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Semantic Understanding of Scenes through the ADE20K Dataset

Bolei Zhou · Hang Zhao · Xavier Puig · Tete Xiao · Sanja Fidler · Adela

Barriuso · Antonio Torralba

Abstract Semantic understanding of visual scenes is one

of the holy grails of computer vision. Despite efforts of the

community in data collection, there are still few image datasets

covering a wide range of scenes and object categories with

pixel-wise annotations for scene understanding. In this work,

we present a densely annotated dataset ADE20K, which spans

diverse annotations of scenes, objects, parts of objects, and

in some cases even parts of parts. Totally there are 25k im-

ages of the complex everyday scenes containing a variety of

objects in their natural spatial context. On average there are

19.5 instances and 10.5 object classes per image. Based on

ADE20K, we construct benchmarks for scene parsing and

instance segmentation. We provide baseline performances

on both of the benchmarks and re-implement the state-of-

the-art models for open source. We further evaluate the ef-

fect of synchronized batch normalization and find that a rea-

sonably large batch size is crucial for the semantic segmen-

tation performance. We show that the networks trained on

ADE20K are able to segment a wide variety of scenes and

objects1.
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1 Introduction

Semantic understanding of visual scenes is one of the holy

grails of computer vision. The emergence of large-scale im-

age datasets like ImageNet [29], COCO [18] and Places [38],

along with the rapid development of the deep convolutional

neural network (CNN) approaches, have brought great ad-

vancements to visual scene understanding. Nowadays, given

a visual scene of a living room, a robot equipped with a

trained CNN can accurately predict the scene category. How-

ever, to freely navigate in the scene and manipulate the ob-

jects inside, the robot has far more information to extract

from the input image: It needs to recognize and localize not

only the objects like sofa, table, and TV, but also their parts,

e.g., a seat of a chair or a handle of a cup, to allow proper

manipulation, as well as to segment the stuff like floor, wall

and ceiling for spatial navigation.

Recognizing and segmenting objects and stuff at pixel

level remains one of the key problems in scene understand-

ing. Going beyond the image-level recognition, the pixel-

level scene understanding requires a much denser annotation

of scenes with a large set of objects. However, the current

datasets have a limited number of objects (e.g., COCO [18],

Pascal [10]) and in many cases those objects are not the most

common objects one encounters in the world (like frisbees

or baseball bats), or the datasets only cover a limited set of

scenes (e.g., Cityscapes [7]). Some notable exceptions are

Pascal-Context [22] and the SUN database [34]. However,

Pascal-Context still contains scenes primarily focused on

20 object classes, while SUN has noisy labels at the object

level.
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Fig. 1 Images in ADE20K dataset are densely annotated in detail with objects and parts. The first row shows the sample images, the second row

shows the annotation of objects, and the third row shows the annotation of object parts. The color scheme both encodes the object categories and

object instances, that different object categories have large color difference while different instances from the same object category have small

color difference (e.g., different person instances in first image have slightly different colors).

The motivation of this work is to collect a dataset that

has densely annotated images (every pixel has a semantic

label) with a large and an unrestricted open vocabulary. The

images in our dataset are manually segmented in great de-

tail, covering a diverse set of scenes, object and object part

categories. The challenge for collecting such annotations is

finding reliable annotators, as well as the fact that labeling

is difficult if the class list is not defined in advance. On the

other hand, open vocabulary naming also suffers from nam-

ing inconsistencies across different annotators. In contrast,

our dataset was annotated by a single expert annotator, pro-

viding extremely detailed and exhaustive image annotations.

On average, our annotator labeled 29 annotation segments

per image, compared to the 16 segments per image labeled

by external annotators (like workers from Amazon Mechan-

ical Turk). Furthermore, the data consistency and quality are

much higher than that of external annotators. Fig. 1 shows

examples from our dataset.

The preliminary result of this work is published at [39].

Compared to the previous conference paper, we include more

description of the dataset, more baseline results on the scene

parsing benchmark, the introduction of the new instance seg-

mentation benchmark and its baseline results, as well as the

effect of synchronized batch norm and the joint training of

objects and parts. We also include the contents of the Places

Challenges we hosted at ECCV’16 and ICCV’17 and the

analysis on the challenge results.

The sections of this work are organized as follows. In

Sec.2 we describe the construction of the ADE20K dataset

and its statistics. In Sec.3 we introduce the two pixel-wise

scene understanding benchmarks we build upon ADE20K:

scene parsing and instance segmentation. We train and eval-

uate several baseline networks on the benchmarks. We also

re-implement and open-source several state-of-the-art scene

parsing models and evaluate the effect of batch normaliza-

tion size. In Sec.4 we introduce the Places Challenges at

ECCV’16 and ICCV’17 based on the benchmarks of the

ADE20K, as well as the qualitative and quantitative analysis

on the challenge results. In Sec.5 we train network jointly to

segment objects and their parts. Sec.6 explores the applica-

tions of the scene parsing networks to the hierarchical se-

mantic segmentation and automatic scene content removal.

Sec.7 concludes this work.

1.1 Related work

Many datasets have been collected for the purpose of seman-

tic understanding of scenes. We review the datasets accord-

ing to the level of details of their annotations, then briefly

go through the previous work of semantic segmentation net-

works.

Object classification/detection datasets. Most of the

large-scale datasets typically only contain labels at the im-

age level or provide bounding boxes. Examples include Im-

ageNet [29], Pascal [10], and KITTI [11]. ImageNet has the

largest set of classes, but contains relatively simple scenes.

Pascal and KITTI are more challenging and have more ob-

jects per image, however, their classes and scenes are more

constrained.

Semantic segmentation datasets. Existing datasets with

pixel-level labels typically provide annotations only for a

subset of foreground objects (20 in PASCAL VOC [10] and

91 in Microsoft COCO [18]). Collecting dense annotations

where all pixels are labeled is much more challenging. Such

efforts include Pascal-Context [22], NYU Depth V2 [23],

SUN database [34], SUN RGB-D dataset [31], CityScapes
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dataset [7], and OpenSurfaces [2, 3]. Recently COCO stuff

dataset [4] provides additional stuff segmentation comple-

mentary to the 80 object categories in COCO dataset, while

COCO attributes dataset [26] annotates attributes for some

objects in COCO dataset. Such a dataset with progressive

enhancement of diverse annotations over the years makes

great progress to the modern development of image dataset.

Datasets with objects, parts and attributes. Two datasets

were released that go beyond the typical labeling setup by

also providing pixel-level annotation for the object parts,

i.e., Pascal-Part dataset [6], or material classes, i.e., Open-

Surfaces [2, 3]. We advance this effort by collecting very

high-resolution imagery of a much wider selection of scenes,

containing a large set of object classes per image. We anno-

tated both stuff and object classes, for which we additionally

annotated their parts, and parts of these parts. We believe

that our dataset, ADE20K, is one of the most comprehen-

sive datasets of its kind. We provide a comparison between

datasets in Sec. 2.6.

Semantic segmentation models. With the success of

convolutional neural networks (CNN) for image classifica-

tion [17], there is growing interest for semantic pixel-wise

labeling using CNNs with dense output, such as the fully

CNN [20], deconvolutional neural networks [25], encoder-

decoder SegNet [1], multi-task network cascades [9], and

DilatedVGG [5, 36]. They are benchmarked on Pascal dataset

with impressive performance on segmenting the 20 object

classes. Some of them [20, 1] are evaluated on Pascal Con-

text [22] or SUN RGB-D dataset [31] to show the capa-

bility to segment more object classes in scenes. Joint stuff

and object segmentation is explored in [8] which uses pre-

computed superpixels and feature masking to represent stuff.

Cascade of instance segmentation and categorization has been

explored in [9]. A multiscale pyramid pooling module is

proposed to improve the scene parsing [37]. A recent multi-

task segmentation network UperNet is proposed to segment

visual concepts from different levels [35].

2 ADE20K: Fully Annotated Image Dataset

In this section, we describe the construction of our ADE20K

dataset and analyze its statistics.

2.1 Image annotation

For our dataset, we are interested in having a diverse set

of scenes with dense annotations of all the visual concepts

present. The visual concepts could be 1) discrete object which

is a thing with a well-defined shape, e.g., car, person, 2) stuff

which contains amorphous background regions, e.g., grass,

sky, or 3) object part, which is a component of some existing

object instance which has some functional meaning, such

as head or leg. Images come from the LabelMe [30], SUN

datasets [34], and Places [38] and were selected to cover the

900 scene categories defined in the SUN database. Images

were annotated by a single expert worker using the LabelMe

interface [30]. Fig. 2 shows a snapshot of the annotation in-

terface and one fully segmented image. The worker provided

three types of annotations: object segments with names, ob-

ject parts, and attributes. All object instances are segmented

independently so that the dataset could be used to train and

evaluate detection or segmentation algorithms.

Given that the objects appearing in the dataset are fully

annotated, even in the regions where these are occluded,

there are multiple areas where the polygons from different

regions overlap. In order to convert the annotated polygons

into a segmentation mask, we sort objects in an image by

depth layers. Background classes like ‘sky’ or ‘wall’ are set

as the farthest layers. The rest of objects’ depths are set as

follows: when a polygon is fully contained inside another

polygon, the object from the inner polygon is given a closer

depth layer. When objects only partially overlap, we look at

the region of intersection between the two polygons, and set

as the closest object the one whose polygon has more points

in the region of intersection. Once objects have been sorted,

the segmentation mask is constructed by iterating over the

objects in decreasing depth, ensuring that object parts never

occlude whole objects and no object is occluded by its parts.

Datasets such as COCO [18], Pascal [10] or Cityscape [7]

start by defining a set of object categories of interest. How-

ever, when labeling all the objects in a scene, working with

a predefined list of objects is not possible as new categories

appear frequently (see fig. 6.d). Here, the annotator created a

dictionary of visual concepts where new classes were added

constantly to ensure consistency in object naming.

Object parts are associated with object instances. Note

that parts can have parts too, and we label these associations

as well. For example, the ‘rim’ is a part of a ‘wheel’, which

in turn is part of a ‘car’. A ‘knob’ is a part of a ‘door’ that

can be part of a ‘cabinet’. This part hierarchy in Fig. 3 has a

depth of 3.

2.2 Dataset summary

After annotation, there are 20, 210 images in the training

set, 2, 000 images in the validation set, and 3, 000 images

in the testing set. There are in total 3, 169 class labels an-

notated, among them 2, 693 are object and stuff classes, 476

are object part classes. All the images are exhaustively an-

notated with objects. Many objects are also annotated with

their parts. For each object there is additional information

about whether it is occluded or cropped, and other attributes.

The images in the validation set are exhaustively annotated

with parts, while the part annotations are not exhaustive over
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Fig. 2 Annotation interface, the list of the objects and their associated parts in the image.

9/24/2018 labelme.csail.mit.edu/developers/xavierpuig/analysisADE/plottree.html

http://labelme.csail.mit.edu/developers/xavierpuig/analysisADE/plottree.html 1/1

side (17)shelf (33)wardrobe, closet, press (429)
visor (15)housing (163)traffic light, traffic signal, ... (1120)

tap (147)faucet (1106)sink (1480)
window (21)handle (76)door (87)
screen (21)dial (85)buttons (12)button panel (55)

oven (272)

windows (10) shutter (18)pane (109)casing (15)window (1665)
rakes (16)roof (280)

rail (15)post (16)railing (107)
garage door (43)

pane (20)door (353)
shaft (20)capital (20)base (12)column (97)

house (1227)

handle (32)door frame (103) panel (11)lock (21)hinge (30)handle (58)
door (291)double door (471)

top (35)leg (35)front (36) knob (857)handle (930)drawer (1777)base (19)
chest of drawers, chest, bureau, ... (663)

window (83) stile (13)rail (14)pane (16)upper sash (14)
shutter (275) stile (20)rail (26)pane (16)sash (13)

stile (13)lower sash (17)casing (26)

window (35737)
shop window (755)
metal shutters (48)

garage door (40)
pane (12)door (18)double door (324)

doors (14) pane (58)handle (18)door (2934)
shutter (51)railing (31)balcony (2060)arcades (42)

building, edifice (18850)

side rail (107)leg (564)ladder (22)headboard (1186)
bed (2418)

Fig. 3 Section of the relation tree of objects and parts for the dataset. Each number indicates the number of instances for each object. The full

relation tree is available at the dataset webpage.

the images in the training set. Sample images and annota-

tions from the ADE20K dataset are shown in Fig. 1.

2.3 Annotation consistency

Defining a labeling protocol is relatively easy when the la-

beling task is restricted to a fixed list of object classes, how-

ever it becomes challenging when the class list is open-ended.

As the goal is to label all the objects within each image,

the list of classes grows unbounded. Many object classes

appear only a few times across the entire collection of im-

ages. However, those rare object classes cannot be ignored

as they might be important elements for the interpretation of

the scene. Labeling in these conditions becomes difficult be-

cause we need to keep a growing list of all the object classes

in order to have a consistent naming across the entire dataset.

Despite the best effort of the annotator, the process is not

free from noise.

To analyze the annotation consistency we took a subset

of 61 randomly chosen images from the validation set, then

asked our annotator to annotate them again (there is a time

difference of six months). One expects that there are some
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Fig. 4 Analysis of annotation consistency. Each column shows an image and two segmentations done by the same annotator at different times.

Bottom row shows the pixel discrepancy when the two segmentations are subtracted, while the number at the bottom shows the percentage of

pixels with the same label. On average across all re-annotated images, 82.4% of pixels got the same label. In the example in the first column the

percentage of pixels with the same label is relatively low because the annotator labeled the same region as ‘snow’ and ‘ground’ during the two

rounds of annotation. In the third column, there were many objects in the scene and the annotator missed some between the two segmentations.

differences between the two annotations. A few examples

are shown in Fig 4. On average, 82.4% of the pixels got the

same label. The remaining 17.6% of pixels had some errors

for which we grouped into three error types as follows:

– Segmentation quality: Variations in the quality of seg-

mentation and outlining of the object boundary. One typ-

ical source of error arises when segmenting complex ob-

jects such as buildings and trees, which can be segmented

with different degrees of precision. This type of error

emerges in 5.7% of the pixels.

– Object naming: Differences in object naming (due to

ambiguity or similarity between concepts, for instance,

calling a big car a ‘car’ in one segmentation and a ‘truck’

in the another one, or a ‘palm tree’ a ‘tree’. This naming

issue emerges in 6.0% of the pixels. These errors can be

reduced by defining a very precise terminology, but this

becomes much harder with a large growing vocabulary.

– Segmentation quantity: Missing objects in one of the

two segmentations. There is a very large number of ob-

jects in each image and some images might be anno-

tated more thoroughly than others. For example, in the

third column of Fig. 4 the annotator missed some small

objects in different annotations. Missing labels account

for 5.9% of the error pixels. A similar issue existed in

segmentation datasets such as the Berkeley Image seg-

mentation dataset [21].

The median error values for the three error types are:

4.8%, 0.3% and 2.6% showing that the mean value is dom-

inated by a few images, and that the most common type of

error is segmentation quality.

To further compare the annotation done by our single

expert annotator and the AMT-like annotators, 20 images

from the validation set are annotated by two invited exter-

nal annotators, both with prior experience in image label-

ing. The first external annotator had 58.5% of inconsistent

pixels compared to the segmentation provided by our an-

notator, and the second external annotator had 75% of the

inconsistent pixels. Many of these inconsistencies are due

to the poor quality of the segmentations provided by exter-

nal annotators (as it has been observed with AMT which

requires multiple verification steps for quality control [18]).

For the best external annotator (the first one), 7.9% of pix-

els have inconsistent segmentations (just slightly worse than

our annotator), 14.9% have inconsistent object naming and

35.8% of the pixels correspond to missing objects, which is

due to the much smaller number of objects annotated by the

external annotator in comparison with the ones annotated by

our expert annotator. The external annotators labeled on av-

erage 16 segments per image while our annotator provided

29 segments per image.

2.4 Dataset statistics

Fig. 5.a shows the distribution of ranked object frequencies.

The distribution is similar to a Zipf’s law and is typically

found when objects are exhaustively annotated in images

[32, 34]. They differ from the ones from datasets such as
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COCO or ImageNet where the distribution is more uniform

resulting from manual balancing.

Fig. 5.b shows the distributions of annotated parts grouped

by the objects to which they belong and sorted by frequency

within each object class. Most object classes also have a

non-uniform distribution of part counts. Fig. 5.c and Fig. 5.d

show how objects are shared across scenes and how parts

are shared by objects. Fig. 5.e shows the variability in the

appearances of the part ‘door’.

The mode of the object segmentations is shown in Fig. 6.a

and contains the four objects (from top to bottom): ‘sky’,

‘wall’, ‘building’ and ‘floor’. When using simply the mode

to segment the images, it gets, on average, 20.9% of the pix-

els of each image right. Fig. 6.b shows the distribution of

images according to the number of distinct classes and in-

stances. On average there are 19.5 instances and 10.5 object

classes per image, larger than other existing datasets (see

Table 1). Fig. 6.c shows the distribution of parts.

As the list of object classes is not predefined, there are

new classes appearing over time of annotation. Fig. 6.d shows

the number of object (and part) classes as the number of an-

notated instances increases. Fig. 6.e shows the probability

that instance n+ 1 is a new class after labeling n instances.

The more segments we have, the smaller the probability that

we will see a new class. At the current state of the dataset,

we get one new object class every 300 segmented instances.

2.5 Object-part relationships

We analyze the relationships between the objects and object

parts annotated in ADE20K. In the dataset, 76% of the ob-

ject instances have associated object parts, with an average

of 3 parts per object. The class with the most parts is build-

ing, with 79 different parts. On average, 10% of the pixels

correspond to object parts. A subset of the relation tree be-

tween objects and parts can be seen in Fig. 3.

The information about objects and their parts provides

interesting insights. For instance, we can measure in what

proportion one object is part of another to reason about how

strongly tied these are. For the object tree, the most com-

mon parts are trunk or branch, whereas the least common

are fruit, flower or leaves.

The object-part relationships can also be used to mea-

sure similarities among objects and parts, providing infor-

mation about objects tending to appear together or sharing

similar affordances. We measure the similarity between two

parts as the common objects each one is part of. The most

similar part to knob is handle, sharing objects such as drawer,

door or desk. Objects can similarly be measured by the parts

they have in common. As such, chair’s most similar objects

are armchair, sofa or stool, sharing parts such as rail, leg or

seat base.

2.6 Comparison with other datasets

We compare ADE20K with existing datasets in Tab. 1. Com-

pared to the largest annotated datasets, COCO [18] and Im-

agenet [29], our dataset comprises of much more diverse

scenes, where the average number of object classes per im-

age is 3 and 6 times larger, respectively. With respect to

SUN [34], ADE20K is roughly 35% larger in terms of im-

ages and object instances. However, the annotations in our

dataset are much richer since they also include segmenta-

tion at the part level. Such annotation is only available for

the Pascal-Context/Part dataset [22, 6] which contains 40

distinct part classes across 20 object classes. Note that we

merged some of their part classes to be consistent with our

labeling (e.g., we mark both left leg and right leg as the same

semantic part leg). Since our dataset contains part annota-

tions for a much wider set of object classes, the number of

part classes is almost 9 times larger in our dataset.

An interesting fact is that any image in ADE20K con-

tains at least 5 objects, and the maximum number of object

instances per image reaches 273, and 419 instances, when

counting parts as well. This shows the high annotation com-

plexity of our dataset.

3 Pixel-wise Scene Understanding Benchmarks

Based on the data of the ADE20K, we construct two bench-

marks for pixel-wise scene understanding: scene parsing and

instance segmentation:

– Scene parsing. Scene parsing is to segment the whole

image densely into semantic classes, where each pixel is

assigned a class label such as the region of tree and the

region of building.

– Instance segmentation. Instance segmentation is to de-

tect the object instances inside an image and further gen-

erate the precise segmentation masks of the objects. Its

difference compared to the task of scene parsing is that

in scene parsing there is no instance concept for the seg-

mented regions, instead in instance segmentation if there

are three persons in the scene, the network is required to

segment each one of the person regions.

We introduce the details of each task and the baseline

models we train as below.

3.1 Scene parsing benchmark

We select the top 150 categories ranked by their total pixel

ratios2 in the ADE20K dataset and build a scene parsing

2 As the original images in the ADE20K dataset have various sizes,

for simplicity we rescale those large-sized images to make their mini-

mum heights or widths as 512 in the SceneParse150 benchmark.
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Fig. 5 a) Object classes sorted by frequency. Only the top 270 classes with more than 100 annotated instances are shown. 68 classes have more

than a 1000 segmented instances. b) Frequency of parts grouped by objects. There are more than 200 object classes with annotated parts. Only

objects with 5 or more parts are shown in this plot (we show at most 7 parts for each object class). c) Objects ranked by the number of scenes

they are part of. d) Object parts ranked by the number of objects they are part of. e) Examples of objects with doors. The bottom-right image is an

example where the door does not behave as a part.
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Fig. 6 a) Mode of the object segmentations contains ‘sky’, ‘wall’, ‘building’ and ‘floor’. b) Histogram of the number of segmented object instances

and classes per image. c) Histogram of the number of segmented part instances and classes per object. d) Number of classes as a function of

segmented instances (objects and parts). The squares represent the current state of the dataset. e) Probability of seeing a new object (or part) class

as a function of the number of instances.
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Table 1 Comparison with existing datasets with semantic segmentation.

Images Obj. inst. Obj. classes Part inst. Part classes Obj. classes per image

COCO 123,287 886,284 91 0 0 3.5

ImageNet∗ 476,688 534,309 200 0 0 1.7

NYU Depth V2 1,449 34,064 894 0 0 14.1

Cityscapes 25,000 65,385 30 0 0 12.2

SUN 16,873 313,884 4,479 0 0 9.8

OpenSurfaces 22,214 71,460 160 0 0 N/A

PascalContext 10,103 ∼104,398∗∗ 540 181,770 40 5.1

ADE20K 22,210 434,826 2,693 175,961 476 9.9
∗ has only bounding boxes (no pixel-level segmentation). Sparse annotations.
∗∗ PascalContext dataset does not have instance segmentation. In order to estimate the number of instances, we find connected components (having at least 150pixels) for each

class label.

benchmark of ADE20K, termed as SceneParse150. Among

the 150 categories, there are 35 stuff classes (i.e., wall, sky,

road) and 115 discrete object classes (i.e., car, person, ta-

ble). The annotated pixels of the 150 classes occupy 92.75%

of all the pixels of the dataset, where the stuff classes occupy

60.92%, and discrete object classes occupy 31.83%.

We map the WordNet synsets with each one of the ob-

ject names, then build up a WordNet tree through the hyper-

nym relations of the 150 categories shown in Fig. 7. We can

see that these objects form several semantic clusters in the

tree, such as the furniture synset node containing cabinet,

desk, pool table, and bench, the conveyance node containing

car, truck, boat, and bus, as well as the living thing node

containing shrub, grass, flower, and person. Thus, the struc-

tured object annotation given in the dataset bridge the image

annotation to a wider knowledge base.

As for baseline networks for scene parsing on our bench-

mark, we train several semantic segmentation networks: Seg-

Net [1], FCN-8s [20], DilatedVGG, DilatedResNet [5, 36],

two cascade networks proposed in [39] where the backbone

models are SegNet and DilatedVGG. We train these models

on NVIDIA Titan X GPUs.

Results are reported in four metrics commonly used for

semantic segmentation [20]:

– Pixel accuracy indicates the proportion of correctly clas-

sified pixels;

– Mean accuracy indicates the proportion of correctly clas-

sified pixels averaged over all the classes.

– Mean IoU indicates the intersection-over-union between

the predicted and ground-truth pixels, averaged over all

the classes.

– Weighted IoU indicates the IoU weighted by the total

pixel ratio of each class.

Since some classes like wall and floor occupy far more

pixels of the images, pixel accuracy is biased to reflect the

accuracy over those few large classes. Instead, mean IoU re-

flects how accurately the model classifies each discrete class

in the benchmark. The scene parsing data and the develop-

Table 2 Baseline performance on the validation set of SceneParse150.

Networks Pixel Acc. Mean Acc. Mean IoU Weighted IoU

FCN-8s 71.32% 40.32% 0.2939 0.5733

SegNet 71.00% 31.14% 0.2164 0.5384

DilatedVGG 73.55% 44.59% 0.3231 0.6014

DilatedResNet-34 76.47% 45.84% 0.3277 0.6068

DilatedResNet-50 76.40% 45.93% 0.3385 0.6100

Cascade-SegNet 71.83% 37.90% 0.2751 0.5805

Cascade-DilatedVGG 74.52% 45.38% 0.3490 0.6108

ment toolbox are released in the Scene Parsing Benchmark

website3.

The segmentation performance of the baseline networks

on SceneParse150 is listed in Table 2. Among the baselines,

the networks based on dilated convolutions achieve better

results in general than FCN and SegNet. Using the cascade

framework, the performance further improves. In terms of

mean IoU, Cascade-SegNet and Cascade-DilatedVGG out-

perform SegNet and DilatedVGG by 6% and 2.5%, respec-

tively.

Qualitative scene parsing results from the validation set

are shown in Fig. 8. We observe that all the baseline net-

works can give correct predictions for the common, large

object and stuff classes, the difference in performance comes

mostly from small, infrequent objects and how well they

handle details. We further plot the IoU performance of all

the 150 categories given by the baseline model DilatedResNet-

50 in Fig. 9. We can see that the best segmented categories

are stuffs like sky, building and road; the worst segmented

categories are objects that are usually small and have few

pixels, like blanket, tray and glass.

3.2 Opening source the state-of-the-art scene parsing

models

Since the introduction of SceneParse150 firstly in 2016, it

has become a standard benchmark for evaluating new se-

mantic segmentation models. However, the state-of-the-art

3 http://sceneparsing.csail.mit.edu

http://sceneparsing.csail.mit.edu
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Fig. 7 Wordnet tree constructed from the 150 objects in the SceneParse150 benchmark. Clusters inside the wordnet tree represent various hierar-

chical semantic relations among objects.

Table 3 Reimplementation of state-of-the art models on the validation

set of SceneParse150. PPM refers to Pyramid Pooling Module.

Networks Pixel Acc. Mean IoU

DilatedResNet-18 77.41% 0.3534

DilatedResNet-50 77.53% 0.3549

DilatedResNet-18 + PPM [37] 78.64% 0.3800

DilatedResNet-50 + PPM [37] 80.23% 0.4204

DilatedResNet-101 + PPM [37] 80.91% 0.4253

UPerNet-50 [35] 80.23% 0.4155

UPerNet-101 [35] 81.01% 0.4266

models are in different libraries (Caffe, PyTorch, Tensor-

flow) while training codes of some models are not released,

which makes it hard to reproduce the original results re-

ported in the paper. To benefit the research community, we

re-implement several state-of-the-art models in PyTorch and

open source them4. Particularly, we implement (1) The plain

dilated segmentation network which use the dilated convo-

lution [36]; (2) PSPNet proposed in [37], it introduces Pyra-

mid Pooling Module (PPM) to aggregate multi-scale con-

textual information in the scene; (3) UPerNet proposed in

[35] which adopts architecture like Feature Pyramid Net-

work (FPN) [19] to incorporate multi-scale context more

efficiently. Table 3 shows results on the validation set of

SceneParse150. Compared to plain DilatedResNet, PPM and

UPerNet architectures improve mean IoU by 3-7%, and pixel

accuracy by 1-2%. The superior performance shows the im-

portance of context in the scene parsing task.

4 Reimplementation of the state-of-the-art models are

released at https://github.com/CSAILVision/

semantic-segmentation-pytorch

Table 4 Comparisons of models trained with various batch normaliza-

tion settings. The framework used is a Dilated ResNet-50 with Pyramid

Pooling Module.

BN Status Batch Size BN Size Pixel Acc. Mean IoU

Synchronized 16 16 79.73% 0.4126

8 8 80.05% 0.4158

4 4 79.71% 0.4119

2 2 75.26% 0.3355

Unsynchronized 16 2 75.28% 0.3403

Frozen 16 N/A 78.32% 0.3809

8 N/A 78.29% 0.3793

4 N/A 78.34% 0.3833

2 N/A 78.81% 0.3856

3.3 Effect of batch normalization for scene parsing

An overwhelming majority of semantic segmentation mod-

els are fine-tuned from a network trained on ImageNet [29],

the same as most of the object detection models [28, 19, 13].

There has been work [27] exploring the effects of the size of

batch normalization (BN) [15]. The authors discovered that,

if a network is trained with BN, only by a sufficiently large

batch size of BN can the network achieves state-of-the-art

performance. We conduct control experiments on ADE20K

to explore the issue in terms of semantic segmentation. Our

experiment shows that a reasonably large batch size is es-

sential for matching the highest score of the-state-or-the-art

models, while a small batch size such as 2 in Table 4 lower

the score of the model significantly by 5%. Thus training

with a single GPU with limited RAM or with multiple GPUs

under unsynchronized BN is unable to reproduce the best re-

ported numbers. The possible reason is that the BN statics,

i.e., mean and standard variance of activations may not be

accurate when batch size is not sufficient.

https://github.com/CSAILVision/semantic-segmentation-pytorch
https://github.com/CSAILVision/semantic-segmentation-pytorch
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Test image

Ground truth

FCN-8s

SegNet

DilatedVGG

Cascade-DilatedVGG

Objectness Map (Cascade-DilatedVGG)

DilatedResNet-50

Fig. 8 Ground-truths, scene parsing results given by the baseline networks. All networks can give correct predictions for the common, large object

and stuff classes, the difference in performance comes mostly from small, infrequent objects and how well they handle details.

Fig. 9 Plot of scene parsing performance (IoU) on the 150 categories achieved by DilatedResNet-50 model. The best segmented categories are

stuff, and the worst segmented categories are objects that are usually small and have few pixels.
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Our baseline framework is the PSPNet with a dilated

ResNet-50 as the backbone. Besides those BN layers in the

ResNet, they are also used in the PPM. The baseline frame-

work is trained with 8 GPUs and 2 images on each GPU.

We adopt synchronized BN for the baseline network, i.e.,

the BN size should be the same as the batch size. Besides the

synchronized BN setting, we also have unsynchronized BN

setting and frozen BN setting. The former one means that

the BN size is the number of images on each GPU; the lat-

ter one means that the BN layers are frozen in the backbone

network, and removed from the PPM. The training iterations

and learning rate are set to 100k and 0.02 for the baseline,

respectively. For networks trained under the frozen BN set-

ting, the learning rate for the network with 16 batch size is

set to 0.004 to prevent gradient explosion. And for networks

with batch size smaller than 16, we both linearly decrease

the learning rate and increase the training iterations accord-

ing to previous works [12]. Different from Table 3, the re-

sults are obtained w/o multi-scale testing.

We report the results in Table 4. In general, we empir-

ically find that using BN layers with a sufficient BN size

leads to better performance. The model with batch size and

BN size as 16 (line 2) outperforms the one with batch size

16 and frozen BN (line 7) by 1.41% and 3.17% in terms

of Pixel Acc. and Mean IoU respectively. We witness neg-

ligible changes of performance when batch (and BN) size

changes in the range from 4 to 16 under synchronized BN

setting (line 2-4). However, when the BN size drops to 2,

the performance downgrades significantly (line 5). Thus a

BN size of 4 is the inflection point in our experiments. This

finding is different from the finding for object detection [27],

in which the inflection point is at a BN size of 16. We con-

jecture that it is due to images for semantic segmentation are

densely annotated, different from those for object detection

with bounding-box annotations. Therefore it is easier for se-

mantic segmentation networks to obtain more accurate BN

statistics with fewer images.

When we experiment with unsynchronized BN setting,

i.e., we increase the batch size but do not change the BN

size (line 6), the model yields almost identical result com-

pared with the one with the same BN size but smaller batch

size (line 5). Also, when we freeze the BN layers during the

fine-tuning, the models are not sensitive to the batch size

(line 7-10). These two set of experiments indicate that, for

semantic segmentation models, the BN size is the one that

matters instead of the batch size. But we do note that smaller

batch size leads to longer training time because we need to

increase the training iterations for models with small batch

size.

Table 5 Baseline performance on the validation set of InstSeg100.

Networks mAPS mAPM mAPL mAP

Mask R-CNN single-scale .0542 .1737 .2883 .1832

Mask R-CNN multi-scale .0733 .2256 .3584 .2241

Table 6 Scene parsing performance before and after fusing outputs

from instance segmentation model Mask R-CNN.

Networks Pixel Acc. Mean IoU

Before After Before After

DilatedResNet-50 + PPM [37] 80.23% 80.21% 0.4204 0.4256

DilatedResNet-101 + PPM [37] 80.91% 80.91% 0.4253 0.4290

3.4 Instance Segmentation

To benchmark the performance of instance segmentation,

we select 100 foreground object categories from the full

dataset, term it as InstSeg100. The plot of the instance num-

ber per object in InstSeg100 is shown in Fig. 10. The to-

tal number of object instances is 218K, on average there

are 2.2K instances per object category and 10 instances per

image; all the objects except ship have more than 100 in-

stances.

We use Mask R-CNN [13] models as baselines for In-

stSeg100. The models use FPN-50 as backbone network,

initialized from ImageNet, other hyper-parameters strictly

follow those used in [13]. Two variants are presented, one

with single scale training, the other with multi-scale train-

ing, their performance on the validation set is shown in Ta-

ble 5. We report an overall metric mean Average Precision

mAP, along with metrics on different object scales, denoted

by mAPS (objects smaller than 32× 32 pixels), mAPM (be-

tween 32 × 32 and 96 × 96 pixels) and mAPL (larger than

96× 96 pixels). Numbers suggest that (1) multi-scale train-

ing could greatly improve the average performance (∼ 0.04

in mAP); (2) instance segmentation of small objects on our

dataset is extremely challenging, it does not improve (∼

0.02) as much as large objects (∼ 0.07) when using multi-

scale training. Qualitative results of the Mask R-CNN model

are presented in Fig. 11. We can see that it is a strong base-

line, giving correct detections and accurate object bound-

aries. Some typical errors are object reflections in the mirror,

as shown in the bottom right example.

3.5 How does scene parsing performance improve with

instance information?

In the previous sections, we train and test semantic and in-

stance segmentation tasks separately. Given that instance seg-

mentation is trained with additional instance information com-

pared to scene parsing, we further analyze how instance in-

formation can assist scene parsing.
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Fig. 10 Instance number per object in instance segmentation benchmark. All the objects except ship have more than 100 instances.

Image Ground truth Mask R-CNN Image Ground truth Mask R-CNN

Fig. 11 Images, ground-truths, and instance segmentation results given by multi-scale Mask R-CNN model.
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Fig. 12 Scene Parsing Track Results, ranked by pixel accuracy and mean IoU.
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Table 7 Top performing models in Scene Parsing for Places Challenge

2016.

Team Pixel Acc. Mean IoU Score

SenseCUSceneParsing [37] 74.73% .3968 .5720

Adelaide [33] 74.49 % .3898 .5673

360-MCG-CT-CAS SP 73.67% .3746 .5556

Table 8 Top performing models in Scene Parsing for Places Challenge

2017.

Team Pixel Acc. Mean IoU Score

CASIA IVA JD 73.40% .3754 .5547

WinterIsComing 73.46% .3741 .5543

Xiaodan Liang 72.22% .3672 .5447

Instead of re-modeling, we study this problem by fus-

ing results from our trained state-of-the-art models, PSPNet

for scene parsing and Mask R-CNN for instance segmen-

tation. Concretely, we first take Mask R-CNN outputs and

threshold predicted instances by confidence (≥ 0.95); then

we overlay the instance masks on to the PSPNet predictions;

if one pixel belongs to multiple instances, it takes the seman-

tic label with the highest confidence. Note that instance seg-

mentation only works for 100 foreground object categories

as opposed to 150 categories, so stuff predictions come from

the scene parsing model. Quantitative results are shown in

6, overall the fusion improves scene parsing performance,

pixel accuracy stays around the same and mean IoU im-

proves around 0.4-0.5%. This experiment demonstrate that

instance level information is useful for helping the non-instance-

aware scene parsing task.

4 Places Challenges

In order to foster new models for pixel-wise scene under-

standing, we organized in 2016 and 2017 the Places Chal-

lenge including the scene parsing track and instance seg-

mentation track.

4.1 Scene Parsing Track

Scene parsing submissions were ranked based on the aver-

age score of the mean IoU and pixel-wise accuracy in the

benchmark test set.

The Scene Parsing Track totally received 75 submissions

from 22 teams in 2016 and 27 submissions from 11 teams

in 2017. The top performing teams for both years are shown

in Table 7 and Table 8. The winning team in 2016 propos-

ing PSPNet [37] still holds the highest score. Fig. 14 shows

some qualitative results from the top performing models on

each year.

In Fig. 13 we compare the top models against the pro-

posed baselines and human performance (approximately mea-

sured as the annotation consistency in Sec.2.3), which could
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Fig. 13 Top scene parsing models compared with human performance

and baselines in terms of pixel accuracy. Scene parsing based on the

image mode has a 20.30% pixel accuracy.

Table 9 Top performing models in Instance Segmentation for Places

Challenge 2017.

Team mAPS mAPM mAPL mAP

Megvii (Face++) [27] .1386 .3015 .4119 .2977

G-RMI .0980 .2523 .3858 .2415

Baseline Mask R-CNN .0733 .2256 .3584 .2241

be the upper bound performance. As an interesting compar-

ison, if we use the image mode generated in Fig.6 as pre-

diction on the testing set, it achieves 20.30% pixel accu-

racy, which could be the lower bound performance for all

the models.

Some error cases are shown in Fig. 15. We can see that

models usually fail to detect the concepts in some images

that have occlusions or require high-level context reason-

ing. For example, the boat in the first image is not a typical

view of a boat so that the models fail; For the last image,

the muddy car is missed by all the top performer networks

because of its muddy camouflage.

4.2 Instance Segmentation Track

For instance segmentation, we used the mean Average Pre-

cision (mAP), following COCO’s evaluation metrics.

The Instance Segmentation Track, introduced in Places

Challenge 2017, received 12 submissions from 5 teams. Two

teams beat the strong Mask R-CNN baseline by a good mar-

gin, their best model performances are shown in Table 9 to-

gether with the Mask R-CNN baseline trained by ourselves.

The performances for small, medium and large objects are

also reported, following 3.4. Fig. 16 shows qualitative re-

sults from the teams’ best models.

As can be seen in table 9, both methods outperform the

Mask R-CNN at any of the object scales, even though they

still struggle with medium and small objects. Megvii (Face++)

submission seems to particularly advantage G-RMI for the
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Ground-truthImage SenseCUSceneParsing Adelaide 360+MCG-ICT-CAS_SP CASIA_IVA_JD WinterIsComing Xiaodan Liang

SceneParsing Challenge 2016 SceneParsing Challenge 2017

Fig. 14 Scene Parsing results given by top methods for Places Challenge 2016 and 2017.

grandstand

boat

car

booth

Image Ground-truth SenseCU… Adelaide 360+MCG… SegModel CASIA	IVA

Fig. 15 Ground-truths and predictions given by top methods for scene parsing. The mistaken regions are labeled. We can see that models make

mistakes on objects in non-canonical views such as the boat in first example, and on objects which require high-level reasoning such as the muddy

car in the last example.
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Image Ground-truth Megvii (Face++) G-RMI Image Ground-truth Megvii (Face++) G-RMI

Fig. 16 Instance Segmentation results given by top methods for Places Challenge 2017.

small objects, probably due to the use of contextual informa-

tion. Their mAP on small objects show a relative improve-

ment over G-RMI of 41%, compared to the 19% and 6% of

medium and large objects.

This effect can be qualitatively seen in figure 16. While

both methods perform similarly well in finding large object

classes such as people or tables, Megvii (Face++) is able

to detect small paintings (rows 1 and 3) or lights (row 5)

occupying small regions.

4.3 Take-aways from the Challenge

Looking at the challenge results, there are several peculiar-

ities that make ADE20K challenging for instance segmen-

tation. First, ADE20K contains plenty of small objects. It is

hard for most of instance segmentation frameworks to dis-

tinguish small objects from background, and even harder to

recognize and classify them into correct categories. Second,

ADE20K is highly diverse in terms of scenes and objects,

requiring models of strong capability to achieve better per-

formance in various scenes. Third, scenes in ADE20K are

generally crowded. The inter-class occlusion and intro-class

occlusion create problems for object detection as well as in-

stance segmentation. This is can be seen in fig. 16, where

the models struggle to detect some of the boxes in the clut-

tered areas (row 2, left) or the counter inf row 4, covered by

multiple people.

To further gain insight from the insiders, we invite the

leading author of the winner for the instance segmentation

track in Places Challenge to give a summary of their winning

method as follows:

Following a top-down instance segmentation framework,

[27] starts with a module to generate object proposals first

then classify each pixel within the proposal. But unlike RoI

Align used in Mask-RCNN [13], they use Precise RoI Pool-

ing [16] to extract features for each proposal. Precise RoI

Pooling avoids sampling the pivot points used in RoI Align

by regarding a discrete feature map as a continuous interpo-

lated feature map and directly computing a two-order inte-

gral. The good alignment of features provide with good im-

provement for object detection, while even higher gain for

instance segmentation. To improve the recognition of small

objects, they make use of contextual information by com-

bining, for each proposal, the features of the previous and

following layers. Given that top-down instance segmenta-

tion relies heavily on object detection, the model ensembles

multiple object bounding-boxes before fed into a mask gen-

erator. We also find that the models cannot avoid predicting

objects in the mirror, which indicates that current models are

still incapable of high-level reasoning in parallel with low-

level visual cues.

5 Object-Part Joint Segmentation

Since ADE20K contains part annotations for various object

classes, we further train a network to jointly segment objects

and parts. There are 59 out of total 150 objects that contain

parts, some examples can be found in Fig. 3. In total there

are 153 part classes included. We use UPerNet [35] to jointly

train object and part segmentation. During the training, we

include the non-part class and only calculate softmax loss

within the set of part classes via ground-truth object class.

During the inference, we first pick out a predicted object
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Test image

Part ground truth

Part segmentation

Semantic segmentation Part segmentation Test image Semantic segmentation Part segmentation

Fig. 17 Object and part joint segmentation results predicted by UPerNet. Object parts are segmented based on the top of the corresponding object

segmentation mask.

class, then get the predicted part classes from its correspond-

ing part set. This is organized in a cascaded way. We show

the qualitative results of UPerNet in Fig. 17, and the quanti-

tative performance of part segmentation for several selected

objects in Fig. 18.

6 Applications

Accurate scene parsing leads to wider applications. Here we

take the hierarchical semantic segmentation and the auto-

matic scene content removal as exemplar applications of the

scene parsing networks.

Hierarchical semantic segmentation. Given the word-

net tree constructed on the object annotations shown in Fig.7,

the 150 categories are hierarchically connected and have hy-

ponyms relations. Thus we could gradually merge the ob-

jects into their hyponyms so that classes with similar se-

mantics are merged at the early levels. Through this way,

we generated a hierarchical semantic segmentation of the

image shown in Fig. 19. The tree also provides a principled

way to segment more general visual concepts. For example,

to detect all furniture in a scene, we can simply merge the

hyponyms associated with that synset, such as the chair, ta-

ble, bench, and bookcase.

Automatic image content removal. Image content re-

moval methods typically require the users to annotate the

precise boundary of the target objects to be removed. Here,

based on the predicted object probability map from scene

parsing networks, we automatically identify the image re-

gions of the target objects. After cropping out the target ob-

jects using the predicted object score maps, we simply use

image completion/inpainting methods to fill the holes in the

image. Fig. 20 shows some examples of the automatic im-

age content removal. It can be seen that with the object score

maps, we are able to crop out the objects from an image pre-

cisely. The image completion technique used is described in

[14].
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Person

Lamp

Table

Chair

Sofa

Car

Building

Bed

Fig. 18 Part segmentation performance (in pixel accuracy) grouped by

several selected objects predicted by UPerNet.

Test	image	

Lv.0	

Lv.1	

Lv.2	

Lv.3	

Fig. 19 The examples of the hierarchical semantic segmentation. Ob-

jects with similar semantics like furnitures and vegetations are merged

at early levels following the wordnet tree.

car

person

tree

all the objects

Fig. 20 Automatic image content removal using the predicted object

score maps given by the scene parsing network. We are not only able

to remove individual objects such as person, tree, car, but also groups

of them or even all the discrete objects. For each row, the first image

is the original image, the second is the object score map, and the third

one is the filled-in image.

Fig. 21 Scene synthesis. Given annotation masks, images are synthe-

sized by coupling the scene parsing network and the image synthesis

method proposed in [24].

Scene synthesis. Given a scene image, the scene pars-

ing network could predict a semantic label mask. Further-

more, by coupling the scene parsing network with the recent

image synthesis technique proposed in [24], we could also

synthesize a scene image given the semantic label mask. The

general idea is to optimize the input code of a deep image

generator network to produce an image that highly activates

the pixel-wise output of the scene parsing network. Fig. 21

shows three synthesized image samples given the seman-
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tic label mask in each row. As comparison, we also show

the original image associated with the semantic label mask.

Conditioned on an semantic mask, the deep image generator

network is able to synthesize an image with similar spatial

configuration of visual concepts.

7 Conclusion

In this work we introduced the ADE20K dataset, a densely

annotated dataset with the instances of stuff, objects, and

parts, covering a diverse set of visual concepts in scenes.

The dataset was carefully annotated by a single annotator

to ensure precise object boundaries within the image and

the consistency of object naming across the images. Bench-

marks for scene parsing and instance segmentation are con-

structed based on the ADE20K dataset. We further orga-

nized challenges and evaluated the state-of-the-art models

on our benchmarks. All the data and pre-trained models are

released to the public.
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