Semantic Web based Content Enrichment and
Knowledge Reusein e-Science

Feng Tao*, Liming Chen, Nigel Shadbolt*, Fenglian Xu?, Simon Cox?, Colin Pul-
eston®, Carole Goble®

! Department of Electronics and Computer Science, University of Southampton,
Southampton, U.K.
{ft, Ic, nrs} @ecs.soton.ac.uk
2 e-Science Centre, School of Engineering Science, University of Southampton,
Southampton, U.K.
{flx, sj.cox} @soton.ac.uk
® Department of Computer Science, University of Manchester, Oxford Road, Manchester,
UK.
{ carole, colin.puleston} @cs.man.ac.uk

Abstract We address the life cycle of semantic web based knowledge
management from ontology modelling to instance generation and re-
use. We illustrate through a semantic web based knowledge manage-
ment approach the potential of applying semantic web technologies in
GEODISE, an e-Science pilot project in the domain of Engineering De-
sign Search and Optimization (EDSO). In particular, we show how on-
tologies and semantically enriched instances are acquired through
knowledge acquisition and resource annotation. This is illustrated not
only in Protégé with an OWL plug-in, but also in a light weight func-
tion annotator customized for resource providers to semantically de-
scribe their own resources to be published. In terms of reuse, advice
mechanisms, in particular a knowledge advisor based on semantic
matching, are designed to consume the semantic information and facili-
tate service discovery, assembly and configuration in a real problem
solving environment. An implementation has demonstrated the integra-
tion of the advisor in a text mode domain script editor and a GUI mode
workflow composition environment. Our research work shows the po-
tential of using semantic web technology to manage and reuse knowl-
edge in e-Science.

1. Introduction

The GEODISE (Grid Enabled Optimisation and Design Search for Engineering) pro-
ject [3] aims to provide a Problem Solving Environment (PSE) that couples together

Grid middleware, engineering design packages, a database and a knowledge base to
help engineers conduct large-scale distributed simulation of design search and optimi-
sation in avirtual organization.

The Grid [2] has provided an operational infrastructure that enables distributed scien-
tific computing and resource sharing in e-Science, yet it has become increasingly
important that resources are consistently and semantically enriched to enable process
automation and knowledge reuse within a distributed e-Science community. The Se-
mantic Web technology promises to make Web content machine understandable,
enabling software agents to process it and produce value-added knowledge to end
users. The Semantic Grid* [10,] addresses this issue by applying Semantic Web tech-
nologies in Grid computing to enable easy-to-use and seamless automation towards
the full richness of e-Science vision of future large-scale science over the Internet
where the sharing and coordinated use of diverse resources in dynamic, distributed
virtual organization is commonplace.

In order to achieve this vision, we proposed a Semantic Web based knowledge man-
agement approach in GEODISE. Knowledge acquisition is carried out through ontol-
ogy modelling and semantic annotation. An ontology forms the conceptual structure of
the knowledge base, and the semantic annotation populates the knowledge base with
semantic instances. Knowledge reuse is then achieved through consuming these in-
stances to generate knowledge driven decisions. In e-Science practice, it is common
that the activities of generating and reusing the instances are conducted by different
parties (e.g. human experts, beginner users, or computers), in different locations, time
and environments. For example, in GEODISE, various Grid services and domain
software components are used, such as the Java Cog [20] in Globus toolkit and the
OPTIONS design exploration package [21] for EDSO. They are wrapped as Matlab
functions which form our key resource in Grid enabled engineering problem solving.
Semantic instances of these resources can be generated by knowledge engineers using
knowledge acquisition tools such as Protégé, or by resource providers themselves
using annotation tools such as the Function Annotator [14]. Semantics acquired in
either way can be represented in the Web Ontology Language (OWL), which is a
W3C standard that aims to help machines to understand data. Third-party programs
can be used to process the instances in the knowledge base for different knowledge
reuse purposes. This potentialy allows for the knowledge to be used outside the
awareness of its providers. In GEODISE, the purpose of knowledge support is to help
engineers exploit reusable resources. We use the Jena semantic toolkit [13] to process
the semantic information of these existing resources and formulate advice on activities
during domain script editing and workflow assembly that require appropriate manipu-
lation on these resources.

The rest of the paper is organized as follows. In the next section, we describe the
knowledge management approach with respect to the life cycle of semantic web based
knowledge management in GEODISE. In section 3, our experience of knowledge
modeling is described in the context of GEODISE. This includes knowledge acquisi-

1 http://www.semanticgrid.org

tion in regard to building ontologies and generating semantic annotations as instances
in a knowledge base. We then describe in section 4 knowledge reuse issues, in particu-
larly the workflow advisor that consumes the instances of semantic annotation in the
knowledge base and provides value-add outputs to end users in suitable forms. In
section 5, implementations are given to demonstrate the knowledge advisor and its
integration with a domain script editor and the workflow composer in regards to the
knowledge reuse. We finally give related work in section 6 and conclude in section 7.

2. Semantic web based knowledge management approach

A Semantic Web based knowledge management approach is proposed in order to
semantically enrich the content of resources and extract actionable knowledge for
reuse in an e-Science application. Figure 1, shows our approach, whereby we integrate
various knowledge tools and e-Science applications covering the three key phases of
the knowledge life cycle — knowledge acquisition, semantic storage and processing,
and the (re)use of knowledge in semantic driven applications.

The knowledge acquisition aims to collect necessary information, build an ontology to
represent the domain conceptualization and use the ontology to annotate Grid re-
sources. The ontological information is collected by interviewing domain experts and
studying domain manuals. Various tools, such as PC-PACK, Protégé [8] and OilEd
[5] have been used to facilitate this building process. The ontological information
extracted from the resources is used again to annotate these resources.

Knowledge Acquisitior semantic storage anc Knowledge Reuse
processing

Semantic Driver
Applications

Gric

Resources Ontologies

Advisor

Domair
[N Scrip
Editor

& Workflown

Composer

Functior
Semantics

Annotationg

Instance
store

Figure 1 Semantic web based knowledge management approach in GEODISE

The result of the annotations is a set of semantically enriched content represented as
instances that conform to the ontology used in the annotation process. These instances
are stored in a flat file or database repository so that they can be accessed later. So-
phisticated semantic matching and reasoning can be carried out on these instances to
deduce knowledgeable decisions. The advisor is designed for this purpose. It retrieves
relevant semantic information from the instance repository and processes it in order to
provide context-sensitive advice according to the requests from the application side.

The last phase of the life cycle addresses knowledge reuse. In GEODISE, editing
domain scripts and building workflows are two frequent tasks. A domain script editor
has been developed to help editing domain scripts in a more efficient way. With the
advisor integrated, it is capable of yielding contextual advice from processing seman-
tic instances pre-acquired. The advisor has been aso integrated into the workflow
composition environment (WCE) for the same purpose.

3. Knowledge Modeling

GEODISE makes available a suite of grid-enabled functions [4] that allows design
engineers to exploit grid resources when carrying out computational intensive EDSO
processes in their favorite PSE (in our case: Matlab). The toolkit can be viewed as a
powerful yet flexible script-based environment for grid computing. Components built
on it can be used either separately or assembled together, invoked with certain con-
figurations, conforming to best practice, to solve a particular engineering problem.
Therefore we choose these grid-enabled Matlab functions and high level components
(Figure 2) asthe resources to be semantically enriched for knowledge reuse.

= p =Y : function jobHandle = gd jobsubmit (RSH, HOST) L
Jbu"dGramRSL'm Jbeamob]con.m $gd_jobsubnit Submits a coupute job to a Globus GRAM job manager!
ﬂcog.properties ﬂbeamobjfun,m & This commend submits the compute job described by the a Desourcel

. % Specification Language (BBL) string to a Globus server rwming a GRAM
ﬂgd_certlnfo.m ﬂcreateBeamStruct.m 5 job manager. Upom a successful submission the coumand returns al
] gd_chmad.m |#] createBeamStructREM,m 5 job handle that may be used ta query the status of, or terninate, thel

. . L Job. b
ﬂ gd_condarsubrnit. m ﬂ OptionsMatlab. m i
J gd_createprosy.m =] OptionsTrace.m § jobHandle = yd_jobsubuiv (REH,Hos111
J b B whers BSH is a string describing the submittsd job, HOSTH
%] qd_destroyprasy.m & optjob.m ' is the naus of the Globus ssrver, sad jobHandls is the!
ﬂgd fileExists.m ﬂplotOptionsSurfaces,m % handle for a sueeessfully submitted job.d
- B +
ﬂ gd_getfile.m _ﬂ rsmexample.m 5 Example:!
S % jobHandle = gd_jobsubmit ('s(execursble =/bin/date) ', 'myhost mydomain. com') b
|#] gd_jobkill.m . E
. optionsMatlab o

%] gd_jobpoll.m ¢ Tote that a velid proxy certificate is required to svbmit a GRAM job. *
ﬂgd_jobstatus i Jdb [% For more information about BEl see huup://www. globus.org/graw/. b
ﬂ gd_jobsubmit, m j disp_exception.m
] od _listjobs.m [#]disp_struct.m gd_jobsubmit script
|%] gd_makedir.m %] gd_addusers.m

ﬂ gd_proxyinfo.m |#] qd_archive.m

generate_input_file| server, muber of s=rvers, ldirzctocy |1

ﬂ ad_proxyquery.m ﬂ ad_datagroup.m N

%] gd_putfile.m |#] gd_datagroupadd.m renove_subdirectories(szrver, nirker_cf servers)0

%) od_md)) gd_db_help.m i

L (5| [T |#] gd_display. m % generate sale points weed in the hean prablen.

ﬂgd_rmfile.m ﬂgd AR [seuple_point, muber of points, kowucs, grids | = Jenecate sauple aoims(2.5, ©.5, 1.5, 2.5, 3, 3)0
ﬂ gd_serverMetrics.m B gd_ratneve i sanple_points=sanple peint;)

ﬂ gd_testauthentication.m 1 muher_of poincs=mmker cf peints;l

3 i Database toolbox

Jgd_testFlIeTransFer.m atab: oolbo [beauee hamile, cb, ¥1, §1 = DALANECSr_SsarchiSeCver,uwmber_of Servers,niube:_of_points,sauple poin
ﬂ gd_testJobSubrmission.m 5] strsplt.m J

J gd_timeAuthentication.m % heantd_handle=heendd_handlz; |

ﬂ xml_format.m

Y il il v
J gd_tfmeFlIeTrans.Fer..m 5] xmi_help.m check ‘obs 1 beadd hanclz, muker cf peints |
ﬂ gd_timeJobSubmission. m ﬂ wml load.m
|#] gd_transferFile.m |&] i _parse.m
. High-level Beam problem script
Computational Deolsicn 9 P P
toolbox XML toolbox

Figure 2 Grid-enabled M atlab functions and scripts

The task of knowledge modeling can be broken down into ontology modeling and
instance generation.

3.1 Building ontologies

An ontology is a specification of conceptualization [6]. It explicitly defines the do-
main concepts and their relationships. It is similar to a dictionary or glossary, but with
richer structure, relationship and axioms that describe a domain of interest more pre-
cisely. Many languages have been designed to express the ontology and semantic
information. Among them, the most recent is the Web Ontology Language (OWL),
which is built on top of RDF to provide more expressive power [24]. RDF is a graph
model (or sets of triple statements) which is designed for describing and searching
resources on the Web. DAML+OIL is a schema language that adds constraints on
properties to assist machine reasoning. For example when “daml: TransitiveProperty”
is added as a constraint on the property “P1:older_than” of a RDF model, if we have
A1:P1:A2 and A2:P1:A3, then A1:P1:A3 can be inferred. Thisis useful for reasoning
and inferring new knowledge that has not been directly stated. DAML+OIL also uses
subProperty to describe relationship at different granularities.

@] %nction_omology [P]]] Properties at Class
@ Function —
|
% (® GaFunction Name [Tyee | Cardln@” .
(C) gd_database mrelatedFunctmn Instance multiple classes={Function}
© C i Efunctionlnput Instance multiple tlasses={Parameter}
gd_computation
() OptiansMatiabFunction EfunctionOutput Instance multiple tlasses={Parameter}
? @%ﬂ'{'\f{f“g:‘;g'fit:cdtfoun”m” Concept properties
@ Hagki_prab_function
@ () Parameter
© taskd ata_Stru etu reDataEntry <Pl version="1.0" encoding="130-8859-1" 7>
GdFunctionParameter - <rdf:RDF ulns: =" www.w3.0r0/1999/02/22-rdf-syntax-ns#" xrnlns:rdfs="http:/ /www.w3.0r9/2000/01 rdf-
schema#” xmins:owl="http:/ fwww.w3.0rg/2002/07 fowlt"
(E) RSLstructDataEntry xmins="http:/ fwwm.ecs.soton.ac.uk/wftf ontology function2.oul">
@ fluentdataStructuraEntry - <oul:Ontology rdf:about="">
(T OptionshatiabPararmeter s amiretsOntolagy designed fo semanticlly descibing gi-relted resources suchas functons,
workflows, ete.</rdfs;comments
@ meta_result_structure_data_entry «/omliOntology>
: - «oul:Class rdf:1D="Function">
(E) Hakki_pro_parameter stfszcomment>This is the function concept in the context of GEODISE. in partcular, it refers o the MAtLab
Wh_pro_parameter functions.«/rdfs:comment>
. «fomliClass>
@gambltD ataStructEntry - cowl:Class e D="YariableType'>
@ @ WariahleType <rifs:comment=This class can only have two direct sub-classes representing complex type and primary type.
oY © VariableComplexType </u§/t\!\5a25§j“mm“ is used in the semantic advisor java code.)</rdfs:comment>
@VariablePrimaryType - <oul:Class rofID=" unction's
o g Warkflow OWL representation
ClPrahlam
Concept hierarchy

Figure 3 Building Ontologies

Figure 3, shows our function ontology developed using Protégé with an OWL plug-in.
“Function”, “Parameter”, “VariableType’, etc. are key concepts under which further
taxonomy are made available to express hierarchical relationships (parent/children)
among concepts. Each concept also has its properties defined to express the sub-
ject/predicate relationship (who uses who). The ontological information is saved in
OWL format for content enrichment through instance generation.

3.2 Instance generation

Whilst an ontology is important in specifying the conceptual structure and a con-
strained vocabulary set, instances are treated as the concrete content in a semantic
knowledge base. Generating the instances involves annotating the raw data source
using pre-defined ontologies. In this paper, two methods are used to generate in-
stances. Based on their operational mechanism, they are called “Ontology Instantia-
tion” and “Resource Annotation” respectively.

1) Ontology instantiation

Protégé 2000 [8] is an ontology building and knowledge acquisition tool that has been
frequently used for knowledge modelling purposes [15]. It allows knowledge engi-
neers to focus on modelling without worrying about the underlying language and syn-
tax. The modeling work can be saved in various formats including RDF and OWL.

check_jobs ;5 Doacumentation ¥ Select Instances
collect_data i| |generate the sample
compile_executables 4 boints used in the i
generate_input_file :| |beam problem go:eu CITSSQS Y D"Zﬁ Inzt:n:esm
generate_sample_points | - arameter ‘|2 beam3d_handle
parameter_search 4 ©taakdatastructureDalaEmry i) :5 bounds i
postprocess_data | Functioninput (T GaFuRctionParameter (17) /[T compile_hoastname
remove_subdirectories number_of_grids_y (T RELstructDataEntry (25) deflection
i number_of_grids_x ©ﬂueﬂtdata$lruutureEntw (o AL grids i
upper_bound_x| ©OpliunsMaIlahF’arameter (22) job o
lower _bound_yl (C) meta_result_struclure_data_enty [T directory [
lower_hound_x| (T Hakki_pro_parameter (18) L lower_bound_xl
upper_bhound_w @Wb_pru_parameler (30 B lower_bound_yl
< @gamb\tDataStructEntw (9 4 number_of_grids_x
;| FunctionOutput] | [number_of_grids_y |~ |
3 nl{r:her_of_poims || M H m
grids
sample_points
/| & bounds [vosx || % canca |
(a) creating function instances (b) selecting parameter instances

Figure 4 Generating semantic instancesin Protégé

As illustrated in Figure 4-a, to create function instances relevant information in the
function source (Figure 2) is used to instantiate its corresponding ontology classes,
such as “Function”, “Parameter” and “VariableType’, as defined in the function on-
tology in Figure 3. Each instance in the left column of Figure 4-a represents a func-
tion. Its properties (“ Functionlnput”, “FunctionOutput” as defined in the ontology) are
aso filled with object instances, the class of which is constrained by class properties
defined in the ontology. The object instances can be created on the fly or selected
from previously generated instances.

Instances generated in this way can be exported from Protégé (with the OWL plug-in)
asisillustrated in Figure 5, where the instances are represented using RDF as well as
OWL enhancements for extra semantics. The RDF can be aso interpreted as N-
Triplesfor efficient machine processing.

<Wh_pro_parameter rdf: ID="jobid1">

«<gd_computation rdf: ID="gd_jobsubmit"= <rdfs;comment>GRAM job id returned by gd_
<rdfs:comment=function jobHandle = gd_jobsubmit - =dataTypes
GRAM job manager This command submits the cq «<WariablePrimary Type rdf: ID="string" />
(RSL) string to a Globus server running a GRAM jd </dataType>

a job handle that may be used to query the statu|
where RSL is a string describing the submitted jo
handle for a successfully submitted job. Example
=/bin/date)','myhost.mydomain.com') Note tha :
more information about RSL see http://www.glo </GdFunctionParameters>
gd_jobstatus«</rdfs:comment= </owl: samedsz

<relatedFunction rdfiresource="# gd_jobkill" /= </Wh_pro_parameters

<relatedFunction rdfiresource="#gd_jobstatus" /= OWL syntax snippet

zfunctionInput rdf:resource="#host" />

- =owlisamesss
- =GdFunctionParameter rdf ID="jobHandle">
«dataType rdf:resource="#string" />

“NEl#gd_jobsubmitr <MiNE3relatedFunctions ~NEl#gd_jobstatuss -

H) —_n "
<functioninput rdf:resource="#RSL" /> <NZl#gd jobsubmit> <MYNE§functionInput> <H8lfhosts _+

<relatedFunction rdfresource="#gd_createproxy" /> “NS1#gd jobsubmits <MYNS#funccionTnpuc> <HSLERSL> _ b
zfunctionOutput rdfiresource="# jobHandle" /> <NS1#gd jobsubmits <MYNSgrelatedFunctions <NSlgd createproxys
</gd_computations <NSl#gd_jobsubmits <MYNS§functionbucpurs <NS1§jobHandlex 4

<NSlfgd_jobkills <MYNSfrelstedFunctions <NSlfgd_jobsubmits 4
<NSlfgd jobkills <MYNSfrelstedPunctions <NSlfgd_cresteproxys .
RDF <NElfgd jobkills <MYNS§functionInputs <NS1jjobHandler .1

<Nelfgd jobstatuss <MiNSfrelstedFunction- <NZl#gd jobkills .4

N-Triples view of the RDF data

Figure 5 Function semantic instances

2) Resource annotation

While in Protégé, knowledge engineers acquire information about resources to instan-
tiate an ontology, this is often too complicated for resource providers. In order to
empower them to capture and publish function semantic instances as well, we have
developed the Function Annotator as illustrated in Figure 6, a lightweight knowledge
acquisition tool. OWL is used by the Function Annotator to represent the ontologies
and for storing the semantic instances in the knowledge repository.

Once function sources are loaded into the source panel (right bottom), they are parsed
for potential semantic information listed in the function browser (right top). According
to the content to be annotated, users can establish an annotation panel (middle) auto-
matically generated from a particular selected ontology (left). The annotation is car-
ried out by dragging relevant information from the function browser, dropping it into
the annotation panel and filling out relevant fields.

File Edit Tools Options Window About

[ontology Browser [Annotation Palette * @ [| [runctionBrowser |
Concept Hierarchy Function Profile [=7 Function as Primitive Function
< e Ut =
o[Funcionttodel AProperties | @ 3 FunctionExpression
‘ i ‘ D function outarg = OptionshMatiablvararging
&8 EdboTocls Froperty Type Values o
® soflgorithms functionDescription — string aptiom matiab optimisation toal [OptionsMatiz
siring 288 9 Dinpwts
©-[c] CodedOptimisationAly([varargin
o ated ObiFUNRSM functionharme string OptionsMatiab =
outputs
©-[c] CodedConstraintRsh
D stin optionmatlabprofilic
- [c] Remoptimisationalgor] g i i [outara
[roblemoy ol @ O3 FunctionLacation
10pe_biased_opli useTool Edz0Tools D i
euriglic-optimizati
Nonlingar_progra provid
User_defined_mef
ingle_variable_mi useMethad EdsoAlgorithms Geneuc%a\gomhmjﬂ
haustive_snumet solveProblem ProblemDefinition
inear_programmi
DOE_Screening output VariahleDescription outputstructure
Guadratc_prooramy gt VariableDescription inputstructure
tochastic_method
OptionsMatiah
function outary = OplionsMatiabivarargiry E
% OPTIONSMATLAB Options aitimisation and desion
search package -
% OptionsMatiab makes the Options optimisation and
design search
i % package available to Matlab, calling user-defined
- constraint and
Function Hierarchy Function Model % objective functions defined as Matlab functions
e - OptionsMatlah also
&”E fon AllProperties | % SURNOMS a number of Response Surmace Madel
' unetion algorithms thatallow
[E] PenatiFunction Property I Tine] Valugs & ST ..
? unction string function autarg = 0
ofthe
funciionName sting OptiansMatab : values ofthe objective function andior constraints
e sne Sonunclion D string optionmatlabmodelid % OptionsMatiab requires a valid Options licence file at
© [] optimisationF unction P
RSMOptirmis ationF unction functionLocator string Cr0ilEdiontologizstOptionsMatiablo ption. % CiorranigendatGENDAT CDS
ii’;homwm\sahnnmnnl\ i o 5
. : % Usage
e i) outary % STRUCTOUT = OPTIONSMATLAB(STRUCTIN)
L % where STRUCTIN is a hlatlab structure
Postprocessingf unction sontaining he
&‘;‘:E;DJV“V‘;:Z:“"” B problerm definition and control parameters for
C‘”:u“;:'f;“‘n";;'j:mn ﬂ % optimisation algorithims, and STRUSTOUT is
oK Cancel astucture =
N | [& | [Em | % santaining nfimim decinn variahles an the 1)

Figure 6 Function Annotator

The generated function semantic annotations contain the same information as the
function semantic instances. Details can be found in [14].

4 Knowledge Reuse

Once semantic instances are made available, it is possible to access and process these
instances for the purpose of knowledge reuse. Since instances are represented in stan-
dard OWL language, any OWL compliant API can be used, for example, the Wonder
Web OWL API [7] and the Jena ontology API [13]. We use Jenain this work.

4.1 Reusing semantic instancesto advise engineers

Functions can only be assembled together if their interfaces semantically match each
other to some extent, i.e. a function’s input semantically consumes the output of an-
other function. Workflow builders, especially beginners, often are not clear about the
semantic interfaces of the functions. However, suggestions can be deduced through
semantic interface matching. This is especially useful when the function repository is

dynamically updated or the number of functions is large, which is the case in our en-
gineering e-Science community.

Each function can be viewed as a domain specific service which must be configured
correctly and composed with other services to form a problem solving workflow. The
granularity of the services varies from low level atomic functions (usually generic) to
high level workflow building blocks (often more problem specific) that are made up of
low level functions.

There are two types of advice:

1. Function configuration advice - this provides automatically generated advice on
function configuration. We call this “horizontal advice” asit is triggered during
function configuration, i.e., horizontal scripting.

Semantic decomposing is used when a function parameter is a complex type, e.g.,
a structure that contains a list of fields which are either primary types or complex
types. In this case, the semantic interface can be expanded by decomposing this
parameter and its subfields until there are no more complex types. This often
yields richer semantic interfaces that contain more concepts and relationships for
semantic matching.

2. Function assembly advice — functions that can be assembled together according
to semantic compatibility of their interfaces. This is named as “vertical advice’
which istriggered during vertical assembly of configured function instances.

Gener- parameter_search check_jobs
Functioninput Functioninput Functionlnput .
_ Function assembly
number_of_grids_y [‘LJnumber_of_ponts] [T number_of_points
number_of_grids_x server @]heamfﬁd handle|
T upper_bound_xl sample_points .
T lower_bound_yl Idirectory generate_sample_points
<T> lower_bound_xI number_of_servers |
LT> upper_bound_y / parameter_search
FunctiohOutput FunctionOurtput ! .
/ <1 / check_jobs
FunctionOutput |
L ;lheamﬁd handlel !

@tlumher_af _puinrts| @jnh
@ grids KTy
<T> sample_points
<I> hounds

Figure 7 Semantic matching for function assembly

The function assembly advice is base on matching functions, there are two types
of elementsin the function interface that can be used for matching:

i. Primary data type: two functions can be assembled together only if the second
function gets its input interface satisfied. Primary data types such as “string” or
“integer” used in function interfaces can be used to consider function compati-

bility when suggesting the next function to use after a currently deployed func-
tion.

ii. Semantic data type: this refers to the “ArgumentType’ instances
(beam3d_handle, number_of_points, etc.) used as function semantic interface.
They are used in semantic matching functions for advice on workflow assem-
bly. Thisis demonstrated in Figure 7 where semantic interfaces of three func-
tions have been listed and the matches (represented as links) implicates avalid
function assembly as shown in the right.

Although this is useful in suggesting compatible functions in terms of workflow as-
sembly, there are often occasions where very few or no match exists because the se-
mantic interface of the target function is too restricted. To solve this problem, OWL
expressions such as “SameAs” (in Figure 5) are used to map equivalent concepts and
therefore relax the semantic matching.

5. Implementations and applications

5.1 Knowledge advisor

The advisor module is based on an APl capable of retrieving and post-processing
semantic instances expressed in OWL. The process operations include ontology inter-
pretation, semantic matching and reasoning/inference. The advisor is implemented
using Jena OWL ontology API [19].

A tutorial Java class demonstrates how the API is used to provide semantic support
and advice. Figure 8 shows usage cases related to semantic consumption and advice
based on it.

1 List al classes— (al classes defined in the ontology)

2 List subclass of agiven class (as defined in the ontology)

3 List al individuals of a class (instances under of particular class, either direct or indirect)

4 List properties of a given individual (declared properties of a particular instance)

5 Expose semantic interface of a given individual function (an example of case 4 on func-
tion)

6 Suggest contextual functionsin a workflow

7 Expose in/output parameter individual of a given individual function

8 Decompose a particular parameter individual

9 Documentation (provide human readable comment on any semantic resources)

10 Individual exists? (Check instance existence)

Figure 8 Advisor functions on processing semantic instances

We can also use the tutorial class to demonstrate key functionalities of using the se-
mantic advisor API. In Figure 8, numbers 1 to 4, 9 and 10 are generic usage of ontol-
ogy interpretation and semantic consumption. The rest of the cases are domain spe-
cific cases that use the generic API and provide further functionality such as exposing
the semantic interface of a particular function individual, advising function candidates
for workflow assembly, etc. Some example output of the tutorial class can be seen in
Figure 9.

Expose semantic interface
generate_sample_points

Semantic Interface is: [http://www.ecs.soton.ac.uk/~ft/ontol ogy/function2.owl#number_of _points,
http://www.ecs.soton.ac.uk/~ft/ontology/function2.owl#grids,
http://www.ecs.soton.ac.uk/~ft/ontology/function2.owl#number_of_grids v,
http://www.ecs.soton.ac.uk/~ft/ontol ogy/function2.owl# ower_bound_yl,

Decompose a particular parameter individual
optionsMatlablnputStru

RDF typeis: http://www.ecs.soton.ac.uk/~ft/ontol ogy/function2.owl#Opti onsM atlabParameter

Direct decomposed parameter individuals are: [

org.geodi se.knowledge.semanti cweb.Parameterindividual
<http://www.ecs.soton.ac.uk/~ft/ontol ogy/function2.owl#OLEVEL> , integer,

org. geodise.knowledge.semanticweb.Parameterindividual
<http://www.ecs.soton.ac.uk/~ft/ontol ogy/function2.owl#VNAM> , Vector,

Advice on contextual component (workflow assembling advice based on semantic interface matching)
parameter_search

its pre-contextual functions are: [

org. geodise.knowledge.semanti cweb.Functionlndividual
<http://www.ecs.soton.ac.uk/~ft/ontol ogy/function2.owl#generate_sample_points>]

its post-contextual functions are: [

org. geodise.knowledge.semanti cweb.Functionlndividual
<http://www.ecs.soton.ac.uk/~ft/ontol ogy/function2.owl#postprocess_data>,

org. geodise.knowledge.semanticweb.Functionindividual
<http://www.ecs.soton.ac.uk/~ft/ontol ogy/function2.owl#check_jobs>,

org. geodise.knowledge.semanticweb.Functionindividual
<http://www.ecs.soton.ac.uk/~ft/ontol ogy/function2.owl#collect_data>]

Figure 9 Example output of the tutorial class

5.2 Using the knowledge advisor

There are two applications in which the advisor can be integrated. In both case, se-
mantic based knowledge can be reused in GEODISE.

a) Workflow Composition Environment (WCE)

The workflow composer in GEODISE is a GUI based application which allows engi-
neers to visually select tasks from a function hierarchy, configure and assemble them
into aworkflow for e-science problem solving.

The purpose of integrating the semantic based advisor in the GUI based WCE is to
make use of the rich semantic content and help the users choose suitable functions and
make appropriate configuration during workflow assembly.

As illustrated in Figure 10, each function (in the left hand side panel) that has been
previously semantically enriched, the workflow advisor can be called to deduce its
contextual functions (as listed in the left bottom panel in Figure 10) that can be de-
ployed before/after. This is achieved by semantically processing the semantic in-
stances as described in section 4.1. In this way, the users can focus on compatible
functions can be of use to further assemble the workflow without tediously investigat-
ing the semantic interface of all irrelevant functions. It then generates a Matlab script
and submits it to a Matlab server for execution. It also takes care of the workflow
management, monitoring and execution, but this is outside the scope of the current
paper: interested readers can refer to [12] for further information.

2 Workilow [ditor [- B[% Compile and transfer the
File Tools Visualisation Help beam3d executable to the
MRl =l el il mml client
Clalce | @ OEKQ |3~
View i T compile_executables(

§ D Tasks

'blue02.iridis.soton.ac.uk’,
@ [ObjectveFunction server, number_of_server:
' go;.f;‘,;,,::‘” compile_executables directory) S
o 2 ProblemSetup
¢ 3 opmisers & % Generate the input file,
k and transfer it to the Globus
Bx"‘“’:a d transfer it to the Glob
Sl o generate_input_file servers
& GeodiseToots . "
¢ Cloa & generate_input_file(server,
® I eeam number_of_servers, Idirec-
[) compile_sxecutables 3 tory)
[generate_input_tie remove_subdirectories
[} remove_subdirectories % Clean-up. Remove all
[} generate_sample et (I subdirectories starting with
[} parameter_sear ¥ "job"
[check_jobs remove node T
Dcotect s | Insortnodebefore generate_sample_points remove subdirectorie(
[postprocess_dati) ¥ noxtconddates server, number_of_servers)
mevious candidates |

% Generate sample points
between lower and upper
limits

Propary HostNa. | Exscue . [Nork O, [Ausheni| Job Sub._[GridFTP.[Grid St |_Gtate | ||

5 com

|kl

| localhost |CIMATL _|E timp
jcosect_daa | artemis..fustoe.. Mormes 380 2110 2016jek
:um%ﬂ& = iz[ﬂlenr_ n.:slr:m Mome

| “Propemy] Acwsor | Document]

[sample_point, num-
ber_of_points, bounds, grids
] = generate_sample_points(
25,35,15,25,3,3)

nomade L -

Figure 10 Advisor integrated in the WCE and the generated scripts

b) Domain Script Editor (DSE)

Quite often, engineers need to edit domain related scripts in addition to GUI based
design tools, such as the WCE. But manipulating plain texts is painful and tedious. In
GEODISE, Matlab is the script language that glues EDSO and grid computing re-

sources together. This motivated the design of a domain script editor with the advisor
integrated.

& Amatlab_script_samplesktemp.m

File Wiew Help
EEIEd

cl Fél)n(:liun_Onlulugy Scripts 1 Annmaﬂon]

E(C) Funetion
; 1) .flag = 'on'; %
E-(C) optionsMatiabFunction |7 7<% (11 - £lag = fen's [
i @ optionshiatiab zerver (2} .hostname = 'panda.sesnet.soton.ac.uk';

ApplicationRelatedFunction |[server (2] .rdirectory = '/home/eres/Soton/Beanm';

E @Hakkijmh_functinn server (2] .flag = 'an';
@ generate_sample_p«
@ generate_input_file
postprocess_data
@ check_jobs path;

~< collect_data hich classpath.txt;

R Souronccr v | G

@ compile_executable:
H @remnve subdirector |C0mpile executables| 'blue0.iridis.soton.ac.uk', server, nudber of servers, ldiree

©Wh)rnh_|undinn
E© &dFunction generate input file| server, number of servers, ldirectory |}
@ gd_database - - -

@ gd_computation

].@ VariableType remove subdirectories| server, number of servers)
-]-@Wnrkflnw
(S problem_related_workflow [sample points, nuwber of points, bounds, orids 1 = wenerate sample points(2.5, 3

— - - S Ee S Es me.

* 1> Optimisation_workflow arBmETer_searen I

D]% :"":I"‘der % nurber of points=muber of point string server, integer num... integer num... Vector samp... string ldirect...
=i Toblem — —

nuber of servers = Z;

ldirectory = pwd;

sample points=sample point;

® problem_001 B = = —
Al ﬂ [beam3d handle, job, x1, v1] = plaramet.er_searnh(server, number of servers, nunbe
Context commands } Gommand histroy | % beamdd handle=heamid handle;
p—— E——— W
& generate_sample_points 1

jLabelt

¥ postprocess_data check jobs | beandd _handle, nuder MEAICIACRCIC) bk NOR TN
vchetkjubs - - ? postprocess_data Hakki_prob_function
F collect_data _ @ problem_001 Problem
I [deflection] = collect datal mulg project RSLstructDatantry
p— = ———— % deflection=deflection; n
" = N

r_______'l

Function configuration assistance Function being deployed

Function ontology

rCandi date functions to be deployed before and after current function_! r Auto-completion *

Figure 11 Domain script editor integrated with the advisor

Key features include:

e Component based - It can be delivered as a Java swing GUI component that can
be used in any Java application (e.g., in the GUI based workflow composer as an
aternative view of the workflow).

e Generic — The DSE is Ontology/Semantic powered meaning that it can be used to
advise on different domain scripts when loaded with corresponding semantic an-
notations. E.g., Gambit scripts, gd_xxx functions including GEODISE computa-
tion toolbox and database toolbox, problem specific function scripts in Matlab,
etc.

e De-centralized - Semantic instances are collected (in Protégé with OWL plug-in
and in the function annotator) separately from their use, i.e., advisor integrated in
domain applications.

e Horizontal advice on component configuration — exposing semantic interfaces,
tool-tipping semantic annotations, auto-completions, etc, as shown in popping up
windows in Figure 11.

o Vertical advice on component assembly — semantic interface matching and rea-
soning for contextual component recommendation as shown in the left bottom
panel in Figure 11, where the blue arrow represents for a pre-contextual candidate
and the red one for a consequence candidate.

6. Related work

There are many projects that address the life cycle of knowledge management.
Amongst them the Advanced Knowledge Technologies project (AKT) tackles the
problems which arise during from knowledge acquisition, through modelling to
publication and reuse. In particular, the AKT triple store [17] focuses on knowledge
retrieval of RDF triples: the example cited in [17] is populated over an OWL ontology
of UK computer science research expertise. Our approach is similar to thisin that we
construct an EDSO and function ontology based on which semantic annotations of
GEODISE functions and related resources are generated and stored in a semantic
repository. Instances in the AKT triple store are reused for query and semantic web
browsing while the semantic annotated functions in GEODISE are reused for service
discovery (function query) and workflow assembly through semantic matching.

The Ontobroker project uses ontologies to annotate and wrap Web documents and
provides an ontology-based answering service to enhance the accessibility of their
web documents [16]. COHSE Mozilla Annotator [25] and OntoMat-Annotizer [26]
are two of the annotators to enrich web page with ontological information.

Pre-defined rules in a JESS rule base were used in [9] to advice on workflow assem-
bly, but thisis limited with regard to scalability and has high overhead cost when the
rulesincrease. It is also difficult to elicit rules consistently.

Efforts have been made to locate services by semantically matching the requirements
to the service descriptions. In [23], a semantic matching approach is proposed to
match between service requests and adverti sements described using DAML-S. It aims
to extend the representation capabilities of registries such as UDDI and languages
such as WDSL so that semantically enriched web services can be discovered through
semantic marching. Here we adopt a similar approach but aim to provide advice on
service assembly, in particular what can be deployed as a pre/post contextual task. The
differenceisthat aslong asthere is service already deployed, the user does not need to
describe their service request, the semantic matching can be carried out to find com-
patible services to the deployed one. The users only need to browse the returned ser-
vices that are semantically compatible and select one of them for service assembly.

7. Summary and conclusion

We describe the life cycle of semantic web based knowledge management from ontol-
ogy modelling, instance generation to reuse. Resources in the GEODISE project such
as grid-enabled functions and workflow building components have been targeted for
ontological modelling and semantic instance generation using Protégé with OWL
plug-in and our own Function Annotator. We show that semantic instances generated
can be consumed to deduce advice. In particular, we use semantic decomposition and
semantic matching mechanisms to generate advice on function configuration and as-
sembly. These have been demonstrated through the knowledge advisor suggesting
semantically compatible function candidates and their possible configuration. We
have also integrated the advisor into the domain text editing and workflow composi-
tion developed for the GEODISE project. The examples we have used demonstrate
that the approach proposed is feasible and helpful. We intend to support further as-
pects of the knowledge life-cycle in further work and improve integration of knowl-
edge technologies into users Problem Solving Environments.

References
1. Tao, F, Cox, S.J, Chen, L, Shadbolt, N.R, Xu, F, Puleston, C, Goble, C, and Song,W.
“Towards the Semantic Grid: Enriching Content for Management and Reuse”, Proceed-
ings of UK e-Science All Hands Conference 2003, pp. 695-702
2. lanFoster , Carl Kesselman, “The Grid: Blueprint for a New Computing Infrastructure”,
2nd Edition, Morgan Kaufmann, 2004. ISBN: 1-55860-933-4
3. GEODISE project, http://www.GEODISE.org
4. Eres, M.H, Pound, G.E, Jiao, Z, Wason, J, Xu, F, Keane, A.J, and Cox,
S.J, “Implementation of a Grid-enabled Problem Solving Environment in Matlab”, Pro-
ceedings of the International Conference on Computer Science (ICCS 2003), Part 1V,
Lecture Notes in Computer Science, pp. 420-429
5. Sean Bechhofer, lan Horrocks, Carole Goble, Robert Stevens. “ OilEd: a Reason-able
Ontology Editor for the Semantic Web”, Proceedings of K12001, Joint German/Austrian
conference on Artificial Intelligence, September 19-21, Vienna. Springer-Verlag LNAI
Voal. 2174, pp 396--408. 2001
6. T.R. Gruber. “A trandation approach to portable ontologies’, Knowledge Acquisition,
5(2):199-220, 1993.
http://ksl-web.stanford.edu/K SL_Abstracts/K SL-92-71.html

WonderWeb API, http://owl.man.ac.uk/api.shtml

The Protégé homepage, http://protege.stanford.edu/index.html

9. Tao, F, Chen, L, Shadbolt, N,R. Pound, G, Cox, S.J., “ Towards The Semantic Grid: Put-
ting Knowledge To Work In Design Optimisation”, Proceedings of I-KNOW '03, 3rd In-
ternational Conference of Knowledge Management, p.p. 555-566.

10. Carole Goble and David De Roure The Semantic Grid: Building Bridges and Busting-
Myths, 16" European conference on Artificial Intelligence ECAI 2004, Valencia, Spain,
23-27 July 2004.

11. DeRoure, D. Hendler, JA., "E-science: the grid and the semantic web", Intelligent Sys-
tems, |IEEE, Vol. 19, Issue 1, 2004, p.p. 65-71.
http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=1265888

© N

12.

13.

14.

15.

16.

17.
18.

19.
20.

21.

22.

23.

24,

25.
26.

Xu, Fand Cox, S.J. “Workflow Tool for Engineersin a Grid-Enabled Matlab Environ-
ment”, Proceedings of UK e-Science All Hands Meeting 2003, pp. 212-215

HP Labs Semantic Web Research, http://www.hpl.hp.com/semweb/

Chen L., Shadbolt N.R., Tao F., Puleston C., Goble C., Cox S.J. "Empower Resource
Providersto Build the Semantic Grid", submitted to the IEEE/WIC/ACM International
Conference on Web Intelligence 2004 (W1'04)

Holger Knublauch , An Al tool for the real world: Knowledge modeling with Protégé,
http://www.javaworld.com/javaworl d/jw-06-2003/jw-0620-protege.html, 2003
OntoBroker project. http://ontobroker.aifb.uni-karlsruhe.de/index_ob.html

AKT triple store, http://triplestore.aktors.org/

Qian, Cheng Y uan, Charles, An Integrated Process of CFD Analysis and Design Optimi-
zation with Underhood Thermal Application, SAE Paper 2001-01-0637 SAE 2001
World Congress, Detroit, M1, Mar 5-8, 2001..

Jena, a semantic web framework, http://mww.hpl.hp.com/semweb/jena.htm

Gregor von Laszewski, lan Foster, Jarek Gawor, and Peter Lane, "A Java Commodity
Grid Kit," Concurrency and Computation: Practice and Experience, vol. 13, no. 8-9, pp.
643-662, 2001, http:/www.cogkits.org/

Keane, AJ. OPTIONS Design Exploration System

http://www.soton.ac.uk/~gj k/options/wel come.html

M. H. Eres, G. E. Pound, Z. Jiao, J. L. Wason, F. Xu, A. J. Keane, and S. J. Cox. (2003)
Implementation and utilisation of a Grid-enabled Problem Solving Environment in Mat-
lab, Journal of Future Generation Computer Systems, in press.

Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, Katia Sycara; "Semantic
Matching of Web Services Capabilities." In Proceedings of the 1st International Seman-
tic Web Conference (ISWC2002)

lan Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF
to OWL: The making of aweb ontology language. Journal of Web Semantics, 1(1):7-26,
2003.

Cohse Mozilla Annotator , http://cohse.semanti cweb.org/mozill a/annotation/
OntoMat-Annotizer , http://annotati on.semanticweb.org/ontomat/index.html

