
Semantic Web Service Composition Planning with OWLS-Xplan∗

Matthias Klusch, Andreas Gerber
German Research Center for Artificial Intelligence,

Stuhlsatzenhausweg 3, 66123 Saarbruecken, Germany,
{klusch, agerber}@dfki.de

Marcus Schmidt
DIaLOGIKa GmbH,

Albertstrasse, 66125 Saarbruecken, Germany
Markus.Schmidt@dialogika.de

Abstract

We present an OWL-S service composition planner, called
OWLS-Xplan, that allows for fast and flexible composition
of OWL-S services in the semantic Web. OWLS-Xplan con-
verts OWL-S 1.1 services to equivalent problem and domain
descriptions that are specified in the planning domain descrip-
tion language PDDL 2.1, and invokes an efficient AI plan-
ner Xplan to generate a service composition plan sequence
that satisfies a given goal. Xplan extends an action based
FastForward-planner with a HTN planning and re-planning
component.

Introduction

One of the striking advantages of web service technology is
the fairly simple aggregation of complex services out of a
library of simpler or even atomic services. The same is ex-
pected to hold for the domain of semantic web services such
as those specified in WSMO or OWL-S. The composition of
complex services at design time is a well-understood princi-
ple which is nowadays supported by many broadly available
tools and other composition planners such as SHOP2.

Hierarchical task network (HTN) planners such as
SHOP2 perform well in domains for which complete and
detailed knowledge on at least partially hierarchically struc-
tured action execution patterns is available, such as, for ex-
ample, in scenarios of rescue planning. In domains in which
this is not the case, i.e., no concrete set of methods and de-
composition rules that lead to an executable plan are pro-
vided, an HTN planner would not find the solution due to the
fixed structure of hierarchical action decompositions stored
in its database. That inherently limits the degree of qual-
ity of any HTN planner to that of its used methods that are
created by human experts.

In contrast, action based planners are able to find a so-
lution based on atomic actions as they are described in
the methods, but without using the structure of the latter.
Atomic actions can be combined in multiple ways to solve
a given planning problem. But how to cope with planning
problems that are in part hierarchically structured according

∗This work has been supported by the German Ministry of Ed-
ucation and Research (BMBF 01-IW-D02-SCALLOPS), and the
European Commission (FP6 IST-511632-CASCOM).
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

to decomposition rules and methods but not solvable exclu-
sively by means of HTN planning?

For this purpose, we developed a hybrid AI planner
Xplan (Schmidt 2005) which combines the benefits of
both approaches by extending an efficient graph-plan based
FastForward-planner with a HTN planning component. To
use Xplan for semantic Web-Service composition, XPlan
is complemented by a conversion tool that converts OWL-
S 1.1 service descriptions to corresponding PDDL 2.1 de-
scriptions that are used by Xplan as input to plan a service
composition that satisfies a given goal. In contrast to HTN
planners, Xplan always finds a solution if it exists in the ac-
tion/state space over the space of possible plans, though the
problem is NP-complete. Xplan also includes a re-planning
component to flexibly react to changes in the world state
during the composition planning process. Together the im-
plementations of Xplan and OWLS2PDDL converter make
up the semantic Web service composition planner OWLS-
Xplan.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an overview of the OWLS-Xplan system ar-
chitecture, followed by a brief description of the integrated
converter module OWLS2PDDL in section 3. The core of
OWLS-Xplan, the hybrid planner Xplan, is presented and
compared with SHOP2 in section 4 and 5, respectively. We
conclude in section 6.

OWLS-Xplan Overview

OWLS-Xplan consists of several modules for preprocessinf
and planning. It takes a set of available OWL-S services, a
domain description consisting of relevant OWL ontologies
and a planning query as input, and returns a plan sequence
of composed services that satisfies the query goal.

For this purpose, OWLS-Xplan first converts the domain
ontology and service descriptions in OWL and OWL-S, re-
spectively, to equivalent PDDL 2.1 problem and domain de-
scriptions using its OWLS2PDDL converter. The domain
description contains the definition of all types, predicates
and actions, whereas the problem description includes all
objects, the initial state, and the goal state. Both descriptions
are then used by the AI planner Xplan to create a plan (repre-
senting one composed web service) in PDDL that solves the
given problem in the actual domain and initial state. For rea-
sons of convenience, we developed a XML dialect of PDDL,

called PDDXML, that simplifies parsing, reading, and com-
municating PDDL descriptions using SOAP. Table 1 shows
the corresponding notions of both the AI planning and se-
mantic web service domain.

planning domain semantic web service domain

(atomic) operator service profile

(atomic) action atomic web service,
atomic process

complex action service model

method composed web service,
workflow, composite process

Table 1: Correlating notions of the planning and semantic
web service domain

An operator of the planning domain corresponds to a ser-
vice profile in OWL-S: Both operator and profile, in essence,
describe a pattern or template of how an action or web ser-
vice as an instance should look like. A method is a special
type of operator, that allows the user to describe workflows
or composed web services. The planner may use methods as
a hierarchical task network during its planning process.

Converter OWLS2PDDL

The conversion of OWL-S 1.1 service descriptions to
PDDXML requires not only the straight forward transcrip-
tion of types and properties to PDDL predicates but the map-
ping of services to actions (cf. figure 1). Due to space limi-
tations, we only describe the essential translation process.

Figure 1: Mapping between OWL-S service and PDDL ac-
tion description

Any OWL-S service profile input parameter correlates
with an equally named one of an PDDL action, and the
hasPrecondition service parameter can directly be trans-
formed to the precondition of the action by use of predi-
cates. The same holds for the hasEffect condition parame-
ter. Figure 3 provides an example of such a mapping of an
OWL-S 1.1 service that calculates the route from given GPS-
position of an accident to the nearest hospital for an emer-
gency physician to the equivalent PDDL 2.1 action descrip-
tion. Either this service already exists, hence its translation
is part of the planning domain description, or, as a requested

service (query) becomes part of the planning problem de-
scription.

Figure 2: Part of OWL-S 1.1 service description

Figure 3: Part of action description in PDDXML converted
by OWLS2PDDL

However, the conversion of the output of an individual
OWL-S service, that is the information the service offers to
the world, to PDDL turns out to be more problematic. The
problem is that the service hasEffect condition explicitly de-
scribes how the world state will change while this is not nec-
essarily the case for an hasOutput parameter value, though it
indeed could implicitly influence the composition planning
process. However, PDDL does not allow to describe non-
physical knowledge such as train connections produced as
an output of a service.

This problem can be solved by mapping the service output
parameter X to a special type of the service hasEffect pa-

rameter. In particular, every output variable X is described
in, and added to the current (physical) planning world state
by means of a newly created add-effect predicate in PDDL
uniquely named ”agentHasKnowledgeAbout(X)”. Sim-
ilarly, each input variable Y is mapped to an input pa-
rameter Y of an PDDL action complemented by precondi-
tion predicate ”agentHasKnowledgeAbout(Y)”. OWLS-
Xplan would only use a service description during its
planning process, if the additional precondition predicate
”agentHasKnowledgeAbout(Y)” on available knowl-
edge about service input data is satisfied such that X = Y
holds. Otherwise the service execution could fail since
checking the service preconditions may reveal that they are
not satisfied in the actual world state.

Figure 4: Part of initial world state semi-automatically built
by OWLS-Xplan editor

Figure 5: Part of problem description in PDDXML con-
verted by OWLS2PDDL

Figure 4 shows an example of an inital world state that
has been semi-automatically built by the OWLS-Xplan ed-
itor. In particular, it currently provides application-oriented
templates to the user that allow her to quickly enter, mod-
ify, and validate the initial world state and the query, i.e.,
the goal state, depending on the specific situation and prob-
lem at hand. If the user wants to query the agent for a

medical transporation service, she only has to fill in a few
pre-given templates, thereby setting the values of default pa-
rameters of world state and one requested service with re-
lated OWL ontologies attached to the template. This ini-
tial state and request description is then automatically con-
verted to the corresponding PDDXML problem description
by OWLS2PDDL (cf. figure 5). This, in turn, is fed into
the planner Xplan to find a solution, i.e. a plan sequence of
services or actions on the initial world state that satisfy the
given goal.

The AI planner Xplan

Xplan is a heuristic hybrid search planner based on the FF-
planner developed by Hoffmann and Nebel (Hoffmann &
Nebel 2001). It combines guided local search with graph
planning, and a simple form of hierarchical task networks to
produce a plan sequence of actions that solves a given prob-
lem. This yields a higher degree of flexibility compared to
pure HTN planners like SHOP2 (Sirin et al. 2004) whereas
the use of predefined workflows or methods improves the ef-
ficiency of the FF-planner. In contrast to the general HTN
planning approach, a graph-plan based planner is guaran-
teed to always find a solution independent from whether the
given set of decomposition rules for HTN planning would al-
low to build a plan that contains only atomic actions. In fact,
any graph-plan based planner would test every combination
of actions in the search space to satisfy the goal which, of
course, can quickly become prohibitively expensive.

Xplan combines the strengths of both approaches. It is
a graph-plan based planner with additional functionality to
perform decomposition like a HTN planner. Figure 6 shows
an example of how Xplan of OWLS-Xplan uses only those
parts of a given method for decomposition that are required
to reach the goal state with a sequence of composed services
WS1 and WS3. In contrast, HTN planning would com-
pletely decompose M into WS1 followed by WS2, hence
output also WS2 which is of no use for reaching the goal.

Figure 6: Using parts of methods to reach a goal state in
OWLS-Xplan

Overview

The Xplan system consists of one XML parsing module, and
following preprocessing modules. First, required data struc-
tures for planning are created and filled, followed by the
generation of the initial connectivity graph and goal agenda.
The latter two actions are interleaved with replanning. The
core (re-)planning modules concern the heuritically relaxed

Figure 7: Architecture of Xplan

graph-plan generation and enforced hill-climbing search (cf.
figure 7).

After the domain and problem definitions have been
parsed, Xplan compiles the information into memory effi-
cient data structures. A connectivity graph is then generated
and efficiently realized by means of a look up table, which
contains information about connections between facts and
instantiated operators, as well as information about numeri-
cal expressions which can be connected to facts. This con-
nectivity graph is maintained during the whole planning pro-
cess and used for the actual search. In case of a replanning
situation, the connectivity graph is adjusted according to the
changed new world state.

Xplan uses an enforced hill-climbing search method to
prune the search space during planning, and a modified ver-
sion of relaxed graph-planning that allows to use (decom-
position) information from hierarchical task networks dur-
ing the efficient creation of the relaxed planning graph, if
required, such as in partially hierarchical domains. Infor-
mation on the quality of an action (service) are utilized by
the local search to decide upon two or more steps that are
equally weighted by the used heuristic.

In addition, Xplan includes a replanning component
which is able to re-adjust outdated plans during execution
time. Therefore, the execution engine informs the planning
module about changed world states, and the Xplan replan-
ning component decides whether the remaining plan frag-
ment to execute is still valid or whether a re-planning has to
be initiated. Figure 9 shows a fragment of the plan descrip-
tion produced by Xplan, i.e., a sequence of actions, that is
the composed sequence of corresponding OWL-S services,
that can be executed by the agent.

We implemented Xplan modularly in C++, using the Mi-
crosoft MSXML Parser for reading PDDXML definitions
and generating plans in XML format. Alternatively, Xplan
also provides an interface for direct interchange of planning
data without having to use PDDXML as interchange format.
Each component of Xplan will be described in more detail
in subsequent sections.

Data preprocessing component

Solving a planning process can be viewed as a search prob-
lem in the space of all possible combinations of action se-

Figure 8: Part of plan description in PDDXML.

quences. Xplan starts off with preprocessing the input data
assigning initial values to each predicate of the given (prob-
lem and domain) state description in PDDL.

Type relation, conversion and simplification of formu-
las. In the second step, Xplan creates a matrix, that describes
all type relations and type inclusions. Predicates which are
neither negative nor positive in the effect list of an opera-
tor are considered static for the complete planning process,
hence are removed from all preconditions and effect lists.
Then, the preconditions and effects are converted to disjunc-
tive normal form.

Operator-templates, instantiation and reduction of
search space. Xplan creates templates from these simpli-
fied operators which are instantiated by all possible combi-
nations of input data based on object instances as described
in the PDDL problem description. The set of instantiated op-
erators is then reduced by means of fixed point computation
leading to useable and relevant operators. This is achieved
by iteratively starting with applying all operators to the ini-
tial state. Facts that are added to the state by operators will
be stored in a potential positive facts list. The respective
operators are marked as relevant. This process is repeated
until either no new facts nor operators are added to the lists.
Operators and facts that are neither reachable nor able to be
fulfilled, are removed from the basis set of instantiated op-
erators. Relations between instantiated methods, complex
actions and atomic actions are built, to speed up the search
and decomposition later on. Furthermore, to guarantee com-
pleteness while searching, all negative facts that have a cor-
responding fact in the potential positive facts list are also
stored in the list of relevant facts. Both relevant facts and
operators are used to build the connectivity graph.

Generation of the connectivity graph and goal
agenda

The connectivity graph is built upon the list of relevant facts,
and relevant operators in an iterative process that detects the

dependencies between the precondition, add- and delete lists
of operators and facts. Once created, the connectivity graph
remains static during the search and planning process. In
contrast to traditional plan graph algorithms, Xplan does not
consider the complete set of goals as a whole but computes
an ordered list of goals, the so called goal agenda. The cor-
responding goal graph is generated based upon this agenda
and the FALSE-sets of each goal. Finally, the transitive hull
over the goal graph is being computed which is then used to
classify goals into goal sets.

Let (O, I,G) be a planning problem for which a goal
agenda with n goal-sets Gs0, . . . , Gsn exists. The search
algorithm starts with the initial state I0 = I and the first
goal-set Gs0 as the planning goal G. If a solution P1 is
found which leads from I0 to Gs0, then the plan is used on
P1 and I0. The resulting state I1 = Result(I0, P0) is then
used as the starting point for the search using I1 as initial
state and planning goal G = Gs0 ∪ Gs1. Thus all reached
goals Gs0 to Gsk−1 remain valid while searching for a so-
lution for Gsk. For the current planning goal Gk in iteration
k it holds that

Gk =

k⋃

i=0

Gsi

The Xplan search algorithm uses a no-ops first-strategy, i.e.,
goals achieved in previous iterations are marked and only
temporally deleted if they will be generated again later on.
This guarantees that the planner generates no sub-optimal
plans with loops.

The Relaxed Graphplan heuristic

After the goal-agenda has been generated, the search pro-
cess starts. The search consists of two interleaved processes.
The Relaxed Graphplan heuristic (Hoffmann 2000) approx-
imates the distance between the initial state I to all reach-
able states S. These distance values are then used to guide
the forward directed search. After each successful step the
distance values are updated again using the heuristic.

Definition 0.1 A state S = (FS , hS , NS) is defined as

• FS is a set of all facts which are true in state S.

• hS is distance to the goal given by a heuristic.

• NS is a set of helpful action which can be used in state S.

Complex actions and hierarchical task networks
within relaxed Graphplan We have expanded the Re-
laxed Graphplan heuristic based algorithm by adding an
HTN planner component, and utilization of numerical and
boolean facts that can be updated online during the planning
phase by external function calls. As a consequence, not only
atomic operators but also complex actions and methods are
allowed during planning. If a complex action is used while
generating a plan graph of which preconditions on some
graph layer Ei are satisfied, the HTN component then tries
to decompose the complex action using a method-structure
element or complex task. A relevant method is searched
for by looking up the connectivity graph. Since more than
one method could be relevant for decomposition, a heuristic
hd

htn is used to determine the most useful one. The selected

partial task network itself may contain complex actions that
have to be recursively decomposed. Through selection of
useable operators Oi of plan graph layer Ei the algorithm
first tries to select complex actions. If a solution cannot be
found by decomposition, Xplan tries to find a solution with-
out using the HTN component.

External procedure calls Many planners offer the possi-
bility to use numerical values with the standard operators
+,−, ∗,÷, . . . during the planning process. In most cases
these functions are not only bounded in their number but
rather hard-coded in the planner such as in the Metric-FF
planner (Hoffmann 2003). This is a drawback because the
system cannot be expanded without having to change the
code. In contrast, Xplan offers the use of so-called exter-
nal call-back functions. A call-back function is linked to a
predicate by means of a fluent variable which contains its re-
turn value. This way, Xplan is able to obtain actual informa-
tion on the value of predicates during the planning proces by
calling the linked call-back function. The function returns a
boolean value which indicates whether the linked predicate
is set or removed from the world state in the next layer of the
plan graph. New call-back functions can be added without
changing the code of the planner itself.

The fluents are utilized by the planner on both the global
fluent-layer of the plan graph, that represents the current
state in the computed plan, and the local fluent-layer stor-
ing the changed new states of the fluents for their use in the
next planning steps. An update of the global fluent-layer is
performed each time the fast-forward search finds a better
state with respect to a given utility function. The values of
the local fluent-layer are used for calculating those facts that
are satisfied by executable actions of some layer of the plan
graph. The pseudo-code of the algorithm 1 for generating
the relaxed plan graph is provided in the annex of this paper.

Extraction of a relaxed plan from the planning graph
Let (O′, Ix,G) the planning problem to solve and PG the
relaxed plan graph with k layers. Figure 9 shows a simple
example of problem and domain description together with
initial part of a corresponding plan graph.

The search for a relaxed plan starts at the top most layer
Ek−1. For every goal of the current layer E i, i < k, an ac-
tion of Ei−1 is selected that satisfies one or multiple goals.
Let Fi be the set of facts of layer Ei, then the selection of
goals is done by use of a heuristic hd that measures the bar-
rier for executing an action.

hd(o) :=
∑

p∈pre(o)

min{i |p ∈ Fi} + (1 − QoS(o))

with QoS(o) ∈]0, 1] quality of service of action o. The inter-
section of the set of selected actions’ preconditions of E i−1

and the facts of Ei−1 makes up the goal set Gi−1 of layer
Ei−1. This goal set then has to be fulfilled by use of ac-
tions of the subsequent layer Ei−2. The recursion is going
on until the lowest layer of the planning graph with initial
facts is reached. This is then the relaxed plan, that consists
of an action sequence A0 . . . Ak−1. k − 1 is the index of the
first layer which contains all goals of the original problem.

Figure 9: Part of a plan graph with k = 3 layers

To get an approximation how far away it is from state Ix to
goal G, a heuristic h(Ix) (described in (Hoffmann 2000)):

h(Ix) :=

k−1∑

i=0

|Ai|

The value h(Ix) indicates the length of the relaxed, sequen-
tial solution of O starting with Ix. This value in combina-
tion with the state information Ix constitutes the new search
state S which is included into the search space of the fast
forward search.

Detecting helpful actions

In addition to the heuristic, Xplan computes the set HS of
helpful executable actions for every search state S such that
the goal G eventually can be reached.

Definition 0.2 A helpful action of a search state S is an ac-
tion, that satisfies at least one proposition of the goal set G1

of the first layer in the plan graph. The set of helpful actions
is described as follows:

HS(S) := {o | (pre(o) ⊆ S) ∩ (add(o) ∩ G1(S) �= ∅)}

If there are many helpful actions, then actions of an HTN
decomposition are preferred. The reason is, that such actions
are more highly probable to be succeeded by an useful action
in the task network as part of the relaxed plan.

Local search with enforced hill-climbing

Xplan uses an enforced hill-climbing search algorithm to
search for best reachable states during generation of the
global plan to satisfy a given goal. It combines the standard
search strategy with a breadth search for a better state than
the given one not only in its direct neighborhood but within
the set of successor states of S that are reachable by apply-
ing a helpful action of NS. This search strategy performs as
follows.

• Compute the distance between the starting state I and the
goal state G by use of Relaxed Graphplan, and the set of
helpful actions I .

• Initialize the enforced hill-climbing with I =
(FI , hI , NI) as input.

• Enforced Hill-Climbing analyzes all reachable states that
have been computed. It assigns each state with its approx-
imative distance to the goal by use of Relaxed Graphplan.

• If a better state is found, then include this state into the
current plan, and use it as a basis for further search. Up-
date all fluents on the current layer by invoking the re-
spective call-back functions.

• Terminate if a state S ′ = G is reached in which all given
goals are satisfied. Otherwise, if not at least one goal has
been achieved, the search failed. In this case, a new com-
plete breadth search is instantiated on I to find a solution,
if it exists.

The pseudo-code of the local search by enforced hill-
climbing algorithm is shown in algorithm 2.

Re-planning component

During plan execution, the agent has to check for each action
of the plan whether its preconditions hold, or not. If at least
one precondition is not satisfied, Xplan gets informed about
which facts are invalid, at which position in the plan this
problem occurs, and then checks whether the original plan
still can be executed. Otherwise, it tries to fix the problem
by searching for an alternative path in the connectivity graph
from the actual position in the plan to the goal state. In addi-
tion, it may temporally block unnecessary actions to reduce
the search space, thereby avoiding a complete preprocessing
phase.

Plan patterns

Xplan builds ordered service composition plan sequences
only whereas OWL-S allows for more complex plan struc-
tures such as unordered, choice, if-then-else, iterations,
repeat-until loops, repeat-while loops, split, and split+join.
However, complex plan structures can be formed out of the
produced plan sequence based on its appropriate analysis
and interpretation in posterior. For example, figure 10 shows
how a plan sequence looks like, that can be transformed into
a split+join structure. In this case, the input of WS2 does
not depend on the output of WS1, hence both services may
be executed concurrently. Since both are required to achieve
the given goal, their results have to be joined after execution.

Figure 11 shows an example of how to realize a split struc-
ture. Like in previous example, both services neither influ-
ence each other, nor share a common goal to reach, thus can
be executed in parallel.

However, the plan structures ”choice” and ”unordered se-
quence” are not realizable by proper interpretation of plan
sequences created by Xplan. Though, the latter problem is
a hard problem for any AI planner in general, including, for
example, Shop2 (Sirin et al. 2004).

Figure 10: Split + Join interpretation

Figure 11: Split structure of an OWLS-Xplan plan

Related work

A logic-based DAML-S composition planner has been de-
veloped at the UMBC, USA (Sheshagiri, desJardins, &
Finin 2003). This planner uses STRIPS-style services to
compose a plan, given the goal and set of basic services. It
is implemented with JESS (Java Expert System Shell), and
uses a set of JESS rules to translate DAML-S descriptions
of atomic services into planning operations.

One of the currently most prominent service composition
planners is Shop2 (Simple Hierarchical Ordered Planner 2)
developed at the University of Maryland, USA (Wu et al.
2003). It is a hierarchical task network (HTN) planner well-
suited for working with the hierarchically structured OWL-S
process model. The authors proved the correspondence be-
tween the semantics of Shop2 and situation calculus seman-
tics of the OWL-S process model. The implemented Shop2
soundly and completely plans over sets of OWL-S descrip-
tions, and treats the output of a web service as effects that
either change the planning agent’s knowledge, or the world
state. Shop2, like HTN planner in general, replaces those
elements of the provided methods (workflows) by special
methods or atomic actions until the composition plan con-
tains only atomic actions that correspond to available web
services. During planning, web services are not executed,

hence do not affect the world state.
Both Xplan and Shop2 base on the closed world assump-

tion, use PDDL for problem description, allow external
(call-back) functions to be bounded to variables and exe-
cuted during planning, and generate total ordered, instan-
tiated plan sequences for a given initial state, goal and plan-
ning domain. Among others, the main difference between
Shop2 and Xplan is inherent to the individual planning pro-
cesses. In essence, Shop2 plans are generated by use of
given decomposition rules (methods), hence a solution to
the planning problem is not always guaranteed to be found
(Lotem, Nau, & Hendler 1999). In contrast, hybrid Xplan as
part of OWLS-Xplan tries to plan by means of (a) method
decomposition using only relevant parts of it, discarding
useless actions, thereby reducing the plan size, and (b) if
this is not successful, uses its relaxed graph plan algorithm
to find a solution, if it exists.

Conclusion

We presented an OWL-S service composition planner, called
OWLS-Xplan, that allows for fast and flexible off-line com-
position of OWL-S services by use of an OWLS2PDDL con-
verter, and a hybrid AI planner that combines relaxed Graph-
plan FF-planner with local search and HTN based planning,
and a re-planning component. OWLS-Xplan has been im-
plemented in C++ and Java, and is currently in use in a pro-
totyped medical health information service system. It is in-
tended to make the OWLS-Xplan code package available to
the community at www.semwebcentral.org.

References
Hoffmann, J., and Nebel, B. 2001. The FF Planning System: Fast
Plan Generation Through Heuristic Search. Journal of Artificial
Intelligence Research (JAIR) (14):253–302.

Hoffmann, J. 2000. A heuristic for domain indepndent planning
and its use in an enforced hill-climbing algorithm. Proceedings
of 12th Intl Symposium on Methodologies for Intelligent Systems,
Springer Verlag.

Hoffmann, J. 2003. The Metric-FF planning system: Translat-
ing Ignoring Delete Lists to Numeric State Variables. Artificial
Intelligence Research (JAIR), vol 20.

Lotem, A.; Nau, D.; and Hendler, J. 1999. Using planning graphs
for solving HTN problems. Proceedings of AAAI/IAAI confer-
ence, USA.

Schmidt, M. 2005. Ein effizientes Planungsmodul fuer die lokale
Planungsebene eines InteRRaP Agenten. Master’s thesis, Univer-
sitaet des Saarlandes.

Sheshagiri, M.; desJardins, M.; and Finin, T. 2003. A planner
for composing services described in DAML-S. Proceedings of
AAMAS 2003 Workshop on Web Services and Agent-Based Engi-
neering.

Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 2004. HTN
planning for web service composition using SHOP2. Journal of
Web Semantics, 1(4) 377–396.

Wu, D.; Parsia, B.; Sirin, E.; Hendler, J.; and Nau, D. 2003.
Automating DAML-S web services composition using SHOP2.
Proceedings of the 2nd International Semantic Web Conference
(ISWC2003), pages 20-23, Sanibel Island, Florida, USA.

function BuildRelaxedPlanningGraph() computes
relaxedPlanningGraph or fails
input: InitialFacts[] : List of Facts
input: GoalFacts[] : List of Facts
local: CurrentLayerFacts[], NextLayerFacts[] : List of
Facts
local: CurrActivActions[] : List of Actions
local: CurrentLayer : int
begin

CurrentLayerFacts = IntitialFacts;CurrentLayer = 0;
while ! AllGoalsActive(GoalFacts) do

foreach Fact f in CurrentLayerFacts do
Increment precondition counter of actions
which f is a precondition of;

end
foreach Fact f in CurrentLayerFacts do

/* First collect all action,
that are a result of a
method decomposition and
compute the layer, when it
is earliest executed. */

CurrActivHTNActions +=
GetActiveHTNActions(CurrentLayer,f);
/* Select all remaining

executable actions, that
are part of the
current-layer */

CurrActivActions +=
GetActivePrimitiveActions(CurrentLayer,f);

end
foreach Action a in CurrActivHTNActions do

if all preconditions of a are satisfied AND

Layer of a == CurrentLayer then
/* a is executable, all

preconditions are
fulfilled and is
executable in the layer
*/

NextLayerFacts +=
GetAddedFactsFromAction(a);
RemoveFromList(a,CurrActivHTNActions);

end

end
foreach Action a in CurrActivActions do

if all preconditions of a are satisfied AND

Layer of a == CurrentLayer then
NextLayerFacts +=
GetAddedFactsFromAction(a);
RemoveFromList(a,CurrentActivateActions);

end

end
CurrentLayerFacts = NextLayerFacts;
NextLayerFacts = <>;
/* Increasing layer counter and

continue with next layer. */
CurrentLayer = CurrentLayer + 1;
if CurrentLayerFacts == <> then
/* If a fix point is reached

regarding facts and actions
and the goal isn’t fulfilled,
the problem isn’t solvable.
*/

if ! AllGoalsActive(GoalFacts) then
return FAILURE;

end

end
return CurrentLayer;

end

Algorithm 1: Generating a relaxed plan graph

function DoEnforcedHillClimbing() computes
validPlan: Plan or fails
input: InitialState : State input: GoalState : State

local: S : State /* the current computed
state */

local: S’ : State /* possible successor of S
*/

local: currPlan : Plan /* current plan */
local: hS : int /* the distance of S to a

goal computed by use of Relaxed
Graphplan */

local: hS′ : int local: NS[] : List of Actions /* List
of helpful action based on state S
*/

local: NS′ [] : List of Actions

begin
/* The initial plan is empty */
currPlan = <>;

S = InitialState; /* Compute the distance
from starting state to goal */

hS = BuildRelaxedPlangraph(S,GoalState);
/* Compute helpful actions for S

*/
NS = GetHelpfulActions(S);
while hS �= 0 do

/* Searching with breadth search
for a state S’ with HS′ < HS

within NS and their
successors. BFS Expand
computes for every relevant
state the distance between
goal and helpful actions.
This is done by
BuildRelaxedPlangraph and
GetHelpfulActions */

S’ = BFS Expand(S,NS);
if S’ == NULL then

return FAILURE;
else

/* If a state S’ is found,
the action sequence is
attached to the end of the
current plan, that enables
to get from S to S’. */

currP lan =
currP lan + ActionsPath(S, S′);
/* Update fuents of the

global fluent-layer */
UpdateGlobalFluents(S,S’);
/* The search goes on

beginning with S’. NS′ is
computed before by
BFS Expand and can still be
use. */

S = S’;
NS = NS′ ;

end

end
return currPlan;

end

Algorithm 2: Local Search by enforced hill-climbing

