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SEMANTICAL CONSIDERATIONS ON MODAL COUNTERFACTUAL
LOGIC WITH COROLLARIES ON DECIDABILITY,
COMPLETENESS, AND CONSISTENCY QUESTIONS

J. ALMOG

Introduction The title of this paper is almost identical (morphologically)
to the title of the famous paper of Kripke [8]. The difference lies in the
insertion of the word ‘counterfactual’ into the title of this paper. Indeed, I
am going to argue that this insertion causes all the modifications in the
classical modal semantics of Kripke in order to account for the semantic
properties of our modal counterfactual logic (MCL). It will be argued that
neither nonmodal counterfactual formulas nor modal counterfactual for-
mulas can be given a Kripke-type semantics (K-type semantics).

A nonmodal counterfactual formula (a modal-free counterfactual for-
mula) is a formula which consists of two atomic or molecular sentences
with no modal operators such that they are connected by the two-place
sentential connective of the counterfactual conditional like A [(— B or
A= B. A modal counterfactual is a nonmodal counterfactual formula in
the scope of the classical modal operator of necessity and possibility like
(A O~ B) or &(A U~ B). It will be shown that in order to treat adequately
nonmodal counterfactual formulas one needs a more general model theory
than the K-semantics. Such a model theory appears to be Neighborhood
Semantics (NS). In order to account for modal counterfactual formulas one
needs an extension of NS. Indeed neither K-semantics nor classic NS (two-
valued NS) can serve as a model theory (in the Tarskian sense) for modal
counterfactuals. It is only a continuously valued NS which can serve as a
theory of truth and satisfaction for modal counterfactuals.

1 Semantics for nonmodal countevfactuals We shall use Lewis’s seman-
tic analysis of counterfactuals as a representative work." Lewis’s basic
idea is that the antecedent of the counterfactual transforms us from the
actual world to a world which is maximally similar to our world except that
in it the antecedent holds. Then the counterfactual holds iff the consequent
holds in this world,

Consider an assignment $ to each possible world i of a set $; of sets of
possible worlds. Then for each i the following holds:
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(A) $; is centered on 7; that is, the set {i}, having as its only member i,
belongs to $;.

(B) $; is nested; that is, whenever Sand T belong to $; either S is included
in 7 or T is included in S.

(C) §; is closed under unions; that is, whenever G is a subset of $; and UG
is the set of all worlds j, such that j belongs to some member of G, UG
belongs to $;.

(D) $; is closed under nonempty intersections; whenever G is a nonempty
subset of $; and NG is the set of all worlds j such that j belongs to every
member of G, NG belongs to $,.

Given that (A)-(D) are the minimal artifacts of our theory, we set the
following truth conditions: A [~ B is true at ¢ iff (i) no A-world belongs to
any sphere S in $; (vacuous case); (ii) some sphere S in $; contains at least
one A-world and A O B holds at every world in S. As for the counterfactual
‘AO— B’ its conditions are equivalent to those of ‘1(4 U~ 1B)’.

Conjecture I. Standard K-semantics is not an adequate nonmodal counter-
factual semantics.

The set of possible worlds used by Lewis and the accessibility relation on
them is non-Kripkean. In fact the cardinality of the set used by Lewis to
evaluate his counterfactuals is much smaller than the cardinality of the set
used by Kripke in his normal model structure. More crucial is the differ-
ent use of the R relation (the accessibility relation). Lewis considered
worlds which are accessible in a cerfain way to i. Kripke put no restric-
tion on the relation R except for properties like reflexivity, transitivity,
and symmetry which characterize semantically different modal logics.
However, Kripke cannot consider only similar worlds to { if he does not
modify the nonrestrictive nature of his accessibility relation,

Two indirect ‘proofs’ were given to the incompatibility of Lewis-type
semantics with K-semantics. The first was given by an author who was
aware of Lewis semantics for counterfactuals. Segerberg [16] showed that
counterfactuals semantics can be given in terms of neighborhood seman-
tics. Since NS is surely not equivalent with K-semantics one is tempted to
conclude that K-semantics is not an adequate model theory for nonmodal
counterfactuals, The second indirect ‘proof’ was given by Montague (1968,
1970) who was not aware and did not intend to refer to Lewis’s work,
Montague [12] claimed that conditional necessity cannot be treated in terms
of K-semantics of relevance relations between two possible worlds, This
fits Lewis’s formulation of the counterfactual in terms of a variably strict
conditional, Montague [11] provided a class of accessibility relations which
do not belong to the classical relation. All these nonclassical relations are
special because they consider worlds which are accessible in a ceriain way
to the base world. One of these nonclassical relations is an accessibility
relation between worlds which satisfied a minimal similarity to a degree d.
Montague was surely unaware of the work Lewis was going to do in the
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early seventies and Lewis did not mention Montague’s analysis. However,
when one compares Lewis’s informal discussion with Montague formaliza-
tion of the properties of this nonclassical accessibility relation one finds an
interesting similarity.

Montague’s analysis runs as follows: Consider the class M of all sets
N such that for some set I of possible worlds: (i) N is a nonempty set of
reflexive and symmetric relations having I as their field; (ii) RN Sisin N
whenever R,S are in N; and (iii) for each R in N, there exists an S in N,
such that for all ¢,j,k ¢ I, if ¢Sj and jSk then iRk, If N is in M we regard
each member R of N as a relation between worlds of similarity in certain
features and to a certain degree. R will not, in general, be transitive. S of
which (iii) asserts the existence can be understood as the relation of simi-
larity in the features involved in R but to twice the degree involved in R.
This Montaguean characterization fits Lewis’s theory (see Lewis [9], 3.2
and 4.2).°

Since this Montaguean characterization is given in the general context
of accessibility relations which do not enter K-semantics but only NS, it
seems that the conclusion concerning the incompatibility of Lewis’s analy-
sis with K-semantics follows immediately. However, neither Montague nor
Segerberg gave precise truth and satisfaction conditions for counterfactuals
in terms of NS. To use the intuitionistic jargon, they gave an existential
proof concerning the impossibility of giving a semantics for counterfactuals
in terms of K-semantics. But they did not show how effectively we can
construct an NS for counterfactuals.

1.1 NS for nonmodal counterfactuals In this section I try to provide
counterfactuals with NS truth conditions. Recall the basic idea of NS: Let
N be a one-place sentential operator (one can generalize to many place
operators). N is given as its value a function Fy such that for any i e I,
Fy(?) is a set of subsets of 1. Since N is not truth functional, the truth value
of A is not sufficient if one wants to compute the value of N(A) at i. Hence
one must check A’s distribution along /. Each distribution of truth values
can be represented as a subset H of I, H contains only members of I in
which A is true and thus A holds at j iff j ¢ H. Hence N(A) is true at ¢ iff
A’s distribution (viz H) is one of the sets accepted by Fy(i); i.e., N(4) is
true at ¢ iff H ¢ Fy(7). (The sets in Fy(i) were named by Scott ‘the neigh-
borhoods of i’.)*

Now let me turn back to Lewis’s counterfactuals. In terms of NS his
counterfactual can be given the following truth conditions: A [ B is true
at ¢ iff H ¢ Fep(i) (CF = 0~ counterfactual), Now, H € F¢p(i) iff S ¢ H, when
S is the smallest A-permitting sphere around 7. Then H is equivalent to the
set of all worlds in which ‘A D B’ holds. Thus H ¢ F.p(i) iff the set of all
worlds in which ‘A D B’ coincides with the smallest A-permitting sphere.*
Lewis said that A [}~ B is true at ¢ iff some AB-world is closer to i than
any A 1 B-world. In NS this amounts to the assertion that AB holds at a
neighborhood of i whose most distant member is distant to <n (or similar
to =), while A 7 B holds at a neighborhood of ¢/ whose most distant
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member is distant to ># (or similar to <#n). Similar formulations can be
given in topological terms using the idea of a topological space around i,

2 Modal countevfactuals So far we have not compared one counterfac-
tual with another, but have restricted ourselves to the assignment of truth
conditions to nonmodal counterfactuals. In this section we consider a
possible method of comparing the degree of possibility and necessity of
counterfactuals. Since the use of the comparative presupposes that the
arguments of the binary predicate satisfy the noncomparative use of the
predicate to a degree, it will follow that counterfactuals may be necessary
(possible) to a degree. Thus, if A is more necessary than B, A’s degree of
necessity is higher than B’s.

2.1 Lewis’s comparative connectives In order to define the notion of
‘more closer than’ or ‘more similar than’ Lewis needed a comparative
connective, He introduced a family of comparative possibility connectives
({91, pp. 52-56):

a. A < B means that A is at least as possible as B.
b. A < B means that A is more possible than B.
¢c. A~ B means that A and B are equally possible,

Lewis used these connectives in order to show that A 07— B means that
CA & (AB< A 1B). Thus the connective is used to connect atomic sen-
tences. However, interesting results arise when nonatomic expressions
are connected by this connective. Let us have formulas of the following
form:

(AT B) < (A L~ C)
(A O— 1C) < (4 O— 1B).

Thus, counterfactuals are themselves compared. Now, given Conjectures 2
and 3 it follows that counterfactuals may be necessary to a degree. Given
Conjecture 2 alone, it follows that counterfactuals may be possible to a
degree:

Conjecture 2: Given ‘A is F-er than B’ when F-er is an operation which
forms a binary predicate out of an adjective, A and B may satisfy F to a
degree.

Generalization: Two compared arguments in a comparative may satisfy to
a degree the predicate from which the comparative was derived.

Now back to our specific comparative, that of comparative possibility. We
can conjecture that:

Conjecture 3. If the degree of possibility of two arguments may be com-
pared, their degree of necessity may be compared too,

Conjecture 3 rests on the modal equivalence (JP =1 1P, Thus if < stands
for comparative necessity (A << B means that A is more necessary than B)
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it follows from 1A < 1B that B << A. Indeed it is a biconditional (hence,
an equivalence), Thus, given that it makes perfect sense to say that
‘A0~ B) < (A~ C) it makes sense also to say that ‘(4 [— 1C) <«
(A L3> 1B).

Now, bearing in mind Lewis’s formulation of ‘4 U— B’ in terms of the
truth of AB in a closest world than any A 1 B-world, we may give similar
truth conditions to sentences with the form of (4 [— B) 0~ (4 [~ C) by
equating it with:

CAB&((AB)- AL~ C)<((AC—B)- (AT~ TC)).

However this is only a corollary of the use of the comparative connective
between counterfactuals. A much more important result follows from
Conjecture 2 (and the generalization of it):

Conjecture 2 for MCL: Given that ‘(4 [— B) < {4 [~ C)’ and A [ B) «
(A D= C)’ are accepted by our system, it follows that our system con-
tains the following sentences which are true to a degree: ‘C{A U~ B)’,
‘(A O— C), ‘O(A [ B)’, and ‘CLI(4 [+ C)’, Indeed given theorem A
it follows that ‘0(A — B) is truer than O(A [— C)’ is equivalent to
(AT~ B) < (AU~ C).

Thus the classical Kripkean modal operators may have formulas in their
scope such that the entire modal sentence is true to a degree iff compara-
tive necessity and possibility are allowed.

3 Continuously -valued (fuzzy) model theovy for wmodal countevfactuals
Thus it seems that our modal counterfactuals require a nonclassical se-
mantics in the sense of being not two-valued., This result is a direct
consequence of our use of the concepts of comparative possibility and
necessity. Generally speaking, when two arguments can satisfy a com-
parative it follows that one can scale these arguments on a scale., Alter-
natively, if a predicate F can be transformed into a binary predicate of the
form ‘F-er than’, it follows that F may be satisfied to a degree. In our
case, our remarks apply to ‘necessary’ and ‘possible’ and thus counter-
factuals in the scope of these operators may be true to a degree. Thus our
semantics must be based on a multivalued model theory. In such a theory,
the cardinality of the set of truth values is >2. Roughly speaking, two types
of many-valued semantics can be distinguished in the context of truth
theories for modal sentences:

1. According to the first conception, the set of truth values consists of
a finite number of valuations. Normally the cardinality of this set varies
between three to four (consult Lukasiewicz’s, Bochvar’s, Kleene’s, and
Herzberger’s new four-valued logic). The ‘ideology’ of this approach is to
allow a finite set of truth values and hence a finite set of degrees of truth,

2. According to the second approach, the set of truth values is the real
interval [0,1]. Thus each real number in this interval stands for a degree
of truth, The first logic which used such a truth values set was not purely
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deductive., It was Reichenbach’s probability logic in which each probability
assignment was taken as a truth value. Thus if p»(P) = i the truth value of
Pis i. The modern logics in which truth values range over the real inter-
val [0,1] are all tokens of a general fuzzy logic. The logical and set theo-
retical foundations of this logic were set by Zadeh in 1965. In this logic,
propositions may be true to any degree in the interval [0,1]. Accordingly,
elements may belong to a degree to a set. In this way we get the concept of
fuzzy set which is characterized by a corresponding membership function
to the set. Thus if ‘x is tall’ is true to ¢ it means that x is a member of the
set of tall men to the degree 7.

Back to our modal counterfactuals, we note that they may be true to a
degree. Hence we need a semantics in which the truth set (set of true
propositions) is a fuzzy set, at least when modal counterfactuals belong to
the set of propositions.

One possible truth theory might have been a fuzzified version (or
many-valued version) of Kripke-type semantics. However, Kripke seman-
tics was shown to be inadequate for modal counterfactuals (not only because
of its two-valued nature) and thus it cannot serve us. A much more
plausible candidate is a fuzzified NS. NS in its classical form was an
adequate semantics for nonmodal counterfactuals. Since the main problem
introduced by modal counterfactuals is the possibility of their being true to
a degree, a graded NS seems to be a plausible semantics.

3.1 Fuzzy NS Recall that in classical NS, given an operator N and a
world ¢ a proposition Np is true at { iff He Fy(i), when H is the set of all
worlds in which p is true. Now if we let ¢,7,k# ... range over worlds, and
a,fy ... over degrees of truth, we want to say that if our operator is
either [ or & and our formula in their scope is a nonmodal counterfactual
then we may have the case that ‘CJ(A O— B)’ is true to @ at ¢, In that case
we should change the binary (two-valued) truth conditions mentioned above.

Let me advance the following suggestion: Normally we would expect
that (A (0~ B); = a would be interpreted in the following way: (A T B);
is true to a iff A D B is true in all the alternatives to the closest world to 7.
Such truth conditions have no intuitive foundations. They just impose a
Kripke-style interpretation of necessity which has no significance in our
case. Instead I would suggest a more intuitive approach. My basic idea is
that if AC—~B is more necessary than A [~ C then something in these
counterfactuals makes the possibility of A= 1B much more farfetched
than the possibility of A (O— 1C. What can be the reasons for such a
difference? The reason seems to be the type of material implication which
is ADBand AD C. If AD Bis alogically true conditional while A D C is
a physical truth then the possibility of A O— 1B is lower than the possi-
bility of A (O~ 1C. Accordingly, the necessity of A [ B is higher than
that of A 0 C. Two special cases exist: when A D B is an analytic truth
then O(A (03— B) is 0 and hence (A 03— B) is 1. The other case is with a
conditional A O B where B contradicts A. Then J1071(4 D 1B) and thus
11 O(A O~ 1 B), and thus O(A U— B) is false to the degree 1. This explains
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the intuitive saying that it is always the case that 4 = A and never
AT— 1A,

Thus the more the connection between A and B in A [J— B is stronger
the more ({4 [ B) is true. Note that if A D A4 is a logical truth, A DB a
physical truth (i.e., A D 1B is a physically impossible world), and A D C is
an historical truth, then the set of worlds in which A (3~ A4 holds is larger
than the set in which A T~ B holds and A [ C holds in the smaller set
from all three. Recall that in NS we used H for the set of worlds in which
the proposition in question holds. Hence, if H, stands for the set in which
A [0~ A holds, H, for the set in which A OO— B holds, and H, for the set in
which A [~ C holds, then H, > H, > H,. Thus, we no more say just that
He Fop(i), we are now interested in the cardinality of H. Given that the
cardinality of the set denoted by F.p({) is » and that for the proposition
(A 0~ B) H has the cardinality of m, then the degree of truth of (A4 O~ B)

at 7 is @ when o satisfies the equation % = % In the case m = n, (A O B)

will be true to the degree 1. This is the case when H, the truth set of
A [ B, is the set of all worlds and hence A (7— B is completely necessary.
Note that when m = 0, the truth value of O(A T B) is 0.

Thus, if one recognizes that different true material implication may be
necessary to different degrees® he must accept one of the two following
alternatives:

1. if ADA, ADB, and A D C are necessary to different degrees then
(A 00— 4), (A - B), 0@ - C) we use different necessity operators.
The strength of the operator is a function of the type of sentence in its
scope. For example, in (A U— A) the necessity operator is a logical
necessity, while if A D 1B describes a physically impossible world,
{1(A (0~ B) uses an operator for physical necessity.

In such a theory there is no need for degrees of truth and satisfaction
as long as one does not compare two different types of necessity. Thus as
long as the operators are different, both (J(4 (0~ A) and ({4 [~ B) are true
to the degree 1 because their strength is not compared. (It may be argued
that even when there is no comparison between two operators, the need for
degrees of truth arises because formulas may be even physical necessities
to different degrees. In the epoch of quantum mechanics when laws are
interpreted probabilistically, it may be the case that two ‘laws’ with differ-
ent probabilities may be said to be necessities to a different degree. Such
a theory claims that degrees of truth for modal sentences are needed not
only when one compares two different necessity operators, but even within
the domain of a single operator. Iignore, intentionally, this claim.)

2. The second approach does not use different operators of necessity.
The theory has one operator but it may be satisfied to a degree.

Approaches 1 and 2 may be proved equivalent. One can set a translation
function from one theory to the other. One can have a recursive function
predicting the degree of truth value of a formula according to (2) given the
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operator used according to (1). Thus, if L stands for logical necessity,
P for physical necessity, and H for historical necessity, and given that
L> P> H (in the sense that L quantifies over the largest set of worlds),
our translation predicts that if Lg is true and Pr is true, it follows that if
in (2) the only operator is N, Ng > Nv. If the logician succeeds in fixing an
exact (and intuitive) mathematical relation between L, P, and H, then an
exact prediction can be made as to the value of the formulas in the scope of
N. For example, if being a historical necessity to the degree 1 means being
a physical necessity to ¢, then given that Pg =1 and H» = 1 it follows that

Ng _1
Nr i
3.1.1 Corollaries In our (fuzzy) modal counterfactual logic some truths

of the classical propositional calculus fail at the moment our propositional
variables are propositions of the form ‘CI{A (— B)’, ‘004 (= C)’. In the
classical propositional calculus (CPC) P,Q,R... range over sentences.
Let P =0(AL—B), Q =LA~ C), and R=C(A— D). Then as corol-
laries of our truth conditions in a fuzzy NS, the following classical tautolo-
gies fail in our modal counterfactual propositional logic:

Failure 1: DA O~ B) v10{A [~ B) (in CPC: P v1P)
Failure 2: O(A (= B) — ((0A O~ C)) = {({A = B))) (in CPC: P—(Q — P)

Failure 3: 1(GA O~ B)) — (WA L— B)) — (OA [~ C))) (in CPC: 1P —
(P— Q)

Failure 4: (({(CA T~ B))  (0HA T~ ©))) — (O(A T~ D)) <> ((0(A T~ B)) —
(CHA O ) — (A T~ D)) {in CPC: ((PaQ) = R) <> (P —((@ — R)).)

Failure 5: ((C{A [~ B)) — ((L(A O~ C)) » 1 (D4 T C))) = LA T~ B)))
(in CPC: (P—(Q A 1Q)) — 1 P.)

Failure 6: ((O(A T~ B)) A 1(0A T B)Y)) = (A CT—C)). (in CPC: (PAP)—
Q).

Failure 7: (0A CT— C)) — (A T— B) v (A 3~ B))) (in CPC: (Q —
(P v1PY)).

It is to be noted that these seven failures disappear if the sentences of our
modal counterfactual logic can be either true or false, i.e., if propositions
cannot be true to a degree. That these seven failures are a function of the
possibility to be true to a degree is obvious from the fact that the same
failures occur in fuzzy propositional logic in which the sentential variables
are nonmodal atomic sentences. It is an established fact that in a fuzzified
classical propositional calculus these seven tautologies fail,

On the other hand the following principles of CPC hold in our modal
counterfactual propositional logic (MCPC):

(a) De Morgan laws
(b) Associative laws
(¢c) Distributive laws
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(d) Commutative laws

() (A0~ B)—~UOA[—B) (in CPC: P—P)

(f) (A [ B)) = (A4 O~ C) — ([O@E O- D)) — (((OA — B) —
(O(A O~ C))) — ((BA O B)) — (A T D)))) (in CPC: (P — (Q —R)) —
(P—Q)—~(P—R))

(g) ({O(A 0—B)) — 1A T~ 0) — (A T~ 0) = ((A T~ B))) (in
CPC: ("P—1Q)—(Q — P))

(h) (((B(A O~ B)) — ((A T ) » (LA O €))) — DA T B)) (in
CPC: (P—Q)A1Q)— 1P)

(1) (AT~ B) — (OA O~ 0) — (((0U T~ C)) — (DA T~ D) —
(O(A 0= B)) = (C(A T+~ D)))) (in CPC: (P—Q) —((@ = R) = (P —R))).

It is not surprising to find out that the same principles hold in the prop-
ositional calculus of fuzzy logic. This similarity permits us to set the
following conjecture:

Conjecture 4: In any system of logic (in the sense of a Tarskian model
theoretic treatment of the notions of truth and satisfaction in a model) in
which the set of truth values is the real interval [0,1] and in which proposi-
tions can be mapped into each point on this continuum, the division between
rejected principles and accepted ones will be the same as in the proposi-
tional calculus of fuzzy logic.

Then our modal counterfactual logic (MCL) is simply a special case
obeying this conjecture through the rejection made by its propositional
calculus,

This conjecture, if true, has very interesting results as it is shown in
Almog [4]. The results are concerned with the notion of decidability via the
notions of finite model property and finite frame property. My point is that
if all the logics in which degrees of truth are allowed, retain (and reject,
respectively) the same truths from the classical propositional calculus,
then they must have a special and unique tool which does this rejection (or
acceptance). Since normally this tool is the finite model property it follows
that the finite models of these logics have a special structure. The finite
model property (FMP) can be characterized in the following way: the logic
L has the FMP iff it is characterized by a class of finite models iff each
nontheorem is rejected by some finite model of the logic.

Now since all the logics which allow degrees of truth reject (retain) the
same principles of the propositional calculus of classical logic, it follows
that all these logics would behave in the same way with respect to decida-
bility problems. Recall that in the fuzzy logic propositional calculus
(FPC) we have a connective ‘I’ of entailment such that when A and B are
atomic sentences, ‘A - B’ may be true fo the degree 7, 0 <4 < 1. Such
a fuzzy implication connective has been proposed in the literature by
Lukasiewicz, Gédel or some versions of sequence logics (especially the
C-standard version). A modern counterpart of such a fuzzy connective has
been suggested by Scott [13]. It follows that in FPC the following holds:
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A lr; B iff A D B (when I stands for validity and D for the two-valued
Principia Mathematica implication).

In such a system, we have degrees of theoremhood exemplified by the
fuzzification of the notion of validity. Thus our question is: Does our modal
counterfactual logic exemplify the concept of graded validity? The answer
is definitively ‘yes’. In light of our conjecture it follows that all the
features of FPC apply to the MCPC of our MCL. From this fact, some
conclusions concerning completeness, consistency, and decidability of MCL
follow:

Given that S is a formula of MCL (S = A [ B), in light of (4) S and hence
1S may be theorems of MCL to a degree. Then it follows:

Completeness: MCL is fuzzily complete to the degree { iff the sentence
‘either S or 1S is in MCL’ is true to 7. ¢ will vary from 0.5 to 1. It will
be complete to the degree 1 iff Se MCL (or 1Se MCL) is true to 1 and
1Se MCL (or Se MCL) is true to 0. (This is completeness in the classical
sense.) MCL will be complete to 0.5 iff S is a theorem of MCL to 0.5 and
thus 1S is also a theorem of MCL to 0.5. Since disjunction is equivalent to
the maximum of the disjuncts, MCL will be at least complete to 0.5 (if the
stated above holds for all S and their negations).

Consistency: MCL is fuzzily consistent to i iff the sentence ‘S and 1S are
theorems of MCL’ is true to 1 - i. Since S| =1 - | 15| it follows that MCL
will be at least consistent to 0.5 (if it holds for all S).

Decidability: MCL is decidable iff there is an effective procedure to deter-
mine to which degree S is a theorem of MCL.

We see that we need fuzzified notions of completeness, consistency, and
decidability for logics which allow formulas to be theorems to a degree.
There is no sense in saying either that MCL is undecidable or that it is
decidable. For if we take a logic to be equivalent to the set of its sound
principles (accepted theorems) then MCL is neither a decidable set nor an
undecidable. MCL would be decidable if there were an effective procedure
to determine whether a particular S is a member of MCL. Since the rela-
tion ‘member of’ is not two-valued in MCL, i.e., S may be a member of
MCL to a degree, it follows that the extension of the relation ‘is member
of’ in MCL 1is a fuzzy set, i.e., certain arguments (certain formulas) satisfy
partly the relation with regard to MCL, Hence MCL needs a fuzzified
concept of decidability. The need for a fuzzy notion of decidability remains
even if we arithmetize MCL, Then decidability questions will take the form
of: Is it true that the Godel numbers of the formulas of MCL form a
decidable class? The answer will be that since MCL contains formulas
which are partly theorems of it or, more sharply, MCL partly contains
some formulas, it will follow that the Godel numbers of the formulas of
MCL form a fuzzily decidable set, i.e., a set whose members do not allow
a two-valued mapping into ‘accepted members’ and ‘rejected members’ but
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rather demand a sequence of sets ‘accepted to i’, ‘accepted to j°, ‘accepted
to k’, when i,j,k range over real numbers in the interval [0,1].

Such a transition from a binary concept of decidability to a many-
valued concept requires some modifications in some classical mathemat-
ical concepts which are strongly connected with the concept of decidability.
Such notions are the notions of recursive functions and recursive relations.
Since these notions are connected via Church’s thesis (C) to the concepts of
calculable relations and functions it follows that the latter are also in the
scope of the needed modifications:

(C) All (effectively) calculable functions and relations are recursive.

I do not want to go into the question of how such a modification is to be done.
A general discussion of the problem of decision procedures in fuzzified
modal logics appears in Almog.6 I will only remark that the notion of
recursive function might be found to be inadequate for a theory (in the
sense of Tarski and Robinson of the term ‘Theory’) in which formulas are
theorems to a degree. Instead we might need a notion of partial recursive-
ness according to which a mechanical decision procedure is almost avail-
able; i.e., the ‘Turing machine’ gives you an algorithm which covers almost
the whole field, in the sense of calculating almost all effectively calculable
functions and relations. My remarks are not purely theoretic. It is a fact
of computer science that such special partial recursive functions are
possible. (I hope to report in the near future on my results in setting a
program in which the program includes fuzzy algorithms. Some interesting
work had been done in this field by Zadeh [17].”

Recall the classical approach to decidability: for any formula S of a
theory T, if S is a theorem of T then with some finite length of time the
machine M will show that S is a theorem of 7. Suppose now that the set of
formulas of T which are not theorems of T is also recursively enumerable,
then this set could be generated by another machine, call it M’, Thus in a
finite time M will show that S is a theorem of 7 and M’ will show that 1S
is not.

But now recall that in a fuzzy logic like our MCL, S (hence, 1S) may
be theorems to a degree. Hence the whole concept of a mechanical proce-
dure via Turing machines will have to be modified. According to the new
approach where the sentence ‘S is a theorem of T’ may take values in the
continuum [0,1], M and M’ become only special cases, i.e., cases in which
the above-mentioned sentence is either completely true (this is the case for
M) or completely false (this is the case for M'). All other cases are not
accounted for by the classical procedure of the classical Turing machines.

Let me conclude by returning to our FMP (finite model property). We
said that since all the logics which allow degrees of truth reject (retain) the
same principles of the CPC it follows that they must have special models
(finite ones) which allow a special FMP. However, this is not the whole
story. Segerberg [15] and Hansson and Gardenfors [7] have argued that one
can form a stronger variant of the FMP where for each nontheorem there
exists a computable upper limitation to the size of the model that falsifies
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the formula in question. Thus one is not bound to know whether a logic is
finitely axiomatizable in order to know whether it is decidable, One must
only check whether a certain formula is true in all models smaller than the
given limitation in order to know whether it is a theorem. This notion is
called the finite frame property. (The concepts of frame and model are
used in the sense assigned to them by the model theories of modal logics.)

The finite model property (FMP) is trivially entailed by the finite
frame property (FFP). The converse is said to hold too, pace Segerberg
[15]. Thus our remarks concerning the connection between the FMP and
logics with degrees of truth apply again. Since for a logic L to have the
FFP means that each nontheorem is rejected by some finite frame of the
logic, it follows that logics with degrees of truth do not have only special
models (finite ones) but also special finite frames which permit all the
logics allowing degrees of truth (to their formulas) to accept and retain the
same principles of the classical two-valued logic. Since MCL via its MCPC
is a special case of these logics it follows that it has such special finite
models and frames.

NOTES

1. Other semantical analyses were suggested by Stalnaker, Thomason, Nute, and Pollock; how-
ever, | regard Lewis’s suggestion as the most comprehensive account both from a philosophical
point of view (see [10]) and a formal point of view.

2. In an unpublished note of mine, “Montague-semantics for Lewis’ conditionals,” 1 show that
a modal logic with the accessibility relation which Montague considers at the end of his paper
[11] is practically equivalent to Lewis’s counterfactual logic.

3. This analysis is due to M. J. Cresswell.

4. One may disregard the informal meaning of ‘coincide’. What is important is the existence of a
one-to-one mapping between the two sets.

§. Fuzzification of implications had been suggested by Godel, Lukasiewicz, Belnap, Scott, and
the sequence logics.

6. In [1] and [2] I touch the questions of fuzzy recursiveness and decidability in several rele-
vance logics.

7. Bellacicco had recently reported on new results in the domain of fuzzy algorithms [6]. More-
over, if my fuzzified Quantum logic is reasonable, it can be shown on the basis of my [3],
[41, and [5] that degrees of theoremhood and a graded concept of validity are needed in
quantum logics based on Scott’s approximate lattices [13].
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