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Abstract. Research on recommender systems has primarily addressed
centralized scenarios and largely ignored open, decentralized systems
where remote information distribution prevails. Absence of superordi-
nate authorities having full access and control introduces some serious
issues requiring novel approaches and methods. Hence, our primary ob-
jective targets succesful deployment and leverage of recommender system
facilities for Semantic Web applications, making use of novel technologies
and conceptions and integrating them into one coherent framework.

1 Introduction

Automated recommender systems [1] intend to provide people with recommen-
dations of products they might appreciate, taking into account their past ratings
profile and history of purchase or interest. Most succesful systems apply social
filtering techniques [2], dubbed collaborative filtering [3]. These systems iden-
tify most similar users and make recommendations based upon products people
utterly fancy. Unfortunately, common collaborative filtering methods fail when
transplanted into decentralized scenarios. Analyzing issues prevalent to these do-
mains, we believe that two novel approaches may alleviate prevailing problems,
namely trust networks and taxonomy-based profile generation. One aspect of our
work hence addresses the conception of suitable components, specifically tailored
to suit our decentralized setting, while another regards the seamless integration
of latter building bricks into one single, unified framework. Empirical analysis
and performance evaluations are conducted at all stages.

2 Research Issues

Deploying recommender systems on the Semantic Web implies diverse, multi-
faceted issues, some of them being inherent to decentralized systems in general,
others being novel. Hereby, our devised Semantic Web recommender system per-
forms all recommendation computations locally for one given user. Its principal
difference from generic, centralized approaches refers to information storage, sup-
posing all user and rating data distributed throughout the Semantic Web. We
thus come to identify several research issues:



– Ontological commitment. The Semantic Web is characterized by machine-
readable content distributed all over the Web. In order to ensure that agents
can understand and reason about latter information, semantic interoper-
ability via ontologies or common content models must be established. For
instance, FOAF [4], an acronym for “Friend of a Friend”, defines an ontol-
ogy for establishing simple social networks and represents an open standard
agents can rely upon.

– Interaction facilities. Decentralized recommender systems have primarily
been subject to multi-agent research projects. Hereby, environment mod-
els are agent-centric, enabling agents to directly communicate with their
peers and thus making synchronous message exchange feasible. The Seman-
tic Web, being an aggregation of distributed metadata, constitues an inher-
ently data-centric environment model. Messages are exchanged by publishing
or updating documents encoded in RDF, OWL, or similar formats. Hence,
communication becomes restricted to asynchronous message exchange.

– Security and credibility. Closed communities generally possess efficient
means to control user identity and penalize malevolent behavior. Decentral-
ized systems, among those peer-to-peer networks, open marketplaces and the
Semantic Web, likewise, cannot prevent deception and insincerity. Spoofing
and identity forging thus become facile to achieve [5]. Hence, some subjective
means enabling each individual to decide which peers and content to rely
upon are needed.

– Computational complexity and scalability. Centralized systems allow
for predicting and limiting community size and may thus tailor their filtering
systems to ensure scalability. Note that user similarity assessment, which is
an integral part of collaborative filtering [3], implies computation-intensive
processes. The Semantic Web will once contain millions of machine-readable
homepages. Computing similarity measures for all these “individuals” thus
becomes infeasible. Consequently, scalability can only be ensured when re-
stricting latter compuations to sufficiently narrow neighborhoods. Intelligent
prefiltering mechanisms are needed, still ensuring reasonable recall, i.e., not
sacrificing too many relevant, like-minded agents.

– Low profile overlap. Interest profiles are generally represented by vectors
indicating the user’s opinion for every product. In order to reduce dimen-
sionality and ensure profile overlap, some centralized systems like Ringo [6]
require users to rate small subsets of the overall product space. Others rec-
ommenders, among those GroupLens and MovieLens [7], operate in domains
where product sets are comparatively small. On the Semantic Web, virtu-
ally no restrictions can be imposed on agents regarding which items to rate.
Hence, new approaches to ensure profile overlap are needed in order to make
profile similarity measures meaningful.

3 Proposed Approach

Endeavors to ensure semantical interoperability through ontologies constitute
the cornerstone of Semantic Web conception and have been subject to rife re-



search projects. We do not concentrate our efforts on latter aspect but sup-
pose data compatibility from the outset. Our interest rather focuses on handling
computational complexity, security, data-centric message passing, and profile
vector overlap. Hereby, our approach proposed builds upon two fundamental
notions, namely taxonomy-based interest profile assembling and trust networks.
Exploitation of synergies of both intrinsically separate concepts helps us leverage
recommender system facilities into the Semantic Web.

3.1 Information Model

Semantic Web infrastructure defines interlinked documents comprising machine-
readable metadata. Our information model presented below well complies with
its design goals and allows facile mapping into RDF, OWL, etc.:

– Set of agents A = {a1, a2, . . . , an}. Set A contains all agents part of the
community. Globally unique identifiers are assigned through URIs.

– Set of products B = {b1, b2, . . . , bm}. All products considered are com-
prised in set B. Hereby, unique identifiers may refer to product descriptions
from an online shop agreed upon, such as Amazon, or globally accepted
codes, like ISBNs in case of books.

– Set of partial trust functions T = {t1, t2, . . . , tn}. Every agent ai ∈ A
has one partial trust function ti : A → [−1,+1]⊥ that assigns continuous
trust values to its peers. Functions ti ∈ A are partial since agents generally
only rate small subsets of the overall community, hence rendering ti sparse:

ti(aj) =
{

p, if trust(ai, aj) = p
⊥, if no trust for aj from ai

(1)

We define high values for ti(aj) to denote high trust from ai in aj , and
negative values to express distrust, respectively. Values around zero indicate
absence of trust, not to be consfused with explicit distrust [8].

– Set of partial rating functions R = {r1, r2, . . . , rn}. In addition to func-
tions ti ∈ T , every ai ∈ A has one partial function ri : B → [−1,+1]⊥ that
expresses his liking or dislike of product bj ∈ B. No person can rate every
available product, so functions ri ∈ B are necessarily partial.

ri(bj) =
{

p, if rates(ai, bj) = p
⊥, if no rating for bj from ai

(2)

Intuitively, high positive values for ri(bj) denote that ai highly appreciates
bj , while negative values express dislike, respectively.

– Taxonomy C over set D = {d1, d2, . . . , dl}. Set D contains categories.
Each category dk ∈ D represents one specific topic that products bj ∈ B may
fall into. Hereby, topics can express broad or narrow categories. Taxonomy
C arranges all dk ∈ D in an acyclic graph by imposing partial subset order
⊆ on D, similar to class hierarchies known from object-oriented languages.
Hereby, inner topics dk ∈ D with respect to C are all topics having subtopics,



i.e., an outdegree greater zero. On the other hand, leaf topics are topics with
zero outdegree, i.e., most specific categories. Furthermore, taxonomy C has
exactly one top element >, which represents the most general topic and has
zero indegree.

– Descriptor assignment function f : B → 2D. Function f assigns a set
Di ⊂ D of product topics to every product bi ∈ B. Note that products
may possess several descriptors, for classification into one single category
generally entails loss of precision.

We suppose all information about agents ai, their trust relationships ti and
ratings ri stored in machine-readable homepages distributed throughout the
Web. Contrarily, taxonomy C, set B of products and descriptor assignment
function f must hold globally and therefore offer public accessibility. Central
maintenance of latter information hence becomes inevitable. Later on, we will
demonstrate that such sources of information for product categorization already
exist for certain application domains.

3.2 Trust Neighborhood Formation

Trust neighborhhod computation constitutes the first pillar of our approach.
Clearly, neighborhoods are subjective, reflecting every agent a′is very beliefs
about the accorded trustworthiness of immediate peers. Trust makes automatic
recommendation generation for ai secure, only relying upon opinions from peers
that ai deems trustworthy. Note that in general, collaborative filtering tends
to be highly susceptive to manipulation. For instance, malicious agents aj can
accomplish high similarity with ai by simply copying its profile. Marsh [8] already
indicated that trust makes agents “less vulnerable to others”. However, for our
scenario, trust also serves another purpose, namely that of similarity filtering.
Recent studies [9] have provided empirical evidence that people tend to rely upon
recommendations received from trusted fellows, i.e., friends, family members
etc., more than upon online recommender systems. Ongoing research [5] has
revealed that trust and interest profiles tend to correlate, justifying trust as an
appropriate supplement or surrogate for collaborative filtering.

Trust neighborhood detection for ai implies computing trust values for peers
aj not directly trusted by ai, but one of the peers latter agents trusts directly
and indirectly. Note that functions ti(aj) are commonly sparse, providing values
for only few aj compared to A’s overall community size. Numerous scalar metrics
[10,11] have been proposed for computing trust between two given individuals
ai and aj . However, our approach requires metrics that compute nearest trust-
neighbors, and not evaluate trust values for any two given agents. We hence opt
for local group trust metrics [12], which have only been attracting marginal inter-
est until now. The most important and most well-known local group trust metric
is Levien’s Advogato metric [11]. However, latter metric can only make boolean
decisions with respect to trustworthiness. Appleseed [12], our own novel proposal
for local group trust computation, allows more fine-grained analysis, assigning
continuous trust ranks for peers within trust computation range. Its principal



concepts derive from spreading activation models [13]. Appleseed operates on
partial trust graph information, exploring the social network within predefined
ranges only and allowing the neighborhood detection process ro retain scala-
bility. Hereby, high ranks are accorded to trustworthy peers, i.e., those agents
which are largely trusted by others with high trustworthiness. These ranks are
used later on for selecting agents deemed suitable for making recommendations.

3.3 Similarity-based Filtering

The second processing step performs collaborative filtering over all peers whose
trustworthiness lies above some given threshold. Collaborative filtering intends to
track most similar peers, considering the principal’s history of interests. Hereby,
we overcome low profile overlap by introducing taxonomy-based profile genera-
tion [5]. Common collaborative filtering approaches apply Pearson’s correlation
coefficient [6,3] to compute similarity between product vectors. Considering the
domain of books, the probability that two persons have read several same books
becomes considerably low. Category-based collaborative filtering [14] and related
methods reduce dimensionality by generating vectors containing categories, along
with information about the peer’s liking and dislike for each of these. However,
the more fine-grained latter categories are defined, the less profile overlap we
may expect. Furthermore, relationships and mutual impact between categories
become lost.
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Fig. 1. Small fragment from the Amazon book taxonomy

Taxonomy-based Profile Generation. We are investigating taxonomy-aided
generation of interest profiles [5], inspired by Middleton’s ontology-enhanced



content-based filtering [15]. Categories still play an important role, but we have
them arranged in taxonomy C and not separate from each other. Items bj bear
topic descriptors djk

∈ f(bj) that relate products bj to taxonomic nodes. Sev-
eral classifications per item are possible, hence |f(bj)| ≥ 1. Each item the user
likes infers some interest score for those djk

∈ f(bj). Since these categories djk

are arranged in taxonomy C, we can also infer fractional interest for all super-
topics of djk

. Hereby, remote super-topics are accorded less interest score than
super-topics close to djk

. For simplicity, suppose C tree-structured and assume
that (p0, p1, . . . , pq) gives the path from top element p0 = > to node pq = djk

.
Function sib(p) returns the number of p’s siblings, while sco(p) returns its score:

∀m ∈ {0, 1, . . . , q − 1} : sco(pm) =
sco(pm+1)

sib(pm+1) + 1
(3)

Scores are normalized, i.e., all topic score that ai’s profile assigns to nodes
from taxonomy C amounts to some fixed value s. Hence, high product ratings
from agents with short product rating histories have higher impact on profile
generation than product ratings from persons issuing rife ratings. Score s is
divided evenly among all products that contribute to ai’s profile makeup.

Example 1 (Topic score assignment). Suppose the taxonomy given in Figure 1
which represents a tiny fragment from the Amazon book taxonomy. Let user
ai have mentioned 4 books, namely Matrix Analysis, Fermat’s Enigma, Snow
Crash, and Neuromancer. For Matrix Analysis, 5 topic descriptors are given, one
of them pointing to leaf topic Algebra within our small taxonomy. Suppose that
s = 1000 defines the overall accorded profile score. Then the score assigned to
descriptor Algebra amounts to s / (4 ·5) = 50. Ancestors of leaf Algebra are Pure,
Mathematics, Science, and top element Books. Score 50 hence must be divided
among these topics according to Equation 3. Score 29.087 becomes accorded to
topic Algebra. Likewise, we get 14.543 for topic Pure, 4.848 for Mathematics,
1.212 for Science, and 0.303 for top element Books. These values are then used
to update the profile vector of user ai.

Success or failure of our approach largely depends upon taxonomy C used for
classification. The more thoroughly crafted and fine-grained latter taxonomy, the
more meaningful our profile information becomes. Clearly, topic descriptors f(bj)
for products bj must be chosen skillfully, too. Thanks to inference of fractional
interest for super-topics, one may establish high user similarity for users which
have not even rated one single product in common. According to our scheme,
the more score two profiles have accumulated in same branches, the higher their
computed similarity.

Similarity Computation. Interest profiles form the grounding for collabora-
tive filtering, which computes similarity between users. For our approach, we ap-
ply common nearest-neighbor techniques, namely Pearson’s coefficient [6,3] and
cosine distance from Information Retrieval. Hereby, profile vectors map category
score vectors from C instead of plain product-rating vectors. High similarity



evolves from interest in many identical or related branches, whereas negative
correlation indicates diverging interests. For instance, suppose ai reads litera-
ture about Applied Mathematics only, and aj about Algebra, then their com-
puted similarity will be high, considering significant branch overlap from node
Mathematics onward.

3.4 Rank Synthesization and Recommendations

Trust neighborhood computation and collaborative filtering return two diverse
rankings for every agent aj within our bounding trust neighborhood. One must
now merge trust rank and similarity rank into one single measure, i.e., its overall
rank weight.

We have not attacked latter issue yet. Moreover, besides selecting most suit-
able peers aj from which to receive recommendations, one must determine prod-
ucts mentioned by latter aj most favorable for recommendation. Numerous al-
ternatives are possible, like, for instance, every aj voting for all its appreciated
products bk ∈ rj with its own rank weight. Products positively mentioned within
several rating histories rj of high weighted peers aj thus have greater chance of
being recommended. Other recommendation schemes, based upon content, are
also possible. For instance, one might propose agent ai products from categories
that ai has left untouched until now. Latter approach assumes that ai might
appreciate these new products since people with similar taste have told to like
them. Incentive for trying new product groups becomes created.

Recommendation-making opens numerous alternatives one can take. Our fu-
ture research will thus focus on finding most promising ones and, what will
become likewise important, on trying to match these approaches against each
other within an experimental framework allowing for some quantitative analysis.

4 Real-world Deployment

Section 3.1 has exposed our envisioned information infrastructure. We will show
that such an architecture may actually come into life and become an integral part
of the Semantic Web. For instance, some initial projects towards deploying and
maintaining decentralized trust networks are already under way: FOAF defines
machine-readable homepages based upon RDF and allows weaving acquaintance
networks. Golbeck [4] has proposed some modifications making FOAF support
“real” trust relationships instead of mere acquaintanceship.

Moreover, FOAF seamlessly integrates with so-called “weblogs”, which are
steadily gaining momentum. These personalized “online diaries” are especially
valuable with respect to product rating information. For instance, some crawlers
extract certain hyperlinks from weblogs and analyze their makeup and con-
tent. Hereby, those referring to product pages from large catalogs like Amazon
(http://www.amazon.com) count as implicit votes for these goods. Mappings
between hyperlinks and some sort of unique identifier are required for diverse
catalogs, though. Unique identifiers exist for some product groups like books,



which are given “International Standard Book Numbers”, i.e., ISBNs. Efforts
to enhance weblogs with explicit, machine-readable rating information have also
been proposed and are becoming increasingly popular. For instance, BLAM!
(http://www.pmbrowser.info/hublog/ ) allows creating book ratings and helps
embedding these into machine-readable weblogs.

Besides user-centric information, i.e., agent ai’s trust relationships and prod-
uct ratings, taxonomies for product classification play an important role within
our approach. Luckily, these taxonomies exist for certain domains. Amazon de-
fines an extensive, fine-grained and deeply-nested taxonomy for books contain-
ing more than 20, 000 topics. More important, Amazon provides books with
subject descriptors referring to latter taxonomy. Similar taxonomies exist for
DVDs and videos. Standardization efforts for product classification are chan-
nelled through the “United Nations Standard Products and Services Code”
project (http://www.unspsc.org/ ). However, the UNSPSC’s taxonomy provides
much less information and nesting than, for instance, Amazon’s taxonomy for
books.

4.1 Mining Trust Statements and Ratings

We have created an experimental environment simulating the infrastructure pro-
posed above. Hereby, we mined rife information from various trust-aware on-
line communities like All Consuming (http://www.allconsuming), and Advogato
(http://www.advogato.org), extracting information about approximately 9,100
users, their trust relationships and implicit product ratings. Ratings were ob-
tained from All Consuming only. Moreover, we captured Amazon’s huge book
taxonomy and categorization data about 9, 953 books that All Consuming com-
munity members have mentioned. Tailored crawlers search the Web for weblogs
and ensure data freshness. All our experiments and empirical evaluations were
based upon latter “real-world” data.

5 Related Work

Recommender systems have begun attracting major research interest during the
early nineties [3]. Nowadays, commercial and industrial systems are rife and
wide-spread, detailed comparisons concerning features and approaches are given
in [16]. Recommender systems differ from each other mainly through their fil-
tering method. Hereby, distinctions between three types of filtering systems are
made [3], namely collaborative, content-based and economic. Collaborative filter-
ing systems [6] generate recommendations obtained from persons having similar
interests. Content-based filtering only takes into account the content of products,
based upon metadata and extracted features. Economic filtering has seen little
practical application until now and exerts marginal impact only. Modern rec-
ommender systems are hybrid, combining both content-based and collaborative
filtering facilities in one single framework. Fab [17] counts among the first popu-
lar hybrid systems, more recent approaches have been depicted in [18], and [15].



Our filtering approach, comprising taxonomy-based profile generation and sim-
ilarity computation, also exploits both content-based and collaborative filtering
facilities. Trust networks add another supplementary level of filtering.

Initial attempts have been taken towards transplanting recommender systems
into decentralized scenarios. Olsson [19] offers an extensive overview of existing
approaches. Montaner [20], and Chen et al. [21] devise agent-based approaches,
where agents acquire knowledge about other peers from interaction experience.
Hereby, reputation evolves over time and simple trust relationships become tied.

6 Future Directions

Our past efforts have mainly focused on designing suitable trust metrics for com-
puting trust neighborhoods [12], and conceiving metrics for making collaborative
filtering applicable to decentralized architectures [5]. Moreover, we have shaped
and synthesized an extensive infrastructure based upon “real-world” data from
various communities and online stores.

Until now, analysis has been largely confined to the book domain only. Future
research will also include movies and other specific product groups and investi-
gate intrinsic differences between these groups. For instance, Amazon’s taxonomy
for DVD classification contains more topics than its book counterpart, though
being less deep. We would like to better understand the impact that taxonomy
structure may have upon profile generation and similarity computation. Fur-
thermore, we are currently investigating applicability of taxonomy-based profile
generation for automated stereotype generation and efficient behavior modelling.
Efforts for extracting rife usage and profile information from various other com-
munities are well under way.

Merging ranks from both filtering paradigms into one metric and recommen-
dation generation have remained untouched until now. Thorough empirical anal-
ysis will be required for selecting most appropriate alternatives and integrating
them into our recommender application.
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