
Semantic Web Service Discovery in the OWL-S IDE

Naveen Srinivasan
Robotics Institute

Carnegie Mellon University
naveen@cs.cmu.edu

Massimo Paolucci
Robotics Institute

Carnegie Mellon University
paolucci@cs.cmu.edu

Katia Sycara
Robotics Institute

Carnegie Mellon University
katia@cs.cmu.edu

Abstract

The increasing availability of web services
necessitates efficient discovery and execution
framework. The use of xml at various levels of web
services standards poses challenges to the above
process. OWL-S is a service ontology and language,
whose semantics are based on OWL. The semantics
provided by OWL support greater automation of
service selection, invocation, translation of message
content between heterogeneous services, and service
composition. The development and consumption of an
OWL-S based web service is time consuming and
error prone. OWL-S IDE assists developers in the
semantic web service development, deployment and
consumption processes. In order to achieve this the
OWL-S IDE uses and extends existing web service
tools. In this paper we will look in detail at the
support for discovery for semantic web services. We
also present the matching schemes, the
implementation and the results of performance
evaluation.

.
1. Introduction

Web Services have promised to change the Web
from a database of static documents to an e-business
marketplace. Web Service technology is being
adopted in the Business-to-Business commerce
applications and even in some Business-to-Consumer
commerce applications. The widespread adoption of
web services is due to its simplicity and the data
interoperability provided by its supporting technology
namely XML [26], SOAP [17] and WSDL [4].

With the proliferation of Web Services, it is
becoming increasingly difficult for service requester
to automatically find service providers that satisfy its
requirements. Some of these difficulties are attributed
to the use of XML to describe the interactions and the
data in the web service infrastructures. Although
XML guarantees syntactic interoperability of data

between applications, it fails to provide semantic
operability between these applications. Hence two
syntactically identical XML descriptions may have
very different meaning, and two syntactically
different XML descriptions may have the same
meaning. The above restriction poses significant
challenges for dynamically interacting with web
services.

The semantic web initiative [2] addresses the
problem of XML’s lack of semantics by developing a
set of XML based languages, such as RDF and OWL
[15], which explicitly specify the meaning of the tags
defined by them. OWL-S [14] is an OWL ontology to
support greater automation in service selection and
invocation, automated translation of message content
between heterogeneous interoperating services, and
service composition.

In order to realize the vision of OWL-S and also to
facilitate adoption of semantic web services by
industry we need to combine existing web service
frameworks with semantic web frameworks. OWL-S
Integrated Development Environment (OWL-S IDE)
[22] an eclipse-based development environment, is
one such framework that provides the complete
development and execution environment for OWL-S.
OWL-S IDE supports the complete lifecycle of
semantic web services: it supports development of
OWL-S descriptions, it supports advertisement of
OWL-S web services, it supports discovery of OWL-
S web services and it supports execution of OWL-S
web services. In order to achieve the above tasks
OWL-S IDE uses existing web service tools and
frameworks like Apache Axis, UDDI4J, jUDDI etc.
In a few tasks, especially to support the discovery
process, OWL-S IDE extends existing web service
standards by incorporating OWL-S semantics.

The existing industry standard developed to solve
the web service discovery problem is Universal
Description, Discovery and Integration [18] (UDDI).
Although UDDI has many features that make it an

appealing registry for Web services, its discovery
mechanism has two crucial limitations. First
limitation is its search mechanism. In UDDI a web
service can describe its functionality using
classification schemes like NAICS, UNSPSC etc.
Although we can discover web services using these
classifications, the search would yield coarse results.
The second shortcoming of UDDI is the usage of
XML to describe its data model. XML’s lack of
explicit semantics proves to be an additional barrier to
the UDDI’s discovery mechanism.

In addition to the UDDI like classification-based
search mechanism, OWL-S also provides capability-
based search mechanism [23]. Using capability-based
search we can discovery web services based on the
inputs and preconditions that need to be satisfied and
outputs and effects that need to be produced.
Capability-based search in combination with
classification mechanisms produces results that
closely match a user’s requirement. Also new
additions to OWL-S profile like service product and
service classification properties introduce semantics
to the existing classification-based search mechanism.

In this paper we will discuss in detail the support
for OWL-S discovery in the OWL-S IDE and its
implementation details. Also we will discuss in detail
the extensions to the existing UDDI registry and its
supporting API in order to augment existing discovery
mechanism with OWL-S.

The rest of the paper is organized as follows; we
first briefly introduce OWL-S followed by description
of OWL-S IDE and its support for discovery. In
Section 4 we introduce UDDI and OWL-S profile. In
Section 5 we present the changes to UDDI data
structure and its API and in the following section we
describe a matching algorithm to process OWL-S
related elements. In Section 7 we present the
architecture of our OWL-S/UDDI registry, followed
by experimental results comparing the performance of
our OWL-S/UDDI Matchmaker implementation with
a standard UDDI registry and finally we conclude.

2. OWL-S

OWL-S [14] is a Web Services ontology that
specifies a conceptual framework for describing
semantic web services. OWL-S is also a language that
enriches Web Services descriptions with semantic

information from OWL [16] ontologies. OWL-S is
characterized by three modules: (1) a Profile that
describes capabilities of Web Services as well as
additional features (e.g. inputs, outputs, preconditions
and effects) of web services hence crucial in the web
service discovery process.; (2) a Process Model that
provides a description of the activity of the Web
Service provider from which the Web Service
requester can derive the interaction; (3) a Grounding
that is a description of how abstract information
exchanges described in the Process Model are mapped
onto actual messages that the provider and the
requester exchange.

3. OWL-S IDE

The development of semantically enhanced web
services requires many different types of information
and activities such as the actual implementation of the
Web service; the compilation of the WSDL
description; the compilation of the OWL-S Profile,
Process Model, and Grounding; the specification of
the semantics of all inputs and outputs and their
mappings to XML schemata representing the data that
flow over the wire. More importantly, the results of
all these activities are strictly related: the Profile
should represent the capabilities of the Web service,
the Process Model should be faithful to the
implementation of the Web service, the Grounding
should provide a consistent mapping between OWL-S
and WSDL, and finally the Web service
implementation should be bug free. As a
consequence, development of OWL-S enhanced web
services is time consuming and error prone, and the
few tools that are available to support the developers
do not form a consistent suite, therefore, they are
difficult to use on a consistent basis.

The guiding principle of the design of OWL-S IDE
is to integrate the tools that the developer needs
during the implementation, compilation and
deployment of Semantic Web services, in a single
consistent and extensible environment. The
consistency of the development tools allows the
developer to move seamlessly between the different
aspects of Semantic Web services development, while
the extensibility of the environment allows other
parties to use semantic web service framework in
their work and to provide additional contributions.

 CODE [22] (CMU's OWL-S Development
Environment) addresses the problems of the
developer by providing a uniform integrated
development environment. CODE is implemented as
an Eclipse [8] plug-in. Eclipse is an open platform for
the integration of different tools that the community is
developing. OWL-S IDE seamlessly integrates Java
IDE and other web service frameworks implemented
in Eclipse. Also the contributions of CODE can be
integrated with other frameworks developed in
Eclipse

CODE supports the developer through the whole
life-cycle of semantic web services development.
Figure 1 shows the activities during development of
semantic web services using OWL-S IDE. Crucially
there is no clear starting point to the diagram, but two
obvious starting points, indicated by stars in Figure 1,
are the Java code and the OWL-S specification. These
starting points define two approaches code-driven and
model-driven which developers may choose to
semantically describe web services. In the code-
driven approach the web service is implemented using
Java or any other programming language, and the
OWL-S descriptions are derived from the code using
our WSDL2OWL-S converter. One may use this
approach to expose legacy systems where most of the
functionalities of the systems are already
implemented and the developers only write code to
expose them as web services. The OWL-S description
generated in this approach is missing semantic and
control flow information, therefore this description
have to be edited using the OWL-S editors to add the
above information.

The model-driven approach follows the opposite
direction, rather than starting from the web service
code and ending with OWL-S description, it starts
with the OWL-S specification of the functionalities
that the developer expects from the Web service, and
the specification of the Web service interaction
process, and ends with a partial generation of the
(Java) code of the Web service. CODE supports both
these approached to generate enabled OWL-S Web
services.

The OWL-S descriptions generated by the
developer are prone to syntactic and logical errors.
The OWL-S editors are capable of finding syntactic
errors and assist the developers to fix them. Logical
errors in OWL-S descriptions can be detected using
Model Checking based verifier available in the CODE
environment. The verifier can check the correctness
of the control flow and dataflow of the OWL-S
Process Model. The verified OWL-S descriptions
have to be deployed on a web service. CODE in
conjunction with other Eclipsed-based web service
framework, provides necessary tools to package the
web service code and OWL-S descriptions and to
deploy them in a remote web server. After deploying
the semantic web services, they have to be published
in an UDDI registry to participate in the discovery
process. The following section describes this process
in detail. CODE also provides OWL-S Virtual
Machine an OWL-S execution environment to
automatically generate the client code and execute it.
This process helps the developer to detect problems at
development and compilation time, reducing the
likelihood of execution time errors.

Figure 1: CODE’s supports through semantic web service lifecycle

3.1. Support for OWL-S Discovery

The OWL-S IDE supports discovery in both server

and client development processes. Figure 2 shows the
activities involved in these processes. In the server
development process (see left hand side of Figure 2)
first OWL-S descriptions of a web service are
developed using either code based or model based
approach. Once we have the complete OWL-S
descriptions of the web service they are registered to
an OWL-S enabled registry so that the web service
could be discovered and used by other applications.
The OWL-S IDE uses the enhanced UDDI API to
interact with the enhanced UDDI.

In the client development process (see right hand
side of Figure 2), OWL-S profile descriptions
representing the required web service functionality
are developed using the OWL-S Editor. These
descriptions are used to query the OWL-S enabled
registry using the enhanced API. The registry matches
the query with registered web services and returns the
OWL-S descriptions of the web services that satisfy
the client’s requirements. The client can then select a
web service from the results returned by the UDDI
and execute it using the OWL-S VM.

3.2. Implementation Details

The pervasive adoption of UDDI as web service

discovery infrastructure, influence our decision to
extend UDDI registry with OWL-S discovery
features. We have developed mapping between OWL-
S and UDDI so that they can be embedded in UDDI
structures, published and searched in UDDI registries.
However, when published to an existing UDDI the
semantic information present in OWL-S is unused.
Hence we have extended the UDDI registry to process
OWL-S related information. A detailed description of

the enhanced UDDI registry is explained in Section 6.
Similarly to access the addition functionalities of the
enhanced UDDI we have extended the existing UDDI
API. The details of the OWL-S to UDDI mapping and
the extension to the UDDI API are described in
Section 5.

4. UDDI and OWL-S Profile

Universal Description Discovery and Integration
(UDDI) [18] is an industrial initiative to create an
Internet-wide network of registries of web services for
enabling businesses to quickly, easily, and
dynamically discover web services and interact with
one another. UDDI allows businesses to register their
presence on the web by specifying their points of
contact both in terms of the ports used by the service
to process requests and in terms of the physical
contacts of people who can answer questions about
the service. For more information about UDDI and its
short comings refer [21].

Similar to UDDI, OWL-S Profile allows web
service to define their categories, point of contact,
quality rating etc.; however OWL-S also allows web
services to define its capabilities in terms of the state
transformation produced by them. Using capability
descriptions we can find services that closely match
our requirements. For detailed information on OWL-S
Profile and capability representation consult [21].

The latest version of OWL-S has added service
classification and service product properties to OWL-
S Profile specification. The service classification
property, similar to the UDDI classification property,
is used to represent the categories to which web
services belong. The service classification property
uses OWL concepts to represent their categories as
opposed to syntactic codes (like NAICS codes and
UNSPC codes) used in UDDI. Therefore service
classification properties are matched based on their
semantic meanings instead of relatively inferior
string-based matching. Section 6 explains the
semantic-based matching in detail. Service Product is
used to describe the products produced by web
services. Similar to service classification properties,
service product properties use semantic concepts to
represent their products therefore are matched based
on their semantic meaning.

5. Extending UDDI using OWL-S

In order to take advantage of the semantic
matching and the capability-based search provided by
OWL-S we need to embed OWL-S Profile
information inside UDDI advertisements. We adopt
the OWL-S/UDDI mapping mechanism described in

Figure 2: Support for OWL-S Discovery

[19] for this task. This mechanism uses a one-to-one
mapping if an OWL-S profile element has a
corresponding UDDI element, for example, the
contact information element is present in both OWL-S
Profile and UDDI. For OWL-S profile elements with
no corresponding UDDI elements, it uses a T-Model
based mapping. The T-Model-based mapping is
loosely based on the WSDL-to-UDDI mapping
proposed by the OASIS committee [6]. It defines
specialized UDDI TModels for each unmapped
elements in the OWL-S Profile like OWL-S Input,
Output, Service Parameter and so on. These
specialized TModels are used just like the way
NAICS TModel is used to describe the category of a
web service.

In our current work, we have extended the OWL-
S/UDDI mapping to reflect the latest developments in
OWL-S, in particular we extend the mapping to
support the service product and the service
classification properties. Figure 3 shows the latest
version of the OWL-S/UDDI mapping. We defined
two additional specialized UDDI TModels similar to
the specialized input TModel for these properties. The

usage of these TModels is also similar to that of the
input TModel.

5.1. Extending UDDI API

In order to process the semantic information

submitted in the UDDI advertisements and queries,
we have extended the UDDI registry and the UDDI
API used to access it. Since our UDDI extension
exploits TModels to embed OWL-S, changes to
UDDI API are minimal and compatible with the
existing UDDI API. Since the enhanced
advertisements are using TModels to embed OWL-S
information, they can be published using the existing
UDDI API itself. The support for semantic search
requires changes in both UDDI registry interface and
UDDI API. The UDDI registry is extended with
capability port to receive and process semantic
queries. Details about the capability port are provided
in Section 6. The UDDI API is extended with new
classes to represent semantic queries and results. Also
the UDDI Proxy class responsible for interacting with

Figure 3. Mapping between OWL-S Profile and UDDI

UDDI registry is extended to send and receive
semantic queries.

6. Matching Algorithm

The matching algorithm we used in our enhanced
UDDI registry is based on the algorithm described in
[20]. The algorithm defines a flexible matching
mechanism based on the OWL’s subsumption
mechanism. When a request is submitted, the
algorithm finds an appropriate service by first
matching the outputs of the request against the
outputs of the published advertisements, and then, if
any advertisement is matched after the output phase,
the inputs of the request are matched against the
inputs of the advertisements matched during the
output phase.

In the matching algorithm, the degree of match
between two outputs or two inputs depends on the
match between the concepts that are represented by
them. The matching between the concepts is not
syntactic, but it is based on the relation between these
concepts in their OWL ontologies. For example
consider an advertisement, of a vehicle selling
service, whose output is specified as Vehicle and a
request whose output is specified as Car. Although
there is no exact match between the output of the
request and the advertisement, given an ontology
fragment as shown in Figure 4, the matching
algorithm recognizes a match because Vehicle
subsumes Car.

 The matching algorithm recognizes four degrees
of match between two concepts. Let us assume OutR
represents the concepts of an output of a request, and
OutA that of an advertisement. The degree of match
between OutR and OutA is as follows.

exact: If OutR and OutA are same or if OutR is an
immediate subclass of OutA. For example given the
ontology fragment in Figure 4, the degree of match

between a request whose output is Sedan and an
advertisement whose output is Car is exact.

 plug in: If OutA subsumes OutR, then OutA is
assumed to encompass OutR or in other words OutA
can be plugged instead of OutR. For example we can
assume a service selling Vehicle would also sell
SUVs. However this match is inferior to the exact
match because there is no guarantee that a Vehicle
seller will sell every type of Vehicle.

subsume: If OutR subsumes OutA, then the
provider may or may not completely satisfy the
requester. Hence this match is inferior than the plug in
match.

fail: A match is a fail if there is no subsumption
relation between OutA and OutR.

In our previous work [24] the matching algorithm
matches only on the OWL-S inputs and the OWL-S
outputs, here we have extended our algorithm to
match on the newly introduced service product and
service classification properties. The degree of match
between the service product and the service
classification properties are computed similar to that
of the inputs and the outputs. Web services can be
searched only using the service product and the
service classification properties or they can be
searched in combination with the input and the output
properties. When used alone the algorithm returns the
profiles whose service product and service
classification properties has degree of match greater
than fail with the service product and the service
classification property of the user’s query. When
combined with inputs and outputs the matching
algorithm returns the union of the results matched
when service product and service classification
properties used alone and the result matched using the
inputs and the outputs.

7. OWL-S/UDDI Registry Architecture

The architecture of the combined OWL-S/UDDI

registry is shown in Figure 5. The OWL-S matching
component in this architecture is tightly coupled with
the UDDI registry. By tightly coupled we mean the
matchmaker component relies on the UDDI registry’s
ports (publish and inquiry) for its operations.

On receiving an advertisement through the publish
port the UDDI component, in the OWL-S/UDDI
matchmaker, processes it like any other UDDI
advertisement. If the advertisement contains OWL-S
Profile information, it forwards the advertisement to
the matchmaking component. The matchmaker
component classifies the advertisement based on the
semantic information present in the advertisement.

 A client can use the UDDI’s inquiry port to access
the searching functionality provided by the UDDI

Figure 4. Vehicle Ontology

registry, however these searches neither use the
semantic information present in the advertisement nor
the capability description provided by the OWL-S
Profile information. Hence we extended the UDDI
registry by adding a capability port (see Figure 5) to
solve the above problem. As a consequence, we also
extended the UDDI API to access the capability
search functionality of the OWL-S/UDDI
matchmaker. Using the capability port, we can search
for services based on the capability descriptions, i.e.
inputs, outputs, pre-conditions and effects (IOPEs) of
a service and/or service classification and service
product. The queries received through the capability
port are processed by the matchmaker component,
hence the queries are semantically matched based on
the OWL-S Profile information. The query response
contains list of Business Service keys of the
advertisements that match the client’s query. Apart
from the service keys, it also contains useful
information, like matching level and mapping, about
each matched advertisement. The matching level
signifies the level of match between the client’s
request and the matched advertisement. The mapping
contains information about the semantic mapping
between the request’s IOPEs, service classifications
and service products and the advertisement’s IOPEs,
service classifications and service products. Both
these information can be used for selecting and
invoking of an appropriate service from the results.

7.1. Achieving Matching Performance

A naive implementation of the matching algorithm
would match the inputs and the outputs of the request
against the inputs and the outputs of all the
advertisements in the matchmaker. Clearly, as the
number of advertisements in the matchmaker
increases the time taken to process each query will
also increase. To overcome this limitation, when an

advertisement is published, we annotate all the
ontology concepts in the matchmaker with the degree
of match that they have with the concepts in each
published advertisement. As a consequence the effort
needed to answer a query is reduced to little more
than just a lookup. The rationale behind our approach
is that since the publishing of an advertisement is a
one-time event, it makes sense to spend time to
process the advertisement and store the partial results
and speed up the query processing time, which may
occur many times and where query response time is
critical.

8. Preliminary Experimental Results

We conducted some preliminary evaluation
comparing the performances of our OWL-S/UDDI
registry and a UDDI registry, to show that adding an
OWL-S matchmaker component does not hinder the
performance and scalability of a UDDI registry. We
extended jUDDI [12] an open source UDDI registry
with the OWL-S matchmaking component. We used
RACER [9] to perform OWL inferences. In our
experiments, we measured the processing time of an
advertisement by calculating the difference between
the time the UDDI registry receives an advertisement
and the time the result is delivered, to eliminate the
network latency time.

8.1. Performance – Publishing Time

In our first experiment we compared the time taken
to publish an advertisement in an OWL-S/UDDI
registry and in a UDDI registry. We assumed that the
ontologies required by the inputs and outputs of the
advertisements are already present in the OWL-
S/UDDI registry. The advertisements may have
different inputs and outputs but they are present in
one ontology file, hence the ontology has to be loaded

Figure 5. Architecture of OWL-S / UDDI Matchmaker

only once, however our registry still has to load 800
advertisements. Table 1 shows the average time taken
to publish 800 advertisements in a UDDI registry and
an OWL-S/UDDI registry. We can see that the OWL-
S/UDDI registry spends around 6-7 times more time,
However since publishing is a one-time event we are
not concerned about the time taken. For a more detail
analysis of publishing time refer to [21].

8.2. Performance – Querying Time

In our final experiment, we calculated the time
required to process a query. The queries we used do
not load new ontologies into the matchmaker, they
use the ontologies that are already present in the
matchmaker. We used 250 queries each with three
inputs and one output. Table 2 shows the average time

required to process these queries. The small standard
deviation shows that the time required to process the
queries is almost constant. We did not compare the
query performance of our matchmaker with the
standard UDDI because our implementation uses
CPU memory to store all the information as opposed
to databases. The average query response for the
standard UDDI is around 400ms which includes the
data base latency.

9. Literature Review

In the last few years, discovery of OWL-S Web
services has been a very active field of research in the
context of the Semantic Web. A comprehensive
review of the algorithms that have been proposed is
beyond the scope of this paper, but a few of these
projects have concentrated on enhancing the UDDI
registry with OWL-based semantic information or
OWL-S descriptions. In this paper we will review
these attempts.

An approach to semantic discovery in UDDI has
been implemented as an extension of the NTT UDDI

UBR1 which is the public UDDI registry, maintained
by the NTT, the Japanese telephone company [13].
An important contribution of this work is VOC
(Voice of the Customer) analysis of the requirements
of potential users of UDDI. The result of that analysis
shows that the main concern of customers is the
interoperability with the current UDDI API and
system maintenance. Although our design decisions
were not guided by this VOC analysis that was not
available yet, our approach is consistent with these
results because we were very careful not to break or
overload the UDDI API, preferring instead to provide
an extension to that API. What differentiates our
approach from the work presented in [13] is the
approach to discovery and the mapping to UDDI.
Rather than providing the indexing of advertisements
that we describe here, they provide a filtering
mechanism that progressively reduces the set of
advertisements that are potential candidates to match
the request. The filtering mechanism used has its roots
in the Larks [23] matchmaker. Larks is also the
starting point of our work, and we believe the
indexing described in this paper essentially
accomplishes the pruning tasks that were performed
by Larks, while exploiting the structure of the OWL
ontologies. Nevertheless, a complete exploration of
the tradeoffs between the two approaches is a matter
of future research. The second difference is in the
representation of Web services: whereas we use
OWL-S, [13] relies on a semantic extension of WSDL
that they name WSSP. Despite the superficial
differences both approaches describe the semantic
signature of the Web service and they ultimately have
the same expressive power.

Another approach for a Semantic UDDI registry,
presented in [1] is based on [19] and [20]. This work
enhances the semantic search mechanism presented in
[20] in couple of ways: first it extends the UDDI
Inquiry API by enabling users to specify semantic
inquiries based on web services capabilities, secondly
it enhances the matching algorithm with a planning
functionality, which is capable of satisfying users
requests by composing two or more service
descriptions. Despite many similarities between our
work and this work, the difference lies in
implementation of the matching algorithm. While our
work concentrates on providing an efficient
implementation of the matching algorithm proposed
in [20], the matching algorithm in this work seems to
be a straight forward implementation of the algorithm
proposed in [20]. Another work involving semantic

1 See http://www.ntt.com/uddi/index-e.html for the NTT

UDDI UBR and http://www.agent-net.com/refer.htm for
details on the semantic matching engine.

 Time
in ms

Standard
Deviation

UDDI 163.98 86.17
OWL-S/UDDI 1050.77 167.96

Table 1. Publishing Time without loading ontologies

 Time in ms Standard
Deviation

OWL-
S/UDDI 1.306 .54

Table 2. Query processing time

UDDI is presented in [5]. It presents a flexible
mechanism to enhance the UDDI search mechanism,
by integrating multiple external matching engines to
support multiple service description languages. The
primary focus of this work is to develop a mechanism
to facilitate integration and co-ordination of multiple
matching engines with UDDI. Although this work is
orthogonal to our work, our matching engine could be
easily integrated in this framework to provide
matching service for service descriptions expressed in
OWL-S.

Meteor-S [25] presents a framework for adding
semantics directly to existing Web Services standards,
like WSDL and UDDI. It allows users to semantically
annotate their WSDL and UDDI descriptions of their
web services with DAML and publish these
descriptions in their enhanced UDDI. Their matching
algorithm [3] extends the work presented in [20] in
two ways: first they extend the subsumption based
matching mechanism by adding information retrieval
techniques to find similarity between the concepts
when it is not explicitly stated in the ontologies, and
secondly they added a mechanism to match on
preconditions and effects of service descriptions.
From the literature review of Meteor-S, we speculate
that our optimization technique presented in this paper
could improve the efficiency of their matching
process.

In this paper we make a strong case in favor of
careful indexing of advertisements to speed up the
matching process. A similar case is made by [7] who
shows how the lack of appropriate indexing provides
a matching process that is proportional to the number
of advertisements and therefore not scalable in the
long run. The difference between this paper and [7] is
the indexing algorithm. While we rely on the
structural properties of the matching algorithm and of
the OWL ontologies, they define a Generalized
Search Tree [10]. The efficiency trade-offs between
the two approaches are a matter of empirical analysis
that goes beyond the current paper. The other
difference is that they consider the possibility that
answers to queries can be the result of the
composition of multiple advertisements. We do not
consider this possibility because it can result in a
combinatorial explosion of possible matching in
which a query could be decomposed in many different
ways to fit the existing services.

10. Conclusions and Future work

In this paper we described the challenges posed by
existing web service standards to automatically
discover and interact with web services. Then we
discuss the advantages of OWL-S over existing

standards. Then we discussed the difficulties during
the development and the consumption processes of
OWL-S based web services and how OWL-S IDE
supports a developer through this process. Then we
concentrated on the support of discovery in OWL-S
IDE and changes to the existing UDDI registry. We
presented our OWL-S/UDDI matchmaker architecture
and its extensions to perform capability search. We
also conducted some preliminary experiments to show
the scalability of our implementation.

We are extending the current work in multiple
directions. The matching process that we are using so
far is restricted to the inputs and outputs of the
Service Profile, while the functional capabilities in
OWL-S extend to Preconditions and Effects. This
restriction was originally grounded on the lack of a
rule language that combined with OWL. Recently
however such a language called SWRL [11] has been
published. We are currently working on an extension
of the matching process to Preconditions and Effects
in the context of OWL-S 1.1. The second limitation
of this work is the lack of any matching on service
parameters and service categories; we are currently
extending our matching process to include them. In
the context of this work, we are also attempting to
integrate the matching of the type of service so that a
requester may be able to express the type of service
required explicitly rather than implicitly through
input, output, preconditions and effects. The last
development work that we are pursuing is rigorous
testing with increasing number of advertisement and
request load to evaluate the scalability of our
algorithms.

The techniques proposed in this work provide
algorithms for the efficient use of OWL-S ontologies
in UDDI, but we believe it can be easily applied to
any OWL ontology. In this sense, the algorithms
provided in this paper may provide a valuable basis
for an efficient and scalable implementation of the
proposed semantic search in UDDI [18]. We are
currently exploring the implementation of the
algorithms proposed here in the context of a semantic
extension of the JUDDI [12].

11. References

[1] Akkiraju, R, Goodwin, R, Doshi, P and Roeder, S, “A
Method for Semantically Enhancing the Service Discovery
Capabilities of UDDI”, Workshop on Information
Integration on the Web IJCAI 2003.

[2] Berners-Lee, T , Hendler, J and Lassila, O, “The
Semantic Web”, Scientific American, volume 284, Number
5, pages 34-43, 2001

[3] Cardoso, J and Sheth, A, “Semantic e-Workflow
Composition”, Journal of Intelligent Information Systems
(JIIS), 2003

[4] Christensen, E, Curbera, F, Meredith, G and
Weerawarana, S, “Web Services Description Language
(WSDL) 1.1”, W3C Note, http://www.w3.org/TR/wsdl,
2001

[5] Colgrave, J, Akkiraju, R and Goodwin, R, “External
Matching in UDDI”, In Proceedings of the International
Conference on Web Services ICWS 2004.

[6] Colgrave, J and Januszewski, K, “Using WSDL in a
UDDI Registry, Version 2.0”, UDDI TC Note, 2003.

[7] Constantinescu, I and Faltings, B, “Efficient
Matchmaking and Directory Services”, International
Conference on Web Intelligence (WI'03)

[8] Eclipse, http://www.eclipse.org

[9] Haarslev, V and Möller, R, “RACER System
Description”. In Proceedings of the International Joint
Conference on Automated Reasoning, June 18-23, 2001.

[10] Hellerstein, J, Naughton, J and Pfeffer, A,
“Generalized search trees for database systems”. In
Proceeding of 21st International Conference on Very Large
Databases, pages 562-573, 1995

[11] Horrocks, I, Patel-Schneider, P.F, Boley, H, Tabet, S,
Grosof, B and Dean, M, “SWRL: A Semantic Web Rule
Language Combining OWL and RuleML”, W3C
submission, http://www.w3.org/Submission/SWRL/.

[12] jUDDI, http://ws.apache.org/juddi/

[13] Kawamura, T, De Blasio, J. A, Hasegawa, T, Paolucci,
M and Sycara, K, "Public Deployment of Semantic Service
Matchmaker with UDDI Business Registry", In the
Proceedings of 3rd International Semantic Web Conference
(ISWC2004).

[14] Martin, D , Burstein, M, Hobbs, J, Lassila, O,
McDermott, D, McIlraith, S, Narayanan, S, Paolucci, P,
Parsia, B, Payne, T, Sirin, E, Srinivasan, N ,Sycara, K ,
“OWL-S Semantic Markup for Web Services”, W3C
submission 2004, http://www.w3.org/Submission/OWL-S/

[15] McDermott, D, “DRS: A Set of Conventions for
Representing Logical Languages in RDF”,
http://www.cs.yale.edu/homes/dvm/daml/DRSguide.pdf

[16] McGuinness, D, and Harmelen, F.D, (Eds.), “Owl
Web Ontology Language Overview”, W3C
Recommendation, February 2004

[17] Mitra, N (Eds), “SOAP Version 1.2 Primer”, W3C
Recommendation, June 2003.

[18] Oasis Consortium, “UDDI The UDDI Technical White
Paper”, http://www.uddi.org, 2000

 [19] Paolucci, M, Kawamura, T, Payne, T. R, and Sycara,
K, "Importing the Semantic Web in UDDI", In Proceedings
of Web Services, E-business and Semantic Web Workshop,
2002

[20] Paolucci, M, Kawamura, T, Payne, T. R, and Sycara,
K, “Semantic Matching of Web Services Capabilities”, In
Proceedings of the 1st International Semantic Web
Conference (ISWC2002).

[21] Srinivasan, N, Paolucci, M and Sycara, K, “Adding
OWL-S to UDDI, implementation and throughput”, First
International Workshop on Semantic Web Services and Web
Process Composition, 2004.

[22] Srinivasan, N, Paolucci, M and Sycara, K, “CODE: A
Development Environment for OWL-S Web services”,
Demo paper in 3rd International Semantic Web Conference,
2004.

[23] Sycara, K, Widoff, S, Klusch, M and Lu, J, "LARKS:
Dynamic Matchmaking among Heterogeneous Software
Agents in Cyberspace," In Autonomous Agents and Multi-
Agent Systems, 5, 173–203, 2002.

[24] Sycara, K., Paolucci, M. Ankolekar, A., Srinivasan, N.
"Automated Discovery, interaction and composition of
Semantic Web Services”, Journal of Web Semantics, Vol 1.
no. 1, December 2003, pp. 27-46.

[25] Verma, K, Sivashanmugam, K, Sheth, A , Patil, A
Oundhakar, S and Mille, J, “METEOR-S WSDI: A Scalable
Infrastructure of Registries for Semantic Publication and
Discovery of Web Services”, Journal of Information
Technology and Management, Special Issue on Universal
Global Integration, Vol. 6, No. 1 (2005) pp. 17-39

[26] World Wide Web Consortium, “Extensible Markup
Language (XML). Version 1.0 (Second Edition)”, W3C
Recommendation, October 2002.

