic behaviors of 
users in each cluster (as ‘stay location patterns’ which will be 
detailed later). In the online module, we propose a scoring 
function to evaluate the probability for a location to be the next 
location. Here, we consider not only geographic information but 
also semantic information. First, we calculate the geographic 
score and derive several candidate paths. Then, the semantic score 
of each candidate path is evaluated. Finally, we compute a 
weighted average of geographic score and semantic score for each 
candidate path to select the most probable path for predicting the 
next location in a user’s move. 

4. OFFLINE TRANING MODULE 
In this section, we propose an approach to extract the users’ 
frequent movement behaviors which includes the semantic 
behavior information for individual users and the geographic 
behavior information for clusters of similar users.  We mine a 
kind of frequent patterns, called semantic trajectory patterns [1] 
[14], from trajectories of individual users and adopt a prefix tree, 
called semantic trajectory pattern tree, to compactly represent a 
collection of semantic trajectory patterns. Based on individual 
semantic information (i.e., the semantic trajectory patterns and 
their support values), we cluster mobile users. For each cluster, 
the sequential pattern mining is used to extract cluster geographic 
information, called stay location patterns. Similarly, we also 
adopt a prefix tree to compactly represent a collection of stay 
location patterns. As mentioned earlier, this mining module 
consists of 1) Data Preprocessing step, 2) Semantic Mining step, 
and 3) Geographic Mining step. 

4.1 Data Preprocessing 
To the data preprocessing step transforms each user’s GPS 
trajectories into stay location sequences. We argue that most 
activities of a mobile user are usually performed at where the user 
stays. For example, a user may stay with a café to have a drink. 
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Figure 2. An example of semantic trajectory.
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Figure 3. An example of cell trajectories. 
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Thus, we have to first capture the stay locations where a user 
stops for a while.  

Our framework is able to deal with both the GPS trajectories and 
cell trajectories [12]. For GPS trajectory, we follow Zheng et al.‘s 
work [15] to discover stay points from users’ GPS trajectories. 
Then, a density-based clustering algorithm is performed on these 
stay points to obtain stay locations. For cell trajectories, we 
follow Ying et al.‘s approach [14] which  treats a cell  as a 
geographic location. The stay time in a cell is derived by 
calculating the difference between the time a user arrives in and 
leaves the cell. A user-specified time threshold is used to filter the 
cells with stay time shorter than the threshold. The remaining 
cells are further filtered by the number of users passed through 
(i.e., a crowd threshold).  Finally, the stay locations (i.e., the cells 
with stay time equal or greater than the time threshold and the 
number of visitors equal or greater than the crowd threshold) are 
obtained and each trajectory is transformed into a stay locations 
sequence. Take Figure 6 as an example. Trajectory1, Trajectory2 

and Trajectory3 are transformed into the sequences <Stay 
Location1, Stay Location5, Stay Location6>, <Stay Location0, Stay 
Location1, Stay Location4, Stay Location3>, and <Stay Location0, 
Stay Location1, Stay Location2, Stay Location3>, respectively. 

4.2 Semantic Mining 
In this section we describe how to extract semantic trajectory 
patterns from a user’s stay location sequences and build semantic 
trajectory pattern tree based on the discovered patterns. Figure 5 
shows the flow of semantic information extraction. We can 
observe that there are two main steps in the flow. First, we mine 
semantic trajectory pattern form each user’s stay location 
sequence set. Then, we perform a hierarchical clustering method 
to cluster users, where the user’s similarity is based on MSTP-
Similarity [14]. 

4.2.1 Semantic Trajectory Pattern Mining 
We follow Ying et al.’s approach [14] to mine semantic trajectory 
pattern from each user’s stay location sequences. A geographic 
semantic information database (GSID) is used to assign semantic 
labels to the discovered stay locations. The GSID is a customized 
spatial database which stores the semantic information of 
landmarks that we collect via Google Map (alternatively, a 
gazetteer can be used as a general-purpose GSID for this 
operation.) In our GSID, we store landmarks, their geographic 
scopes, and the associated semantic labels. In this paper, we use 
some general categories of the landmarks as their semantic labels. 

If a stay location overlaps one or several landmarks stored in the 
GSID, the semantic labels of these landmarks are assigned to this 
stay location. Take Figure 6 as an example, the semantic label of 
the landmark ParkB is “Park”. Since Stay Location5 overlaps the 
landmark ParkB and Bank, the semantic labels “Park” and 
“Bank” are assigned to Stay Location5. Similarly, we will assign 
the semantic label “School” to Stay Location1. It is possible that a 
stay location overlaps none of landmark. For example, in Figure 6, 
there is no landmark overlapped with Stay Location0. In this case, 
we assign the semantic label “Unknown” to the stay location. 
After assigning semantic labels to the stay location, a stay 
location sequence can be transformed into a semantic trajectory. 
For example, the stay location sequence <Stay Location0, Stay 
Location1, Stay Location4, Stay Location3> is transformed as 
<Unknown, School, Park, Hospital>. 

After transforming each stay location sequence into a semantic 
trajectory, each user’s stay location sequences are transformed 
into a semantic trajectory dataset. The semantic trajectories of a 
user may be quite diverse since the user movements may change 
time to time. However, the main behaviors of a user may exhibit 
some patterns and thus can be discovered. For example, a user 
goes to her school regularly and sometimes passes by a gas station. 
Hence, to identify the user frequent movement behaviors, we 
apply the sequential pattern mining algorithm Prefix-Span [10] on 
each user’s semantic trajectory dataset to mine the frequent 
semantic trajectories. Take Figure 6 as an example. Given 
Trajectory1 and Trajectory2 of a mobile user, her trajectory log is 
transformed into the semantic trajectory dataset as shown in Table 
1. Suppose that we set the minimum support of Prefix-Span 
algorithm as 50%, the patterns <Unknown, School, Park, 
Hospital>, <School, {Bank, Park}> and all of its subsequences 
are discovered as frequent patterns. 

Table 1. An example of semantic trajectory dataset 

Trajectory Semantic trajectory 
Trajectory1 < School, {Bank, Park}, Restaurant > 
Trajectory2 < Unknown, School, {Bank, Park}, Hospital> 
Trajectory3 <Unknown, School, Park, Hospital> 
 

Such patterns, called semantic trajectory patterns, could provide 
several decision rules for location prediction. For example, if a 
pattern <Unknown, School, Park, Hospital> is discovered from a 
mobile user’s semantic trajectory set, we can predict that he/she 
may  go to a hospital after going to a school and then to a park. 
Therefore, by matching a mobile user’s recent moves to his/her 
semantic trajectory patterns, we can predict the semantic label of 
her next location. However, it is clear to observe that the longer 
pattern we mine the more subsequences will be generated due to 
the downward closure property [10]. It leads to a loss of 
efficiency because all the subsequences of a long pattern need to 
be considered in the next location prediction. For example, the 
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Figure 5. A work flow of semantic mining 
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Figure 6. An example of semantic trajectories. 



 

subsequences of the pattern <School, Park, Hospital> are 
<School>, <Park>, <Hospital>, <School, Park>, <School, 
Hospital>, and <Park, Hospital>. It is very time-consuming to 
match the current move of a mobile user to all his/her semantic 
trajectory patterns one by one. To make the prediction phase 
efficient, we adopted a prefix tree, named semantic trajectory 
pattern tree (STP-Tree), to compactly represent a collection of 
semantic trajectory patterns. Note that the path of an STP-Tree 
indicates a decision rule. The STP-Tree is a kind of decision tree, 
where each node v consists of tree element, semantic set, support, 
and children. 

The STP-TreeBuilding algorithm, shown in Figure 7, describes 
how to build the STP-Tree from a semantic trajectory patterns set 
(STP-Set). In the following, we introduce the notion of prefix of a 
semantic trajectory pattern. For simplicity, we consider a 
semantic trajectory pattern as a sequence of semantic labels. Each 
semantic trajectory pattern belonging to the STP-Set is inserted 
into the STP-Tree. Intuitively, given a semantic trajectory pattern 
STP, we search the tree for the path corresponding to the longest 
prefix of STP. Next, we append a branch to cover the remaining 
elements of STP in this path. A semantic trajectory pattern is 
appended to a path in the tree if this path is a prefix of semantic 
trajectory pattern. When the pattern is appended to a path, the 
support value will be updated if the support value of pattern is 
greater than the support value of the node (see Line 5 to 9 of 
Figure 7). The CreateNode(semantic, support, children) function 
returns the node which stores the semantic label, support value, 
and children list. The appendChild(child) procedure appends 
another node to the children list of a node (see Line 10 to 13 of 
Figure 7). 

Take Table 1 as an example. Given that the Trajectory1 and 
Trajectory2 are from a mobile user, his/her semantic trajectory 
pattern will be mined from the semantic trajectory dataset. 
Suppose that we set the minimum support of Prefix-Span 
algorithm as 50%, all the patterns will be mined along with their 
support values as shown in Table 2. Figure 8 shows the 
corresponding semantic trajectory pattern tree. Notice that a path 
may group together several semantic trajectory patterns. For 
instance, the path ({Park, Bank}, 1.0)  (Hospital, 0.667) in the 
semantic trajectory pattern tree represents both the semantic 

trajectory patterns <Park, Hospital>, <Park>, <Bank>, <{Park, 
Bank}>, and <Hospital>. Since the prefix tree is a compact 
representation of a semantic trajectory patterns set. The prefix tree 
may group the patterns with different support values in one node, 
such as <Park>, <Bank>, and <{Park, Bank}>. In this case, we 
use the maximum of the support values of the patterns as the 
support value of the node. Moreover, the path with only one node 
will be eliminated from the pattern tree, e.g., the pattern 
<Hospital> is not shown in the pattern tree. 

Table 2. An example of semantic trajectory pattern set 

Semantic Trajectory Pattern Support 
<Unknown> 2/3 = 0.667 

<School> 3/3 = 1.0 
<Park> 3/3 = 1.0 

<Hospital> 2/3 = 0.667 
<Bank> 2/3 = 0.667 

<{Park, Bank}> 2/3 = 0.667 
<Unknown, School> 2/3 = 0.667 
<Unknown, Park> 2/3 = 0.667 

<Unknown, Hospital> 2/3 = 0.667 
<School, Park> 3/3 = 1.0 
<School, Bank> 2/3 = 0.667 

<School, Hospital> 2/3 = 0.667 
<School, {Park, Bank}> 2/3 = 0.667 

<Park, Hospital> 2/3 = 0.667 
<Unknown, School, Park> 2/3 = 0.667 

<Unknown, School, Hospital> 2/3 = 0.667 
<Unknown, Park, Hospital> 2/3 = 0.667 

<School, Park, Hospital> 2/3 = 0.667 
<Unknown, School, Park, Hospital> 2/3 = 0.667 

 

4.2.2 Similar User Clustering 
Next we describe the clustering process in semantic mining that 
clusters mobile user based on their semantic trajectory patterns. 
We argue that each user’s pattern set represents his/her semantic 
behavior which, i.e., the mobile user’s frequent activity behavior. 
By clustering users with similar semantic behaviors together, the 
next location of a mobile user can be predicted not only from 
his/her own past movement behavior but also from that of other 
mobile users exhibiting similar semantic behaviors.  

We measure the similarity between two mobile users by the 
notion of Maximal Semantic Trajectory Pattern Similarity 
(MSTP-Similarity) [14]. Based on MSTP-Similarity, two 
trajectories are more similar when they have more common parts. 
Given two semantic trajectory patterns, thus, we use the Longest 
Common Sequence (LCS) of these two patterns to represent their 
longest common part. For example, given a pattern P = 

 
Input: A semantic trajectory pattern set STP-Set 
Output: A semantic trajectory pattern tree  STP-Tree 

1 root  CreateNode(,,) 
2 foreach semantic trajectory pattern STP in STP-Set do 
3 node  root 
4 foreach semantic S in STP do 
5 if  a child nc of node s.t. S  nc.semantic then 
6 node  nc 
7 if S is the last element in STP then 
8 node.support = STP.support 
9 end 

10 else 
11 child  CreateNode(S, STP.support ,) 
12 node.appendChild(child) 
13 node  child 
14 end 
15 end 
16 end 
17 return root 

Figure 7. STP-TreeBuilding algorithm.

Figure 8. An example of semantic trajectory pattern tree
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<{School}, {Cinema}, {Park, Bank}, {Restaurant}> and a pattern 
Q = <{School, Market}, {Park}, {Restaurant}>, their longest 
common sequence is LCS(P,Q) = <{School}, {Park}, 
{Restaurant}>. Accordingly, the participation ratio of the 
common part to a pattern P is illustrated in Figure 9.  As shown, 
the elements of LCS(P,Q), i.e., {School}, {Park}, and 
{Restaurant}, are matched with the elements of pattern P, i.e., 
{School}, {Park, Bank}, and {Restaurant}, respectively. Since 
the element {Park} matches the element {Park, Bank} partially, 
the ratio of {Park} to {Park, Bank} is 1/2. Similarly, {School} to 
{School} is 1, and {Restaurant} to {Restaurant} 1. Thus the 
participation ratio of LCS(P,Q) to P will be (1 + 1/2 + 1)/4 = 
0.625. The similarity of two patterns, MSTP-Similarity(P,Q), is 
calculated by averaging the participation ratios of their common 
part to them.  A weighted average of all possible MSTS-
Similarities between patterns of two users is used to measure their 
similarity. 

Based on mobile users’ MSTP-Similarity, we then cluster mobile 
users. Since we only take into account the users’ similarity, 
partition-based clustering methods, such as k-means, fuzzy c-
means, are not applicable. Moreover, to our best knowledge, 
density-based clustering techniques may results in noises not 
belonging to any cluster. Consequently, a ‘noisy mobile user’ 
cannot be processed in the following steps.  Therefore we use a 
hierarchical clustering method, namely, complete linkage 
clustering, to cluster mobile users. This clustering method does 
not generate noises, which ensures that all the mobile users are 
supported by our prediction technique.  

4.3 Geographic Mining 
Although semantic mining discovers users’ semantic trajectory 
patterns, they can not be used directly for location prediction 

since locations are not deductable from the semantic labels.  To 
overcome this problem, we mine the geographic information from 
users’ stay location sequences. Figure 10 shows the flow of data 
processing within the Geographic Mining step.  While we aim to 
take into account the common frequent behaviors of mobile users, 
considering the frequent behavior of all general users may cause 
imbalanced data problem. Hence, we consider the clusters 
resulted from the semantic mining to aggregate the stay location 
sequences of mobile users.  As shown in Figure 10. We then 
perform a sequential pattern mining algorithm Prefix-Span [10] 
on each cluster’s semantic stay location sequences to mine the 
frequent stay location sequence, called stay location pattern. 
Similarly, the longer patterns we discover the more subsequences 
are generated due to the downward closure property [10]. It leads 
to a loss of efficiency because all the subsequences of a long 
pattern are to be checked in the next location prediction. 
Therefore, we also adopt a prefix tree, called stay location pattern 
tree (SLP-Tree), to compactly represent a collection of stay 
location patterns. Consider the example in Figure 6. Suppose that 
we set the minimum support of Prefix-Span algorithm [10] as 
50%, the patterns we mine are shown in Table 3. We also perform 
the STP-TreeBuilding algorithm, shown in Figure 7, on each stay 
location pattern set of each cluster to build an SLP-Tree. Figure 
11 shows the corresponding stay location pattern tree. Similarly, 
the paths with only one node are not included in the pattern tree. 

Table 3. An example of stay location pattern set 

Stay Location Pattern Support
<Stay Location0> 0.667 
<Stay Location1> 1.0 
< Stay Location3> 0.667 

<Stay Location0, Stay Location1> 0.667 
<Stay Location1, Stay Location3> 0.667 
<Stay Location0, Stay Location3> 0.667 

< Stay Location0, Stay Location1, Stay Location3> 0.667 

 

5. ON-LINE PREDICTION MODULE 
Given a mobile user, the on-line prediction module predicts her 
next stay location based on the stay location pattern tree of her 
cluster and her own semantic trajectory pattern tree. Given these 
two pattern trees, the geographic information (i.e., the stay 
location patterns) of the cluster which the mobile user belongs to 
and the semantic information (i.e., the semantic trajectory patterns) 
of the mobile user herself can be incorporated in the prediction. 
Thus, given the trajectory of a user’s recent moves, we compute 
the best matching scores of candidate paths in these two pattern 
trees. The matching scores are computed by a weighted average  
of GeographicScore and SemanticScore, as defined in Equation (1) 
below. 
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Figure 9. An example of semantic trajectories. 
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Figure 10. A work flow of geographic mining 

Figure 11. An example of stay location pattern tree 
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Here the score of geographic behavior (GeographicScore) 
measures how well the current geographic behavior of the user 
matches the stay location patterns in the user’s cluster (i.e., paths 
in the stay location pattern tree (SLP-Tree). A path with 
GeographicScore greater than 0 is a candidate path. We further 
transform all the candidate paths into semantic sequences in order 
to measure their score of semantic behavior (SemanticScore) 
matching the semantic behavior of the user (using the user’s 
personal semantic trajectory pattern tree). 

5.1 Score of Geographic Behavior 
In order to simplify the matching process, the current user’s 
recent moves are transformed into a stay location sequence.  
Moreover, since the stay location sequence may consist of too 
many stay locations, it is very time consuming to consider all 
possible subsequences of the stay location sequence in the 
matching step. Therefore, we propose a partial matching 
strategy which does not consider all the possible subsequences 
of the stay location sequence. Instead, the score of geographic 
behavior (GeographicScore) captures three heuristics: 1) 
outdated moves may potentially deteriorate the precision of 
predictions; 2) more recent moves potentially have more 
important impacts on predictions; and 3) the matching path with 
a higher support and a higher length may provide a greater 
confidence for predictions.  Given a mobile user’s stay location 
sequence S and a matching path P in SLP-Tree, we propose a 
weighted scoring function, mScore(P, S), as defined in Equation 
(2).  
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In Equation (2), the parameter α is used to exponentially decay 
the importance of each matched location in the pattern over time. 
If we set α as 1, the importance of each matched location will not 
be decayed over time. Based on Equation (2), we need to traverse 
all paths in SLP-Tree which is quite time-consuming. Therefore, 
we develop a depth-first search algorithm to calculate the 
GeographicScore at the same time (as shown in Figure 13).  In 
the algorithm, a stack is used to store the traversed path at each 
step of the process. Each entry of the stack indicates an element 
of the path matched with the stay location sequence. 

In our depth-first search algorithm, a sequence set, named 
CandidateSet, is used to stores the matched traversal path in the 
SLP-Tree and its GeographicScore at each step. Initially, we set 
CandidateSet as empty, Candidate as empty, and Score as 0 (see 
Line 1 to 5 of Figure 13). As shown in Figure 12, we first traverse 
the whole stay location sequence S, i.e., the user current 
movement, in the given stay location pattern tree SLP-Tree (k=1). 
Since no path starts with Stay Location3, the score of the 
candidate path will be set as 0 and the matching path will not be 
stored in CandidateSet (see Line 6 to 15 of Figure 13). Then we 
ignore the first k-1 element of stay location sequence and re-
traverse the stay location pattern tree SLP-Tree (see Line 2 of 
Figure 13). Take Figure 12 as an example. Suppose we set α=0.8. 
As shown in Table 4, when k=1, the mobile user’s stay location 
sequence, i.e., <Stay Location3, Stay Location1, and Stay 
Location0>, are not matched with any path in the pattern tree, and 
the score of geographic behavior, GeographicScore, will be 
evaluated as 0. When k=2, the stay location sequence is matched 

with the path (Stay Location0, 1.0)  (Stay Location1, 0.9), and 
the GeographicScore will be evaluated as 0.8 × 1.0 + 0.9. When 
k=3, the stay location sequence is matched with the path (Stay 
Location1, 1.0), and the GeographicScore will be evaluated as 1.0.  

Table 4. An example of candidate path set 

Candidate paths GeographicScore 
(Stay Location3) 0 

(Stay Location0)  (Stay 
Location1) 

0.8 × 0.667 + 0.667 = 1.2 

(Stay Location1) 1.0 

 

5.2 Score of Semantic Behavior 
As mentioned earlier, merely using the geographic information in 
the SLP-Tree to find a user’s possible next location is not 
sufficient. Therefore, we use the user’s semantic trajectory pattern 
tree, STP-Tree, to adjust the prediction result. First, we transform 
each candidate path obtained by traversing the SLP-Tree to a 
semantic path (as shown in Table 5). For example, suppose that 
for some mobile user, the semantic label of Stay Location0, Stay 
Location1, and Stay Location3 are “Unknown”, ”School”, and 
“Hospital”, respectively. The candidate paths in Table 4 are 

Input:  A stay location pattern tree  SLP-Tree 
A stay location sequence S 
Discount parameter α 

Output: A set of candidate path along with GeographicScore 
1 CandidateSet   
2 for k  1 to |S| 
3 node   SLP-Tree.root 
4 Candidate.Sequence   
5 Candidate.Score  0 
6 for j  k to |S| 
7 if  a child nc of node s.t. Sj=nc.location then 
8 node  nc 
9 Candidate.Sequence.append (nc.location) 

10 Candidate.Score  Candidate.Score + 
11 (α|S|-j × node.support)
12 end 
13 end 
14 if j=|S| and  Candidate.Score>0 then 
15 CandidateSet.add(Candidate) 
16 end 
17 end 
18 return CandidateSet 

Figure 13. Depth-first search algorithm. 

Figure 12. the score of geographic behavior. 
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transformed into semantic candidate paths as shown in Table 5.  

Table 5. An example of transforming candidate path set 

Candidate Paths Semantic Candidate Paths
(Stay Location0)  (Stay 

Location1) 
(Unknown)  (School) 

(Stay Location1) (School) 

 
We consider each semantic candidate path and semantic trajectory 
pattern tree, STP-Tree, as inputs to our depth-first search 
algorithm. As shown in Figure 14, we first traverse the semantic 
candidate path (i.e., k=1) in the given semantic trajectory pattern 
tree STP-Tree. Then we ignore the first k-1 element of the 
semantic candidate path and re-traverse the semantic trajectory 
pattern tree STP-Tree. Take Figure 14 as an example. Suppose 
that we set α=0.8 and the semantic candidate path is (Unknown) 
 (School). When k=1, the semantic candidate path (Unknown) 
 (School) matches with the path (Unknown, 0.667)  (School, 
0.667), and the score of semantic behavior, SemanticScore, is 
evaluated as 0.8 × 0.667 + 0.667. When k=2, the semantic 
candidate path matches with the path (School, 1.0), and the 
SemanticScore is evaluated as 1.0. Here, we use the highest score 
to estimate the SemanticScore of the semantic candidate path. For 
example, the SemanticScores of all semantic candidate paths are 
shown in Table 6. 
Finally, we use Equation (2) to evaluate the score of each 
candidate path. Consider Table 4 and Table 6 which store the 
GeographicScore and SemanticScore of each candidate path for a 
mobile user, respectively. Suppose we set β=0.4. The score of 
candidate path (Stay Location0)  (Stay Location1) is evaluated 
as 0.4 × 1.2 + 0.6 × 1.2, and the score of (Stay Location1) is 
evaluated as 0.4 × 1.0 + 0.6 × 1.0. Thus we predict the children of 
the candidate path with the highest score as the answer. If the 
candidate path with the highest score has no children, we predict 
the children of the candidate path with the second highest score, 

and so on.  

Table 6. An example for transforming a candidate path set 

Semantic Candidate Seq. SemanticScore 
(Unknown)  (School) 0.8 × 0.667 + 0.667 = 1.2 

(School) 1.0 

6. EXPERIMENTS 
In this section, we conduct a series of experiments to evaluate the 
performance for the proposed location prediction technique using 
the MIT reality mining dataset [3]. All the experiments are 
implemented in Java JDK 1.6 on an Intel Core Quad CPU Q6600 

2.40GHz machine with 1GB of memory running Microsoft 
Windows XP. We first present the data preparation on the MIT 
reality mining dataset and then introduce the evaluation 
methodology. Finally, we present our experimental results 
followed by discussions. 

6.1 MIT Reality Mining Dataset 
The MIT reality mining dataset is a mobile phone dataset 
collected by MIT Media Laboratory from 2004 to 2005. The 
dataset contains 106 mobile users over 500,000 hours of 
continuous daily activities. The dataset contains cell trajectories 
as shown in Figure 15. As shown, the stay time in a cell can be 
derived by calculating the difference in timestamp when a user 
arrives in and leaves the cell. Thus, we can easily discover the 
stay cells of each cell trajectory.  

 
Since this dataset contains user annotated cell names, they 
inherently are semantic trajectories as shown in Figure 16. 
However, the annotation terms are very diverse. For example, one 
may annotate a cell as “ML” while someone else may annotate it 
as “Media Lab”, even though it’s obviously that this cell is MIT 
Media Laboratory. Besides, many terms are geographic terms 
such as “Park St.”. To stem the annotation log, we use these terms 
as query terms to find suitable semantic labels near them. 
Although we make a lot of efforts to figure out the semantics of 
the annotation terms in the log, there are unfortunately still some 
terms which we can not be sure of their meanings. As a 
consequence, we stem such term as “Unknown”.  

 

Among the 106 mobile users, there are 7 users who do not have 
cell trajectory logs, and 10 users who do not have cell annotation 
logs. Thus, after omitting these users, data from the remaining 89 
mobile users are used in our experiments. For each mobile user, 
we randomly select 80% of his/her cell trajectories as the training 
dataset. The remaining trajectories form the testing dataset. Then, 
we use the training dataset to obtain 1) semantic trajectory 
pattern tree for each mobile user, and 2) stay location pattern tree 
for each user cluster. Finally, we use Equation (2) to evaluate the 
score of next location of each trajectory in testing dataset based 
on their semantic trajectory pattern tree and stay location pattern 
tree. 

6.2 Evaluation Methodology 
The followings are the main measurements for the experimental 
evaluation. The Precision, Recall, and F-measure are defined as 
Equations (3), (4), and (5), where p+ and p- indicate the number of 
correct predictions and incorrect predictions, respectively, and |R| 
indicates the total number of trajectories. In addition, we use the 
average improvement rate to measure the percentage our proposed 
method outperforms other methods. The average improvement 
rate is defined as (6), where mours and mbaseline are the measured 

Figure 14. The score of semantic behavior. 
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Figure 16. An example of the annotation of cells by a 
user. 

Figure 15. An example of cell sequences of a mobile user.



 

result of our proposed method and that of the compared baseline 
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The experiments are divided into two parts: i) sensitivity tests; 
and ii) framework evaluation. The sensitivity tests evaluates the 
proposed techniques within the SemanPredict framework under 
various parameter settings (i.e., α and β). In this research study, 
we claim that 1) the semantic information is a critical factor for 
location prediction, and 2) the partial-matching strategy could 
improve the recall of prediction. Hence, we obtain two prediction 
strategies as baselines for comparison with our SemanPredict 
framework. First, we adapt the SemanPredict framework by 
skipping the semantic mining step to generate one baseline, called 
Geographic Only (GO), which logically represents the 
conventional general-based prediction methods. The other 
baseline, called full-matching (FM), is generated by using 
traditional matching method instead of partial-matching. Beside, 
we provide an efficiency evaluation. 

6.3 Sensitivity Tests 
The sensitivity tests evaluate our approach under various 
parameter settings in terms of Precision. As shown in Figure 17, 
the Precision of our method is improved when α is increased, i.e., 
higher precision is achieved when we give more weight on recent 
mobile moves. It validates our assumption that more recent 
mobile moves potentially have a greater effect on predicting the 
next move.  However, we also observe that the improvement is 
not significant since we adopt a partial matching strategy. As a 
result, the outdated mobile move may be rarely matched with a 
pattern. We also can observe that the Precision deteriorates as β 
increases, i.e., as more weight is assigned to semanticScore, the 
precision gets lower. This contradicts our assumption that the 
semantic information improves the prediction precision. We 
believe that this is because the clusters of users are generated 
based on semantic trajectory. As a result, the geographic features 
become more discriminative than the semantic features for a 
cluster of users with similar semantic behaviors. 

 
Then, we evaluate the impact of the semantic clustering on our 
prediction model. In Figure 18, we observe that our approach 
outperforms none-clustering approach in terms of the Precision, 
Recall, and F-Measure. The average improvement rate of our 

approach over the none-clustering approach is 20.09% for the 
precision, 24.06% for the recall, and 21.82% for the F-measure, 
respectively. It demonstrates that the semantic clustering strategy 
is effective in improving the proposed prediction framework. We 
also can observe that our approach is more stable than the none-
clustering approach, because the clustering step groups similar 
users such that most patterns we discovered for each cluster do 
not fluctuate. 

 

6.4 Comparison of Prediction Strategies 
This experiment analyzes the precision, recall and F-measure of 
examined prediction techniques, including Geographic Only (GO), 
Full-Matching (FM), and our approach (SemanPredict). Figure 19 
show that SemanPredict is not better than FM in terms of 
precision, but significantly outperforms it in terms of recall and F-
measure because SemanPredict uses the partial matching strategy. 
It also leads SemanPredict  to predict some user moves which  are 
not predictable by other techniques. On the contrary, FM predicts 
a mobile user’s move only if his recent trajectory is a subsequence 
of the prefix of some patterns. The average improvement rates of 
SemanPredict over FM are 227.72% for the recall, and 96.48% 
for the F-measure, respectively.   

We also can observe that SemanPredict is slightly better than GO 
in terms of precision, but significantly outperforms it in terms of 
recall and F-measure, because SemanPredict considers not only 
the semantic clustering but also the semantic score of the next 
location of users’ moves in the location prediction. Since the 
clustering step is based on users’ semantic similarities, the recall 
of SemanPredict can achieve 90%. The average improvement 
rates of SemanPredict over GO are 20.02% for the precision, 
24.07% for the recall, and 21.78% for the F-measure, respectively. 

 

Figure 18. Impact of the semantic clustering . 
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Figure 19. Comparison of various prediction strategies. 
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Figure 17. Precision in various parameter settings. 



 

6.5 Efficiency Evaluation 
We also conduct experiments to evaluate the efficiency of our 
approach and other prediction strategies under various minimum 
supports in offline training module and online prediction module, 
respectively. Figure 20(a) shows the execution time spent for 
training our prediction model and GO. As shown, the execution 
time of our approach consistently outperforms GO under most 
settings of minimum support. Although our approach needs to 
deal with the semantic mining in offline training module, the 
semantic clustering has grouped all users’ trajectory logs into 
small sets.  Hence, the execution time for geographic mining in 
our approach is significantly less than that in GO. We also 
observe that the execution time of prediction in our approach is 
longer than that in GO and FM. The reason is that our approach 
needs to calculate the SemanticScore of each candidate path, but 
GO does not have this overhead. Although FM also needs to 
calculate the SemanticScore, full-matching inherently leads to less 
candidate paths. However, it is reasonable that the execution time 
of our approach is limited by 2 mini seconds in online prediction 
module. 

 

7. CONCLUSIONS  
In this paper, we propose a novel framework, by exploring the 
semantic trajectories of mobile users, to predict the next location 
of a mobile user in support of various location-based services. 
The core of our framework is a novel prediction strategy which 
evaluates the score of next stay location for a given mobile user. 
In the SemanPredict framework, we propose a novel cluster-based 
prediction technique to predict the next location of a mobile user. 
To our best knowledge, this is the first work that exploits both 
semantic and geographic information in trajectories for location 
prediction. Through a series of experiments, we validate our 
proposal and show that the proposed location prediction 
framework has excellent performance under various conditions.  

As for the future work, we plan to design more advanced 
prediction strategies to enhance the quality of location predictions 
in location-based services. 
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Figure 20. Execution time. 
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