
Semantic WS-Agreement Partner Selection
Nicole Oldham

LSDIS Lab
Computer Science

University of Georgia
Athens, GA, USA

oldham@cs.uga.edu

Kunal Verma
LSDIS Lab

Computer Science
University of Georgia

 Athens, GA, USA
verma@cs.uga.edu

Amit Sheth
LSDIS Lab

Computer Science
University of Georgia

Athens, GA, USA
amit@cs.uga.edu

Farshad Hakimpour
LSDIS Lab

Computer Science
University of Georgia

Athens, GA, USA
farshad@hakimpour.com

ABSTRACT
In a dynamic service oriented environment it is desirable for
service consumers and providers to offer and obtain guarantees
regarding their capabilities and requirements. WS-Agreement
defines a language and protocol for establishing agreements
between two parties. The agreements are complex and expressive
to the extent that the manual matching of these agreements would
be expensive both in time and resources. It is essential to develop
a method for matching agreements automatically. This work
presents the framework and implementation of an innovative tool
for the matching providers and consumers based on WS-
Agreements. The approach utilizes Semantic Web technologies to
achieve rich and accurate matches. A key feature is the novel and
flexible approach for achieving user personalized matches.

Categories and Subject Descriptors
H.3.3 [Information Systems] Information Search and Retrieval

General Terms: Algorithms, Documentation, Design,
Experimentation

Keywords: WS-Agreement, Semantic Policy Matching,
Ontologies, OWL, ARL, Snobase, Agreement Matching,
Semantic Web Service, WSDL-S, dynamic service selection,
multi-ontology service annotation

1. INTRODUCTION
In a service oriented environment it is advantageous for service
consumers and providers to obtain guarantees regarding the
services that they both require and offer. Usually these
guarantees pertain to quality of service (QoS) aspects. WSDL
does not provide a means to express these guarantees; therefore
such standards as WS-Policy [23] and WSLA [25] exist to allow
for the expression of additional nonfunctional attributes.
However, these standards are not expressive enough to represent
the truly complex nature of the relationship between a service
consumer and provider. The WS-Agreement specification [2]
defines a language and protocol for capturing this intricate
relationship with agreements between two parties. An agreement
between a service consumer and a service provider specifies one
or more service level objectives (SLO) which state the
requirements and capabilities of each party on the availability of
resources and service qualities. For example, an agreement may
provide assurances on the bounds of service response time,
service availability, or service reliability. WS-Agreement is more
expressive than the previous policy standards because in addition
to service level objectives, an agreement contains scopes for

which the guarantee holds, conditions which must exist in order
for the guarantee on the SLO to be valid, and business values,
such as penalties and rewards, which incur if the SLO is not
satisfied. This is further complicated by the symmetry of these
agreements such that each provider does not only state guarantees
regarding capabilities but likely has requirements of its own. In
addition, each agreement may contain multiple alternatives of
guarantee sets. As each consumer seeking a suitable provider has
many complex options to choose from, the manual selection of
providers is time consuming, tedious, and error prone. With the
increasing acceptance and popularity of WS-Agreement and the
ever present need to protect the quality of service with
guarantees, the development of an approach for the automatic
matching of these agreements is imperative.
This paper defines and provides reasoning methods for the
components of an agreement which must be compatible for
quality matches. We present a powerful approach which uses
OWL ontologies to represent domain knowledge in conjunction
with SWRL rules to achieve the most accurate and consumer
personalized matches. The contributions of this work include:
• Creating and implementing a framework for automated

matching of provider and consumer agreements that
eliminates tedious and error prone manual matching.

• Use of multiple ontologies, both domain specific and
domain independent for representing semantic information
used by the agreements

• Presenting a flexible approach for specifying and reasoning
over user defined preferences which allows the customized
matching without changing matching code or possessing
programming knowledge.

The remainder of this paper is organized as follows. Section 2
presents the motivation for our approach. Section 3 briefly covers
the WS-Agreement schema and the general process of WS-
Agreement matching. Section 4 is composed of details on our
framework and implementation of Semantic WS-Agreement
Partner Selection (SWAPS). Section 5 presents a real world
situation which would benefit from the use of WS-Agreements
and illustrates the necessity of an efficient tool for matching
consumers with providers. Section 6 discusses related work, and
Section 7 provides conclusions and future work.

2. MOTIVATION FOR A SEMANTIC
APPROACH
The current WS-Agreement specification is based on XML based
domain vocabularies and therefore limits the ability of matching
the agreements to syntactical matching. Our approach proposes
using domain knowledge captured using ontologies and rules to
extend the matching capabilities beyond simple string matching.
A matcher considering only the syntax of the agreements without
the domain knowledge may not able to correctly identify all
matches. We illustrate the usefulness of our approach with the

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to
classroom use, and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

http://lsdis.cs.uga.edu/%7Eamit
http://lsdis.cs.uga.edu/%7Eamit

following example. Consider that a service consumer has the
following requirement:

• Availability is greater than 95%
and a provider is offering the assurances:

• Mean Time to Recover equals 5 minutes
• Mean Time between failures equals 15 hours

A syntactic matcher would perform a string comparison to
determine if the provider can satisfy the consumer’s request. The
syntactic matcher would generally determine that these two
services do not match on the grounds that the provider does not
provide an assurance for availability. However, our approach
utilizes an ontology which provides a deeper understanding of the
domain with the help of domain rules. For example, with respect
to the above case:

• Availability = Mean Time Between Failures/(Mean
Time Between Failures + Mean Time To Recover)

Therefore the semantic approach reasons that the provider is
actually offering the assurance:

• Availability equals 99.4%.
Our matcher determines that this provider does in fact satisfy the
requirements of the consumer. This example illustrates how
incorporating using domain knowledge helps matching yield
much more accurate matches.

3. WS-AGREEMENT AND WS-
AGREEMENT MATCHING
This section briefly describes the WS-Agreement schema [2], the
extensions that have been added for this work, and a general
overview of the significant elements of WS-Agreement matching.

3.1 WS-Agreement Schema
WS-Agreement offers a rich language for stating the assurances
and requirements of Web Services. This allows capturing and
representing the complicated nature of real world agreements with
the help of service level objectives (SLOs), qualifying conditions
and business values. SLOs represent some capability or
requirement of a provider or consumer. For example, the
consumer may require that all response times be less than 5
seconds. However, in a real world environment these capabilities
and requirements cannot be guaranteed under every circumstance.
For instance, a service might only be able to process a job in less
than 5 seconds if the number of requests at that moment is less
than a thousand. Such conditions can be associated with SLOs
with the help of qualifying conditions. Business values help in
representing the importance, penalties, and rewards associated
with SLOs.

WS-Agreements are written in XML and consist of alternative
sets of guarantees denoted with the “ExactlyOne” and “ALL”
tags. Due to the already complex nature of agreements, we save
the WS-Agreement’s “OneOrMore” tag for future work and
assume that all agreements are written as a disjunction of
alternative sets of guarantees. The guarantees are expressed
within the “GuaranteeTerm” tag and assert assurances or
requirements on the quality associated with the service. Below is
the Guarantee Term schema followed by Table 1 which describes
the components of a guarantee term.
<wsag:GuaranteeTerm Obligated=”…”>
 <wsag:ServiceScope ServiceName=”…”>…
 </wsag:ServiceScope>*

 <wsag:ServiceLevelObjective> …
 </wsag:ServiceLevelObjective>
 <wsag:QualifyingCondition>…</wsag:QualifyingCondition>?
 <wsag:BusinessValueList>…</wsag:BusinessValueList>
</wsag:GuaranteeTerm>

Table 1. GuaranteeTerm Components

3.2 WS-Agreement Extensions
In order to achieve effective semantic matches, we extend the
original WS-Agreement schema with several additional tags.
The new tags allow for the incorporation of semantics into WS-
Agreement and add additional structure for clarity during parsing
and matching.

3.2.1 Adding Structure to SLO and Qualifying
Conditions
The WS-Agreement specification was written with flexibility as
one of the key goals and therefore lacks some structure in
important areas such as the SLO and QualifyingCondition. The
values within each of those tags can contain any possible
expression. While this would be acceptable for an agreement
which is intended to be read by a human user, additional structure
must be added to the expressions in order to for a machine to
automatically parse and reason over agreements. However, we
added this structure while still preserving much of the flexibility
specifically for domain specific predicates. For structure, we have
added the expression, predicate, parameter, and value tags, as
defined in the WSLA specification [25]. In addition there are the
optional tags for unit and percent. Percent is used when a service
level objective uses a percentage. For example, 99% of
responseTimes are less than 5 seconds. Table 2 shows an
example using the original schema as defined in [2] which is too
ambiguous to parse and reason over. Our modified schema which
adds structure is also shown in Table 2.

3.2.2 Adding Semantics to the WS-Agreement
Agreements contain ambiguities which we clarify using an
OntConcept annotation tag. In the original schema of the Terms
section of the WS-Agreement. Even though these variables have
already been defined within the service description terms, it is
unclear to what the summation of duration1 and duration2
actually refers. For example, it may refer to a QoS parameter
responseTime or it may refer to a domain concept
processOrderDuration. The addition of the OntConcept tag
removes this ambiguity by linking this expression parameter

WS-Agreement Tag Purpose
Obligated States the party responsible for the fulfillment

of the guarantee. Value will be
ServiceProvider or ServiceConsumer

ServiceScope Describes to what service element specifically
a service applies.

ServiceLevelObjective
(SLO)

An assertion over the terms of the agreement
which represents the QoS aspect of the
agreement. Usually defines bounds usually
over QoS concepts such as response time,
fault rate or cost.

QualifyingCondition Optional condition which must exist in order
for the SLO to be satisfied. Usually over
external factors such as time of day.

BusinessValueList Optional values which represent the strength
of commitment by stating penalties, rewards
and importance

directly to the concrete ontology concept. The value of
OntConcept will be a concept from an ontology regardless of what
variables are named and to what they refer. The agreement
creators are required to include this tag to allow for semantic
reasoning over the expression. This yields more effective matches
than purely syntactic methods. The OntConcept tag clarifies the
QoS or domain specific parameter to which the objective pertains.
Figure 2 contains an example illustrating how the OntConcept tag
remedies ambiguity. A syntactic matcher is not able to determine
that (duration1+duration2) and processTime each refer to the
response time of the service which is the concept responseTime in
the QoS ontology. Adding OntConcept allows the matcher to
recognize that although the concepts are syntactically different,
they are semantically the same.

Table 2. SWAPS extensions to the WS-Agreement schema

3.2.3 Domain Specific Predicate Flexibility
When extending the WS-Agreement, we aimed to preserve much
of the flexibility intended by the WS-Agreement authors. We
designed a unique method for using domain specific predicates in
the expressions. Any predicate may be used as long as it is added
to the ontology and a rule is created to define the semantics of that
predicate. The tool is already aware of the WSLA predicates less,
lessEqual, greater, greaterEqual, equals, true, false, before.
However the user is not limited to only these predicates and can
define additional predicates for the domain.

3.3 Semantic Web Services
Semantic Web Services (SWS) provide an approach for
representing the functionality of Web services with the help of
ontologies. Popular approaches for SWS include OWL-S [13],
WSMO [26], FLOWS [19] and WSDL-S [17][27]. For the the
purposes of this paper, we have implemented the prototype using
ontologies. The OntConcept tag annotates the SLO and
Qualifying Condition parameters which facilitates the
understanding and matching of the guarantee terms of the
agreement. The Agreement Service Description Terms (SDT)
refer to the operations of the WSDL to which the Agreement

pertains. These SDT are also used during the monitoring of the
service and negotiation. Both the XML based WSDLs and WS-
Agreements are limited in their ability to express rich semantic
meaning. In order to achieve the most accurate monitoring and
negotiation the WSDL files to which the SDTs refer are
semantically annotated using WSDL-S [27].
WSDL-S builds on current standards and allows multiple
semantic representation languages to annotate services. This
flexibility allows Web Services to be annotated with concepts
from multiple ontologies from different sources. One of the most
pressing challenges when mapping WSDL with ontologies is the
heterogeneity between the XML Schema of the WSDL and the
ontology, however, WSDL-S overcomes this challenge by
providing support for rich mapping. Figure 1 shows these
mappings between an Agreement and Web Service, Agreement
and ontology, and Web Service and Ontology, in the context of
the contract farming use case which is described in Section 5 of
this paper. WS-Agreement negotiations and the runtime
monitoring of WS-Agreement compliance is facilitated and
enhanced by the use of semantically annotated Web Services since
the ontologies provide a common understanding of the functional
properties of Web Services. These semantic annotations enrich
negotiations by linking heterogeneously expressed service
elements to a common ontological concept. They enhance the
monitoring of WS-Agreement compliance by disambiguating the
terms used within the agreements and WSDL files and by
providing additional domain knowledge which can be used when
monitoring.

Figure 1. Illustrates the linking of Web Service and WS-
Agreement concepts with ontologies.

3.4 WS-Agreement Matching
In order for a provider to be considered a suitable partner match
for a given consumer, its description must contain one alternative

 WS-Agreement Schema SWAPS Schema

SL
O

 <ServiceLevelObjective>
 duration1+duration2 <
 5 s

<ServiceLevelObjective>
 <Expression>
 <Predicate type=”less”>

<Parameter>duration1+duration2
 < /Parameter>

<OntConcept>qos::responseTime
 </OntConcept>
 <Value>5</Value>
 <Unit>time:seconds</Unit>
 </Predicate></Expression>

</ServiceLevelObjective>

</ServiceLevelObjective>

Q
ua

lif
yi

ng
 C

on
di

tio
n <QualifyingCondition>

 day of week is a
 weekday
</QualifyingCondition>

<QualifyingCondition>
 <Expression>
 <Predicate type=”equals”>
 <Parameter>dayOfWeek
 </Parameter>

<OntConcept>time:dayOfWeek
 </OntConcept>

<Value>time:weekday</Value>
 </Predicate></Expression>
</QualifyingCondition>

GetMoisture

GetWeight

GetPrice

GetSplits

Merchant Service WSDL-S

Domain Independent
Ontologies

Agriculture Domain
Ontology

 agri:moisture less 12%

WS-Agreement

Moisture Split

CropPrice

BV

Guarantee

Time Ont QoS Ont

BV

Greate

Less

Predicate

WS-Agreement Ontology

agri:splits less 20%

agri:weight greater 54 lbs

agri:price equals 10 USD
Input: Address

Weight

CropQualit
FarmerAddr

Crop

SLO
Obligated

which may satisfy any of the consumer’s alternatives as denoted
by the “ExactlyOne” and “ALL” tags. An agreement A contains
alternative sets of Guarantee Terms such that:
 A={Alt1, Alt2, …, AltN}
 Alt={G1, G2, ...GN} and G={Scope, Obligated, SLO, QC, BV}
We define the following functions to facilitate the description:
 “requirement(Alt, G)” returns true if G is a requirement of Alt
 “capability(Alt, G)” returns true if G is an assurance of Alt
 “scope(G)” returns the scope of G
 “obligation(G)” returns the obligated party of G
 “satisfies(Gj, Gi)” returns true if the SLO of Gj is equivalent to
 or stronger than the SLO of Gi

An alternative Alt1 is a suitable match for Alt2 if:

 (∀Gi) such that Gi ∈ Alt1 ∧ requirement(Alt1, Gi) ∧ (∃Gj)
 such that Gj ∈ Alt2 ∧ capability(Alt2, Gj) ∧ scope(Gi)
 = scope(Gj) ∧ obligation(Gi) = obligation(Gj) ∧ satisfies(Gj,
Gi)

Figure 2. Illustrates the benefits of the ontConcept annotation.
Most users have preferences for conditions and business values
and a tradeoff is decided. For instance, a user may choose an
agreement with a less preferred condition but a higher penalty.
Alternatively, a user with a high number of requests on the
weekend would find a provider to be unsuitable if he has a
condition which states that he is only able to satisfy a guarantee if
it is a weekday. We consider the tradeoff between qualifying
conditions and business values to be a matter of user preference
and have designed a unique and flexible method for specifying
these user preferences in order to yield the most suitable matches.
Our approach is presented in detail in Section 4.

4. SEMANTIC WS-AGREEMENT
PARTNER SELECTION
We present our framework and implementation in this section.
We begin by describing the system architecture followed by how
ontologies and rules were utilized to achieve better matches and to
simplify the search algorithm. We then walkthrough an example
which illustrates the reasoning methodology used by the tool.

4.1 Architecture
The system consists of three phases: parsing, matching and
searching, which can be seen in Figure 3. To reason about
domain ontologies, we use Snobase [9], an ontology based
management system that offers DQL-based [5] Java API for

querying OWL ontologies. IBM’s ABLE engine [3] is used by
Snobase for inferencing and we use ABLE Rule Language (ARL)
[3] to write the rules. The ontologies are loaded into Snobase
followed by each provider’s WS-Agreement. We parse the
agreements and load them into the system as instances of the WS-
Agreement ontology. As each of these new agreement instances is
created, the ABLE rule engine within Snobase executes rules as
the criteria for each rule is met. The additional assertions made
by the rules are used to greatly simplify the search phase by
making the match decisions a priori. These rules provide
additional knowledge about the domain and, as described in
Section 2, play a significant role in the discovery of the most
accurate match results. We discuss the rules in further detail in
the next section. When a consumer seeks a partner, the consumer
agreement is parsed and entered into the system as another
agreement instance. The search phase begins as the algorithm
considers the agreement instances and the assertions previously
set by the rules and returns a list, ranked by preference, of all of
the provider agreements which accurately matched the consumer’s
agreement.

Agreements

SNOBASE

Ontologies,
Agreement Instances,
ABLE Rule
Engine, ARL Rules

Parsing Searching

Agreement
Match(es)

qos:ResponseTime
QoS Ontology

processTime
ontConcept:
qos:
ResponseTime

duration1+duration2
ontConcept:
qos:ResponseTime

 Consumer Provider

Figure 3. The control flow throughout SWAPS
Figure 4 illustrates the system architecture. The main components
of SWAPS include the ontology store, provider library, parser,
ontology manager, and search engine. It is assumed that the
consumer seeking a match has a library of agreement instances
previously made between providers and is searching for the
provider who is most able to satisfy the requirements. However it
is also known that previously unknown providers, in the form of
an agreement offer or a template, are constantly introduced into
the set of options. Further details regarding the ontologies, rules
and search engine are given in sections 4.2 and 4.3.

4.2 WS-Agreement and Rules Representation
Ontologies allow the matcher to understand the semantics of the
domain; therefore enabling a much more accurate search than a
syntactic approach. Rules allow for richer domain knowledge by
stating additional domain rules and semantics and provide a high
level of flexibility by stating customized user preferences.

4.2.1 Knowledge Representation
In order to realistically model the domains we employ several
ontologies. We developed an OWL ontology to represent the
WS-Agreement schema. This ontology contains the concepts
from the schema such as Guarantee, Scope, and
ServiceLevelObjective with relationships between them. In
addition to the significant elements from the WS-Agreement, we
have also included the common predicates from the WSLA
specification [25]. We allow the user to add additional predicates
to this ontology to preserve flexibility. An instance of this
ontology is created for each agreement that is introduced into the
system where they can be queried and reasoned easily. Most of
the guarantees are asserted over quality of service (QoS) concepts;
therefore the QoS ontology as described in [12] defines such

concepts as failureRate, latency, throughput, availability, and
responseTime. In addition to these ontologies a third OWL
ontology represents domain specific knowledge. For our scenario
in e-commerce and its implementation we are using the
RosettaNet ontology (http://lsdis.cs.uga.edu/projects/meteor-
s/wsdl-s/ontologies/rosetta.owl), also represented in OWL.
Depending on the application, alternative or additional domain
ontologies could be used. Finally, we use the OWL time [14]
ontology to represent temporal concepts such as endTime,
interval, dayOfWeek, and seconds. These ontologies are used to
provide a commonality of terms between agreement parties and to
provide rich domain knowledge to the search engine so that it may
achieve the best possible match results.

Figure 4. SWAPS Architecture

4.2.2 Representation of Rules
We enhance the efficiency and flexibility of our matches by
defining several categories of rules. These rules are represented in
ARL for ABLE inferencing. The rules assert new facts if the right
conditions exist for executing the various rules. We use these
rules to supplement domain knowledge, convert SLOs into a
common comparable form, define the semantics of domain
specific predicates, and specify user preferences. Using rules
instead of writing Java code to perform all of the above allows us
to separate the core implementation from the user so that he may
customize the matcher to the domain and personal preferences
without any programming ability. We define four categories of
rules and show corresponding examples below.
1. Conversion of Heterogeneous SLOs
Often SLOs state the same objective but express it differently.
We define a category of rules to address SLOs that have semantic
similarity but are syntactically heterogeneous as in the example in
Figure 5. In the example, the provider is expressing an assurance
using the WSLA predicate “PercentageLessThanThreshold” and
the consumer is expressing the same requirement more directly
using the predicate “less”. While a human reader can clearly see
that the provider’s SLO satisfactorily meets the consumer’s
requirements, the heterogeneity of the predicates prevents the
direct comparison of the provider and consumer SLOs. We define
the following ARL rule, where x is a user defined threshold, to
convert the provider’s SLO so that it expresses the objective more
directly:

when: Agreement (A) and hasGuarantee (A,G) and hasSLO (G,
SLO) and hasExpression(SLO, E) and hasPredicate(E, P) and
hasType(P, “PercentageLessThanThreshold”) and
hasPercentage(E, percent) do: if (percent<=x) then assert
hasType(P, “less”) else assert hasType(P, “greater”)

The above ARL rule looks for any expression which contains the
predicate “PercentageLessThanThreshold” and if the percentage
less than x it changes the predicate to “less” otherwise it changes
it to “greater”.

In many cases the value of x is dependent upon the parameter. For
example, a user may require a high percentage for responseTime
but may be more lenient about other parameters. This feature can
be further customized by adding additional statements in the when
segment which perform parameter checks.

User
Interface

Domain
Knowledge
and Rules

Provider Library

Parser

Search
Engine

SNOBASE

Find matching agreements with
the help of domain knowledge
stored in SNOBASE

Ontology

Manager

Ontology Store

2

Providers are given
to the parser

Instances are created
in SNoBASE

3

Ontologies are loaded into SNoBASE 1

5 OWL.arl
4

Provider: “99% of response times < 5 sec”
Predicate=percentageLessThanThreshold
Parameter=”qos:responseTime” Value=5
Percent=99 Unit=”time:Seconds

Conversion
Rule

Predicate=less Parameter=
qos:responseTime Value=6
Unit=”time:Seconds

Predicate=less Parameter=
qos:responseTime

 Value=6 Unit=”time:Seconds

New Provider Assertion:

Consumer: “response time < 6
seconds” “response time < 5 seconds”

Figure 5. Illustrates the Conversion of Heterogeneous SLOs

2. Semantics of Predicates Rules
The second category of rules allows a user to utilize any domain
specific predicates within an SLO by defining how two SLOs with
that predicate should be compared. A semantics rule should
compare SLOs according to the predicate semantics and assert an
isStronger or isEquivalent triple into Snobase. The following
ARL rule defines the semantics of the predicate “less”.

when: Agreement (A1) and hasGuaranteeTerm(A1, G1) and
hasSLObjective(G1, SLO1) and hasExpression (SLO1, E1)
and hasPredicate(E1, P1) and hasType(P1, “less”) and
hasParameter(E1, p1) and hasValue(E1, V1) and Agreement (A2)
where A1 != A2 and hasGuaranteeTerm(A2,G2) and
hasSLO(G2, SLO2) and hasExpression (SLO2, E2) and
hasPredicate(E2, P2) and hasType(P2, “less”) and
hasParameter(E2, p2) and p2 == p1 and hasValue(E2, V2)

do: if (V1<V2) assert [E1 isStronger E2]
 else if (V1>V2) assert [E2 isStronger E2]
 else assert [E1 isEquivalent E2]

The above rule compares the values of SLOs from different
agreements with the same predicate and parameter and asserts
isEquivalent if the values are the same otherwise it states which
expression is stronger based on the semantics of the predicate
“less”. This rule can also be further customized by incorporating
parameters or checking units to determine whether to do a string
or numeric comparison. The benefit of this approach is two-fold.
First, it allows for domain predicate flexibility such that we do not
restrict which predicates our matcher can compare but rather
allow the user to introduce new predicates by defining the
semantics with an ARL rule. Second, since rules are fired
automatically as the agreements are being loaded into Snobase,
the SLOs are compared much before the search process. This

simplifies the search algorithm because to find a match for SLO1
we quickly query for all SLOs who have been asserted isStronger
than or isEquivalent to SLO1. The semantics of predicate rules
have the lowest priority so that the other rules may execute before
the final evaluation is performed.
3. Domain Specific Rules
The domain rules provide the matcher with richer knowledge of
the domain. The following example is based on the scenario from
Section 2. Consider the following domain rule for Availability:
 MTBF is the Mean Time Between Failures
 MTTR is the Mean Time To Recover
 Availability = MTBF/(MTBF + MTTR)
Consider a provider agreement with the following guarantees:

Guarantee1: SLO: qos:MTBF=150 time:minutes,
Qualifying Condition: numRequests<1000, Penalty: 5
USD, Importance 8
Guarantee2: SLO: qos:MTTR<5 time:minutes,
Qualifying Condition: numUsers<500, Penalty: 3 USD,
Importance 4

The ARL rule for Availability creates a new guarantee term for
any agreement which has SLOs regarding both MTBF and MTTR.
The new guarantee has an SLO for the Availability. Any
Qualifying Conditions will be compounded and a Penalty/Reward
will be the higher of the two. If each has the business value
importance, it will become the average of the two values. The
following ARL rule accomplishes the above:

when: Agreement (A) and hasGuarantee (A, G1) and hasSLO
(G1, SLO1) and hasQualifyingCondition(G1, QC1) and
hasPenalty(G1, P1) and hasImportance(G1, I1) and
hasExpression (SLO1, E1) and hasParameter(E1, “qos:MTBF”)
and hasValue(E1, X) and hasGuarantee (A, G2) and hasSLO (G2,
SLO2) and hasQualifyingCondition(G2, QC2) and
hasPenalty(G2, P2) and hasImportance(G2, I2) and
hasExpression (SLO2, E2) and hasParameter(E2, “qos:MTTR”)
and hasValue(E2, Y) do: hasGuarantee (A,G3) and hasSLO(G3,
SLO3) and hasExpression(SLO3, E3) and hasParameter(E3,
“qos:Availability”) and hasVaule(E3, X+Y) and hasPenalty (G3,
max(P1, P2)) and hasImportance(avg(I1,I2))
The rule will be fired once the provider agreement is loaded into
Snobase and will add the following guarantee to the agreement:

Guarantee3: SLO: qos:Availability=96.8, Qualifying
Condition: numUsers<500 AND numRequests<1000,
Penalty: 5 USD, Importance: 6

4. User Preference Rules
The preference rules enable user assertions over subjective
personal preferences. There is no standard of comparison for
Qualifying Conditions and Business Values as they are a matter of
user preference. For example, one service may be more active
during the weekend in which case a provider with a condition
stating that the objective may only be guaranteed if it is a weekday
would not be suitable for that user. The matcher is unaware of the
personal circumstances of each user until they are defined using
rules. A rule may assert one of two possible assertions which will
have an impact on matching: isPreferred or notSuitable. A user
may write a rule to assert that “a guarantee that has a condition
that the day of the week must be a weekday is not suitable” or “a
guarantee with a condition involving transactionRate is preferred

over a guarantee with a condition involving the day of the week”.
These rules have the flexibility to be more specific or generic.
The following ARL rule asserts that a weekday condition is not
suitable for this user:

when: Agreement (A) and hasGuarantee (A, G1) and
hasQualifyingCondition(G1, QC1) which hasExpression(QC1,
E1) and hasParameter(E1, “time:dayOfWeek”) and hasValue(E1,
“time:weekday”) do: assert Guarantee notSuitable G1

The above rule asserts that a guarantee is notSuitable if the
parameter of the Qualifying Condition is the dayOfWeek and if the
value is weekday. Conflicting rules are resolved by using optional
priority and condition fields.

4.3 SWAPS Search Algorithm
The system uses a two fold approach to finding the result set of
providers. First, matching is automatically performed by the
semantics of predicates rules as agreement instances are created.
These rules significantly simplify the matching process because
they compare the SLOs upon their entrance into Snobase. At this
time assertions are made about which SLOs are stronger than or
equivalent to other SLOs these assertions are queried by the
search engine. Second, searching is done to determine which
providers had agreements which were best suited for the
consumer’s agreement. We now detail the search algorithm. The
following functions are defined to facilitate the expression of the
search algorithm:
 “requirement(Alt, G)” returns true if G is a requirement of Alt
 “capability(Alt, G)” returns true if G is an assurance of Alt
 “scope(G)” returns the scope of G
 “obligation(G)” returns the obligated party of G
 “isStronger(Gj, Gi)” returns true if the SLO of Gj has an
 assertion isStronger than the SLO of Gi
 “isEquivalent(Gi, Gj)” returns true if the SLOs of the
 guarantees have the assertion isEquivalent
 “notSuitable(G)” returns true if G has an assertion notSuitable
As discussed in section 2.3, matching two agreements is reduced
to finding two matching alternatives and finding matching
alternatives is reduced to finding matching guarantees.

(∀Gi) such that Gi ∈ Alt1 ∧ Alt1 ∈ A1 ∧ requirement
(Alt1, Gi) ∧ (∃Gj) S.T. Gj ∈ Alt2 ∧ Alt2 ∈ A2 ∧
capability(Alt2, Gj) ∧ scope(Gi)=scope(Gj) ∧
obligation(Gi)=obligation(Gj) ∧ (sStronger(Gj, Gi) ∨
isEquivalent(Gi, Gj)) ∧ ¬notSuitable(Gj)

 4.3.1 Classification of Results
The search algorithm will yield a Vector of potential providers
where each provider contains at least one alternative which can be
fully satisfied and is also able to fulfill the requirements of the
consumer. This set will not contain any providers which have
conditions that would not be suitable for the consumer. As
discussed earlier, each user will have a subjective personal
preference regarding qualifying conditions and business values. If
the method for stating preferences was utilized then there may be
isPreferred assertions stated over some of the guarantees. We
implement a preference score for each alternative which is
incremented for each isPreferred statement asserted over one of
the guarantees of the alternative. The agreements containing
alternatives with the highest preference scores are displayed first.

4.4 Example
In this section we present an example to illustrate our approach.
Table 3 shows simplified set of guarantees for a consumer. The
consumer is seeking the potential providers from the library of
providers given in Table 4. The tags and structure of the
agreements are removed for simplicity and clarity.

Table 3. Summary of Consumer Guarantees

4.4.1 Parsing, Instance Creation and Rule Execution
When the tool is started, each of the provider agreement
documents in the library given in Table 4 are parsed and loaded
into Snobase. An agreement instance is created for each provider
alternative. Provider 3 will have two agreement instances
associated with it because it has two alternatives. As each
agreement instance is loaded, the rule engine executes the rules as
the criteria for each is met. The user’s system includes all of the
ARL rules from the previous examples in addition to a similar
rule to define the semantics of “greater”. An additional domain
rule exists for responseTime = processTime + transmitTime
which follows the same procedure as the previous domain rule for
Availability but sums the values. The following rule defines the
semantics of the “true” and “false” predicates:

when any two guarantees from a different agreement
instance have the same parameter and each predicate
=”true” or each predicate=”false”
assert [SLO1 isEquivalent SLO2]

Table 5 shows the assertions as each agreement is parsed and
entered into Snobase.

4.4.2 Searching
The consumer is matched against each alternative of each rovider.
By querying for isStronger and isEquivalent assertions for the
Provider’s SLOs, the algorithm determines that Provider 1 is able
to satisfy the consumer’s needs and the consumer can also satisfy
the requirement expressed in G1. However, Provider 1 is
dismissed as a potential match because one of the guarantees was
asserted as notSuitable as highlighted in number 3 of Table 5.
 Provider 2’s first alternative is considered and the algorithm will
determine that not all of the consumer’s guarantees are satisfied as
the provider does not have an isStronger or isEquivalent assertion
for each of them and as one of the SLOs is weaker than the
consumer SLO as highlighted in number 9 from Table 5. The
algorithm moves on to the next alternative of Provider 2 and
determines that it is a match because all of the consumer’s
guarantees are satisfied and none of the relevant provider
guarantees have been asserted as notSuitable. The algorithm
returns Provider 2 as the only match.

4.4.3 Post Search Considerations
There was only one potential match in the simplified example
above. However, if there had been more compatible providers in
the library, the algorithm would continue with additional steps.
There are several issues of preference in the example above. If
Provider1 had been a suitable match the responseTime is
guaranteed to be less than 14 seconds with a very high penalty of
15 USD. Provider 2 offers a much faster responseTime of 9
seconds but a much lower penalty of 1 USD. Some users may
desire efficiency while others may wish to merely satisfy the
objective while sacrificing some efficiency for the potential of a
high penalty payoff. Since this is a personal user preference, the
user may define a rule which states that a guarantee isPreferred if
the penalty is over some threshold. The user may also wish to
state that if the penalties are the same then faster speeds are
preferred. During the matching process, the preference score for
each alternative is incremented each time a satisfactory guarantee
has the isPreferred assertion. When multiple providers are able to
satisfy the basic needs of a consumer, the results are ranked by
highest preference scores so that the user may consider the most
preferred providers first. This example showed the reasoning

Consumer1.wsag

G1 Scope: ProcessRequest, Obligated: ServiceConsumer
SLOc1: qos:availableMemory greater 12 MB

G2 Scope: ProcessRequest, Obligated: ServiceProvider
SLOc2: qos:failurePerWeek less 7

G3 Scope: ProcessRequest, Obligated: ServiceProvider
SLOc3: qos:allowIncompleteInputs true

G4 Scope: ProcessRequest, Obligated: ServiceProvider
SLOc4: 99% of qos:responseTime less 14 seconds

Table 4. Summary of Guarantees from Provider Library

Provider1.wsag Provider2.wsag (Provider2a and Provider2b)

G1 Scope: ProcessRequest
Obligated: ServiceProvider
SLO1: qos:responseTime less 14 sec.
QC: time:dayOfWeek equals weekday
Penalty: 15 USD

Scope: ProcessRequest
Obligated: ServiceProvider
SLO5: qos:transmitTime less 4 sec.
QC:qos:maxNumUsers less 1000

Scope: ProcessRequest
Obligated: ServiceProvider
SLO9: qos:transmitTime less 4 sec.
QC: qos:maxNumUsers less 1000

Penalty: 1 USD Penalty: 1 USD
G2 Scope: ProcessRequest

Obligated: ServiceProvider
SLO2: qos:failurePerWeek less 7
Penalty: 10 USD

Scope: ProcessRequest
Obligated: ServiceProvider
SLO6: qos:processTime less 5 sec.
QC: qos:numRequests less 500
Penalty: 1 USD

Scope: ProcessRequest
Obligated: ServiceProvider
SLO10: qos:processTime less 5 sec.
QC: qos:numRequests less 500
Penalty: 1 USD

G3 Scope: ProcessRequest
Obligated: ServiceProvider
SLO3: qos:incompleteInputs true

Scope: ProcessRequest
Obligated: ServiceProvider
SLO7: qos:failurePerWeek less 16
Penalty: 2 USD

Scope: ProcessRequest
Obligated: ServiceProvider
SLO11: qos:failurePerWeek less 7
Penalty: 2 USD

G4 Scope: ProcessRequest
Obligated: ServiceConsumer
SLO4: qos:availableMemory greater 12MB

Scope: ProcessRequest
Obligated: ServiceProvider
SLO8: qos:incompleteInputs false

OR

Scope: ProcessRequest
Obligated: ServiceProvider
SLO12: qos:incompleteInputs true

process while illustrating the flexibility provided by the user
defined rules.

Table 5. SWAPS Matching

5. APPLICATION OF AGREEMENTS AND
AGREEMENT MATCHING
This section does not attempt to show another technical example
but rather describes how WS-Agreements and our tool can be
applied to remedy a challenging real world situation. The next
sections will describe the problem, how WS-Agreements can be
applied, and how the WS-Agreement matching tool can solve this
problem.

5.1 Agriculture in India
Agricultural trade in India is problematic for both Farmers and
Merchants and there is a lack of effective use of IT to facilitate
trade. Farmers spend time and resources growing goods and
sending them to the markets without guarantee that they will be
sold. The farmer pays for the transportation of the goods and the
wastages that occur when the goods spoil during transport.
Merchants have no assurances on the quality or availability of the
goods that they seek to purchase. This problem is addressed in
[4] and the authors describe an Agricultural Information System
to improve the effectiveness of decision-making in the agriculture
domain. A Web Services based business process management
system developed to aid the marketing of agricultural produce is
described in [18]. Each party involved is represented as a Web
Service. If each party is a Web Service, then the process of
matching farmer to merchant can be reduced to one of Web
Service composition and policy matching.

Contract farming is one remedy currently being practiced to solve
the dilemma and is described in [6] as a system for the production
and supply of agricultural products under forward contracts
between producers/suppliers and buyers. The cultivator makes a
commitment to provide an agricultural commodity of a certain
type, at a time and a price, and in the quantity required by a
known and committed buyer. Using faming contracts, growers
nd buyers can agree to terms and conditions for the sale and

purchase of goods. The buyer can make agreements to supply
selected goods which sometimes also include land preparation and
technical advice. The contracts ensure that the grower follows
recommended production methods and cultivation and harvesting
specifications. Conditions are frequently stated regarding the
price and quality of goods and penalties in the form of discounts
are offered for flaws or lack of quality.

a

The situation for farmers is improved as they no longer must send
goods to markets without a guarantee of acquisition. The farmer’s
price risk is reduced because the contracts specify the prices in
advance. The buyers obtain more consistent quality and more
reliable production than if purchases were made on the open
market. When efficiently organized and managed, contract
farming reduces risk and uncertainty for both parties as compared
to buying and selling crops on the open market. The success
stories of E-Chaupal and Tata Kisan Sansar, who have
implemented contract farming in India, are discussed in [18]. Just
as Web Services can represent the farmers and merchants, the
WS-Agreement is well suited to represent the complex contracts
drawn between the two.

5.2 Contracts as WS-Agreements
The WS-Agreement is perhaps the best suited standard for
representing farming contracts. The protocol is functional for
representing the guarantees which always include some objective
and often contain conditions which must exist in order for the
objective to be fulfilled. For example, a merchant may guarantee
a price under the condition that the goods are of a certain quality.
Business values such as penalties are often seen in contracts in the
form of discounts. For example, a farmer may guarantee that the
moisture percentage is than 10% and may offer a discount for
every bushel that contradicts that assurance. In this case, a
merchant is considered to be a service consumer and his
guarantees and requirements can be proficiently represented using
WS-Agreement. The available merchants are the service
providers. Table 6 contains an example of farming contracts as
WS-Agreements. It depicts the merchant as the consumer seeking
the most suitable farmer, however, this tool can also be used by a
farmer to find the ideal merchant. Section 5.3 will discuss how
SWAPS can easily match a merchant with a farmer who will
provide the required quality at a desired price.

5.3 WS-Agreement Matching for the
Agriculture Domain
An ontology representing the Agriculture domain can provide the
matcher with a complete understanding of the domain and the
user can supplement this knowledge with rules specific to the
domain. The user can also write any relevant conversion rules for
measurements. For example, the user may write a rule to convert
from ounces to grams or from bushels to pounds. For predicates,
this user may which to use the basic predicates already defined
within the system or can also add domain specific predicates. The

 Guarantee Fact/Rule Assertion
1 Consumer G4 PercentageLessThan

Threshold
Conversion Rule

qos:responseTime < 14
seconds

2 Provider1 G1 Semantics of “less” SLO1 isEquivalent SLOc4
3 Provider1 G1 User Preference Rule

weekday notSuitable
Provider1’s G4
notSuitable

4 Provider1 G2 Semantics of “less” SLO2 isEquivalent SLOc2
5 Provider1 G3 Semantics of “true” SLO3 isEquivalent SLOc3
6 Provider1 G4 Semantics of

“greater”
SLOc1 isStronger SLO4

7 Provider2a
G1 and G2

Domain rule for
“qos:ResponseTime”

Provider2a-G5-SLO13:
qos:responseTime less 9
secs., Qualifying
Condition:numRequests<
1000 AND
 numUsers<500
Penalty: 1 USD

8 Provider2a
G5

Semantics of “less” SLO13 isStronger SLOc4

9 Provider2a
G3

Semantics of “less” SLOc2 isStronger SLO7

10 Provider2b
G1 and G2

Domain rule for
“qos:ResponseTime”

Provider2b-G5-SLO14:
qos:responseTime less 9
secs., Qualifying
Condition:numRequests<
1000 AND
 numUsers<500
Penalty: 1 USD

11 Provider2b
G5

Semantics of “less” SLO14 isStronger SLOc4

12 Provider2b
G3

Semantics of “less” SLO11 isEquivalent
SLOc2

13 Provider2b
G4

Semantics of “true” SLO12 isEquivalent
SLOc3

simple example in Table 6 uses predefined predicates. In this
domain, price is compared differently than moisture or splits
because, with the latter, both parties specify that the number must
be less than some value because while moisture may vary per
bushel it must always be less than some value. Price, however, is
a fixed price per bushel. Therefore, when comparing price,
expressions with different predicates may still be compatible. For
example, the merchant is willing to pay five cents or less but the
farmer is asking 4 cents or greater per bushel. Since a parameter
such as price will be reasoned over differently than a parameter
like moisture, a separate rule must be defined to define the
procedure for comparing price. The user will surely have
personal preferences and may define these as rules. In Table 6,
Farmer 1 clearly offers better quality goods while Farmer 2 offers
much higher penalties. The merchant may specify the tradeoff as
an ARL rule which states that high penalties are preferred. This
causes Farmer 2 to be presented as a higher match than Farmer 1.
This tool can effectively narrow down the hundreds of farmers
into a group which contains only those farmers offering what the
merchant requires. The merchant can specify additional
preferences and aspects which are notSuitable to further narrow
down the search. Finally the merchant is presented with one or
more farmers, in order of preference, from which to choose. This
feature greatly reduces the search effort for both farmers and
merchants. It can ensure that each farmer and merchant gets the
best possible deal tailored to their individual needs and
preferences.

Table 6. Farming Contracts represented with WS- Agreement

6. RELATED WORK
There has been very little work done in the area of WS-
Agreement. A formal definition of the WS-Agreement is given in
[1] and the schema is extended by adding tags to accommodate
states for negotiation. Cremona [11] is a tool for the creation and
monitoring of WS-Agreements. Both contributions do not
consider partnering agreements. Major work in the domain of
Service Level Agreement (SLA) matching is purely syntactic.
[28] developed a methodology for matching Web Service Level
Agreements (WSLA). This work syntactically matches SLAs by
parsing them into syntax trees. The authors have designed a
matching algorithm which compares these trees node by node.
Heterogeneous SLAs are handled by referencing a table
containing instructions which the code must execute in order to
convert them into the same format. Such syntactic approaches
must take a more exhaustive and laborious approach to

matchmaking and are challenged by less obvious matches. Since
our agreements are parsed into instances of the WS-Agreement
OWL ontology, we are able to reason over the ontology and
retrieve data via ontology queries with much less effort. In
addition, the semantics defined by this ontology result in more
accurate matches. This work focuses on matching Service Level
Objectives, where, our work considers compatible scopes and
SLOs to be the most essential criteria for matching but also reason
over qualifying conditions and business values. GlueQoS [29]
extends the grammar of WS-Policy to add qualifying conditions.
This approach uses only XML based models which limits the
expressivity of the assertions. Since XML cannot express formal
meaning, the matching is purely syntactic which greatly limits
efficiency of the matching process. Our work uses the
combination of OWL ontologies and ARL rules to provide our
matcher with detailed knowledge of the domain, QoS, and
agreements which leads to better matches.
The following work uses rules without semantics to represent
policies. Paschke et al use a rule based SLA language (RBSLA)
to express Service Level Agreements in [16]. RBSLA is an
extension of RuleML tailored to satisfy the requirements of the
SLA domain. The rules are based on the logic components of
Derivation, Event Condition, Event Calculus, Courteous Logic,
Deontic Logic, and Description Logic. Rule based SLAs can be
written and modified using the management tool (RBSLM) which
also enables the management, maintenance and monitoring of
contract rules. Policy matching is not considered in the scope of
this approach. There has also been some work that has benefited
from using Semantic Web technologies. Uszok et al have
developed KAOS for the specification, management, analysis, and
enforcement of policies [20]. The policy is represented using
concepts from an OWL ontology. Role-value maps are added to
later work to compensate for some of the limitations in
expressiveness of OWL. The trust and privacy of Web services is
handled with a rule based engine in [7], and in [8], the authors
discuss the combination of OWL ontologies and SWRL rules.
Parsia et al present the OWL ontology developed for representing
policies however they do not utilize rules [15]. Li et al apply a
very interesting approach to Access Control Policy specification
[10]. Access Control Policies are designed and expressed using a
combination of OWL and SWRL. Policies are defined using an
ontology. SWRL is introduced to enhance OWL with additional
expressiveness and deducible ability. Access control policies are
designed in the form of rules using concepts defined in the
ontology and relationships such as isPermittedDoWith to express
which kinds of agents have permission to access resources. This
work aims to express policies and does not consider the matching
of these policies. Verma et al presents a successful approach to
policy matching by combining semantics with rules to achieve
efficient matches. WS-Policy is extended to incorporate
semantics and policies are represented using an OWL ontology.
SWRL rules express additional domain concepts and expand the
matching ability. Our work applies a similar approach to WS-
Agreement and extends it to also reason over scope, qualifying
conditions and business values. We provide matching flexibility
by allowing users to define their own predicates and preferences.

7. CONCLUSION AND FUTURE WORK
This work presents a novel contribution to the area of WS-
Agreement and agreement matching. With the framework and
implementation described throughout this paper, service providers
and consumers may automatically make the most accurate and

Merchant Farmer 1 Farmer 2
Guarantee1:
SLO1: Moisture is
less inclusive 12%
Guarantee2:
SLO2: splits is less
inclusive 20%
Guarantee3:
SLO3: test weight
is greater than 54
lbs
Guarantee4:
SLO4: price
lessEqual 10 cents
per bushel

Guarantee1: SLO1:
Moisture is less 10%
Penalty: discount
$10 each
Guarantee2: SLO2:
splits is less inclusive
20% Penalty:
splits of 5% or more,
discount $1 each
Guarantee3: SLO3:
test weight is greater
than 60 lbs
Guarantee4: SLO4:
price greaterEqual 8

Guarantee1:
SLO1: Moisture is
less inclusive 12%
Penalty: discount
$15 each
Guarantee2:
SLO2: splits is less
inclusive 20%
Penalty: splits of
3% or more, discount
$5 each
Guarantee3:
SLO3: test weight is
greater than 58 lbs
Guarantee4: SLO4:
price greaterEqual 7

effective partnerships which are tailored to user preferences.
While this objective has been considered in the prior works, we
extend this by defining reasoning methods for the Scopes,
Obligations, SLOs, Qualifying Conditions, and Business Values
of the Guarantee Terms. We consider the subjectivity of the
latter two and implement a feature which allows for the
specification of what the user prefers and what the user considers
unsuitable. We effectively match complex agreements containing
multiple alternatives and symmetry such that both consumer and
provider have capabilities and requirements. This work utilizes
an effective combination of ARL rules with multiple Ontologies
in order to achieve flexibility and accuracy. In the process it
demonstrates the need and value of annotating multiple activities
(e-commerce in our exanple) with non-functional and domain-
independent ontologies. Use of WSDL-S for semantic Web
Services is also demonstrated in this context. We define several
categories of rules to enhance domain specific knowledge,
efficiently handle heterogeneous SLOs, allow the definition of
user preferences, and flexibly allow domain specific predicates
while greatly simplifying the matching process. These rules are a
powerful addition because they allow the matching process to be
changed and customized at any time without any modifications to
the code or programming knowledge.
 Since a key feature of our work is to customize the matching
process with user defined rules, this work will benefit from a
module which converts rules defined with SWRL to ARL rules to
facilitate the definition of rules by user. This tool can be
extended to incorporate negotiations as defined by the protocol in
[2]. Suitable agreements can be identified by the current tool and
negotiations between parties could ensue. This tool can also be
augmented to support other standards for policy specification such
as WS-Policy. This would allow consumer to provider matches
regardless of the specification used. This kind of matchmaking
can be integrated with the METEOR-S configuration and runtime
binding middleware [22].

Acknowledgements: We thank Dr. Heiko Ludwig (IBM), a
member of WS-Agreement committee, for his guidance. Prof.
Sanjay Chaudhari of DA-IICT, India outlined the agriculture
scenario. We also acknowledge partial support from the IBM
Eclipse Innovation Grant and the collaboration with the
METEOR-S project team, of which this research is a component.

8. REFERENCES
[1] Aiello, M., Frankova, G., and Malfatti, D. What's in an

Agreement? An Analysis and an Extension of WS-
Agreement, Proc. 3rd ICSOC, 2005

[2] Andrieux, A., Czajkowski, C., Dan, A., Keahey, K., Ludwig,
H., Pruyne, J., Rofrano, J., Tuecke, S., Xu, M., WebServices
Agreement Specification (WS-Agreement). June 29th 2005

[3] Bigus, J.P., Schlosnagle, D.A., Pilgrim, J.R, Mills III, W.N.,
and Diao, Y. ABLE: A toolkit for building multiagent
autonomic systems, IBM Systems Journal, 41 (3), 2002

[4] Chaudhary, S., Sorathia, V., Laliwala, Z., Architecture of
Sensor based Agricultural Information System for Effective
Planning of Farm Activities. IEEE SCC 2004: 93-100

[5] DQL Technical Committee 2003. DAML Query Language
(DQL). http://www.daml.org/dql

[6] Eaton, C., Shepherd, A., Contract Farming Partnerships for
Growth FAO Agricultural Services Bulletin 145

[7] Kagal, L., Paoucci, M., Srinivasan, N., Denker, G., Finin, T.,
and Sycara, K. Authorization and Privacy for Semantic Web
Services, AAAI Spring Symposium on SW S, 2004

[8] Kagal, L., Finin, T., and Joshi, A. Declarative Policies for
Describing Web Service Capabilities and Constraints,
Proceedings of W3C Workshop on Constraints and
Capabilities for Web Services, 2005

[9] Lee, J., Goodwin, R. T., Akkiraju, R., Doshi, P., Ye, Y.
Snobase: A Semantic Network-based Ontology Ontology
Management http://alphaWorks.ibm.com/tech/Snobase 2003

[10] Li, H., Zhang, X., Wu, H., Yuzhong, Q., Design and
Application of Rule Based Access Control Policies. Proc of
the Semantic Web and Policy Workshop, 2005, Galway, IR.

[11] Ludwig, H., Dan, A., Kearney, B., Cremona: An Architecture
and Library for Creation and Monitoring of WS-Agreements.
Proc 2nd ICSOC,, New York, 2004.

[12] Maxemilien, M., Singh, M., A Framework and Ontology for
Dynamic Web Services Selection. IEEE Internet Computing
8(5):84-93, September-October 2004

[13] OWL-S, http://www.daml.org/services/owl-s/
[14] Pan, F., Hobbs, J. OWL Time http://www.isi.edu/~

pan/damltime/time-entry.owl
[15] Parsia, B., Kolovski, V., Hendler, J. Expressing WS-Policies

in OWL. Policy Management for the Web Wkshp, May 2005
[16] Paschke, A., Dietrich, J., Kuhla, K. A Logic Based SLA

Management Framework. Proc. of the Semantic Web and
Policy Workshop, November, 2005.

[17] Sivashanmugam, K., Verma, K., Sheth, A., Miller, J., Adding
Semantics to Web Services Standards, ICWS 2003

[18] Sorathia, V., Laliwala, Z., and Chaudhary, S. Towards
Agricultural Marketing Reforms: Web Services
Orchestration Approach, IEEE SCC 2005.

[19] SWSF, http://www.w3.org/Submission/SWSF/
[20] Uszok, A., Bradshaw, J.M., Jeffers, R., Johnson, M., Tate,

A., Dalton, J., Aitken, S. Policy and Contract Management
for Semantic Web Services, Proc. of the AAAI Spring
Symposium on Semantic Web Services, 2004

[21] Verma, K., Akkiraju, R., Goodwin, R. Semantic Matching of
Web Service Policies, SDWP Workshop, 2005.,

[22] Verma K., Gomadam K., Lathem, J., Sheth A., Miller, J.,
Semantically Enabled Dynamic Process Configuration,
LSDIS Lab Technical Report 2006.

[23] The Web Service Policy Framework, http://www-
106.ibm.com/developerworkds/library/ws-polfram

[24] Wohlstadter, E., Tai, S., Mikalsen, T., Rouvello, I., Devanbu,
P. GlueQoS: Middleware to Sweeten Quality-of-Service
Policy Interactions, The Proc ICSE 2004, pp. 189-199

[25] The WSLA Specification,
http://www.research.ibm.com/wsla/WSLASpecV1-
20030128.pdf

[26] Web Services Modeling Ontology, http://www.wsmo.org
[27] WSDL-S, http://www.w3.org/Submission/WSDL-S/
[28] W. Yang, H. Ludwig, A. Dan: Compatibility Analysis of

WSLA Service Level Objectives. Workshop on the Design of
Self-Managing Systems. Supplemental, 2003

http://lsdis.cs.uga.edu/projects/meteor-s/
http://www.daml.org/services/owl-s/
http://www.w3.org/Submission/SWSF/
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www.wsmo.org/
http://www.w3.org/Submission/WSDL-S/

	1. INTRODUCTION
	In a service oriented environment it is advantageous for service consumers and providers to obtain guarantees regarding the services that they both require and offer. Usually these guarantees pertain to quality of service (QoS) aspects. WSDL does not provide a means to express these guarantees; therefore such standards as WS-Policy [23] and WSLA [25] exist to allow for the expression of additional nonfunctional attributes. However, these standards are not expressive enough to represent the truly complex nature of the relationship between a service consumer and provider. The WS-Agreement specification [2] defines a language and protocol for capturing this intricate relationship with agreements between two parties. An agreement between a service consumer and a service provider specifies one or more service level objectives (SLO) which state the requirements and capabilities of each party on the availability of resources and service qualities. For example, an agreement may provide assurances on the bounds of service response time, service availability, or service reliability. WS-Agreement is more expressive than the previous policy standards because in addition to service level objectives, an agreement contains scopes for which the guarantee holds, conditions which must exist in order for the guarantee on the SLO to be valid, and business values, such as penalties and rewards, which incur if the SLO is not satisfied. This is further complicated by the symmetry of these agreements such that each provider does not only state guarantees regarding capabilities but likely has requirements of its own. In addition, each agreement may contain multiple alternatives of guarantee sets. As each consumer seeking a suitable provider has many complex options to choose from, the manual selection of providers is time consuming, tedious, and error prone. With the increasing acceptance and popularity of WS-Agreement and the ever present need to protect the quality of service with guarantees, the development of an approach for the automatic matching of these agreements is imperative.
	This paper defines and provides reasoning methods for the components of an agreement which must be compatible for quality matches. We present a powerful approach which uses OWL ontologies to represent domain knowledge in conjunction with SWRL rules to achieve the most accurate and consumer personalized matches. The contributions of this work include:
	2. MOTIVATION FOR A SEMANTIC APPROACH
	3. WS-AGREEMENT AND WS-AGREEMENT MATCHING
	3.1 WS-Agreement Schema
	3.2 WS-Agreement Extensions
	3.2.1 Adding Structure to SLO and Qualifying Conditions
	3.2.2 Adding Semantics to the WS-Agreement
	3.2.3 Domain Specific Predicate Flexibility

	3.3 Semantic Web Services
	3.4 WS-Agreement Matching

	4. SEMANTIC WS-AGREEMENT PARTNER SELECTION
	4.1 Architecture
	The system consists of three phases: parsing, matching and searching, which can be seen in Figure 3. To reason about domain ontologies, we use Snobase [9], an ontology based management system that offers DQL-based [5] Java API for querying OWL ontologies. IBM’s ABLE engine [3] is used by Snobase for inferencing and we use ABLE Rule Language (ARL) [3] to write the rules. The ontologies are loaded into Snobase followed by each provider’s WS-Agreement. We parse the agreements and load them into the system as instances of the WS-Agreement ontology. As each of these new agreement instances is created, the ABLE rule engine within Snobase executes rules as the criteria for each rule is met. The additional assertions made by the rules are used to greatly simplify the search phase by making the match decisions a priori. These rules provide additional knowledge about the domain and, as described in Section 2, play a significant role in the discovery of the most accurate match results. We discuss the rules in further detail in the next section. When a consumer seeks a partner, the consumer agreement is parsed and entered into the system as another agreement instance. The search phase begins as the algorithm considers the agreement instances and the assertions previously set by the rules and returns a list, ranked by preference, of all of the provider agreements which accurately matched the consumer’s agreement.
	4.2 WS-Agreement and Rules Representation
	Ontologies allow the matcher to understand the semantics of the domain; therefore enabling a much more accurate search than a syntactic approach. Rules allow for richer domain knowledge by stating additional domain rules and semantics and provide a high level of flexibility by stating customized user preferences.
	4.2.1 Knowledge Representation
	4.2.2 Representation of Rules

	4.3 SWAPS Search Algorithm
	4.4 Example
	4.4.1 Parsing, Instance Creation and Rule Execution
	4.4.2 Searching
	4.4.3 Post Search Considerations

	5. APPLICATION OF AGREEMENTS AND AGREEMENT MATCHING
	5.1 Agriculture in India
	5.2 Contracts as WS-Agreements
	5.3 WS-Agreement Matching for the Agriculture Domain

	6. RELATED WORK
	7. CONCLUSION AND FUTURE WORK
	8. REFERENCES

