
Semantic Web in the Context Broker Architecture∗

Harry Chen, Tim Finin, Anupam Joshi

Department of Computer Science & Electrical Engineering

University of Maryland Baltimore County

{hchen4, finin, joshi}@csee.umbc.edu

Abstract

This document describes a new architecture that ex-

ploits Semantic Web technologies for supporting perva-

sive context-aware systems. This architecture called Con-

text Broker Architecture (CoBrA) differs from other archi-

tectures in using the Web Ontology Language OWL for mod-

eling ontologies of context and for supporting context rea-

soning. Central to our architecture is a broker agent that

maintains a shared model of context for all computing en-

tities in the space and enforces the privacy policies defined

by the users when sharing their contextual information. We

describe the use of CoBrA, its associated ontologies, and

its privacy protection mechanism in an intelligent meeting

room prototype.

1. Introduction

The Semantic Web, described by Tim Berners-Lee et. al.

[2], is an extension of the current web in which informa-

tion is given well-defined meaning, better enabling comput-

ers and people to work in cooperation. A key difference be-

tween the Semantic Web and the present Web lies in the

representation of information. In the present Web, the rep-

resentation is meant for machines to process information

at the syntax level. In the future Semantic Web, however,

the representation allows machines to process and reason

about information at the semantic level. In this paper, we

describe a new approach that explores the use of Seman-

tic Web technologies (i.e., languages, logic inferences, and

programming tools) in building an architecture for support-

ing context-aware systems in smart spaces (e.g., intelligent

meeting rooms, smart vehicles, and smart houses).

Context is any information that can be used to charac-

terize the situation of a person or a computing entity [7].

∗ This work was partially supported by DARPA contract F30602-
97-1-0215, Hewlett Packard, NSF award 9875433, and NSF award
0209001.

Previous research [17, 28, 19] have viewed location infor-

mation as an important aspect of context. We believe in ad-

dition to the location information, an understanding of con-

text should also include information that describes system

capabilities, services offered and sought, the activities and

tasks in which people and computing entities are engaged,

and their situational roles, beliefs, desires, and intentions.

The dynamic nature of a smart space environment cre-

ates great challenges for developing context-aware systems.

We believe some of the critical research issues are context

modeling, context reasoning, knowledge sharing, and user

privacy protection. To address these issues, we propose an

agent-oriented architecture called Context Broker Architec-

ture that uses the Semantic Web languages to model ontolo-

gies of context, to reason with context in a smart space, and

to define a policy language for users to control the sharing

of their contextual information.

The rest of this document is organized as the follow-

ing: Section 2 gives a brief overview of the Semantic Web

and the Web Ontology Language OWL. In Section 3 we de-

scribe the rationale behind our Semantic Web approach to

building a new architecture for context-aware systems. Sec-

tion 4 presents the design of CoBrA and its use case sce-

nario in an intelligent meeting room. Section 5 describes

our preliminary work on prototyping EasyMeeting, an in-

telligent meeting room system that builds on the design of

CoBrA. Discussions of the related work and concluding re-

marks are given in Section 6 and Section 7, respectively.

2. An Overview of the Semantic Web

The Semantic Web is a vision in which web pages are

augmented with information and data that is expressed in

a way that facilitates its understanding by computing ma-

chines [6]. The current human-centered web is largely en-

coded in HTML, which focuses largely on how text and im-

ages would be rendered for human viewing. Over the past

few years we have seen a rapid increase in the use of XML

as an alternative encoding, one that is intended primarily

for machine processing. The machine which process XML



documents can be the end consumers of the information or

they can be used to transform the information into a form

appropriate for human understand (e.g., as HTML, graph-

ics, and synthesized speech). As a representation language,

XML provides essentially a mechanism to declare and use

simple data structures, and thus it leaves much to be de-

sired as a language in which to express complex knowledge.

Enhancements to basic XML, such XML Scheme, address

some of the shortcomings, but still do not result in an ad-

equate language for representing and reasoning about the

kind of knowledge essential to realizing the Semantic Web

vision.

A goal of the Semantic Web initiatives sponsored by

the World Wide Web Consortium (W3C) is to develop

languages that are adequate for representing and reason-

ing about the semantics of information on the Web. The

Web Ontology Language OWL is the latest standard pro-

posed by the Web-Ontology Working Group. The OWL lan-

guage builds on XML’s ability to define customized tagging

schemes and RDF’s flexible approach to represent data [16].

Due to space limitation, in this section we describe some of

the OWL language constructs and show how they are used

to define ontologies.

OWL is a language for defining and instantiating ontolo-

gies. An ontology is a formal explicit description of con-

cepts in a domain of discourse (or classes), properties of

each class describing various features and attributes of the

class, and restrictions on properties [24].

The normative OWL exchange syntax is RDF/XML.

OWL ontologies are usually placed on web servers as web

documents, which can be referenced by other ontologies

and downloaded by applications that use ontologies. Fig-

ure 1 shows an example of an OWL ontology encoded in

RDF/XML.

The definitions in our example ontology has two parts.

The first part is a set of classes and properties that describe

people, devices, and the ownership relations between them.

The second part is a set of class individuals that represent

specific people and devices in some imaginary domain dis-

course.

The class definition in our example begins with the con-

cept Person and Device. A class represents a set of indi-

viduals in the domain (i.e., Person represents a set of in-

dividual person, Device represents a set of individual de-

vice). PDA and Cellphone are two other classes that rep-

resent a set of individual PDA and cellphone in our domain.

They are both subclasses of the class Device. Note that,

by default, every individual in the OWL world is a member

of the class owl:Thing. Thus, all of our defined classes

are implicitly subclasses of owl:Thing.

Properties in OWL lets us assert general facts about

the members of classes and specific facts about individuals

[26]. A property is a binary relation. Two types of proper-

Figure 1. An example of OWL classes and
properties of a simple ontology.

ties are distinguished: datatype properties and object prop-

erties. The former is relations between instances of classes

and RDF literals and XML Schema datatypes. The latter is

relations between instances of two classes.

When defining a property, its domain and range can be

specified. Specifying the domain of a property asserts that

the domain value of the property must belong to a speci-

fied class. Specifying the range of a property asserts that

the range value of the property must belong to a specified

class or to a specified data type.

In our example, the name property is defined



as a type of the datatype property. It has domain

owl:Thing and range http://www.w3.org/2001/

XMLSchema#string. This asserts that any individual

member of the owl:Thing class can have a name prop-

erty with some string value. For example, the individual P1

is instantiated with the name string “Harry Chen”, and indi-

vidual D1 is instantiated with the name string “Harry’s Blue

Phone”.

There are two object properties in our ontologies. First,

the ownedBy property has domain Device and range

Person. This asserts that the ownedBy property can re-

late a device to its owner (e.g., the device D2 is owned

by the person P2). The owns property is defined as an in-

verse of the ownedBy property. This asserts that for every

triple (X, ownedBy, Y), there is a triple (Y, owns,

X) and vice versa (since the inverse relation is symmet-

ric). Thus, from the example, since we know (P1, owns,

D1), we can conclude (D1, ownedBy, P1), and simil-

iarly since we know (D2, ownedBy, P2), we can con-

clude (P2, owns, D2) also holds.

3. Why Semantic Web

A key requirement for realizing context-aware systems is

to give computer systems the ability to understand their sit-

uational conditions. To achieve this, it requires contextual

information to be represented in ways that are adequate for

machine processing and reasoning. We believe the Seman-

tic Web languages are well suited for this purpose for the

following reasons:

• RDF and OWL are knowledge representation lan-

guages with rich expressive power that are adequate

for modeling various types of contextual information,

e.g., information associated with people, events, de-

vices, places, time, and space. Ontologies expressed

these languages provide a means for independently de-

veloped context-aware systems to share context knowl-

edge, minimizing the cost of and redundancy in sens-

ing.

• Because context ontologies have explicit representa-

tions of semantics, they can be reasoned by the avail-

able logic inference engines. Systems with the ability

to reason about context can detect and resolve incon-

sistent context knowledge that often result from imper-

fect sensing.

• The Semantic Web languages can be used as meta-

languages to define other special purpose languages

such as communication languages for knowledge shar-

ing, policy languages for privacy and security [10]. A

key advantage of this approach is better interoperabil-

ity. Tools for langages that share a common root of

constructs can better interoperate than tools for lan-

guages that have diverse roots of constructs. For ex-

ample, the existing trust infrastructure for mobile de-

vices [22] could exploit the Semantic Languages as a

means to support independently developed Semantic

Web gadgets [15].

4. Context Broker Architecture

The core of CoBrA is a specialized server entity called

context broker. In a smart space, a context broker has the

following responsibilities: (i) provide a centralized model

of context that can be shared by all devices, services, and

agents in the space, (ii) acquire contextual information from

sources that are unreachable by the resource-limited de-

vices, (iii) reason about contextual information that cannot

be directly acquired from the sensors (e.g., intentions, roles,

temporal and spatial relations), (iv) detect and resolve in-

consistent knowledge that is stored in the shared model of

context, and (v) protect user privacy by enforcing policies

that the users have defined to control the sharing and the

use of their contextual information.

4.1. An Intelligent Meeting Room Scenario

The design of CoBrA is aimed to support context-aware

systems in smart spaces. The following is a typical use case

scenario of CoBrA in an intelligent meeting room system:

R210 is an intelligent meeting room with RFID sensors

embedded in the walls and furniture for detecting the pres-

ence of the users’ devices and clothing. As Alice enters the

room, these sensors inform the R210 broker that a cellphone

belonging to her is present, and the broker adds this fact in

its knowledge base.

As she sits, the agent on Alice’s Bluetooth enabled cell-

phone discovers R210’s broker and engages in a “hand

shake” protocol (e.g. authenticates agent identities and es-

tablishes trust [10]) after which it informs the broker of Al-

ice’s privacy policy. This policy represents Alice’s desires

about what the broker should do and includes (i) the con-

textual information about Alice that the broker is permitted

or prohibited from storing and using (e.g., yes to her loca-

tion and roles, no to the phone numbers she calls), (ii) other

agents that the broker should inform about changes in her

contextual information (e.g., keeping Alice’s personal agent

at home informed about her location context), and (iii) the

permissions for other agents to access Alice’s contextual in-

formation (e.g., all agents in the meeting room can access

Alice’s contexts while she is in the room).

After receiving Alice’s privacy policy, the broker creates

a profile for Alice that defines rules and constraints the bro-

ker will follow when handling any context knowledge re-

lated to Alice. For example, given the above policy, the pro-



file for Alice would direct the broker (i) to acquire and rea-

son about Alice’s location and activity contexts, (ii) to in-

form Alice’s personal agent at home when Alice’s contexts

change, and (iii) to share her contexts with agents in the

meeting room.

Knowing Alice’s cellphone is currently in R210 and hav-

ing no evidence to the contrary, the broker concludes Alice

is also there. Additionally, because R210 is a part of the

Engineering building, which in turn is a part of the Cam-

pus, the broker concludes Alice is located in the Engineer-

ing building and on the Campus. These conclusions are as-

serted into the broker’s knowledge base.

Following the profile, the broker informs Alice’s per-

sonal agent of her whereabouts. On receiving this informa-

tion about Alice, her personal agent attempts to determine

why Alice is there. Her Outlook calendar has an entry in-

dicating that she is to give a presentation on the Campus

about now, so the personal agent concludes that Alice is in

R210 to give her talk and informs the R210 broker of it’s be-

lief.

On receiving information about Alice’s intention, the

R210 broker shares this information with the projector

agent and the lighting control agent in the ECS 210. Few

minutes later, the projector agent downloads the slides from

Alice’s personal agent and sets up the projector, the light-

ing control agent dims the room lights.

4.2. Context Broker

Figure 2 shows the design of a context broker. In smart

spaces, context brokers are assumed to be running on

resource-rich stationary computers that are embedded in the

environment (e.g., Mocha PC1). In our preliminary work, all

computing entities in a smart space are presumed to have

priori knowledge about the presence of a context broker. In

the future design, we will attempt to use one of the avail-

able service discovery infrastructure (e.g., Jini, UPnP) to

improve system flexibility.

Our centralized design of the context broker is motivated

by the need to support small devices that have relatively

limited resources available for context acquisition and rea-

soning. With the presence of a broker, small devices such

as cellphones, PDA and watches can offload their burdens

of managing context knowledge onto a resource rich server

entity, including reasoning with context, detecting and re-

solving inconsistent context knowledge. Furthermore, in an

open and dynamic environment, users may desire their per-

sonal contextual information to be kept in private. A cen-

tralized management of context knowledge makes easy to

implement privacy protection and information security.

1 http://www.cappuccinopc.com/mochap4.asp

Figure 2. A context broker acquires contex-
tual information from heterogeneous sources

and fuses it into a coherent model that is then
shared with computing entities in the space.

A centralized broker can be the “bottle-neck” in a dis-

tributed system, creating a single point of failure in the sys-

tem. To address this problem, we plan to investigate and

develop a fault-tolerance approach based on the Persistent

Broker Team [13] approach. Our idea is to introduce a team

of brokers in that each member has the responsibility to en-

sure at least one broker is available to provide services. In

the case when the number of available team members falls

below a pre-defined threshold (e.g., some broker becomes

unreachable due to network failures), the remaining active

team members will attempt to recruit or instantiate new bro-

kers. In a broker team, the Joint Intention protocol [23] can

be used to bring about the mutual beliefs of the team states

and team commitments.

A context broker has the following four functional com-

ponents:

1. Context Knowledge Base: a persistent storage of the

context knowledge. It provides a set of API’s for other

components in a broker to access the stored knowl-

edge. It also contains the ontologies of a specific smart

space (e.g., the ontologies of an intelligent meeting

room) and some heuristic knowledge associated with

the space (e.g., a company’s daily operation hours are

between 9:00 AM to 5:00 PM; no person can be physi-

cally present at two different meeting locations during

the same time interval).

2. Context Reasoning Engine: a reactive inference en-

gine that reasons over the stored context knowledge.

Two types of inferences can take place in this en-

gine: (i) inferences that use ontologies to deduce con-

text knowledge, and (ii) inferences that use heuristic



knowledge to detect and resolve inconsistent knowl-

edge.

3. Context Acquisition Module: a library of procedures

that forms a middle-ware abstraction for context ac-

quisition. The role of this component is similar to the

role of the Context Widgets in the Context Toolkit [7],

which is to shield the low-level sensing implementa-

tions from the high-level applications.

4. Policy Management Module: a set of inference rules

that deduce instructions for enforing user policies.

Some rules are defined for deciding the right permis-

sions for different computing entities to share a partic-

ular piece of context information, and some rules are

defined for selecting the recipients to receive notifica-

tions of context changes.

5. Prototyping an Intelligent Meeting Room

To demonstrate the feasibility of our Context Broker Ar-

chitecture, we are using CoBrA to prototype an intelligent

meeting room system called EasyMeeting, which provides

assistants to meeting speakers, audiences, and organizers

based on their situational needs. EasyMeeting is an exten-

sion to Vigil, a smart space system that we have previously

developed [25]. Security is the main focus in Vigil. A role

based access control mechanism is implemented in Vigil to

allow users control to the permissions to access different

services using policies. Vigil differs from other frameworks

in using logic inference rules to reason about the rights of

different users.

Vigil has shown great promises in building flexible and

secure smart spaces [25]. However, it lacks the necessary

support for context-aware systems. To improve upon Vigil,

in EasyMeeting we use OWL to represent context ontolo-

gies, and we exploit a context broker to support context rea-

soning.

In the rest of this section, first, we overview the ontolo-

gies that we have developed to support EasyMeeting and

their potential role in the context reasoning, second, we dis-

cuss how the Rei policy language can be used to facilitate

user privacy protection in CoBrA, and third, we describe a

prototype implementation of the context broker.

5.1. Ontologies

We have developed a set of ontologies called COBRA-

ONT [3] for modeling context in an intelligent meeting

room. In this document, we described the version 0.3 of

the COBRA-ONT that defines typical concepts and rela-

tions for describing physical locations, time, people, soft-

ware agents, mobile devices, and meeting events. In this

version of the ontology, there are 88 classes and 125 prop-

erties, which are grouped into six distinctive ontology doc-

uments2

5.1.1. Reasoning with the Physical Location Ontology

Understanding the context associated with physical lo-

cations is extremely important in context-aware systems.

An ontology of physical locations in COBRA-ONT in-

cludes the descriptions of places with identifiable geo-

graphic boundaries (e.g., rooms, buildings), places with

spatial properties (e.g., atomic places, compound places),

and places with temporal properties (e.g., meeting rooms

during the working hours, offices on a public holiday).

An ontology of the physical location context includes geo-

graphic attributes, typical social norms of a particular place,

objects that occupy or are contained in a particular space,

and events that occur at a particular place.

In our ontology the class Place is the parent class

of all represented place classes. Subclasses of Place are

Campus, Building, Room, Hallway, Parkinglot,

Restroom, and ConferenceRoom, which are concepts

of places with identifiable geographic boundaries.

COBRA-ONT divids subclasses of Place into types

of either atomic place or compound place, which are con-

cepts of places with spatial properties. Atomic places (e.g.,

ConferenceRoom, Hallway) are places that cannot be

defined to spatially subsume other places. Compound places

(e.g., Campus, Building) are places that can be defined

to spatially subsume other atomic or compound places.

Spatial containment inference is a type of reasoning with

location context. Let us consider the scenario described in

Section 4.1. As Alice enters the conference room, informa-

tion acquired from the sensors in the room may lead the con-

text broker to conclude that Alice is in the room R210. Be-

cause the broker has an ontology of the associated location

(e.g., the Engineering building spatially subsumes the room

R210, and the Campus spatially subsumes the Engineering

building), the broker can draw new conclusions about Al-

ice’s location context, e.g., Alice is located in the Engineer-

ing building, Alice is located on the Campus.

Reasoning with the spatial containment relation can also

help the broker to detect errors in sensing. Let us assume in

addition to the location ontology, the broker also has some

heuristic knowledge about the associated location, for ex-

ample, “no person can physically present at more than one

atomic place during the same time interval”. When coupled

with the location ontology, this knowledge can help the bro-

ker to detect if there is any inconsistency about a user’s loca-

tion context. Imagine that due to sensing errors, some sen-

sors falsely detect the present of Alice and informs the bro-

ker that she is located in the parking lot A. Since Alice is

2 COBRA-ONT ontology documents are available online at http://
cobra.umbc.edu/



known to be located in the room R210, and both the park-

ing lot A and the room R210 are atomic places, the broker

can immediately conclude the location context of Alice is

inconsistent.

5.1.2. Reasoning with the Device Ontology In a per-

vasive computing environment, devices in the immediate

vicinity of a user are also part of the user’s context. Device

context can include basic knowledge about the device pro-

files (e.g., does a particular device support color display?),

the device ownership relation (e.g., who is the owner of a

particular device?), temporal properties associated with a

device (e.g., when was the last time a particular device has

been used?), and spatial properties associated with a device

(e.g., what is the distance between a particular device and

the room in which its owner is currently in?).

To support the reasoning with device profiles, COBRA-

ONT includes an ontology of device hardware and software

profiles. Part of this ontology is adopted from the FIPA de-

vice ontology specification [8]. The hardware profile ontol-

ogy includes concepts of screen displays (e.g., screen width

and length, display color profile), device memory (e.g.,

amount of memory, memory size unit, and memory us-

age type), device network capability (e.g., support for wire-

less/wired communications, supported network interfaces).

The software profile ontology includes concepts of device

operating systems and supported computing platforms.

By extending the device profile ontology, COBRA-ONT

provides an ontology of mobile devices. The goal is to de-

fine specific ontology classes that represent different types

of mobile devices and properties that are associated with

these devices. Represented types of mobile devices are

SonyEricsson T68i, SonyEricsson T800, and Palm Tung-

stenT. Defined properties include the hardware and software

profiles of these devices and additional relations that asso-

ciate the devices with people. For example, the ownedBy

property expresses the relation between a device and its

owner, and the usedBy property expresses the relation be-

tween a device and its user. Both of these properties have

inverse properties (i.e., the owns and uses properties).

To illustrate how reasoning with device ontologies can

play a role in context-aware systems, let us consider the fol-

lowing use case: after Alice enters the meeting room R230,

her cellphone presents Alice’s policy to the context broker

in the room. Assuming the context broker has an ontology

of the device that sends the policy, it reasons about the pro-

file of the device, e.g., the sender is a type of SonyEricsson-

T68i cellphone, and its Bluetooth communication supports

the OBEX object push service for exchanging vCard con-

tacts. Knowing the device profile, the context broker in-

forms all meeting services that could take advantage of this

information, e.g., a contact exchange service that can au-

tomatically push new contact information into the mobile

devices that a meeting participant carries. Additionally, the

context broker reasons about the person who owns and uses

the device (e.g., Alice is the owner of this device, and no ev-

idence shows the device is used by other people). Since Al-

ice’s SonyEricsson T68i cellphone is the room R230 and no

evidence to the contrary, the context broker concludes Al-

ice is also in the room R230.

5.1.3. Reasoning with the Temporal Ontology Aspects

of context can also include temporal relations. To support

reasoning with time and temporal relations, COBRA-ONT

adopts the DAML-time ontology, which is a temporal ontol-

ogy for expressing temporal aspects of the contents of web

resource and for express time-related properties of web ser-

vices 3. The DAML-time ontology in COBRA-ONT is an

OWL version of the original DAML-time ontology that is

expressed in the DAML+OIL language.

The DAML-time ontology builds around a set of ab-

stract temporal entities and temporal relation axioms. Our

OWL representation of the ontology defines the vocabular-

ies of the abstract temporal entities. However, it does not

include a representation of the temporal relation axioms be-

cause the present OWL language does not have direct sup-

port for expressing axiomatic rules. Research in developing

language constructs for representing rules in Semantic Web

languages is underway [9].

In DAML-time two abstract temporal entity classes are

Instant and Interval. Both are subclasses of the

TemporalEntity class. A member of the Instant

class represents an instant of time, which has associated

temporal description properties that represent the concepts

of second, minute, hour, day, month, year, and time zone.

A member of the Interval class represents a time inter-

val between two different time instants. Properties of this

class include beginOf and endOf, which define the be-

ginning time (a time instant) and the ending time (a time in-

stant) of a time interval.

A type of relation between the individuals of the

TemporalEntity class is temporal ordering. The tem-

poral ordering relation can be expressed in the before

and the after properties, i.e., an individual of the

Instant or Interval class can have a before or

after property value of another individual of Instant

or Interval class. The temporal ordering relation can

also be expressed using the inside and time-between

properties, which describes a time instant is inside of a

particular time interval, and a time interval is in between

of two different time instants, respectively.

The DAML-time ontology defines a number of predi-

cates (properties) for linking time entities to events in the

3 A DAML ontology of time. http://www.cs.rochester.edu/
˜ferguson/daml/daml-time-20020830.txt



real world4, which include atTime, expressing an event

occurs at a particular time instant, during, express an

event occurs during a particular time interval, and holds,

expressing an event holds at a particular time instant or dur-

ing a particular time interval.

To illustrate the use of temporal ontology, let us consider

the following use case: a meeting agent informs the con-

text broker that a meeting is scheduled to take place in the

room R230 from 13:00 to 14:00 on 12/03/2003, which can

be represented as during(meeting(meeting023,

timeInterval(’2003-12-03T13:00:00’,

’2003-12-03T14:00:00’)))5, and Alice is one of

the scheduled meeting attendees. At 13:03, an RFID sen-

sor informs the context broker that it detects the presence

of Alice’s cellphone in the room R230. Based on this in-

formation, through reasoning the context broker concludes

Alice is also located in the room R230, which can be rep-

resented as atTime(locatedIn(alice,r230),

timeInstant(’2003-12-03T13:03:00’)).

Using the axiom associated with the predicate

inside, the context broker infers the time in-

stant ’2003-12-03T13:04:00’ is inside of

the time interval (’2003-12-03T13:00:00’,

’2003-12-03T14:00:00’). Based on the tem-

poral ordering of these two events, the context bro-

ker believes Alice is attending a meeting at 13:03.

Without having any evidence to the contrary, the con-

text broker further believes Alice is likely to be lo-

cated in the room until 14:00, which can be repre-

sented as during(locatedIn(alice,r230),

timeInterval(’2003-12-03T13:03:00’,

’2003-12-03T14:00:00’)).

We recognize that the described logic inferences are

rigid, e.g., they do not address the condition in which a per-

son is temporarily absent from the meeting, or the meeting

is ended at a time instant that is earlier than the scheduled

end time. In the future, we plan to explore abductive reason-

ing [11] as a means to improve inference flexibility.

5.2. User Privacy Protection

To protect user privacy in smart spaces, the design of Co-

BrA follows the principle of proximity and locality [14], ex-

ploiting the locality information of the users for enforcing

access restrictions to their personal information. For differ-

ent type of smart spaces, CoBrA defines different special-

ized access control models for protecting the privacy of the

users. An access control model consists of a set of infer-

ence rules that a context broker uses to decide the permis-

sion for revealing a users contextual information.

4 Descriptions of events are assumed to be defined by ontologies that
are outside of the DAML-time ontology

5 The date/time description is in the ISO 8601 Date and Time format.

As different users in the same smart space may desire

different levels of privacy protection, CoBrA allows users to

modify the default access control model of the smart space

by providing their own privacy policies. A privacy policy

(or policy) is a set of declarative rules that a user defines

to restrict the access to his personal information. For exam-

ple, upon entering a smart space, the user authenticates his

identity and informs the context broker of his privacy pol-

icy. The broker then reasons about the policy to determine

the access control rules that are imposed by the policy. If

these rules differ from the rules in the default access con-

trol model, the broker will create a personalized access con-

trol model of the user. This model will be used, instead of

the default model, to guide the brokers reasoning in decid-

ing the appropriate permissions to reveal the users contex-

tual information.

5.2.1. Privacy Policy Language In CoBrA, the represen-

tation of the privacy policy extends the Rei policy language

[10]. Rei is a policy language that defines a set of ontol-

ogy concepts for modeling rights, prohibitions, obligations

and dispensations in the domain of security. The key ad-

vantage of using Rei to develop a new privacy policy lan-

guage is in its built-in support for the modeling of security

objects (i.e., rights, prohibitions, obligations, and dispensa-

tions) and its ability to interoperate with the Semantic Web

languages. For example,

• to specify a projector device has the right to access Al-

ice’s location context only if the device is located in

the same room as Alice, using the has predicate in

Rei, the following rule can be defined:

has(projector,

right(accessContext(alice,location),

colocated(alice,projector))).

• to prohibit a location tracking service from accessing

Alice’s location context when the service is not authen-

ticated by the context broker, the following rule can be

defined:

has(locTracker,

prohibition(accessContext(alice,location),

not(authBy(locTracker,broker)))).

Protecting the privacy of a user sometimes means to hide

the details of certain information from the computing enti-

ties in the environment. The Rei language provides users the

necessary constructs to define rules to grant or deny the ac-

cess to their contextual information. In order to give users a

fine-grained control on how the broker can share their con-

textual information, we introduce additional language con-

structs to allow granularity parameters to be specified for

the contextual information. For example, if Alice does not

want other people to know the specific room that she is in,

but she does want others to know the general description of



her whereabouts (e.g., on a campus or in a building). A pol-

icy can be defined as the following:

has(broker,

right(shareContext(alice,location)),

granularity(location,raduis(1,mile)).

This rule states that the broker has the right to share Al-

ices location information only if the information that de-

scribes a physical location that has the geographic radius

larger than 1 mile. In other words, if some service asks the

broker if Alice is on a campus that spatially subsumes the

room that Alice is in, the broker will reply, yes, but if some

service asks the broker if Alice is located in a particular

building on the campus, the broker will reply, unknown (as-

suming the geographic radius of a building is less than 1

mile).

5.2.2. Meta-Reasoning with Policies In a pervasive com-

puting environment, the ubiquitous access to vast amount

of information creates a new problem for user privacy. Al-

though users can define policies to control the dissemination

of their situational information, such policies cannot always

guard against the possibility of others to deduce the private

information of the user through different means of knowl-

edge acquisition (e.g., inference, data mining). In the design

of CoBrA, we attempt to address the problem of inference,

which is to develop mechanisms to prevent the leaking of

information that could potentially be used to deduce a users

private information. Some typical examples of the problem

of inference are the following: (i) if someone knows the

home phone number of a user, it is possible to acquire the

mailing address of the user by looking up a White Page ser-

vice on the Internet, (ii) if someone knows the email address

of a user (e.g., someone@host.mil, or someone@host.gov),

based on the domain name part of the email address, it is

possible to infer that the user probably works for one of the

US government agencies.

To address the problem of inference, our context bro-

ker implementation will allow special meta-reasoning rules

to be configured for different types of smart spaces. These

meta-reasoning rules help the broker to decide the permis-

sions for revealing the types of contextual information that

is not explicitly constrained by the privacy policies. For ex-

ample, (i) if a user’s policy specifies that no location infor-

mation should be shared, the broker will attempt to keep se-

crete of users daily schedule because from the daily sched-

ule it is possible to determine the whereabouts of the user,

(ii) if a user’s policy specifies that his home address should

not be revealed, the broker will attempt to keep secrete of

his home phone number because it is possible to lookup the

corresponding address using a White Page service. The fol-

lowing is an example of the meta-reasoning rules expressed

in Prolog:

mayKnow(X,location(Y) :- know(X,schedule(Y)).

mayKnow(X,homeAdd(Y)) :- know(X,phoneNum(Y)).

Figure 3. In our prototype system, the broker
attempts to infer the location contexts of de-
vices and users. An user model is dynami-
cally acquired from an URL specified in the
received user policy.

5.3. A Context Broker Prototype

We have implemented a context broker prototype to

demonstrate its role in the EasyMeeting system. Our ob-

jective is to show the Semantic Web languages are ade-

quate for dynamically constructing representations of con-

text information acquired from sensors, and how this infor-

mation then can be used to infer additional context knowl-

edge. In our present implementation, a context broker can

reason about the presence of people and device in an intel-

ligent meeting room.

Figure 3 shows the design layout of our prototype sys-

tem. Central to the system is a context broker. This bro-

ker is implemented as a FIPA compliant agent that runs

on the JADE platform (a Java library for building FIPA

compliant agents) [1]. The broker uses the Jena Seman-

tic Web Toolkit6 for managing and manipulating ontologies

(e.g., dynamically constructing OWL ontology statements

for agent communications, manipulating ontology knowl-

edge that is stored in a persistent knowledge base).

RDQL (RDF Data Query Language) is used in the

broker’s reasoning engine to access the stored ontology

knowledge. Using RDQL, the reasoning engine periodi-

cally queries the knowledge base for the presence of cer-

tain context knowledge (e.g., has any device been detected

in the room, who is the owner of a particular device?).

When queries return matched results, the broker automat-

ically adds new assertions about the local context into its

knowledge base. For example, if queries return information

about the presence of a new device and the person who owns

the device, then the broker asserts the owner of the device

is also present in the room.

6 http://www.hpl.hp.com/semweb/jena.htm



For context sensing, the context broker delegates the

tasks to other sensing agents in the environment. When the

broker starts on a hosting JADE platform, it finds all sens-

ing agents that are registered with the local yellow page

service (FIPA Directory Facilitator) and sends a FIPA sub-

scribe message to these agents, requesting to be notified

about context changes. In our prototype system, we have

implemented a sensing agent called BT Sensor, which is re-

sponsible for detecting Bluetooth OBEX object push events

that are initiated by the mobile devices. As a mobile device

sends an OBEX object to the BT Sensor (e.g., a SonyEric-

sson T68i cellphone sends a vNote object to the BT Sen-

sor), the BT Sensor agent concludes the presence of the de-

vice and notifies the context broker.

Messages sent from a Bluetooth device to the BT Sen-

sor agent contains a FIPA ACL message that informs the

context broker of a user’s background information (or user

model). A user model includes a privacy policy that a user

defines to control the use and the sharing of his/her con-

text information. Due to the message size limitations in our

Bluetooth devices, messages sent by the devices contain the

URL of the web documents that have complete descriptions

of the user models. The representation of this URL informa-

tion is expressed in a RDF statement which is encoded in

N3 7, for example, "agt:HarryChen agt:aboutMe

http://umbc.edu/hchen4/aboutMe.". The first

term agt:HarryChen is a subject RDF resource that de-

fines this statement is about the user Harry Chen. The sec-

ond term agt:aboutMe is a property of the subject. The

last term is the value of the property, which is an URL

from which the user model of agt:HarryChen can be

retrieved.

To show the underlying ontology reasoning in the bro-

ker, we have developed a web application, backed by the

Apache Tomcat Server, for viewing the internal knowledge

base of the context broker. In future, this web application

will include administrator functions for manging a context

broker (start, shutdown etc.).

6. Related Work

In the past, a number of system architectures have been

developed to support pervasive computing such as the Con-

text Toolkit framework [20], Schilit’s context-aware archi-

tecture [21], Cooltown [12], the Active Badge System [27],

and the Intelligent Room [5]. These systems have made

progress in various aspects of pervasive computing but are

weak in supporting knowledge sharing and context rea-

soning. A significant source of this weakness is their lack

7 Premier: Getting into RDF & Semantic Web Using N3. http://
www.w3.org/2000/10/swap/Primer

a common ontology with explicit semantic representation

[4, 18].

Key differences between our architecture and the previ-

ous systems are the following: (i) We use Semantic Web

languages (i.e., RDF and OWL) to define ontologies of

contexts, providing an explicit representation of contexts

for reasoning and knowledge sharing. In the previous sys-

tems, contexts are often implemented as programming ob-

jects (e.g., Java class objects) or informally described in

documentations. (ii) In CoBrA a resource-rich agent (i.e.,

the context broker) is provided to manage and maintain a

shared model of context for all devices, services and agents

in an associated space. In the previous systems, individual

entities are required to manage and maintain their own con-

text knowledge. (iii) The context reasoning in CoBrA gives

context brokers the ability to infer new context knowledge

(e.g., spatial relations, device profiles) that cannot be eas-

ily acquired from the physical sensors. In the previous sys-

tems, contexts acquired from the sensors are presumed to be

accurate and consistent. (iv) The use of policies in CoBrA

allow users to control their contextual information, speci-

fying the granularity of information that is shared by the

systems and choosing recipients to receive notifications of

their context changes. In preivous systems, acquired con-

textual information is allowed to be freely share by all com-

puting entities in the environment, which could potentially

jeopardize user privacy.

7. Conclusion & Future Work

The use of ontology is a key requirement for realizing

pervasive context-aware systems. Our preliminary research

in the Context Broker Architecture shows the Web Ontol-

ogy Language OWL is adequate for defining ontologies for

supporting context reasoning and knowledge sharing. As

the Semantic Web technologies (i.e., programming libraries

for manipulating ontologies and logic inference engines for

ontology reasoning) emerge, we believe the Semantic Web

will create new research opportunities for building perva-

sive context-aware systems.

Based on COBRA-ONT, at present we are working

other researchers to define a standard ontology for sup-

porting pervasive computing applications8. The new on-

tology called Pervasive Computing Standard Ontology

(PERVASIVE-SO) will define typical concepts and rela-

tions for representing agent, person, device, time, space,

event, document, and policy. Part of our short term objec-

tive is to enhance the logic inferences in the context broker

using abductive reasoning and exploring temporal and spa-

tial inferences. Our long-term objective is to deploy an in-

8 The ongoing work is described on the Semantic Web in UbiComp SIG
homepage: http://pervasive.semanticweb.org.



telligent meeting room in the newly constructed Informa-

tion Technology and Engineering Building on the UMBC

main campus.

References

[1] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa.

Developing multi agent systems with a fipa-compliant agent

framework. Software - Practice And Experience, 31(2):103–

128, 2001.

[2] Tim Berners-Lee, James Hendler, and Ora Lassila. The se-

mantic web. Scientific American, May 2001.

[3] Harry Chen, Tim Finin, and Anupam Joshi. An ontology

for context-aware pervasive computing environments. Spe-

cial Issue on Ontologies for Distributed Systems, Knowledge

Engineering Review, 2003.

[4] Harry Chen, Sovrin Tolia, Craig Sayers, Tim Finin, and Anu-

pam Joshi. Creating context-aware software agents. In Pro-

ceedings of the First GSFC/JPL Workshop on Radical Agent

Concepts, 2001.

[5] Michael H. Coen. Design principles for intelligent environ-

ments. In AAAI/IAAI, pages 547–554, 1998.

[6] R. Scott Cost, Tim Finin, Anupam Joshi, Yun Peng, Charles

Nicholas, Harry Chen, Lalana, Filip Perich, Youyong Zou,

Sovrin Tolia, and Ian Soboroff. Ittalks: A case study in the

semantic web and daml. In Proceedings of the International

Semantic Web Working Symposium, July 2002.

[7] Anind K. Dey. Providing Architectural Support for Build-

ing Context-Aware Applications. PhD thesis, Georgia Insti-

tute of Technology, 2000.

[8] Foundation for Intelligent Physical Agent. FIPA Device On-

tology Specification, pc00091a edition, 2001.

[9] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Ste-

fan Decker. Description logic programs: Combining logic

programs with description logic. In 12th International Con-

ference on the World Wide Web, 2002.

[10] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy lan-

guage for a pervasive computing environment. In IEEE 4th

International Workshop on Policies for Distributed Systems

and Networks, 2003.

[11] Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni.

Abductive logic programming. Journal of Logic and Com-

putation, 2(6):719–770, 1992.

[12] Tim Kindberg and John Barton. A Web-based nomadic com-

puting system. Computer Networks (Amsterdam, Nether-

lands: 1999), 35(4):443–456, 2001.

[13] Sanjeev Kumar, Philip R. Cohen, and Hector J. Levesque.

The adaptive agent architecture: Achieving fault-tolerance

using persistent broker teams. In Proceedings of the Fourth

International Conference on Multi-Agent Systems, pages

159–166, 2000.

[14] Marc Langheinrich. Privacy by design–principles of privacy-

aware ubiquitous systems. In Proceedings of UbiComp

2001: International Conference on Ubiquitous Computing,

2001.

[15] Ora Lassila and Mark Adler. Semantic gadgets: Device and

information interoperability. In the working notes of the

Workshop of Ubiqutous Computing Environment, 2003.

[16] Deborah L. McGuinness and Frank van Harmelen. Owl web

ontology language overview. http://www.w3.org/

TR/owl-features/, 2003.

[17] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakr-

ishnan. The cricket location-support system. In Mobile Com-

puting and Networking, pages 32–43, 2000.

[18] Anand Ranganathan, Robert E. McGrath, Roy Campbell,

and Dennis M. Mickunas. Ontologies in a pervasive com-

puting environment. Workshop on Ontologies in Distributed

Systems, IJCAI 2003, 2003.

[19] Abhishek Roy, Soumya K. Das Bhaumik, Amiya Bhat-

tacharya, Kalyan Basu, Diane J. Cook, and Sajal K. Das. Lo-

cation aware resource management in smart homes. In First

IEEE International Conference on Pervasive Computing and

Communications (PerCom’03), 2003.

[20] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The

context toolkit: Aiding the development of context-enabled

applications. In CHI, pages 434–441, 1999.

[21] Bill Schilit, Norman Adams, and Roy Want. Context-aware

computing applications. In IEEE Workshop on Mobile Com-

puting Systems and Applications, Santa Cruz, CA, US, 1994.

[22] Brian Shand, Nathan Dimmock, and Jean Bacon. Trust for

ubiquitous, transparent collaboration. In Proceedings of the

1st IEEE Annual Conference on Pervasive Computing and

Communications (PerCom 2003), 2003.

[23] Ira A. Smith and Philip R. Cohen. Toward a semantics

for an agent communication language based on speech acts.

In Howard Shrobe and Ted Senator, editors, Proceedings of

the Thirteenth National Conference on Artificial Intelligence

and the Eighth Innovative Applications of Artificial Intelli-

gence Conference, Vol. 2, pages 24–31, Menlo Park, Califor-

nia, 1996. AAAI Press.

[24] Michael K. Smith, Chris Welty, and Deborah McGuinness.

Owl web ontology language guide. http://www.w3.

org/TR/owl-guide/, 2003.

[25] Jeffrey Undercoffer, Filip Perich, Andrej Cedilnik, Lalana

Kagal, Anupam Joshi, and Tim Finin. A secure infrastructure

for service discovery and management in pervasive comput-

ing. The Journal of Special Issues on Mobility of Systems,

Users, Data and Computing, 2003.

[26] Frank van Harmelen, Jim Hendler, Ian Horrocks, Debo-

rah L. McGuinness, Peter F. Patel-Schneider, and Lynn An-

drea Stein. Owl web ontology language reference. http:

//www.w3.org/TR/owl-ref/), 2002.

[27] Roy Want, Andy Hopper, Veronica Falcao, and Jon Gibbons.

The active badge location system. Technical Report 92.1,

Olivetti Research Ltd., ORL, 24a Trumpington Street, Cam-

bridge CB2 1QA, 1992.

[28] Roy Want, Bill Schilit, Norman Adams, Rich Gold, Karin

Petersen, David Goldberg, John R. Ellis, and Mike Weiser.

An overview of the PARCTAB ubiquitous computing ex-

periment. IEEE Personal Communications, 2(6):28–33, Dec

1995.


