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Abstract: In recent years, due to technological advancements, the concept of Industry 4.0 (I4.0) is
gaining popularity, while presenting several technical challenges being tackled by both the industrial
and academic research communities. Semantic Web including Knowledge Graphs is a promising
technology that can play a significant role in realizing I4.0 implementations. This paper surveys
the use of the Semantic Web and Knowledge Graphs for I4.0 from different perspectives such as
managing information related to equipment maintenance, resource optimization, and the provision of
on-time and on-demand production and services. Moreover, to solve the challenges of limited depth
and expressiveness in the current ontologies, we have proposed an enhanced reference generalized
ontological model (RGOM) based on Reference Architecture Model for I4.0 (RAMI 4.0). RGOM can
facilitate a range of I4.0 concepts including improved asset monitoring, production enhancement,
reconfiguration of resources, process optimizations, product orders and deliveries, and the life cycle
of products. Our proposed RGOM can be used to generate a knowledge graph capable of providing
answers in response to any real-time query.

Keywords: smart manufacturing; industry 4.0 knowledge graph; industry 4.0 semantic Modelling

1. Introduction

The emergence of the Internet of Things (IoT), Internet of Services (IoS), Cyber-Physical
Systems (CPS), and closer collaborations between human–machine and machine–machine
systems have revolutionized the current industrial landscape resulting in the so-called
Industry 4.0 (I4.0) [1]. Technological advancements and the proliferation of different
types of field devices such as sensors, embedded systems, and self-governed robots have
enhanced I4.0 production. These heterogeneous field devices communicate in real-time and
thereby are generating a huge amount of valuable data during the manufacturing process.
The generated data can play an important role in several aspects such as enhancing the life
cycle of products, on-time and on-demand productions, resource optimizations, product
customization, maintenance of machines, and logistic styles [2].

However, the heterogeneous nature of different devices, the variety of their generated
data, and their interoperability (or lack thereof) presents challenges for the efficient utiliza-
tion of I4.0 industrial productions. To tackle such challenges, the Semantic Web including
knowledge graphs is one of the possible solutions to obtain and communicate domain
knowledge among distributed I4.0 partners [3].

The Semantic Web has revolutionized the existing document-based web into more intel-
ligent systems by integrating data and web content into a more structured web environment
whereby software agents can carry out tasks autonomously for users. The semantic web
makes use of an ontology to represent the information in a machine-processable structure [4].
Ontologies are the data models that are used to represent the semantics of domain concepts
through ontological term, i.e., classes (entities) and relationships (properties). An ontology
defines the schema of a domain and does not include any information about a particular
individual of a domain. For instance Figure 1 illustrates an ontology with generalized terms,
i.e., a class Book is linked to another class Author by a property hasAuthor.
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Figure 1. Illustration of ontology defining the generalized concepts and their relationship.

On the other hand, the insertion of the data instances into ontological terms becomes
a Knowledge Graph. An ontology is a subset of a knowledge Graph and is needed for
the development of knowledge graph. For example, when a specific instance such as a
book named Hour of the Witch is written by an author Chris Bohjalian are mapped into
ontological terms of Figure 1, it becomes a knowledge graph as illustrated in Figure 2.
Ehrlinger et al. reported several definitions of a Knowledge Graph and have made clear the
difference between an ontology and a knowledge graph [5]. The emergence of knowledge
graphs provides an enterprise-ready data framework analogous to the current status of
the Semantic Web by integrating knowledge storage and intelligent discovery. In order to
discover additional information from knowledge graphs, graph embedding techniques are
used [6].

Figure 2. Example of the knowledge graph obtained from the book_ontology (Figure 1).

Even though extensive work has been done in semantic data modelling to facilitate
I4.0 applications, due to the complex nature of overall I4.0 systems, the currently available
semantic model-based ontologies have several limitations. Three of the major issues
are: (1) these production line models do not follow “Linked Data” principles and thus
are lacking the re-usability of the existing vocabularies, such as Dublin Core, schema.org;
(2) the scope of these models are application-specific (i.e., they cover a limited area such as
manufacturing processes, resources, etc.) rather than the overall I4.0 system, ranging from
data generation to production; and (3) there is no Industry 4.0-ready knowledge graph that
can answers queries due to a lack of real-time data availability [7,8].

In this paper, we summarise existing approaches for Industry 4.0 and the Semantic
Web. Our aim is to highlight major issues and opportunities which could arise from the
merger of these existing technologies. Particularly, this survey provides a comprehensive
overview of all existing ontologies, and then concludes with an overview of how we can
benefit from using these ontologies and creating a knowledge graph for Industry 4.0.
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The rest of this paper is structured as follows: Section 2 explains search methodology.
I4.0 is highlighted in Section 3. The manufacturing production lines are described with
their requirements, applications and challenges in Section 4. Semantic Web and ontologies
for I4.0 are reviewed and analysed in Section 5. Reference Generalized Ontological Model
(RGOM) is explained in Section 6. Section 7 provides a detailed discussion summarising
insights gained from the systematic review, and finally, Section 8 concludes the paper with
possible future direction.

2. Methodology

The survey was conducted based on three stage methodology including (i) planning
and scope of the review, (ii) filtration of the review, and (iii) reporting the review [9]. In the
first stage of the methodology, the scope of the review is set to determine the literature’s
relevance to the semantic web and knowledge graphs in I4.0.This stage involved the
identification of the most suitable keywords to select the articles. The keywords comprised
of two main parts, i.e., method and field. The first term is used to represent the method
while the second term represents the field where the method is being utilized. One of the
keywords from the method has to be used with the field keyword at a time. For example,
the industry 4.0 keyword from the field is combined with the ontology keyword from the
method to search for ontologies for industry 4.0 and it is then combined with the knowledge
graph keyword from the method as Knowledge graph for industry 4.0. Likewise, the field
keywords listed in Table 1 were combined one by one with method keywords at a time,
to search all types of manufacturing and production synonyms and technologies where
knowledge graph can be applied. In the same way, the rest of the keywords from the
fields are concatenated with method keywords. The & is a Boolean which joins the method
keyword with the field keyword while the + is a Boolean OR that is used to incorporate an
alternative keyword, synonyms or spellings from the field keyword.

As a result, this stage provided an initial step with searching different databases
such as ACM digital library, IEEE Explore, Science direct, and Scopus with date ranging
from 2010 to 2020 which results in almost 164 articles, in total. Table 2. illustrates the
list of digital libraries used for searching articles. Additionally, a Google Scholar search
engine has also been used in order to include non-academic publications. These articles
include academic as well as industry publications containing conferences, workshops,
letters, journals and peer-reviewed books. In reporting the literature, we included only
full-text work based on ontology proposal as well as the construction of a knowledge graph
for smart manufacturing.

In the second stage, an advanced filtration was adopted by considering the different
versions of the selected ontologies in conjunction with the combinations of the titles and
abstract which resulted in selection of more specific articles of 110. In line with ontologies
selected version the titles and abstract of each research paper were studied to identify its
relevance for inclusion. The filtration process was carried out using the following steps.

• The most relevant ontologies covering reference architectures, manufacturing produc-
tion line, predictive maintenance and supply chain concepts of I4.0 were captured.

• The study elaborated all versions of the chosen ontologies for understanding their
functional behaviour and its adaptation in the study.

The third stage is reporting the review and is composed of two steps. In the first
step, a full text reading approach was adopted to further narrow the search and obtained
87 articles. This step excluded all those papers summarizing the work on Semantic Web or
Knowledge Graph in smart Manufacturing. In the second step of reporting the review, a
total of 51 papers were found relevant to be included in the study. Each round contains
articles that were affirmed to be relevant in the previous round. The overall methodology
adopted in this work is summarized in Figure 3.
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Table 1. Identification of search keywords.

Keywords/Terms

Method (“ontology”) &
(“knowledge graph”) &

Field (“industry 4.0”) +
(“industrie 4.0”) +
(“production line”) +
(“smart manufacturing”) +
(“industry 4.0 standards”) +
(“reference architectures”) +
(“machine process”) +
(“resources”) +
(“cyber physical system”) +
(“data model”) +
(“supply chain”) +
(“predictive maintenance”)

Table 2. Digital Libraries used for searching articles.

Source Name

Digital Library IEEE Xplore
ACM Digital Library
Scopus
Science Direct

Other Google Scholar

Figure 3. An illustration of the methodology adopted for conducting the survey.

3. Industry 4.0

I4.0 is one of the emerging topics coined by researchers referring it as a new era
for industry and it is widely adopted throughout scientific world as well as industry
particularly in Germany [10]. A few other countries having manufacturing based industry
like Japan [11] and Korea [12] have also been influenced by I4.0 concept and launched their
related programs.

I4.0 aims to merge the advantages of technologies such as CPS, Internet of Services
(IoS), and IoT to create smart factories. CPS is a system of systems in contrast to traditional
systems that requires the collaboration of different machines, materials, and humans to
work together intelligently to enhance production [13].

The vision of I4.0 is comprised of nine main pillars [14]. Among them, system integra-
tion is one of the key pillars that is aimed to mutually connect three factors, i.e., digitization
and assimilation into a complex technical-economical network from any simple relation,
Digitization of the offered products and services, and new market models [10]. According
to [15], devices need to be integrated into three dimensions to achieve the objectives of
establishing smart factories.
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3.1. Vertical Integration in a Factory

It refers to the system integration at different hierarchical manufacturing levels into
one smart manufacturing solution. This integration is accomplished from the level of
the production shop floor that contains devices such as cyber-physical systems, actuators,
sensors to the system of enterprise resource planning (ERP) of the business planning level.

3.2. Horizontal Integration Over-Value Network

It integrates the resource and information network within the value chain, to accom-
plish the smooth collaboration between businesses and deliver a real-time service and
product. Smart manufacturing factories reach the world by utilizing the global production
chains and networks of data in their processes. The interaction of factories within the globe
as a smart factory is ensured by horizontal integration.

3.3. End to End Integration

The Product life cycle development involves many engineering activities to build a
CPS, e.g., idea, design, manufacturing, utilization, and closure. The objective of a CPS
engineering activity is to provide a good quality product, e.g., a comprehensive design of
production plants, and to meet accurate time frames.

Considering factories integration across the globe operates according to different
rules, standards, and businesses, which is a complicated task to be achieved. To solve
the interoperability in such integrated environment, the meaning of I4.0 entities such as
actuators, conveyors, sensors, are required to be described semantically to understand and
share their meaning. Moreover, I4.0 addresses research and development in the rest of the
eight main pillars to sustain the implementation of its principles in the industry [16]. The
focus of this work is to survey the recent literature for highlighting the major issues in the
recent ontological solutions for the industry 4.0 (I4.0) and propose a generalized ontology
framework covering most of the important concepts of I4.0.

4. Manufacturing Production Line

In this section, we give an overview of the manufacturing production lines, their
requirements, applications and challenges. Later on, we demonstrate the effectiveness of
semantic web and related technologies in order to address these challenges. The manu-
facturing production line performs a set of consecutive and parallel actions, processes, or
procedures set up in a factory site. A manufacturing process is a progressive approach bro-
ken down into relatively distinct brief actions done at specially equipped components [17].
Components such as machines, workstations, cells are assembled to make the desired
product from raw materials. The raw materials are refined into a product during a refining
process that becomes appropriate for consumption. For example, textile source plants such
as cotton or agriculture products such as foodstuffs need a series of processes to declare
them useful. Production lines manufacture a single or variety of products similar in design
with different features.

I4.0 manufacturing production line is responsible for mass production using advanced
technology tools such as sensors, actuators, IoT, etc. To achieve mass production certain
requirements must be fulfilled. In order to meet these requirements different applications
have been built. The requirements, application and challenges share a certain relationship
with each other as shown in Figure 4.
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Figure 4. One to one mapping between requirements, applications, and challenges

4.1. Requirements

In the production line of I4.0 technologically advanced tools and techniques are de-
ployed based on the reference architectures to produce a variety of products. To pro-
duce on-demand and in-time mass products, manufacturing production line has the
following requirements.

4.1.1. Smooth Operation without Any Delay

There can be several factors such as equipment, special parts needed for production,
factory overhead, etc., affecting the smooth operation of the manufacturing production line.
The outage of power supply or network system, rise, or fall of material ambient temperature
can result in the temporary shutdown of manufacturing. Similarly, the maintenance of
machines and other manufacturing equipment influences the service life equipment and
its manufacturing efficiency that can affect the operation. However, most of the time
machine failure causes the delay of the smooth operations [18]. In order to ensure the
smooth operation of production without delay, an efficient failure control system needs to
be implemented [19].

4.1.2. Maximum Optimization of the Process

Process optimization is a multi-feature problem aimed at enhancing technological
performances. It is a trade-off between increasing the performance concerning time and
process by contemplating the dynamics of a process. Optimization heavily relies on the
amounts of data being generated during different production processes. Data-driven
techniques such as process inefficiencies prediction, process-based machine learning, con-
nectivity, and capturing of real-time data, digital twin, etc., can help to optimize and
improve the process performance [20,21]. Thus maximum optimization of the process can
help reduce unnecessary cost, maximum usage of resources, and increase production.

4.1.3. System Integration

One of the key requirement in the production line is the integration of systems. Distinct
systems can comprehend and access each other information and functions. The scope
of integration ranges from devices, sensors, to other control systems providing different
on-demand services. Effective integration of systems can result in effective communication
between devices, systems, and sensors [22].
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4.1.4. Reduction in Overall Process Time

The overall process time of manufacturing a product is also known as product
turnaround time (TAT) and is defined as the time elapsed from the release of raw ma-
terial to the completed product [23]. Reduction of the overall process is critically essential
in any industry due to its key impact on greater product revenues and decreased cost. The
major components of the overall manufacturing process time are queue, processing, and
shipping time [24].

4.2. Applications

Following are the applications being used to fulfil the aforementioned requirements.

4.2.1. Predictive Maintenance

In mechanical, electronic, or mechatronic devices various problems such as wear and
tear, and fault can occur and cause a d’ns [25]. Predictive maintenance facilitates smooth
operations in any production line. It is responsible for reducing unnecessary activities
given that it is not dependent on periodic maintenance intervals bound to average lifetime.
Hence bring down the maintenance activities over a machine lifetime. In addition, early
maintenance activities can be avoided and late activities such as equipment failure before
the next periodic maintenance interval. Since these intervals rely on average lifetime
which likely includes significant positive and negative deviations from the mean. Both
reductions in unnecessary breakdowns and reduction in fatal breakdowns result in in-
creased productivity and less production downtime in a production line. The predictive
maintenance observes these problems and predicts if there is any failure or fault in the
device. The authors in [26,27] have used predictive maintenance approaches to reduce the
delay in smooth operations, i.e., to decrease the number of machine failures resulting in
unscheduled downtime.

4.2.2. Production Efficiency

I4.0 use simulations to maximally optimize the processes and forecast production
efficiency. To optimize a smart manufacturing process simulations are used to improve
the production capabilities. The simulations provide the industries with the chance to
intensify their productivity, which is very critical for immense competition [28]. How
active and efficient crimp the daily struggles when it comes to operational activities such
as information flow and lack of connection between different set of processes within
a company is explained by rut et al. With the growing market, the need to optimize
manufacturing processes is catching pace as the goal is to provide high-quality products
while maintaining an optimal level of resource consumption and availability. It has always
been an area of concern for many companies. Production processes optimization has
made the production lines efficient to produce mass products [29] and eliminate the
manufacturing equipment halt [30].

4.2.3. Semantic Modeling of the Production Line

The assimilation of vertical and horizontal components, systems, and services is
needed in smart manufacturing. It is required for seamless information exchange between
different systems that operate under a wide variety of communication standards [31]. In
order to integrate systems in the manufacturing production line, semantic web and ontology
emerged as promising technology [32]. The advantage of ontology is to semantically
conceptualize the domain knowledge of manufacturing production line to integrate the
different systems. Reasoners including semantic web rule language are used to infer
additional knowledge from a set of asserted facts or axioms.

4.2.4. Production Scheduling

Scheduling is an approach that creates coordination between machines and resources
in order to perform a given task with a certain time frame [33]. It determines when the
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activity in a production line has to start or stop. The required reduction in overall process
time is achieved with production scheduling. It organizes and arranges the resources and
activities needed in the manufacturing process. The motivation of production scheduling
is to reduce queuing and production time by telling the resources what raw material to use
to produce a product using which equipment.

4.3. Challenges

These applications still face some challenges to meet the production line requirements.

4.3.1. Quality of Data

Quality data is very crucial for any predictive maintenance system. Data quality
can be scaled up to four areas of Intrinsic data quality, Representational data quality,
Accessibility data quality, and Contextual data quality [34]. Intrinsic data quality is about
believability, reputation, accuracy, and objectivity. Representational data quality, contains
the dimensions of Interpretability, Ease of understanding, Representational consistency,
and concise representation and has to do with how they are formatted. Accessibility data
quality concerns accessibility and security. Contextual data quality contains the dimensions
of value, relevancy, timeliness, completeness, and appropriate amount of data. This area
contains elements of missing or incomplete data and is heavily dependent on the context.
All these areas and dimensions give a coherent picture of data quality. The lack of data
quality is a big challenge for companies trying to implement predictive maintenance
systems at different levels of decision-making in a production line.

4.3.2. Resource Consumption

On a machine level, different resources are utilized by the manufacturing process.
The unnecessary consumption of resources by manufacturing processes highly affects
production efficiency. In addition, the absence of machine integration and communication
results in the unnecessary operation of machines which increases the needless resource
consumption and its utilization. This also results in the consumption of power; for in-
stance, machinery utilizes electricity and automobiles consume fuel. The goal of I4.0 is to
accomplish low-cost production efficiency while leveraging automation.

4.3.3. Interoperability

Interoperability involves accessing real-time data that leads the way to a new approach
for how companies can improve their production operations. It allows manufacturing
partners (including customers, suppliers, and other departments) and their machines to
share information accurately and quickly. The result is more effective, resulting in more
reliable operations. The goal of Industry 4.0 is to achieve low-cost production efficiencies
while leveraging automation. There is a lack of a common information model that can
integrate the systems which are using incompatible communication protocols and generate
data in diverse formats on the production shop floor.

4.3.4. Multi-Line and Multi-Product Constraints

Contemplating the conflicting goals in manufacturing production, there are quite a
few constraints for multi-line and multi-product such as preferable product line segment,
resource sharing constraint, minimum run-length constraints, etc. Various problems that
arise during the design and execution of a manufacturing production line is balancing
problems [35]. Balancing a production line involves keeping the track of the number of
working stations and the operations assigned. An overall task or operation is distributed
among these working stations. In the production scheduling process, the satisfaction of the
aforementioned constraints is a very challenging task.
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5. Semantic Web and Ontologies for Industry 4.0

With the advancement of information technology, the mode of manufacturing is
transforming from mechanization to intelligence and digitization. This transformation is
influenced by the utilization of the internet of things, sensors, and CPS [36,37]. All these
devices and systems are vertically integrated in a smart factory [38].

Ontologies appeared as a significant tool to represent the domain knowledge of
I4.0 to support integration and interoperability [39,40]. Gruber et al. in [41], define an
ontology as the formal, explicit specification of a shared conceptualization. The basic
elements of an ontology are a concept and the relation between it, and axioms. When the
instances of concepts are populated into the ontology it becomes knowledge base also
known as knowledge graph (https://web.stanford.edu/class/cs520/, accessed on 1 May
2021). There are two key elements in Ontology: terminological components (Tbox) and
assertional components (Abox) that specifies the concepts and its instances, respectively.
Ontologies provide an automatic process known as reasoning to retrieve axioms that have
not been explicitly incorporated in the knowledge graph. Based on the representation of
conceptualizations the ontologies can be classified as general or core ontology and domain
ontology [42]. Core ontology represent conceptualizations that are domain-independent
and universal, i.e., time ontology [43], sensor ontology [44], etc., and can be utilized in
different scenarios across many realms of knowledge. Domain ontology represents the
knowledge of a specific domain such as ontology of the process specification language
(PSL) [45], MAnufacturing Semantic ONtology (MASON) [46], etc.

Ontologies have been widely used to model the concept of devices and it’s capabilities,
parameters, processes, etc., in I4.0. The knowledge representation with ontology has helped
to solve various problems like interoperability (between standards, devices), modelling
domain knowledge, integrating IoT, etc. Table 3. represents the research focus, and datasets
of identified ontologies .

5.1. Ontologies for I4.0 Reference Architectures and Standards

Reference architectures use analogous standards and suffer from the issue of interop-
erability due to comparable standards. Several reference architectures and standards have
been proposed to allow interoperability in smart industries. The standard and reference
architectures define, classify, align, and integrate the resources, and processes along with
the communication among them. Several research studies solved the interoperability con-
flicts in industry 4.0 standards by using ontologies to communicate the mutual knowledge
of standards. Recently, the interoperability problem among standards has been tackled
through characterizing the standards by proposing standard ontology (STO) [47]. More-
over, the description of standards helped in its classification from different viewpoints
according to the reference architecture and discovered the relationships among I4.0 stan-
dards. Currently, the created dataset contains more than 60 standards and 20 standard
organizations [47].

Another study proposed a heavy-weight ontology-based approach to explore the
ontology capability in demonstrating and utilizing the semantics of standards in a smart
manufacturing context [48]. The interoperability between the standards integration and its
semantics development is achieved by the identification of smart manufacturing standards
and semantic heterogeneity differences [49]. There are many studies relevant to the analysis
of I4.0 standards [50–52].

https://web.stanford.edu/class/cs520/
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Table 3. Research focus, datasets of identified ontologies.

Paper Ontology Research Focus Dataset

Grangel-Gonzalez et al., 2017 Standard Ontology (STO)
Solving interoperability issues between the
analogous standards used by reference
architectures.

STO dataset
(https://github.com/i40-Tools/I40KG,
accessed on 1 May 2021)

Wan, J et al. , 2018 Resource reconfiguration ontology
Integration of intelligent manufacturing
equipment using resource configuration
ontology.

Populated the ontology with the data
produced by the manipulator using
raspberry pi.

Jarvenpaa, E et al., 2018 Manufacturing Resource Capability Ontology
(MaRCO)

Development of resources ontology to
describe manufacturing resources
capabilities.

Data were taken from the Industrial
laboratory Demonstration setup

Ferrer, B.R. et al., 2016 Product, Process, Resource Integration of Product, Process, and
Resource

Festo Modular System (a testbed for an
industrial test.)

Ramirez-Duran et al., 2020 ExtruOnt
Describing extruder components, 3D
representations, and spatial connections,
features, and sensors capturing data.

Data were taken from the extruder
manufacturing factory.

Kaar, C. et al., 2018 Process

Decomposed the sentences of RAMI 4.0
standards, architectures, and models into
concepts map to integrate the processes of
industry 4.0.

X

Teslya, N. et al., 2018 Components of Socio-Cyber Physical systems Establishing a specific information space to
connect all the production components. X

Grangel-Gonzalez, et al., 2016 I4.0 components Semantically represented the I4.0 devices in
administration shell

https:
//cdd.iec.ch/cdd/iec61360/iec61360.nsf,
accessed on 1 May 2021

Cheng, H. et al., 2016 I4.0 Demonstration Production line Modelled the I4.0 production line X
Petersen et al., 2016 Semantic Manufacturing Ontology (SMO) Modeling of Smart factory X

Seyedamir, A. et al., 2018 Modular Ontologies (ISA-95) Modeling Smart Factory
Data produced on FASTory simulator
http://escop.rd.tut.fi:3000/fmw,
accessed on 1 May 2021

Kalaycı et al., 2020 Surface Mounting Process (SMT Ontology) Integration of Bosch Manufacturing Data for
analysis

Data taken from Bosch, no information
available

Grangel-Gonzalez et al, 2020 SMT ontology combined with Domain
ontologies To acheive interoperability in I4.0. Data taken from Bosch, no information

available.

https://github.com/i40-Tools/I40KG
https://cdd.iec.ch/cdd/iec61360/iec61360.nsf
https://cdd.iec.ch/cdd/iec61360/iec61360.nsf
http://escop.rd.tut.fi:3000/fmw
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5.2. Ontologies for Industry 4.0 Manufacturing

Semantic modelling of smart factory, manufacturing production line, and the man-
ufacturing systems interoperability are the crucial feature established in the industry 4.0
production between tangible assets including systems, devices, sensors, etc., connected
with other over the internet. In the industry 4.0 context, stress has been given on the
alignment of manufacturing systems, processes, resource reconfiguration, etc., in the pro-
duction line. In the last decade, there have been numerous efforts to represent the domain
knowledge of industry 4.0 in form of modular ontologies, i.e., resource, device ontology,
process ontology, predictive maintenance ontology, etc., to meet manufacturing production
requirements. There have been rigorous efforts to develop ontologies that are aimed to
semantically model the manufacturing production line with clear meaning. Buchgeher et al.
conducted a survey on the role of knowledge graphs in production and manufacturing [53].
They have reported the bibliometric facts, type of research, statics and application scenarios
of the Knowledge Graphs in manufacturing and production.

Recently, Kalaycı et al. proposed a SIB framework to integrate Bosch manufacturing
data to analyse the surface mounting process pipeline [54]. To experiment with their
framework, they have developed surface mounting (SMT) to map the production line data.
Grangel-González et al. concatenated domain ontologies on the top of SMT ontology to
accomplish the interoperability issue in manufacturing data [55]. Both approaches do not
reuse the linked open data reuse principle.

Wan et al. proposed a resource configuration-based ontology describing the domain
knowledge of the reconfiguration of sensible manufacturing resources using web ontology
language (OWL) [56]. The objective of their work is to integrate the CPS equipment
through ontology-based resource integration architecture. The data generated are stored
as a relational database and is associated and mapped into the model instances of the
manufacturing ontology. The proposed ontology for resource reconfiguration is examined
using an intelligent manipulator as a use case that verified its manufacturing feasibility. A
reconfigurable I4.0 for pharmaceutical products has been proposed to adjust the increasing
requirement of flexibility, agility, and low-cost in the health sector [57]. The reconfigurable
I4.0 is comprised of three layers, namely executing, deployment, and perception layer.
The knowledge graph employed in the perception layer is representing the semantics of
manufacturing based on the MASON Ontology responsible for scheduling production plan.
In the deployment layer, IEC 61499 standard is implemented for modelling functionality
and controlling of machines. The feasibility of the proposed approach is validated by taking
a use case of drug packing based on demand. Kovalenko et al. proposed AutomationML
ontology to represent the semantic modelling of cyber-physical systems covering data
exchange in I4.0 scenario [58]. The semantic-based representation of I4.0 devices in the
administration shell provides the integration, identification, data availability, etc., of the
devices [59,60].

Considering the domain of the I4.0 resources, RamírezDurán et al. developed a seman-
tic model (ExtruOnt) to describe the knowledge of a manufacturing machine known as an
extruder machine that executes extrusion process [61]. Though the scope of the developed
ExtruOnt is confined to a specific domain, and provides information about extruder compo-
nents, three-dimensional representations of components and spatial connections, features,
and the sensors capturing data about machine performance. However, it can be used as a
reference model to develop ontologies to represent other manufacturing machines in I4.0.

Simple as well as combined capabilities of manufacturing resource ontology have
been proposed to illustrate the capabilities of the production system [62]. The resources ca-
pabilities preliminary conceptual model was produced in [63]. The ontology development
process followed the five stages of ontology engineering methodology that are feasibility
study, kick-off, refinement, evaluation, and usage and evolution. According to Jarvenpaa
et al. Manufacturing resource capability ontology (MaRCO) is used by resource vendors
to represent the capabilities of resources they are offering and publish it in the digital
marketplaces or global resources list and is browsed by production companies or systems
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integrators when reconfiguring existing or designing new manufacturing system. MaRCO
aims to provide the matchmaking between the required capabilities of a resource and the
production requirements of a product. Kaar et al. investigated and extracted the context and
information from Reference Architectural Model Industrie (RAMI 4.0) [64], to integrate the
industry 4.0 process by suggesting an ontology approach. This information was extracted
from different sources, standards, architectures, and model relevant to I4.0. The ontology
objective is to give an overview of the RAMI4.0 key concepts and its relationships to enable
the identification of inconsistencies, gaps, and redundancies in its layers descriptions and
definitions for I4.0 process development. They carried out a middle-out approach to ana-
lyze the layers of RAMI4.0 and broke down the sentences referring to the information layer
and shift it into a concept map. Semantic Manufacturing Ontology highlights the sequence
of processes and machines required for an ordered workpiece (product) [65], turtle file is
available online (http://i40.semantic-interoperability.org/smo/smo.ttl, accessed on 1 May
2021). Mazzola et al., proposed CDM-Core (http://sourceforge.net/projects/cdm-core/,
accessed on 1 May 2021) ontology by re-using the existing domain and core ontologies [66].
The authors claimed it to be the largest publicly available global ontology. However, they
have more focused on the service-oriented architecture and monitoring of the manufactur-
ing services. There is no explicit information regarding the modelling of manufacturing
factory and the main concept such as type of processing, type of machine, etc., are missing.

Manufacturing system should be able to incorporate and assist human (Operators,
Technicians). Human are participating in the environment of automated systems and need
to consider the role of the operator in such an environment. Ferrer et al. proposed the
addition of the skills and tasks performed by humans in manufacturing ontology that is
using the CPS knowledge repositories [67]. Their work presented a semantic model that
allows the operations modelling achieved by human operators. However, they focused
more on the service of orchestration during the production plans. Ahmad, S. et.al proposed
the integration of manufacturing domain data such as Product, Process, and Resource
(PPR) using the ontology approach for matching the product requirements in assembly
automation [68]. The mapping information of PPR helps in deriving the processes and
resources required to manufacture the designed product. Considering the modular ontolo-
gies design, Protégé (http://protege.stanford.edu/, accessed on 1 May 2021) (ontology
editor tool) can be used to form a graph dataset including all imported ontologies.

Teslya et al. proposed an ontology-based approach to describe the industrial com-
ponents merged from four different scenarios in order to form upper-level ontology [69].
Such a union will enable to change the created business process to boost the product
customization for the customer and reduce the cost for its producers. In another study [70],
the researchers proposed the ontology model of RAMI4.0 to exchange information between
assets and I4.0 components in a meaningful way.

In [7], the authors proposed an ontology by merging five ontologies that are base,
product, process, device, and parameter ontology to represent the manufacturing produc-
tion process beginning from order to completion of the product. The ontology is built on the
top of the product, process, device, and parameter ontologies to provide interaction with
each other. Additionally, the order concept is modelled as a separate ontology that is linked
with the product. Service-oriented architecture has been built on the top of this ontology
model to discover, select, organize, and consume semantic web services dynamically [71].

Seyedamir et al. utilized the concepts of manufacturing resource, process, and product
from the ISA-95 standard [72]. They adopted the approach of semantic rules to infer implicit
knowledge to allow inspecting the machines needed to produce product variants. Saeidlou,
S. et al. designed an ontology model for the manufacturing domain and developed a
semantic query algorithm to investigate the semantic richness of the queried keyword
return by the ontology model [73].

Some of the most renowned ontologies in the manufacturing domain are process speci-
fication language (PSL) [45], ONTOlogy for Product Data Management (ONTO-PDM) [74],
MAnufacturing Semantic ONtology (MASON) [46], ADAptive holonic COntrol aRchitec-

http://i40.semantic-interoperability.org/smo/smo.ttl
http://sourceforge.net/projects/cdm-core/
http://protege.stanford.edu/
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ture (ADACOR) [75], etc., ontology. MASON ontology has been developed to estimate
the production cost of the mechanical components. The design of PSL ontology emphasis
to enable the exchange of process information in manufacturing systems accurately and
comprehensively. Panetto, H. el. al modelled the product concepts based on two standards
ISO-10303 and IEC-62264 to facilitate the interoperability between software application
exchanging product life cycle information. PSL ontology represents the concepts of process
modelling, planning, scheduling, simulation, etc. in axioms of first-order logic theories.
ADACOR ontology has highlighted the knowledge related to customer work orders, pro-
duction plans, model operations. These ontologies are helpful to recreate an ontology
model to cover the notion of the whole production line from customer order to the product
life cycle. There is a great amount of literature available for ontology-based agent system
such as CORA [76], ROA Ontology [77], ORArch, and O4I4 Ontology [78] that perform
main tasks in the manufacturing industry and is out of the scope of this paper.

5.3. Ontologies for Industry 4.0 Predictive Maintenance

Process in the manufacturing production line is the sequence of actions performed
on materials and energy to transform it into a finished product. These processes may be
affected by the faults and failures in the machines. The early detection of these failures can
make sure the availability, efficiency, and high productivity of manufacturing processes.
Usually, the abnormality is detected from analyzing data generated by the sensors placed
on machine modules and other areas of the manufacturing production line.

CPS take an advantage of predictive maintenance. The communication between the
production entities within a CPS is performed intelligently and autonomously which helps
manufacturers to augment the production process.

Karray, M.H et al. proposed the Industrial MAintenance Management Ontology
(IMAMO) to provide interoperability and create new knowledge that encourage making
decision to be carried out in the process of maintenance [26]. Schmidt, B. et al. reported
the problem of insufficient data of historical events regarding the factory maintenance [79].
The process and inspection data need to be correlated to enhance the prognostics and
diagnostics to make the maintenance decision better. In another work, an ontology model
has been developed to capture the context of flexible manufacturing system that are utilized
for making a real-time decision to optimize the key performance indicators [80].

Qiushi Cao et al. developed a manufacturing predictive maintenance ontology
(MPMO) to formally describe the chronicle concepts and their relationships [81]. They
proposed an algorithm to create semantic web rule language (SWRL) logic rules from
historical events providing formalized predictive outcomes. The semantics and chronicle
mining allows temporal constraints reasoning to forecast future malfunction of machinery.
There are two main issues in the proposed approach that are (1). the partition methodology
of numerical values and (2). the advancement of ontology and rule base. Thus, it is hard
for this method to predict critical failure.

In I4.0 application, the monitoring of critical components is a complex job and needs
to be resolved in real-time. The fuzzy-logic based approach decomposes any real-time
complex system into a simple weighted sum of linear subsystems and is very actively
used in several fields such as energy management [82–84]. The authors in [85] utilized a
Fuzzy C-Means (FCM) based approach to tackle with the uncertainties and classify the
critical failures. Failure events are obtained from the industrial raw data by applying
Sequential Pattern Mining (SPM). After that FCM is applied to the failure events along
with its temporal information. A survey paper explored eMaintenance ontologies related
to several fields [86]. However, the focus is more on the data problem used in maintenance,
standards, and eMaintenance tools.

5.4. Ontologies for Industry 4.0 Supply Chain Management

A supply chain is a web of business services and delivery options that play key
roles: procurement of raw materials, transforming these raw materials into a product, and
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delivery of these products to customers [87]. Ordinarily, the raw materials are acquired
from distinct vendors and are transformed into the product at one or more production
plants. The finished product is shifted to the storage room in the warehouse. According to
the characteristics defined by [88], the heterogeneous information flow of the supply chain
network creates complex processes between partners that need to be adjusted for business
profit. An ontology-based data integration framework is proposed in the same research
work that utilizes the relational databases and data in XML format.

The current advancement in the internet-based technologies pave a way for the task
of extended supply chain and new constraints, therefore helping in managing product-
related information that comes from product models. The product data framework initially
established by PRoduct Ontology (PRONTO) is extended to give the foundations for
distributed data management (DPDM) which in turn helps to validate the data aggregation
and disaggregation processes needed by the activities of logistic planning [27]. PRONTO
modelled the product and its variant set without considering any standard or reference
architecture and did not reflect any other part of manufacturing production line [89].

In the supply chain, several failures such as factory fire, machine failures, acquisition
of raw material, etc., have been observed [86]. In [90], researchers proposed a decision
support system based on the ontology model to decide optimal recovery action as a high
resilience level by applying Particle Swarm Optimization (PSO) approach. Similarly in
another study, ontology and multi-agent have been used to propose a decision support
framework for the supply chain of prefabricated components [91]. In another study, the
problem related to the logistic process was optimized by proposing a framework based on
ontology [92].

There is literature available on ontologies for solving different problems related to
supply chain management covering numerous domains [93–95].

5.5. Analysis of Existing Ontological Approaches

The emergence of the semantic web and the knowledge graphs provides an interface
among the various reference architectures to deduce the hidden relationships and the
interoperability issues among them [47]. It is believed that the coupling of the semantic web
and the knowledge graphs could be able to provide a universal model for accomplishing
the overall designing process by aligning all I4.0 reference architecture.

In the literature, several refined conceptualizations for the different domains of I4.0
such as sales, devices, processes, and products, etc., are proposed by using either complete
or modular-based ontologies as depicted in Table 2. For example, the domain knowledge
of the manufacturing production line is conceptualized by utilizing four different modular
ontologies for device, product, process, and parameters [7]. On one hand, the modular
design could provide the opportunity for extending the domain knowledge; however, the
maintenance and complexity requires some efforts.

In I4.0, each of the machine units or products at different granularity level such as
cell, workstation, and component, etc., are represented through a resource. Furthermore,
each of the resources can either be a particular product or service supporting a process
that may include a sub process or sub resource, e.g., a transport system on workstation
level include sub-process (clamping operation) and resource (griper). The authors in [7,60]
have modelled the manufacturing production line by covering most of the resources but
still is lacking some of the main resources such as material, environment temperature, and
humidity, etc.

Additionally, it is extremely difficult to identify whether the time is related to the
production line or product delivery, as it is bounded to the OperatingHours class only. A
misconception, that the completed products are considered as to be a part of the manufac-
turing ontology; whereas it should be a part of the product to better modelled in terms of
RAMI4.0. These ontologies also lack the linked data principles that is the re-usability of
existing vocabulary. For instance, the property isPartOf links machine with manufacturing
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facility, i.e., machine is part of manufacturing facility) which is already defined in the
Dublin Core vocabulary but it has not been re-used by the domain ontology [8].

The unavailability of such infrastructure that could be able to support the sharing
of data using different ontologies in a universal framework is one of the weaknesses
of the existing work. Apart from that the ontological based solutions for I4.0 in the
existing work are facing two major challenges: (1) the ontology should follow the standard
reference architectures of I4.0, but none of the current ontologies is fully compatible with
the reference architectures, and (2) Although, immense data is being generated by I4.0
processes, machines, resources, etc., which is captured in IT systems in different formats
and is not interoperable. However, there are no known semantic models that can be applied
on the top of the data to cover all the concepts or processes involved in any typical smart
manufacturing environment. Given this challenge, we need a semantic model that can be
used to build a knowledge graph which in turn provides us with the solutions regarding
the industry 4.0.

It is believed that the knowledge graphs could provide a baseline for implementing
more efficient predictive maintenance and machine learning-based algorithms. In this con-
nection, this study aims to provide insights into building the semantic web and knowledge
graphs for enhancing the production line manufacturing of I4.0.

The overall schematics of this approach are explained in Figure 5. The resource
ontology [8], is split into manufacturing, machine, and product ontology to cover more
concepts. In machine ontology, new concepts such as capabilities of machine and power
consumption by machines are added. The product ontology is enhanced with concepts used
in RAMI 4.0 life cycle dimension. The concepts from the existing vocabularies have been
reused. This can result in a twofold interest. First, it will pave ways for academia, to discuss
topics relevant to this field of research and hence lead to intensive investigation. Secondly,
these ontologies can be used by the industry for the implementation of a knowledge graph
to provide solutions.

Figure 5. High level representation of Reference generalized ontological model.

6. Reference Generalized Ontological Model

The proposed Reference Generalized Ontology Model (RGOM) is a universal plat-
form developed with the composition of the domain specific and core ontologies along
with the authors identified concepts based on reference architectural model Industrie 4.0
(RAMI4.0) [7,8,61].
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The methodology for the proposed reference generalized ontological model (RGOM)
is composed of the following steps.

• A detailed survey is conducted by analyzing the recent literature for the ontological
models for industry 4.0. In this step, key ontologies regarding the production line,
supply chain, etc., were shortlisted based on the search methodology.

• Industry 4.0 architecture such as Reference architectural model Industrie 4.0 (RAMI
4.0) was studied to find out the requirements needed for the industry 4.0 production.

• A comparative study is then conducted to find out the gap between the standards and
the current state of the art models. During this step, it was identified that the current
ontologies do not follow the requirements of the RAMI4.0 and are unable to follow
the reuse principle of linked open data.

• The existing vocabularies were reused with the additional concepts that were missing.
The whole process was performed iteratively.

Based on the literature review and RAMI4.0, the proposed RGOM considers core areas
such as time, location, sensor, and different domains such as product, process, and machine
along with the order, supply chain, warehouse, etc., and explores all the concepts and
relationships among them.

This implies that the RGOM provides a detailed unified model which takes the I4.0
domain knowledge from raw material to finished product including supply to the cus-
tomer as well as monitoring the different situations of machines and processes. Machines
and products are separated from the resource ontology [5], to form a machine ontology
and a product ontology to accommodate more concepts and relations. For instance, the
product ontology specify the concepts such as product (production of product) and ser-
vice (maintenance usage) adopted from RAMI4.0 and identified concepts such as sales
ontology are coupled. This helps to provide a full view that the order is placed for a
service or for the manufacturing of product, depending on the order the either the service
or the resources in the manufacturing production line will be reconfigured. RGOM has
reused the existing vocabulary, i.e., the machine which is a manufacturing facility and
is associated with the workstation by reusing the isPartOf property from Dublin core
vocabulary. The process(s) happening at different times and locations is linked to the
manufacturing resources by process ontology using performProcess property. It describes
the basic taxonomy of all kinds of processes from manufacturing to human process(s) and
logistic operations. Sales ontology defines customer orders concepts for the product. The
order can have various concepts such as design, quantity, delivery date, etc., Supply chain
ontology can assist in monitoring the delivery of the manufactured product to the customer.
Thus, the context of the core ontologies alone would not be able to answer why, where
and what type of questions, but the RGOM is able to infer all the contextual information
ranging from a particular entity situation to the complete production line. The consistency
of the RGOM has been evaluated through the reasoner (software tool) known as Hermit
(http://www.hermit-reasoner.com/, accessed on 1 May 2021). Furthermore, the high level
representation of the proposed RGOM is illustrated in Figure 5. It provides a comprehensive
correlation of all the concepts discussed in Table 4. The RGOM owl file is made available
at the github (https://github.com/MuhammadYahta/Smart-Manufacturing-Ontology,
accessed on 1 May 2021) repository.

http://www.hermit-reasoner.com/
https://github.com/MuhammadYahta/Smart-Manufacturing-Ontology
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Table 4. Manufacturing production line concepts covered by different research articles.

Article Sales Manufacturing Production Line Predictive Maintenance Industry Standard
Device Operator

(Human) Process/Operation Product Time Sensor Material

Grangel-Gonzalez et al.,
2017 X X X X X X X X X X

Lemaignan, S. et al.,
2006 X X X X X X X X X X

Wan, J. et al., 2018 X X X X X X X X X X
Jarvenpaa, E. et al., 2018 X X X X X X X X X X
Ferrer, B.R. et al., 2016 X X X X X X X X X X
Ramirez-Duran et al.,

2020 X X X X X X X X X X

Kaar, C. et al., 2018 X X X X X X X X X X
Teslya, N et al., 2018 X X X X X X X X X X

Grangel-Gonzalez et.al,
2016 X X X X X X X X X X

Cheng, H. et al., 2016 X X X X X X X X X X
Petersen, N. et al., 2016 X X X X X X X X X X
Schmidt, B. et al., 2017 X X X X X X X X X X
Giustozzi, F. et al., 2018 X X X X X X X X X X

Seyedamir, A. et al.,
2018 X X X X X X X X X X

Kalaycı et al., 2020 X X X X X X X X X X
Grangel-Gonzalez et al,

2020 X X X X X X X X X X

Our Proposed approach X X X X X X X X X X
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7. Discussion

The purpose of this survey is to investigate the extensive literature regarding man-
ufacturing production line ontologies and their knowledge graph. It is clear from the
literature that I4.0 is highly supported by reference architectures and models. Different
countries have presented their architectures as a reference model to build I4.0. Some of
them have aligned their architecture and model with another based on the analysis and
comparison which is a general approach towards the alignment of the reference model.
The analysis and comparison approach make use of the definitions included in each model
to align the reference models.

The scope of this survey is limited to review the existing manufacturing ontologies in
order to develop an enterprise-level knowledge graph for I4.0 manufacturing production
line. To the best of our knowledge, the current study does not incorporate the dissimilar
data sources such the measurement recorded by sensors (temperature, pressure, humidity,
power), material required for production, quality of material, an operation performed by a
machine or human, work orders, etc. Even though the data is captured in the databases,
it needs a lot of manual efforts and time to integrate in a unified way. Upon building
such knowledge graph, it can then help in integrating the data from diverse sources. The
unified model may be capable to promptly answer the queries and help to predict the
machine failure, optimize processes, etc., by applying machine learning or deep learning
approaches.

Still there are following challenges needs to be addressed that are missing in the
literature.

Open Challenges
The current ontologies for manufacturing production are unable to cover the following

challenges. We reviewed I4.0 manufacturing ontologies model to highlight the missing
areas that need to be worked on to build a solution provider.

7.1. Domain Knowledge Capture

A huge amount of data is generated by different sensors, devices, machines, actuators,
the interaction of human operators, processes, etc., in smart manufacturing during the
production. This information is rarely accessible in a combined way as IT systems capture
such information into diverse databases. Based on the literature [61,62,68], the existing
models can only accommodate limited parts of the manufacturing production and the rest
of the data is wasted. Manufacturing production demands a domain ontology to save all
the data produced in the line.

7.2. Knowledge Graphs

Knowledge graph integrate data from heterogeneous sources in a given domain
and provide a framework for analytic and data sharing among applications. One of the
challenges to build an smart manufacturing knowledge graph is the unavailability of real-
time data sets. The reason behind the data unavailability may be the improper modelling
of manufacturing production line.

7.3. Comprehensive Information for Seamless Integration within and between Smart Factories

I4.0 is lacking cross-domain collaboration between smart factories due to the focus on
domain-specific applications [96]. Seamless collaborations from cross-domain are required
to infer the useful information within and between smart factories, from the knowledge
graph. The intelligent autonomous system can then use the deduce knowledge from
independent applications using semantic reasoning to monitor and process events.

7.4. Elastic and Customised Assembly Lines

The semantic web is capable to capture the domain knowledge of a manufacturing
domain which make the assembly line devices and resources elastic that can be customized



Appl. Sci. 2021, 11, 5110 19 of 23

according to the product ordered by customers. Thus, proper semantic modelling of
assembly lines saves the unnecessary use of resources.

7.5. Intelligent and Adaptable Manufacturing

In order to achieve autonomous intelligence where the different machine can com-
municate and interact with each other, there is a need of knowledge graph that can help
machines to answer based on their experience. This will help the manufacturing resources
to detect the faults and failures in a more intelligent way.

8. Conclusions

In this paper, first, we provided a comprehensive review of the available ontological
model for building I4.0 knowledge graph that enabled us to find the knowledge gap in
terms of open challenges, applications. Once the challenges and applications are identified,
they are related through a logical one-to-one mapping mechanism. A reference generalized
ontological model (RGOM) based on RAMI 4.0 is then developed by covering most of the
core concepts in the I4.0. The developed RGOM is a fundamental framework that could
be utilized to populate realistic data and test the knowledge graph with an adequately
accurate response for any real-time query related to the overall concepts of I4.0.

In future, the RGOM will be tested by using the Confirm Manufacturing
(https://confirm.ie/) benchmark datasets for validating it against state-of-the-art ontologi-
cal models by considering the accuracy and correctness of the query results.
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