
Semantically-based crossover in genetic programming:
application to real-valued symbolic regression

Nguyen Quang Uy • Nguyen Xuan Hoai •

Michael O’Neill • R. I. McKay • Edgar Galván-López

Received: 25 December 2009 / Revised: 1 July 2010 / Published online: 30 July 2010

� Springer Science+Business Media, LLC 2010

Abstract We investigate the effects of semantically-based crossover operators in

genetic programming, applied to real-valued symbolic regression problems. We

propose two new relations derived from the semantic distance between subtrees,

known as semantic equivalence and semantic similarity. These relations are used to

guide variants of the crossover operator, resulting in two new crossover operators—

semantics aware crossover (SAC) and semantic similarity-based crossover (SSC).

SAC, was introduced and previously studied, is added here for the purpose of

comparison and analysis. SSC extends SAC by more closely controlling the

semantic distance between subtrees to which crossover may be applied. The new

operators were tested on some real-valued symbolic regression problems and

compared with standard crossover (SC), context aware crossover (CAC), Soft Brood

Selection (SBS), and No Same Mate (NSM) selection. The experimental results

show on the problems examined that, with computational effort measured by the

number of function node evaluations, only SSC and SBS were significantly better

N. Q. Uy � M. O’Neill � E. Galván-López

Complex & Adaptive Systems Lab, School of Computer Science & Informatics,

University College Dublin, Dublin, Ireland

e-mail: quanguyhn@gmail.com

M. O’Neill

e-mail: m.oneill@ucd.ie

E. Galván-López

e-mail: edgar.galvan@ucd.ie

N. X. Hoai (&)

Department of Computer Science, Le Quy Don University, Hanoi, Vietnam

e-mail: nxhoai@gmail.com

R. I. McKay

School of Computer Science and Engineering, Seoul National University,

Seoul, Korea

e-mail: rimsnucse@gmail.com

123

Genet Program Evolvable Mach (2011) 12:91–119

DOI 10.1007/s10710-010-9121-2



than SC, and SSC was often better than SBS. Further experiments were also con-

ducted to analyse the perfomance sensitivity to the parameter settings for SSC. This

analysis leads to a conclusion that SSC is more constructive and has higher locality

than SAC, NSM and SC; we believe these are the main reasons for the improved

performance of SSC.

Keywords Genetic programming � Semantics � Crossover �
Symbolic regression locality

1 Introduction

Genetic programming (GP) [40, 49, 36]) researchers have only recently paid much

attention to semantic information, which has resulted in a dramatic increase in the

number of realated publications (e.g. [26, 28, 29, 32, 31, 4, 43, 57, 10]). Previously,

work in GP representation had focused mainly on syntactic aspects. From a

programmer’s perspective, however, maintaining syntactic correctness is only part

of program construction: programs must be not only syntactically correct, but also

semantically correct. Thus incorporating semantic awareness in the GP process

could improve performance, extending the applicability of GP to problems that are

difficult with purely syntactic approaches. So far, semantics has been incorporated

into different phases of GP including fitness measurement [26, 29], operators

execution [4, 57], valid checking [58, 33] and so forth. In this work, we investigate

one method to incorporate semantic information into GP crossover operators for

real-valued symbolic regression problems.

Previous evolutionary computation research has shown that characteristics of

evolutionary operators such as their constructiveness, locality (small changes in

genotype resulting in small changes in phenotype), and effect on population

diversity strongly affect the performance of the resulting algorithms [8, 53, 51, 42].

However designing GP operators with these desirable characteristics can be very

difficult. We aim to incorporate semantics into the design of new crossover

operators so as to maintain greater semantic diversity, and provide greater

constructiveness as well as higher locality than standard crossover (SC). We

investigate the effects of these semantically-based operators on the performance

of GP.

This paper addresses two main objectives. The first and narrower is to propose a

new semantically-based schema for implementing crossover in GP that extends

semantics aware crossover (SAC) in our previous work [57]. The second and

broader objective is to encourage GP researchers to pay greater attention to the use

of semantics to improve the efficiency of GP search. It extends [57] in a number of

ways. First, we change the way the semantics is used to constrain the crossover,

resulting in a new crossover that we call semantic similarity-based crossover (SSC).

SSC extends SAC by not only encouraging exchange of semantically different

material between parents, but also limiting this to small and controllable changes.

SSC and SAC are compared with a broader class of related crossover operators in

the literature and the results are positive.

92 Genet Program Evolvable Mach (2011) 12:91–119

123



Experiments to investigate the impact of crucial parameters on SSC’s perfor-

mance are also presented, providing the basis on which to choose appropriate values

for these parameters. Subsequently, we conduct a more comprehensive analysis to

investigate the possible reasons behind the effectiveness of SSC, and in particular,

why SSC works so much better than SC, SAC and NSM. Finally, we extend the

previous work by comparison on a much broader range of target functions. All of

these extensions will be presented in detail in the following sections.

The remainder of the paper is organised as follows. In the next section we review

the literature on GP with semantic information and on GP crossover operators.

Section 3 contains the detailed descriptions of our new crossovers. The experimental

settings are described in Sect. 4. A comparison of the effectiveness of SSC and other

related crossover operators are presented in Sect. 5. An analysis of parameter

sensitivity for SSC and an investigation of some of the characteristics of SSC follow

in the next two sections. The conclusions are presented in Sect. 8, leading to

suggestions for future research in Sect. 9.

2 Background

In this section, we briefly review previous work on semantics in GP and on variants

of GP crossover operators.

2.1 Semantics in genetic programming

Semantics is a broad concept that has been studied in a number of fields including

Natural Language [1], Psychology [11] and Computer Science [46] among others.

While the precise meaning varies from field to field, semantics is generally

contrasted with syntax: the syntax refers to the surface form of an expression, while

the semantics refers to its deeper meaning in some external worlds. In computer

science, these external worlds are generally provided by their computational models.

In computer science, semantics can be informally defined as the meaning of

syntactically correct programs or functions. Two programs that are syntactically the

same must have the same semantics, but the converse may not be true.

As a simple example, consider two small programs shown in Eqs. 1 and 2.

Syntactically, the first statement of each is identical, but the second statements differ.

Semantically, however, they are identical: both programs compute the same result.

x ¼ 1; y ¼ xþ x; ð1Þ
x ¼ 1; y ¼ 2 � x; ð2Þ

In GP, semantics has generally been used to provide additional guidance to the

GP search. The necessary additional information is either added to or extracted from

the GP individual’s representation. Thus the available possibilities depend on the

problem domain (Boolean or real-value,...), the GP individual representation

(Grammar-, Tree- or Graph-based), and the search algorithm characteristics (fitness

measure, genetic operators,...).

Genet Program Evolvable Mach (2011) 12:91–119 93

123



To date, there have been three main approaches to representing and extracting

semantics and using it to guide the evolutionary process:

1. grammar-based [58, 59, 9, 10, 13, 50]

2. formal methods [26, 28, 29, 33, 32, 31]

3. GP s-tree representation [4, 6, 5, 43, 57, 37, 38]

The most popular form of the first uses attribute grammars. Attribute

grammars are extensions of context-free grammars, in which a finite set of

attributes provide context sensitivity [34]. GP individuals expressed in the form

of attribute grammar trees can incorporate semantic information, which can be

used to eliminate bad individuals (i.e., less fit individuals) from the population

[13] or to prevent generating semantically invalid individuals as in [58, 59, 50, 9,

10]. The attributes used to present semantics are generally problem-dependent,

and it is not always obvious how to determine the attributes for a given

problem.

Recently, Johnson has advocated formal methods as a means to incorporate

semantic information into the GP evolutionary process [26, 28, 29]. Formal methods

are a class of mathematically-based techniques for the specification, development

and verification of software and hardware systems [45]. They support the extraction

and approximation of mathematical statements useful for system design and

verification. In Johnson’s work, semantic information extracted through formal

methods, such as abstract interpretation or model checking, is used to quantify the

fitness of individuals on some problems for which traditional sample-point-based

fitness measure are unavailable or misleading. In [26, 28], Johnson used interval

analysis (a form of abstract interpretation) to measure the fitness of individuals in

solving a rectangle replacement problem and in robot control. By contrast, Keijzer

[33] used interval analysis to check whether an individual is defined over the whole

range of input values—if an individual is undefined anywhere, that individual can

be assigned minimal fitness or simply deleted from the population. This allowed

Keijzer to avoid discontinuities arising from protected operators, improving the

evolvability of the system. Johnson [29] used model checking to measure individual

fitness in evolving vending machine controllers. A controller is specified by a

number of computation tree logic formulas [3]. Fitness of an individual is the

number of formulas it satisfies. Subsequently, Katz and Peled [32, 31] also used

model checking to define fitness in a GP system for the mutual exclusion problem.

The advantage of formal methods lies in their strict mathematical background,

potentially helping GP to evolve computer programs. However they are also high in

complexity and difficult to implement, possibly explaining the limited research

despite the advocacy of Johnson [27]. Their main application to date has lain in

evolving control strategies.

Methods for extracting semantics from expression trees depend strongly on the

problem domain. The finite inputs of Boolean domains mean that semantics can be

accurately estimated in a variety of ways. Beadle and Johnson [4] investigated the

effects of directly using semantic information to guide GP crossover on Boolean

problem domains. They checked semantic equivalence between offspring and

parents by transforming them to Reduced Ordered Binary Decision Diagrams

94 Genet Program Evolvable Mach (2011) 12:91–119

123



(ROBDDs) [7]. Two trees are semantically equivalent if and only if they reduce to

the same ROBDD. This is used to determine which participating individuals are

copied to the next generation. If the offspring are semantically equivalent to their

parents, the children are discarded and the crossover is restarted. This process is

repeated until semantically new children are found. The authors argue that this

results in increased semantic diversity in the evolving population, and a consequent

improvement in the GP performance. This method of semantic equivalence

checking is also applied to drive mutation [6] and guide the initialisation phase of

GP [5], where the authors show that it benefits for GP in both phases. By contrast,

McPhee et al. [43] extract semantic information from a Boolean expression tree by

enumerating all possible inputs. They consider the semantics of two components in

each tree: semantics of subtrees and semantics of context (the remainder of an

individual after removing a subtree). They experimentally measured the variation of

these semantic components throughout the GP evolutionary process. They paid

special attention to fixed-semantic subtrees: subtrees where the semantics of the tree

does not change when this subtree is replaced by another subtree. They showed that

there may be very many such fixed semantic subtrees when the tree size increases

during evolution; thus it becomes very difficult to change the semantics of trees with

crossover and mutation once the trees have become large.

To the best of our knowledge, there has been no previous research on semantic

guidance in real-valued problems before our own previous study [57]. There, we

proposed a new crossover operator, SAC, based on checking the semantic

equivalence of subtrees. SAC was tested on a family of real-valued symbolic

regression problems, and was empirically shown to improve GP performance. SAC

differs from Beadle and Johnson’s approach [4] in two ways. First, the test domain

is real-valued rather than Boolean. For real domains, it is not generally feasible to

check semantic equivalence by reduction to a canonical form like a ROBDD.

Second, the crossover operator is guided not by the semantics of the whole program

tree, but by that of subtrees. This is inspired by recent work presented in [43] for

calculating subtree semantics. However, for real domains, measuring semantics by

enumerating all possible inputs as in [43] is also infeasible, so that the semantics

must be approximated.

Recently, Krawiec and Lichocki proposed a way to measure the semantics of an

individual based on fitness cases [37]. In this work, the semantics of an individual is

defined as a vector in which each element is the output of the individual at the

corresponding input fitness case. This semantics is used to guide crossover in a

method similar to SBS, known as Approximating Geometric Crossover (AGC). In

AGC, a number of children are generated at each crossover, the children most

similar to their parents—in terms of semantics—being added to the next generation.

The experiment is conducted on both real-valued and boolean regression problems.

The results show that AGC is no better than SC in real-valued problems, and only

slightly superior to SC in boolean problems. The same kind of semantics is then

used to build functional modulation for GP [38], for which the experimental results

show that it may be useful in characterising the compositionality and difficulty of a

problem, potentially leading to performance improvements for GP.

Genet Program Evolvable Mach (2011) 12:91–119 95

123



2.2 Alternative crossovers in genetic programming

It is well-known that crossover is the primary operator in GP [35]. In the standard

crossover (SC) two parents are selected, and then one subtree is randomly selected

in each parent. A procedure is called to check if these two subtrees are legal for

crossover (syntactic closure properties, depth of resulting children,...). If so, the

crossover is executed by simply swapping the two chosen subtrees, and the resulting

offspring are added to the next generation. Figure 1 shows how SC works.

Much research has concentrated on the efficiency of crossover, resulting in new

and improved operators which can be classified into three categories. These are:

1. crossovers based on syntax (structure)

2. crossovers based on context

3. crossovers based on semantics

Most of the early modifications to SC were based on syntax [35, 48, 39, 47, 24].

Koza [35] proposed a crossover that is 90% biased to function nodes and 10% bias

to terminal nodes as crossover points. Although this method encourages the

exchange of more genetic material (bigger subtrees) between the two participating

individuals, it risks exacerbating bloat and thus making it more difficult to refine

solutions in later generations [4]. O’Reilly and Oppacher [47] introduced height-fair

crossover, in which all subtree heights in the two parents are recorded, and one

subtree height is randomly selected. The crossover sites in both parents are then

restricted to that particular height. Ito et al. [24] presented a similar depth-

dependent crossover, aiming to preserve building blocks. In this method, the

probability of selecting a node is biased towards the root—nodes near the root have

a greater probability to be selected for crossover. The bias of the selection

cos

*

+ +

X 1 1
X

+

1

sin X

+

(a) (b)

(c) (d)

*

X

X

*

++ +*

X1

XX sin 1 1
XX

+

cos

Fig. 1 Standard Crossover: parents (top) and their resulting offspring after applying crossover (bottom)

96 Genet Program Evolvable Mach (2011) 12:91–119

123



probability is set by the user, and it is left unchanged during the search process.

However it is not robust: if it is not carefully set for a particular problem, the

performance can be very poor [25]. In [48, 39], Poli and Langdon introduced one-

point crossover and uniform crossover. In these methods, when two parents are

selected for crossover, they are aligned based on their shapes. By aligning two

parents, the common shape of these parents (starting from the roots) can be

determined. The crossover points are then randomly selected from the nodes that lie

in the common shape. This kind of crossover has been shown especially effective on

Boolean problems as it causes a bigger genetic material exchange in earlier

generations (in these generations the common shape is often very small) and yet can

tune the solutions in later generations (when the common shapes are bigger).

More recently, context has been used as extra information for the selection of

crossover points [2, 19, 41, 55, 56]. This class of crossover is perhaps closest to

semantic based crossovers. Altenberg [2] proposed a new crossover inspired by the

observation that in most animal species, breeding occurs more often than the number of

surviving offspring might suggest. In other words, viable offspring are not always

produced as a consequence of breeding. This crossover is called a Soft Brood Selection
(SBS). Two parents are selected for crossover, then N random crossovers are performed

to generate a Brood of 2N children. The children are evaluated and sorted based on their

fitness. The two best children are copied to the next generation, the rest being discarded.

This crossover was then developed by Tackett [55, 56] by using a subset of fitness cases

to figure out which children in the Brood are added to the next generation.

Hengpraprohm and Chongstitvatana [19] proposed Selective Crossover, in which each

subtree is assigned an impact value, reflecting how well (or badly) the subtree affects

the containing tree. The impact of a subtree is determined by removing that subtree

and replacing it with a random terminal node. The change in resulting fitness is the

impact value. The crossover is performed by replacing the worst subtree of each parent

with the best subtree of the other. Majeed and Ryan [41] proposed Context Aware
Crossover (CAC); after two parents have been selected for crossover, one subtree is

randomly chosen in the first. This subtree is then crossed over into all possible locations

in the second, all generated children being evaluated. The best child (based on fitness) is

selected as the result, and copied to the next generation. The advantage of these

context-based crossovers is increased probability of producing better children. On the

other hand, it can be very time consuming to evaluate the context of each subtree.

To the best of our knowledge, the only previous use of semantics in crossover are

those previously discussed in Sect. 2.1. They include Beadle and Johnson’s [4]

Semantics Driven Crossover for Boolean problems, Krawiec and Lichocki’s [37]

Approximating geometric crossover, and our previous work [57] on SAC.

3 Methods

In this section we give a detailed discussion of our two crossovers. We start by

briefly describing how we measure semantics in real-valued problems. This allows

us to define a concept of semantic distance, on the basis of which we propose two

semantic relationships,which we then use to define two new crossover operators.

Genet Program Evolvable Mach (2011) 12:91–119 97

123



3.1 Measuring semantics

As discussed in Sect. 2, the appropriate definition of semantics for GP is far from

obvious. The semantics of an individual is often understood as the behavior of that

individual with respect to a set of input values. However the possibilities for

computing such semantics depends on the domain. For real-valued problems, both

canonical-form methods corresponding to Beadle and Johnson’s [4] Boolean

ROBDDs, and complete enumeration as in McPhee’s approach [43], are infeasible.

Instead, we propose a simple way to estimate the semantics of subtrees, in which the

semantics is approximated by evaluating the subtree on a pre-specified set of points

in the problem domain. We call this Sampling Semantics. Formally, the Sampling
Semantics of any tree (subtree) is defined as follows:

Let F be a function expressed by a tree (subtree) T on a domain D. Let P be a set

of points from domain D, P = {p1, p2,…, pN}. Then the Sampling Semantics of

T on P in domain D is the set S = {s1, s2,…, sN} where si = F(pi), i = 1, 2, …, N.

For example, suppose that we are considering the interval [0,1] and using a set of

three points, P = {0, 0.5, 1}, for evaluating semantics. Then the Sampling
Semantics of subtree St in Fig. 2 on P is the set of three values S = {sin(1)

- 0, sin(1) - 0.5, sin(1) - 1} = {084, 0.34, -0.16}. The value of N depends on

the problems. If it is too small, the approximate semantics might be too coarse-

grained and not sufficiently accurate. If N is too big, the approximate semantics

might be more accurate, but more time consuming to measure. The choice of P is

also important. If the members of P are too closely related to the GP function set

(for example, p for trigonometric functions, or e for exponential/logarithmic

functions), then the semantics might be misleading. For this reason, choosing them

randomly may be the best solution. In this paper, the number of points for evaluating

Sampling Semantics is set as the number of fitness cases for the problem (20 points

for single variable functions and 100 points for bivariate functions, see Sect. 4), and

we choose the set of points P uniformly randomly from the problem domain.1

Based on the Sampling Semantics(SS) , we define a Sampling Semantics Distance
between two subtrees. In our previous work [57], we defined the Sampling
Semantics Distance as the sum of the absolute differences for all values of SS. That

is, let P = {p1, p2,…, pN} and Q = {q1, q2,…, qN} be the SS of Subtree1 (St1) and

Subtree2 (St2) on the same set of sample points, then the Sampling Semantics
Distance (SSD) between St1 and St2 was defined as:

SSDðSt1; St2Þ ¼ jp1 � q1j þ jp2 � q2j þ � � � þ jpN � qN j

While the experiments in [57] showed that this SSD is beneficial, it has the

undoubted weakness that the value of the SSD depends on the number of SS points

N. To reduce this drawback, we now use the mean of the absolute differences as the

SSD between subtrees. In other word, the SSD between St1 and St2 is defined as:

SSDðSt1; St2Þ ¼ ðjp1 � q1j þ jp2 � q2j þ � � � þ jpN � qN jÞ=N

1 Since Sampling Semantics is defined for any subtree, it can be used in particular to estimate the

semantics of the whole tree. We will use it in this way in the examples in later sections.

98 Genet Program Evolvable Mach (2011) 12:91–119

123



3.2 Semantic relationships

Based on Sampling Semantics Distance, we can define two semantic relationships

between subtrees. Two subtrees are Semantically Equivalent (SE) on a domain if

their SSD on the sample set of points is sufficiently similar (subject to a parameter

called semantic sensitivity)—formally:

SEðSt1; St2Þ ¼ if SSDðSt1; St2Þ\� then true

else false

� is the predefined semantic sensitivity. This subtree semantic relationship is similar

to the metric we used in [57], and was inspired by the work of Mori et al. [44] on GP

simplification. The experimental results in [57, 44] show that this semantic

relationship benefits the GP search process.

The second relationship is known as Semantic Similarity.2 The intuition behind

semantic similarity is that exchange of subtrees is most likely to be beneficial if the

two subtrees are not semantically identical, but also not too semantically dissimilar.

Two subtrees St1 and St2 are semantically similar on a domain if their SSD on the

sample set lies within a positive interval—formally:

SSiðSt1; St2Þ ¼if a\SSDðSt1; St2Þ\ b then true

else false

here a and b are two predefined constants, known as the lower and upper bounds for

semantic sensitivity, respectively. Conceivably, the best values for lower and upper
bound semantic sensitivity might be problem dependent. However we suspect that for

most symbolic regression problems, there is a wide range of appropriate values (see Sect.

6, where we study various ranges of both lower and upper bound semantic sensitivity).

We note that there is some biological motivation for this approach. In mammals,

the Major Histocompatibility Complex (MHC) genes (on chromosome 6 in humans)

St

+

XX

1

sin

* −

log

X

Fig. 2 Tree with subtree (for illustrating Sampling Semantics)

2 We are using similarity here in its ordinary English meaning, where A is similar to B implies that A is

not the same as B, as opposed to a common mathematical convention in which similarity includes

equivalence.

Genet Program Evolvable Mach (2011) 12:91–119 99

123



play a major role in the immune response, and thus are a key part of our defences

against disease, and subject to strong and rapidly-changing evolutionary pressures.

However they also play an important role both in mate selection (partners in the

same species, but with dissimilar MHC genes, are preferred), and in speciation,

because differences in MHC that are too big may cause an immune response from

the mother to the foetus. Thus in this case at least, biology also appears to favour

crossovers with semantic similarity lying in a specific range.

We conclude this section by highlighting some important differences between

our semantic relations and fitness. First, for fitness calculation we need to know the

fitness cases, and fitness reflects how good (close to the target function) an

individual is. In measuring SS, we do not need to know the fitness cases (of course

semantics can be measured using the fitness cases, but different cases can also be

used). Second, fitness is measured for the whole individual, while SS is mainly used

to encapsulate the semantics of subtrees. The last and most important difference is

the objective: fitness is used for individual selection while SS is used to guide

crossover. It is also noted that the semantic definition in Krawiec and Lichocki [37]

is a particular case of Sampling Semantics, in which the set of sample points is the

the same as the set of fitness cases, and the semantics of the whole tree (a particular

subtree) is used in crossover.

3.3 Semantics aware crossover

A SAC was first proposed in [57]. SAC is motivated by the observation that GP

crossover may exchange semantically equivalent subtrees, resulting in children that

are identical to their parents. Consider the two selected parents P1 and P2 shown at

the top of Fig. 3. P1 has the semantics sin(X) ? 3X and P2 has the semantics

4X. Subtree1 of P1 and Subtree2 of P2 are semantically equivalent subtrees, both

having semantics 2X, although their structures are totally different. When these two

subtrees are selected for crossover, the children are as shown in Fig. 4. Obviously,

these two children have different syntax (structure) from, but identical semantics to,

their parents. C1 has semantics of sin(X) ? 3X and C2 has semantics of 4X. This

leaves the fitness of the children unchanged after crossover.

SAC prevents the swapping of such semantically equivalent subtrees in

crossover. Each time two subtrees are chosen for crossover, a semantic check

sin

*

+ +

XX 1 1
X

+

1

+

*

1

X

+

P1 P2

Subtree1 Subtree2

X

Fig. 3 Semantics equivalent subtrees are selected

100 Genet Program Evolvable Mach (2011) 12:91–119

123



(using Semantic Equivalence) is performed to determine if they are equivalent. If

they are, the crossover is aborted and instead performed on two other randomly

chosen subtrees. Further detail on SAC can be found in [57]. SAC was partly

inspired by Gustafson’s No Same Mate selection [18] in which no two individuals

with the same fitness may be selected for crossover. It, in turn, was motivated by

experiments, in which he found that two parents with the same fitness often produce

children with unchanged fitness upon crossover.

3.4 Semantic similarity-based crossover

The new semantically based crossover, SSC, is an extension of SAC in two ways.

First, when two subtrees are selected for crossover, their semantic similarity, rather

than semantic equivalence, is checked. Second, semantic similarity is more difficult to

satisfy than semantic equivalence, so repeated failures may occur. As a result, SSC

uses multiple trials to find a semantically similar pair, only reverting to random

C2
*

+ +

X 1 1

+

X

sin
X X

+

1

+

*

1

Subtree2 Subtree1

X

C1

Fig. 4 The generated children from semantic equivalent subtree crossover

Algorithm 1 Semantic similarity based crossover

Genet Program Evolvable Mach (2011) 12:91–119 101

123



selection after passing a bound on the number of trials. Algorithm 1 shows how SSC

works in detail.

In our experiments, we test a range of values of Max_Trial to gain an

understanding of its effect on SSC. The motivation for SSC is to encourage

exchange of semantically different, but not wildly different, subtrees. While forcing

a change in the semantics of the individuals in the population, we want to keep this

change bounded and small. We anticipate that a smoother change in semantics of

the individuals will result, and might lead to a smoother change in fitness of the

individuals after crossover. For instance, consider two parents selected for cross-

over in Fig. 5. Assume that we measure the SS of a tree on the 10 points,

P = {1, 2,…, 10}. Then the SS of parents P1, P2 and of Subtree1 (St1), Subtree2

(St2), and Subtree3 (St3) are as shown in Tables 1 and 2. It can be seen from these

tables that St1 and St2 are semantically similar (using a = 10-4, b = 0.4 as in this

paper), with the SSD being only 0.09, while St1 and St3 are semantically dissimilar

since the SSD is 4.5. If crossover is performed by swapping two semantically

similar subtrees (St1 and St2), the generated children are show in Fig. 6. The SS of

the two children (C1, C2) are shown in Table 1. We can also measure the SSD

between C1 and P1 and between C2 and P2 (as shown in columns C1 - P1 and

C2 - P2 in Table 1). Evidently, the change of semantics through crossover is quite

small (1.1 with C1 and 1.65 with C2). This, we hope, will make for a smoother

change of fitness.

1.1

*

X 3 X

++ Subtree1

X

P2P1

Subtree3

*

*

2

Subtree2 *

X 1

Fig. 5 Parents for crossover

Table 1 Sampling semantics of parents, subtrees and children when swapping two similar subtrees

Points P1 P2 St1 St2 St1 - St2 C1 C2 C1 - P1 C2 – P2

1 4 6.3 2 2.1 0.1 4.2 6 0.2 0.3

2 12 18.6 3 3.1 0.1 12.4 18 0.4 0.6

3 24 36.9 4 4.1 0.1 24.6 36 0.6 0.9

4 40 61.2 5 5.1 0.1 40.8 61 0.8 1.2

5 60 91.5 6 6.1 0.1 61.0 91 1.0 1.5

6 84 127.8 7 7.1 0.1 85.2 127 1.2 1.8

7 112 170.1 8 8.1 0.1 113.4 170 1.4 2.1

8 144 218.4 9 9.1 0.1 145.6 218 1.6 2.4

9 180 272.7 10 10.1 0.1 181.8 272 1.8 2.7

10 220 333.0 11 11.1 0.1 222.0 333 2.0 3.0

SSD 0.09 1.1 1.65

102 Genet Program Evolvable Mach (2011) 12:91–119

123



By contrast, if crossover is conducted by swapping two dissimilar subtrees (St1 and

St3), the children are shown in Fig. 7. The results of the calculation of the SS of the two

children (C3 and C4) and the semantic distances between these children and their

parents are shown in Table 2. It can be seen from this table that the change in semantics

between parents and children is rather large (143 and 82.5 for C3 and C4, respectively).

This, we anticipate, will lead to an abrupt change in fitness after crossover.

4 Experimental settings

To experimentally investigate the possible effects of SSC in comparison with other

crossover operators, we test them on ten real-valued symbolic regression problems.

Table 2 Sampling semantics of parents, subtrees and children when swapping two different subtrees

Points P1 P2 St1 St3 St1 - St3 C3 C4 C3 - P1 C4 - P2

1 4 6.3 2 2 0 6 4.2 2 2.1

2 12 18.6 3 4 1 24 9.3 12 9.3

3 24 36.9 4 6 2 54 16.4 30 20.5

4 40 61.2 5 8 3 96 25.5 56 35.7

5 60 91.5 6 10 4 150 36.6 90 54.9

6 84 127.8 7 12 5 216 49.7 132 78.1

7 112 170.1 8 14 6 294 64.8 182 105.3

8 144 218.4 9 16 7 384 81.8 240 136.5

9 180 272.7 10 18 8 486 101.0 306 171.7

10 220 333.0 11 20 9 600 122.1 380 201.0

SSD 4.5 143 82.5

Subtree1

*

X 3 X

C2C1

Subtree3

*

*

2

*+

X1.1

Subtree2 +

X 1

Fig. 6 Children generated by crossing over two semantically similar subtrees

C3
*

X

C4
*

*

2

+

X 1

Subtree1

3 X

Subtree3* +

X1.1

Subtree2

Fig. 7 Children generated by crossing over two semantically dissimilar subtrees

Genet Program Evolvable Mach (2011) 12:91–119 103

123



These problems are grouped into three categories: polynomial functions; trigono-

metric, logarithm and square-root functions; and bivariate functions. Most are taken

from the works of Hoai et al. [20], Keijzer [33], and Johnson [30]. These functions

are shown in Table 3 and the main parameters used for our experiments are given in

Table 4. The parameter settings are similar to our previous work [57]. Although

these experiments purely concern crossover, we have retained mutation at a low

rate, because we aim to study crossover in the context of a normal GP run. Note that

the number of generations and the population size are not specified in Table 4; they

will be determined appropriately for each experiment. Note also that the raw fitness

Table 3 Symbolic regression

functions
Functions Fitcases

F1 = x3 ? x2 ? x 20 random points � [-1,1]

F2 = x4 ? x3 ? x2 ? x 20 random points � [-1,1]

F3 ¼ x5 þ x4 þ x3 þ x2 þ x 20 random points � [-1,1]

F4 ¼ x6 þ x5 þ x4 þ x3 þ x2 þ x 20 random points � [-1,1]

F5 ¼ sinðx2ÞcosðxÞ � 1 20 random points � [-1,1]

F6 ¼ sinðxÞ þ sinðxþ x2Þ 20 random points � [-1,1]

F7 = log(x ? 1) ? log(x2 ? 1) 20 random points � [0,2]

F8 ¼
ffiffiffi

x
p

20 random points � [0,4]

F9 = sin(x) ? sin(y2) 100 random points � [-1,1]

x [-1,1]

F10 = 2sin(x)cos(y) 100 random points � [-1,1]

x [-1,1]

Table 4 Run and evolutionary

parameter values
Parameter Value

Selection Tournament

Tournament size 3

Crossover probability 0.9

Mutation probability 0.05

Initial max depth 6

Max depth 15

Max depth of mutation

tree

5

Non-terminals ?, -, *, / (protected versions),

sin, cos, exp, log (protected versions)

Terminals X, 1 for single variable problems,

and X,Y for bivariable problems

Raw fitness Sum of absolute error on all fitness

cases

Hit When an individual has an

absolute error \0.01 on a fitness case

Successful run When an individual scores hits

on all fitness cases

Trials per treatment 100 independent runs for each value

104 Genet Program Evolvable Mach (2011) 12:91–119

123



function is the sum of the absolute error over all fitness cases, and a run is

considered as successful when some individual hits (i.e. absolute error\0.01) every

fitness case.

We divided our experiments into three sets. The first set investigates the

performance of SSC. SSC was compared with five other crossover operators:

Standard Crossover (SC), Semantics Aware Crossover (SAC), Context Aware

Crossover (CAC), Soft Brood Selection (SBS), and No Same Mate (NSM) selection.

The second set analyses the sensitivity of SSC’s parameters—including lower and

upper semantic sensitivities, maximum number of trials (Max_Trial), and number of

sample points. The last set of experiments investigate some characteristics of SSC,

including the rate of semantically equivalent crossover events, semantic diversity,

locality, and constructivity. These three sets of experiments are detailed in the

following sections.

5 Comparative results

This section presents our experimental results on the performance of SSC in

comparison with SC, SAC, NSM, CAC, and SBS. When comparing different

methods, one of the fundamental questions is how to compare their performance in a

fair way. Traditionally, GP researchers often set up a predetermined population size

and number of generations. Depending on the methods employed, the standard

approach of comparing performance in terms of fitness at each generation may not

be completely fair, due to possible differences in computational overhead.

An alternative, and often better, way is to run different GP systems (e.g., using

different crossover methods) with the same predefined number of individual fitness

evaluations. This would not, however, be fair in the context of this paper, because

the semantic subtree checking in SSC and SAC may be performed on much smaller

subtrees than the individuals (whole trees), and hence may cost much less.

Moreover because of differences in bloat, the average size of the individuals in

different methods may also differ [12, 22].

Here, we use a measure based on the number of function node evaluations to

estimate the computational cost of each GP run. This kind of measurement has been

adopted in a number of recent GP studies [23, 60]. By using the number of node

evaluations, we can readily estimate the additional computational effort of non-

standard crossovers used in the experiments in this paper (i.e SAC, SSC, CAC,

SBS).3 In these experiments, the number of node evaluations is set to 15*106. This

value was experimentally determined as allowing our base comparator, SC, to easily

find solutions in the easy problems (F1), with about 50% successful runs, but not

allowing it to readily find solutions to harder problems, with only about 5% success

in F4.

The experimental settings of these experiments were as follows. For all methods,

the GP basic parameters were as in Table 4. The population size for SC, SAC, SSC

3 We assume that the computation costs of all primitive functions are the same, or at least negligibly

different when compared to the cost of individual fitness evaluation.

Genet Program Evolvable Mach (2011) 12:91–119 105

123



and NSM were set to 500 as in [57]. For SAC, the semantic sensitivity was set to

10-X with X = 2, 3, 4, and 5.4 For SSC, the lower and upper semantic sensitivity
were set to 10-4 and 0.4, respectively. The maximum number of attempts to form an

SSC crossover Max_Trial was set to 8, 12, 16, and 20, forming four schemas of

SSC.5 These values were determined from the experiments in Sect. 6, where they

were found to be suitable values for the performances of SSC.

The population sizes we use for CAC and SBS follow previous research, where

they are set much smaller than the population size for SC. Here, we chose 200 as in

[42, 37]. For CAC, we followed the Majeed and Ryan [42], in using CAC only after

80% of the node evaluations of a run.6 We also extended CAC with a scheme

similar to Tackett’s [56], checking child fitness not only by using all fitness cases,

but also through a subset of fitness cases. Ratios of 1/X (X = 1, 2, and 4)7 were used

in this experiment (i.e. only 1/X of the fitness cases were used to find the best of

breed individual, reducing the overall cost).

For SBS [56], the original experiments used 4 brood sizes (2, 3, 4, 5). Here we

used the best two (3, 4). To measure the fitness of the individuals in the brood, we

used only a portion of the fitness cases, with a 1/X (X = 1, 2, 4) ratio.8

To examine and compare the performance of these methods, we recorded two

classic performance metrics, namely mean best fitness and the percentage of

successful runs. The percentage of successful runs are recorded in Table 5, it should

be noted here that a run is called successful run if it can find an individual that

scores hits on all fitness cases, where a hit means that for that case, absolute error

\0.01. In the resulapplied after 80% of individual evaluations for Methods. In each

setting, the best-performing schema is printed in bold face. We can see that only

SBS and SSC are definitely better than SC; while the performances of NSM and

SAC are very similar to SC, CAC is often poorer. The reason might lie in the high

cost of the method CAC uses to find the best crossover site, with the result that it

quickly reaches the maximum function node evaluations, and the run terminates.

Turning specifically to SSC and SBS, we find that SSC is often better, and more

consistently so, than SBS. While SSC is consistently superior on all tested functions,

SBS seems to perform similarly to SC on some functions, such as F1, F2 and F6. For

SBS, reducing the number of fitness cases used to choose individuals from the brood

improves the performance. It is not clear, however, to what extent we can reduce the

number of fitness cases to further enhance the performance. In some cases, reducing

only 2 times performs better than 4 times. For SSC, it seems that the values of

Max_Trial from 8 to 20 give consistently good performance. In general, SSC

performs better than SBS, and is the best of all methods on the the tested problems.

4 SACs with different X are denoted as SACX (with X = 2, 3, 4, and 5).
5 Denoted as SSCX, where X is 8, 12, 16, and 20.
6 In the original version, CAC is applied after 80% of individual evaluations in a run. Here we use node

evaluation for the purpose of uniform comparisons. We did, however, apply CAC earlier in the 40, 60%,

etc of the last node evaluations to compensate for this difference. The results were worse than those

reported in the paper. We omit these results and only report the best results for CAC to compact the result

tables.
7 Denoted as CACX with X = 1, 2, and 4.
8 Denoted as SBSXY, with X = 3, 4 and Y = 1, 2, 4.

106 Genet Program Evolvable Mach (2011) 12:91–119

123



Table 6 shows the best fitness found, averaged over all 100 runs of each GP

system. The results are consistent with those in Table 5, in that SAC and NSM are

mostly equal to SC, CAC is often worse than SC, and only SBS and SSC are better

than SC. The table again shows the consistently superior performance of SSC where

it is better than SC on all test functions, while SBS is less convincing on three

problems: F1, F2, F6, and F10. It can also be seen that although both SSC and SBS

are superior to SC, the margin of improvement is different: SBS is often only

slightly better than SC while SSC is widely better than SC in all cases.

We tested the statistical significance of the results in Table 6 using a Wilcoxon

signed-rank test with a confidence level of 99%. In Table 6, if a run is significantly

better than SC, its result is printed in italic face. It can be seen that while NSM is

only significantly better than SC on one function (F8), SBS is regularly significantly

better than SC, except on some specific functions, F1, F2, F6, F7, and F10. SSC is

always superior to SC in all cases and on all tested problems.

6 SSC Parameter sensitivity analysis

The experiments in this section investigate the effect of changing some parameters of

SSC. The GP parameters were setup as in Table 4. The population size was set at 500.

Four parameters of SSC were investigated, namely, lower bound semantic sensitivity
(LBSS), upper bound semantic sensitivity (UBSS), Max_Trial (MT), and the number

of sample points (NP) used for semantic checking. First, we examined the effect of the

Table 5 Number of successful

runs out of 100 runs
Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 48 22 7 4 20 35 35 16 7 18

NSM 48 16 4 4 19 36 40 28 4 17

SAC2 53 25 7 4 17 32 25 13 4 4

SAC3 56 19 6 2 21 23 25 12 3 8

SAC4 53 17 11 1 20 23 29 14 3 8

SAC5 53 17 11 1 19 27 30 12 3 8

CAC1 34 19 7 7 12 22 25 9 1 15

CAC2 34 20 7 7 13 23 25 9 2 16

CAC4 35 22 7 8 12 22 26 10 3 16

SBS31 43 15 9 6 31 28 31 17 13 33

SBS32 42 26 7 8 36 27 44 30 17 27

SBS34 51 21 10 9 34 33 46 25 26 33

SBS41 41 22 9 5 31 34 38 25 19 33

SBS42 50 22 17 10 41 32 51 24 24 33

SBS44 40 25 16 9 35 43 42 27 33 34

SSC 8 66 28 22 10 48 56 59 21 25 47

SSC12 67 33 14 12 47 47 66 38 37 51

SSC16 55 39 20 11 46 44 67 29 30 59

SSC20 58 27 10 9 52 48 63 26 39 51

Genet Program Evolvable Mach (2011) 12:91–119 107

123



most important parameter, UBSS. We fixed the other parameters as follows: LBSS:

10-4, MT: 12, and NP: 20 points for single variable functions and 100 for bivariate

functions. The UBSS was set at 6 values: 0.1, 0.2, 0.4, 0.6, 0.8, and 1.9

The second experiment analysed the effect of LBSS. In this experiment, the other

parameters were set as follows: UBSS = 0.4, MT = 12, and NP = number of fitness

cases. Five values for LBSS were investigated, i.e. 10-X where (X = 1, 2, 3, 4, and 5).10

The third experiment tested sensitivity to the number of trials allowed in

selecting similar subtrees in SSC (MT). For this experiment, LBSS = 10-4,

UBSS = 0.4, and NP = number of fitness cases. MT was set at 4, 8, 12, 16, 20.11

The final experiment observed the effect of changing the number of sample

points in semantic checking (NP). The experimental settings in this experiment

were: LBSS = 10-4, UBSS = 0.4, and MT = 12. NP was set to a ratio of 1/2, 1 or 2

of the number of fitness cases.12

To estimate the effect of changing these parameters, we recorded the best fitness

of a run. These values were averaged over 100 runs, the results being shown in

Table 6 The mean best fitness of 100 runs

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 0.18 0.26 0.39 0.41 0.21 0.22 0.13 0.26 5.54 2.26

NSM 0.16 0.29 0.34 0.40 0.19 0.17 0.11 0.19 5.44 2.16

SAC2 0.16 0.27 0.42 0.50 0.22 0.23 0.15 0.27 5.99 3.19

SAC3 0.13 0.27 0.42 0.48 0.18 0.23 0.15 0.27 5.77 3.13

SAC4 0.15 0.29 0.41 0.46 0.17 0.22 0.15 0.26 5.77 3.03

SAC5 0.15 0.29 0.40 0.46 0.17 0.21 0.15 0.26 5.77 2.98

CAC1 0.33 0.41 0.51 0.53 0.31 0.42 0.17 0.35 7.83 4.40

CAC2 0.32 0.41 0.52 0.53 0.31 0.42 0.17 0.35 7.38 4.30

CAC4 0.33 0.41 0.53 0.53 0.30 0.42 0.17 0.35 7.80 4.32

SBS31 0.18 0.29 0.30 0.36 0.17 0.30 0.15 0.19 4.78 2.75

SBS32 0.18 0.23 0.28 0.36 0.13 0.28 0.10 0.18 4.47 2.77

SBS34 0.16 0.23 0.31 0.33 0.13 0.21 0.11 0.19 4.17 2.90

SBS41 0.18 0.26 0.27 0.38 0.12 0.20 0.13 0.20 4.40 2.75

SBS42 0.12 0.24 0.29 0.30 0.12 0.18 0.10 0.16 3.95 2.76

SBS44 0.18 0.24 0.33 0.35 0.15 0.16 0.11 0.19 2.85 1.75

SSC8 0.09 0.15 0.19 0.29 0.10 0.09 0.07 0.15 3.91 1.53

SSC12 0.07 0.17 0.18 0.28 0.10 0.12 0.07 0.13 3.54 1.45

SSC16 0.10 0.15 0.23 0.26 0.10 0.10 0.06 0.14 3.11 1.22

SSC20 0.08 0.18 0.23 0.30 0.09 0.10 0.06 0.14 2.64 1.23

A Wilcoxon signed-rank test was conducted; if a treatment is better than SC with a confidence level of

99%, the result is printed in italic face

9 Denoted as SSCUX where X is 0.1, 0.2, 0.4, 0.6, 0.8, or 1.
10 Denoted as SSCLX with X = 1, 2, 3, 4, and 5.
11 Denoted as SSCMTX, with X = 4, 8, 12, 16, and 20.
12 Denoted as SSCNPX with X = 0.5, 1 or 2.

108 Genet Program Evolvable Mach (2011) 12:91–119

123



Table 7. We can see that the value of UBSS has a remarkable effect on the

performance of SSC. It seems that values from 0.2 to 0.8 are suitable for the

problems under test, with values from 0.4 to 0.6 being the best. If UBSS is too small

(0.1) or too big (1) the performance of SSC is poorer. This can be explained by

recording the percentage of SSC that successfully selects two semantically similar

subtrees, as shown in Table 8.13 We can see that if UBSS is too small, only a few

SSCs can succeed in exchanging semantically similar subtrees (from 30 to 40%

when UBSS is 0.1), so that SSC underperforms.14 By contrast, if UBSS is too large,

it is almost trivial to find semantically similar subtrees (almost 100% for

UBSS = 1) because most subtrees are sufficiently semantically similar, so that

SSC behaves like SC.

While changing UBSS has a remarkable effect on SSC, LBSS has almost no

effect on performance provided it is sufficiently small. Table 7 shows that while

LBSS was set to small values (from 10-2 to 10-5), the performance of SSC was

almost unchanged. In order to understand this, we recorded the percentage of

subtrees with SSD smaller than 10-2 that are actually semantically identical. In fact,

Table 7 The mean best fitness of 100 runs of SSC with different parameter values

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SSCU01 0.12 0.18 0.24 0.35 0.12 0.14 0.10 0.19 2.65 0.98

SSCU02 0.09 0.17 0.20 0.30 0.09 0.10 0.08 0.15 1.95 0.83

SSCU04 0.08 0.14 0.21 0.27 0.11 0.07 0.07 0.11 1.00 0.70

SSCU06 0.06 0.16 0.22 0.28 0.11 0.07 0.08 0.12 2.01 0.68

SSCU08 0.06 0.19 0.21 0.29 0.14 0.12 0.08 0.13 2.43 0.96

SSCU1 0.09 0.19 0.26 0.31 0.16 0.15 0.10 0.15 2.53 1.26

SSCL1 0.10 0.16 0.24 0.31 0.15 0.11 0.10 0.15 1.75 1.06

SSCL2 0.06 0.14 0.22 0.27 0.10 0.07 0.07 0.13 1.32 0.66

SSCL3 0.09 0.15 0.22 0.26 0.11 0.08 0.07 0.12 0.99 0.73

SSCL4 0.08 0.14 0.21 0.27 0.12 0.07 0.07 0.11 1.00 0.70

SSCL5 0.09 0.15 0.22 0.29 0.13 0.07 0.07 0.11 1.01 0.73

SSCMT4 0.10 0.20 0.23 0.32 0.12 0.11 0.10 0.15 1.86 0.85

SSCMT8 0.08 0.15 0.21 0.24 0.11 0.09 0.07 0.13 1.12 0.71

SSCMT12 0.08 0.14 0.21 0.27 0.12 0.07 0.07 0.11 1.00 0.70

SSCMT16 0.09 0.16 0.19 0.26 0.10 0.09 0.07 0.11 0.98 0.78

SSCMT20 0.08 0.15 0.19 0.22 0.09 0.08 0.07 0.10 1.20 0.66

SSCNP05 0.07 0.16 0.20 0.25 0.10 0.08 0.11 0.16 1.28 0.70

SSCNP1 0.08 0.14 0.21 0.27 0.12 0.07 0.07 0.11 1.00 0.70

SSCNP2 0.07 0.14 0.21 0.26 0.11 0.07 0.09 0.13 1.11 0.79

SSCUX shows the effect of upper bound semantic sensitivity, SSCLX of lower bound semantic sensi-
tivity, SSCMTX that of Max_Trial (X) and SSCNPX that of the number of sample points

13 The values for SSCLX and SSCPX are not shown in this table as they have little effect.
14 We have tried increasing the Max_Trial to compensate for decreasing the upper bound. This was

unsuccessful, as if UBSS is too small, the exchange of semantics between the two parents is also too

small, so that SSC is more readily trapped in local optima.

Genet Program Evolvable Mach (2011) 12:91–119 109

123



99% of such semantically equivalent subtrees actually have the same semantics.

Thus 99% of these subtrees would have satisfied the equivalence condition

regardless of the values of LBSS. Only in the case when LBSS gets too big, e.g. 0.1,

does SSC have poorer performance. In this case, SSC prevents swapping of subtrees

with similar but unequal semantics. We recorded how many subtree checks found a

nonzero SSD smaller than 0.1; this happened approximately 20% of the time,

misleading SSC. In general, we can see that LBSS is only required to be sufficiently

small, and perhaps any value under 10-2 would be suitable.

The third parameter investigated is the number of unsuccessful trials permitted in

selecting semantically similar subtrees (MT). Values of MT from 8 to 20 keep the

performance of SSC roughly consistent. When MT is too small, e.g. MT = 4,

the performance of SSC is worse. This can also be understood by observing the

percentage of SSC events that successfully exchanged two semantically similar

subtrees. For MT = 4, only 30 to 40% of SSC events successfully exchanged

subtrees, while this figure rises to about 90% for MT = 20. Thus further increasing

MT may not help, because nearly all crossover events have already successfully

exchanged semantically similar subtrees.

The last parameter under investigation is the number of sample points (NP) on

which the semantics was measured. Usually, this number is set equal to the number

of fitness cases. The results in Table 7 show that there was little effect when this

value was doubled, or when it was halved.

Overall, these results highlight some important issues in determining the values

for SSC parameters. It seems that UBSS should lie in the range 0.2 to 0.8, LBSS

should be less than 10-2, MT in the range 8 to 20, and NP similar to the number of

fitness cases so long as this number is not too big.

7 Some characteristics of semantic similarity based crossover

This section analyses some characteristics of SSC, namely the rate at which

semantically equivalent crossover events occur, the semantic diversity resulting

Table 8 The percentage of SSC that successfully exchange two semantically similar subtrees

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SSCU01 42.1 40.9 45.6 42.2 39.6 49.3 25.2 27.9 39.8 46.4

SSCU02 57.6 62.4 62.8 61.9 68.3 73.2 52.7 44.1 56.3 64.2

SSCU04 77.2 81.1 79.4 78.4 81.2 85.4 81.2 67.3 74.8 80.5

SSCU06 94.5 95.1 95.2 95.2 95.5 96.1 97.6 88.9 93.4 95.2

SSCU08 97.2 98.4 98.3 98.3 98.5 97.7 99.3 95.4 96.4 98.5

SSCU1 99.6 99.8 99.8 99.7 99.9 99.7 99.9 98.9 99.3 99.6

SSCNP4 42.4 41.6 42.1 41.2 44.0 48.5 47.6 29.4 38.2 44.6

SSCNP8 64.9 67.5 66.3 66.5 68.3 74.5 71.2 52.4 62.5 68.2

SSCNP12 77.2 81.1 79.4 78.4 81.2 85.4 81.2 67.3 74.8 80.5

SSCNP16 85.5 86.9 86.4 86.2 88.9 90.5 89.1 74.3 82.4 86.8

SSCNP20 90.4 91.5 90.8 90.7 93.4 93.9 92.8 83.5 93.8 96.4

110 Genet Program Evolvable Mach (2011) 12:91–119

123



from such crossovers, the locality of the operator, and its constructive effect. The

results were compared with SC, SAC and NSM. The GP parameter settings in this

section are described in Table 4, with the population size being set to 500 and the

number of generations to 50. Five configurations of SAC were used, with semantic

sensitivities set to 10-X with X = 1, 2, 3, 4, and 5.15 For SSC, LBSS was set to 10-4

and UBSS to 0.4. NP was set equal to the number of fitness cases. Five

configurations of SSC were used, with MT varying through 4, 8, 12, 16, and 20.

7.1 Rates of semantically equivalent crossover events

The first set of results record the extent of semantically equivalent exchanges arising

from the four crossover operators. Here we say that a crossover operation is an

equivalent crossover if it is performed by exchanging two semantically equivalent

subtrees. Since the new crossover operators (SAC and SSC) work by checking the

semantics of subtrees and trying to prevent the exchange of semantically equivalent

subtrees, it would be informative to see how frequently this actually happens. This

information shows us how frequently SC fails to change the semantics of

individuals (i.e. makes semantically unproductive crossovers), and the extent to

which SAC, and especially SSC, can overcome this problem. The results are shown

in Table 9.

It can be seen from Table 9 that the overall average for equivalent crossovers in

SC was around 15%; NSM behaved similarly, only reducing the rate by about 1%.

By contrast, these values for both SAC and SSC were substantially improved,

ranging from 2 to 3% for SAC, and from 2 to 5% for SSC (except when MT is very

small, e,g MT = 4). It is clear that SAC and SSC are more semantically exploratory

than SC and NSM on these problems. It should also be noted here that 99% of pairs

Table 9 The percentage of semantically equivalent crossover for four crossover operators: SC, NSM,

SAC and SSC

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 15.5 14.4 14.7 14.1 13.2 15.7 14.3 14.4 12.4 14.1

NSM 14.9 14.1 14.5 13.8 12.5 14.8 14.2 14.1 11.5 12.7

SAC1 3.54 3.12 3.18 3.12 3.28 3.84 3.32 3.34 3.49 3.67

SAC2 2.18 1.88 1.93 1.86 1.53 2.24 1.80 1.89 1.49 1.99

SAC3 2.16 1.85 1.90 1.65 1.52 2.08 1.77 1.88 1.47 2.01

SAC4 2.15 1.83 1.88 1.84 1.52 2.04 1.75 1.86 1.46 1.97

SAC5 2.10 1.82 1.87 1.84 1.51 2.01 1.72 1.81 1.46 2.03

SSC4 8.87 8.33 8.35 8.06 6.83 7.81 7.27 9.80 7.63 6.56

SSC8 5.92 4.76 4.97 4.76 3.89 3.88 4.00 6.94 4.76 3.75

SSC12 4.11 2.76 3.10 3.04 2.25 2.38 2.70 5.08 3.24 2.84

SSC16 2.80 1.99 2.27 2.00 1.39 1.61 1.65 3.94 1.99 2.04

SSC20 2.29 1.49 1.57 1.40 0.96 1.19 1.24 2.82 1.49 1.76

15 Denoted as SACX, for X = 1, 2, 3, 4, or 5.

Genet Program Evolvable Mach (2011) 12:91–119 111

123



of semantically equivalent subtrees consist of subtrees with identical semantics. As

a result, approximately 99% of such crossovers leave the fitnesses of the children

unchanged.

The improved semantic exploratory capacity of SAC and SSC can potentially

lead to more semantic diversity, in that they could generate more new semantics

than SC and NSM. Here, crossover A is considered to generate more semantic

diversity than crossover B if A generates semantically new children, differing from

the semantics of the parents, at a higher rate than B. In Table 10 we measured this

rate for each crossover configuration. In Table 10 we see that while NSM was only

slightly better than SC, SAC was better than both, while SSC was better than all

other crossover operators in this respect. Interestingly, although SAC was often

better than SSC in preventing equivalent crossovers, by keeping semantic changes

small, SSC was generally better than SAC at producing semantically diverse

crossovers. We note that SAC and SSC cannot guarantee the generation of

semantically new offspring, despite trying to swap semantically different subtrees.

We suspect this arises from the existence of fixed-semantic subtrees similar to those

whose existence McPhee et al. demonstrated in Boolean domains [43].

7.2 Operator locality

The next set of experiments analyse the locality of SSC compared with SAC, SC

and NSM. It is generally believed that using a representation with high locality

(small change in genotype correspond to small change in phenotype) is important

for efficient evolutionary search [17, 21, 52, 15, 16]. It is also generally agreed that

designing a search operator for GP ensuring which achieves this is very difficult.

Thus most current GP representations and operators are low-locality—a small

(syntactic) change from parent to child can cause a large semantic change. Our new

crossover operator (SSC) differs from others in directly controlling the scale of

Table 10 The percentage of generating new semantics for SC, NSM, SAC and SSC (i.e. differing in

terms of the semantic equivalence measure)

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 62.9 67.9 67.6 68.1 61.5 67.0 66.4 61.0 74.8 74.9

NSM 66.9 70.4 70.1 72.2 63.2 70.9 71.1 66.6 78.3 77.6

SAC1 70.2 73.5 75.1 76.1 65.2 74.1 73.7 70.2 82.1 84.6

SAC2 71.3 74.5 77.4 77.6 66.5 75.9 76.7 71.7 83.8 86.7

SAC3 72.1 74.7 77.6 78.3 67.7 76.9 75.4 71.7 84.1 86.3

SAC4 71.6 75.1 77.4 77.5 66.1 76.7 75.2 71.5 84.1 86.5

SAC5 71.4 74.9 77.1 77.5 65.9 76.8 75.4 71.8 84.3 85.8

SSC4 72.1 76.3 77.4 79.1 69.2 76.3 75.6 75.5 78.7 82.8

SSC8 75.9 80.7 80.8 82.9 73.6 82.7 81.3 74.8 80.8 89.3

SSC12 78.9 84.1 84.5 84.3 78.3 83.8 82.8 76.9 85.8 90.2

SSC16 78.8 85.9 85.6 87.2 78.1 86.9 85.2 78.6 89.8 91.6

SSC20 77.9 85.3 86.7 87.4 79.1 84.5 83.9 78.7 88.9 91.0

112 Genet Program Evolvable Mach (2011) 12:91–119

123



change in terms of semantics rather than syntax. Moreover, the concept of locality

used in SSC is slightly different from the literature in that while guaranteeing small

changes in genotype only cause small changes in phenotype (by using an upper

bound), SSC does use a lower bound to enforce the change in semantics.

To compare locality, we measured the fitness change between parents and

children in crossover. For example, suppose two individuals having fitness of 10 and

15 are selected for crossover, and their children have fitness of 17 and 9,

respectively. The change of fitness is Abs(17 - 10) ? Abs(9 - 15) = 13 (for this

purpose, we compare the fitness of a child with that of the parent in which it is

rooted). This value was averaged over the whole population and over 100 runs. The

average fitness change of individuals before and after crossover is shown in

Table 11.

Table 11 shows that the step size of the fitness change for SSC was much smaller

than for either SAC, SC or NSM. This leads to smoother fitness change over time

for SSC than for the others. This is important, as it is not easy to ensure the locality

property in GP. The table also reveals that the fitness change in SAC and NSM were

only slightly smoother than in SC.

7.3 Constructive effects

The previous results show that SAC and SSC are more semantically productive than

SC and NSM, and that SSC has higher locality than the others. Does this help SSC

(and maybe SAC) to generate better children than their parents (more constructive

crossover)? We measured the constructive effect of SAC, SSC, NSM and SC, using

Majeed’s [42] method. However we adapt the method slightly, only comparing the

fitness of a child with that of the parent in which it is rooted.

We can distinguish semi-constructive crossovers from full-constructive cross-
overs. Let us assume that two parents P1 and P2 are selected for crossover,

Table 11 The average change of fitness after crossover for SC, NSM, SAC, and SSC (averaged over the

whole population and 100 runs)

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 9.74 9.21 10.5 10.6 7.30 7.44 8.13 9.36 17.8 20.1

NSM 7.64 8.30 9.21 10.1 6.00 6.34 7.40 7.84 14.7 18.5

SAC1 8.42 8.71 9.54 10.9 7.01 6.54 7.05 7.96 15.9 17.7

SAC2 8.38 8.69 9.42 10.8 6.93 6.48 6.96 7.85 15.8 17.5

SAC3 8.03 8.63 9.19 10.3 6.82 6.56 6.92 7.66 15.5 17.3

SAC4 7.88 8.64 9.03 10.4 7.14 6.65 7.30 7.60 15.5 17.1

SAC5 7.88 8.70 9.43 10.4 7.18 6.78 7.25 7.68 15.4 17.4

SSC4 6.83 6.41 6.72 7.11 5.06 4.60 5.38 6.50 13.1 13.5

SSC8 5.12 5.01 5.69 5.45 3.58 3.47 3.87 5.84 12.4 9.50

SSC12 4.07 4.00 4.90 4.97 3.09 2.70 3.32 5.26 11.3 8.76

SSC16 4.34 3.44 4.26 4.10 2.84 2.58 2.82 4.45 9.25 7.83

SSC20 4.19 3.22 3.55 3.90 2.56 2.26 2.97 3.64 7.32 9.15

Genet Program Evolvable Mach (2011) 12:91–119 113

123



generating two children C1,C2 (C1 rooted in P2 and C2 rooted in P2). Then, a

crossover is called semi-constructive if it generates at least one child that is better

than its parents. In other words, the condition (C1 is better than P1 OR C2 is better
than P2) is used to count semi-constructive crossovers. When the condition is more

strict—both children are better than their parents (C1 is better than P1 AND C2 is

better than P2)—the crossover is called full-constructive. A crossover that is not

semi-constructive nor full-constructive is called destructive.

The semi-constructive and full-constructive crossovers’ results for SSC, SAC,

NSM and SC are shown in Tables 12 and 13, respectively. It can be seen from

Table 12 that while NSM is only slightly more semi-constructive than SC, both SSC

and SAC were more semi-constructive than SC and NSM. This is a consequence of

the greater semantic diversity of SAC and SSC relative to SC and NSM. Usually,

the semi-constructive crossover rate of SAC is from 5 to 7% higher than SC, and of

SSC from 12 to 18% higher. These increases are particularly important because the

semi-constructive rate for SC was fairly small (about 20%).

Table 13 shows how difficult it is for GP standard crossover to generate

improved solutions. The percentage of fully constructive crossovers for SC and

NSM were roughly the same, at only 2% for one-variable functions and 3% for

bivariate functions. By adding semantics to control the crossover operator, far more

full-constructive behaviour is obtained. SAC often scored 1.5 times higher than SC

and NSM in frequency of full-constructive events, and SSC around 2 to 3 times

higher. SSC generated more full-constructive events than SAC (up to 1.5 times) on

both univariate and bivariate functions.

8 Conclusions

In this paper, we have proposed a new method for measuring semantics of real-

valued symbolic regression problems, which we called Sampling Semantics (SS).

Table 12 The percentage of semi-constructive crossovers of SC, NSM, SAC, and SSC (i.e. at least one

child is better than the corresponding parent)

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 19.2 21.2 21.0 21.1 18.7 21.1 21.4 18.6 28.2 28.9

NSM 22.2 23.3 22.5 23.8 19.5 23.8 24.1 21.5 31.6 30.6

SAC1 24.7 26.3 26.5 26.7 22.3 26.1 27.2 24.2 34.1 34.2

SAC2 25.4 26.3 27.8 27.8 23.5 27.5 28.8 25.6 36.0 36.9

SAC3 25.9 26.5 27.8 28.3 23.8 28.2 27.6 25.5 36.2 36.7

SAC4 25.7 27.0 27.7 27.8 23.2 28.2 27.4 25.5 36.4 37.4

SAC5 25.7 26.9 27.6 27.9 22.9 28.6 27.5 25.6 36.2 37.1

SSC4 26.9 28.2 29.0 29.3 25.7 28.9 28.7 25.9 33.4 36.8

SSC8 30.0 32.1 32.0 32.7 29.9 33.9 33.2 29.0 36.8 41.2

SSC12 32.7 35.5 34.6 34.3 32.9 35.5 35.2 31.9 38.5 43.1

SSC16 33.3 37.1 35.9 37.1 33.6 37.2 36.3 34.1 41.5 43.3

SSC20 32.7 36.7 37.0 36.9 34.7 36.0 36.0 34.0 41.4 42.8

114 Genet Program Evolvable Mach (2011) 12:91–119

123



Using it, we can define the semantic distance between two subtrees; we then

proposed two semantic relations (Semantic Equivalence and Semantic Similarity)

for determining the semantic acceptability of exchanging two subtrees. These

semantic relations are used to guide crossover, resulting in two new semantically

based crossover operators for GP: Semantics Aware Crossover (SAC) and Semantic

Similarity-based Crossover (SSC). The new operators were tested on a class of real-

valued symbolic regression problems and compared with some similar schemas

including No Same Mate (NSM), Soft Brood Selection (SBS) and Context Aware

Crossover (CAC), as well as standard GP crossover (SC). On a wide range of

problems, only SSC and SBS were consistently better than SC, and of them SSC is

the most effective crossover operator.

We also investigated the effect of various parameters on SSC to determine ranges

of suitable values. Some characteristics of SSC were analysed, showing that both

SAC and SSC improve the resulting semantic diversity. We showed that SSC

achieves higher locality than either SAC, NSM or SC. We argue that this is the main

reason for its better constructive effect compared to SAC, NSM and SC. This results

in a substantial, and statistically significant, improvement in performance of SSC,

while SAC and NSM generate almost equivalent performance to SC.

8.1 Assumptions and limitations

Although this paper has shown that many benefits are to be gained from

incorporating semantics into the design of crossover operators for GP, there are

some limitations. First, the paper focuses on the domain of real-valued problems,

leaving other domains an open question.16 Second, the semantic sensitivities were

experimentally determined and might not be the best choices either for these

Table 13 The percentage of full-constructive crossovers of SC, NSM, SAC, and SSC (i.e. where both

children are better than the corresponding parents)

Ms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

SC 2.06 2.27 2.23 2.24 1.96 2.32 2.36 1.88 3.46 3.74

NSM 2.26 2.46 2.37 2.66 1.97 2.56 2.59 2.15 3.90 3.78

SAC1 2.82 3.04 3.05 3.02 2.46 3.11 3.25 2.65 4.51 4.67

SAC2 2.90 3.04 3.29 3.25 2.67 3.24 3.49 2.89 4.95 4.87

SAC3 3.05 3.10 3.29 3.36 2.65 3.35 3.32 2.81 4.94 4.91

SAC4 3.03 3.17 3.25 3.28 2.57 3.39 3.29 2.82 4.96 4.94

SAC5 3.01 3.18 3.20 3.31 2.52 3.43 3.28 2.82 4.92 4.92

SSC4 3.60 3.80 3.78 3.92 3.20 3.94 3.63 3.07 4.68 5.18

SSC8 4.25 4.58 4.54 4.65 3.96 5.11 4.53 3.89 5.17 6.04

SSC12 4.70 5.21 5.07 5.02 4.51 5.38 4.88 4.43 5.45 6.35

SSC16 4.76 5.55 5.26 5.49 4.65 5.73 5.12 4.85 6.00 6.34

SSC20 4.73 5.34 5.39 5.47 4.86 5.49 5.01 4.73 5.86 6.31

16 In fact one simple way to use our method is to transform boolean function learning problems to real-

valued ones as in [54].

Genet Program Evolvable Mach (2011) 12:91–119 115

123



problems, and/or for others. Adaptive mechanisms to determine these values are

currently under investigation.

We hypothesised that fixed semantics might occur in real-valued trees as in

Boolean trees, but further studies need to be conducted to understand whether fixed

semantics really occurs, and if so, what form it takes in real-valued problem

domains. More importantly, by advocating for semantic locality in GP crossover

operators, we have assumed that there is a smooth correlation between semantics of

subtrees to the semantics of the whole individual tree and to the overall fitness of the

individual. This might limit the type of problems that our SSC would excel. For

some problems that do not satisfy this assumption, non-locality of semantic (fitness)

caused by crossovers might be needed. However, we argue that such problems

would not be beneficial to GP or any type of evolutionary algorithms as the change

in a phenotype would be unpredictable with any small change in the corresponding

genotype. Such search fitness landscape would be too rough for any progression

search techniques, such as GP, to be better than random search.

9 Future work

In the near future, we plan to extend this work in a number of ways. First, we will

apply SSC to some more difficult symbolic regression problems (problems that have

more complex-structured solutions). For these problems, we predict that making

small changes in semantics will be both more difficult, but also more important.

Second, SSC could be used to enhance some previously proposed crossover operators,

which are based purely on the structure of trees—such as crossover with bias on the

depth of nodes [24], one point crossover and uniform crossover [48, 39]. Another

potential research direction is to apply SSC to other problem domains, such as the

Boolean problems that have been previously investigated in [43]. In this case, it may

be even more difficult to generate children that differ semantically from their parents,

so that the benefits may be greater. Last but not least, we plan to investigate suitable

ranges for the lower and upper bound semantic sensitivity values for various classes of

problems. In this paper, these values were manually and experimentally specified;

however, it may be possible to allow these values to self-adapt during the evolutionary

process [14].

Acknowledgements This paper was funded under a Postgraduate Scholarship from the Irish Research

Council for Science Engineering and Technology (IRCSET). The authors would like to thank the

members of NCRA (Natural Computing Research & Applications Group) at University College Dublin.

The second author was partly funded by The Vietnam National Foundation for Science and Technology

Development (NAFOSTED) under grant number 102.01.14.09 for doing this work.

References

1. C. Alan, Meaning and language: an introduction to semantics and pragmatics. (Oxford Textbooks in

Linguistics, Cambridge, 2004)

2. L. Altenberg, in Advances in Genetic Programming, ed. by K. E. Kinnear, Jr., The evolution of

evolvability in genetic programming, chap. 3 (MIT Press, Cambridge, 1994), pp. 47–74

116 Genet Program Evolvable Mach (2011) 12:91–119

123



3. C. Baier, J.P. Katoen, Principles of Model Checking (MIT Press, Cambridge, 2008).

4. L. Beadle, C. Johnson, Semantically driven crossover in genetic programming, in Proceedings of the
IEEE World Congress on Computational Intelligence (IEEE Press, New York, 2008), pp. 111–116

5. L. Beadle, C.G. Johnson, Semantic analysis of program initialisation in genetic programming. Genet.

Program. Evol. Mach. 10(3), 307–337 (2009)

6. L. Beadle, C. G. Johnson, Semantically driven mutation in genetic programming. in 2009 IEEE
Congress on Evolutionary Computation, ed. by A. Tyrrell (IEEE Computational Intelligence Society,

IEEE Press, Trondheim, Norway, 18–21 May 2009), pp. 1336–1342

7. R.E. Bryant, Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comp. C-35,

677–691 (1986)

8. E.K. Burke, S. Gustafson, G. Kendall, Diversity in genetic programming: an analysis of measures and

correlation with fitness. IEEE Trans. Evol. Comput. 8(1), 47–62 (2004)

9. R. Cleary, M. O’Neill, Solving knapsack problems with attribute grammars, in Proceedings of the
Grammatical Evolution Workshop, 2004

10. R. Cleary, M. O’Neill, in Proceedings of the Evolutionary Computation in Combinatorial Optimi-
zation. An attribute grammar decoder for the 01 multi-constrained knapsack problem (Springer,

Berlin, 2005), pp. 34–45

11. A.M. Collins, M.R. Quillian, Retrieval time from semantic memory. J. Verbal Learn.Verbal Behav.

8, 240–247 (1969)

12. J.M. Daida, D.S. Ampy, M. Ratanasavetavadhana, H. Li, O. Chaudhri, in Proceedings of the Genetic
and Evolutionary Computation Conference, (GECCO’1999). Challenges with verification, repeat-

ability, and meaningful comparison in genetic programming: Gibson’s magic (Morgan Kaufmann,

1999), pp. 1851–1858

13. M. de la Cruz Echeand’a, A.O. de la Puente, M. Alfonseca, in Proceedings of the IWINAC 2005.

Attribute grammar evolution (Springer, Berlin, 2005), pp. 182–191

14. K. Deb, H.G. Beyer, in Proceedings of the Genetic and Evolutionary Computation Conference. Self-

adaptation in real-parameter genetic algorithms with simulated binary crossover (Morgan Kaufmann,

July 1999), pp. 172–179

15. E. Galvan-Lopez, M. O’Neill, in CIG. On the effects of locality in a permutation problem: the sudoku

problem (IEEE, 2009)

16. E. Galvan-Lopez, M. O’Neill, in MICAI, Lecture Notes in Computer Science. Towards understanding

the effects of locality in genetic programming (Springer, Berlin, 2009)

17. J. Gottlieb, G. Raidl, in Proceedings of the Genetic and Evolutionary Computation Conference. The

effects of locality on the dynamics of decoder-based evolutionary search (ACM, 2000), p. 283–290

18. S. Gustafson, E.K. Burke, N. Krasnogor, in Proceedings of the 2005 IEEE Congress on Evolutionary
Computation. On improving genetic programming for symbolic regression, vol. 1. (IEEE Press,

Edinburgh, 2005), pp. 912–919

19. S. Hengpraprohm, P. Chongstitvatana, in Proceedings of ISCIT International Symposium on Com-
munications and Information Technologies. Selective crossover in genetic programming, Nov 2001,

pp. 14–16

20. N.X. Hoai, R. McKay, D. Essam, in Proceedings of the 2002 Congress on Evolutionary Computation
(CEC2002). Solving the symbolic regression problem with tree-adjunct grammar guided genetic

programming: the comparative results (IEEE Press, 2002), pp. 1326–1331

21. N.X. Hoai, R.I. McKay, D. Essam, Representation and structural difficulty in genetic programming.

IEEE Trans. Evol. Comput. 10(2), 157–166 (2006)

22. N.X. Hoai, R.I.B. McKay, D. Essam, H. Abbass, in Genetic Programming 7th European Conference,
EuroGP 2004, Proceedings, vol. 3003 of LNCS, ed. by M. Keijzer, U.-M. O’Reilly, S.M. Lucas,

E. Costa, T. Soule, Toward an alternative comparison between different genetic programming sys-

tems (Springer, Berlin, 2004), pp. 67–77

23. T.-H. Hoang, D. Essam, R.I.B. McKay, X.H. Nguyen, in Proceedings of the 2007 International
Symposium on Intelligent Computation and Applications (ISICA). Building on success in genetic

programming:adaptive variation & developmental evaluation (China University of Geosciences

Press, Wuhan, China, Sep 2007)

24. T. Ito, H. Iba, S. Sato, in Proceedings of the 1998 IEEE World Congress on Computational Intel-
ligence. Depth-dependent crossover for genetic programming (IEEE Press, May 1998), pp. 775–780

25. T. Ito, H. Iba, S. Sato, in Advances in Genetic Programming. A self-tuning mechanism for depth-

dependent crossover (IEEE Press, June 1999), pp. 377–399

Genet Program Evolvable Mach (2011) 12:91–119 117

123



26. C. Johnson, in Proceedings of the 4th European Conference on Genetic Programming (EuroGP2002).
Deriving genetic programming fitness properties by static analysis (Springer, Berlin, 2002),

pp. 299–308

27. C. Johnson, in Recent Advances in Soft Computing. Genetic programming with guaranteed con-

straints (The Nottingham Trent University, UK, 2002), pp. 134–140

28. C. Johnson, in Proceedings of the UK Workshop on Computational Intelligence. What can automatic

programming learn from theoretical computer science (University of Birmingham, Birmingham,

2002)

29. C. Johnson, in Proceedings of the 10th European Conference on Genetic Programming (EuroGP2002).
Genetic programming with fitness based on model checking (Springer, Berlin, 2007), pp. 114–124

30. C. Johnson, in Proceedings of the 12th European Conference on Genetic Programming (EuroGP2009).
Genetic programming crossover: Does it cross over? (Springer, Berlin, 2009), pp. 97–108

31. G. Katz, D. Peled, Genetic programming and model checking: Synthesizing new mutual exclusion

algorithms. Automated technology for verification and analysis. Lect. Notes Comput. Sci. 5311,

33–47 (2008)

32. G. Katz, D. Peled, Model checking-based genetic programming with an application to mutual

exclusion. Tools Algorithm. Constr. Anal. Syst. 4963, 141–156 (2008)

33. M. Keijzer, in Proceedings of EuroGP’2003. Improving symbolic regression with interval arithmetic

and linear scaling, Springer, Berlin, April 2003), pp. 70–82

34. D. Knuth, Semantics of context-free languages. Math. Syst. Theory. 2 95 (1968)

35. J. Koza, Genetic Programming: On the Programming of Computers by Natural Selection (MIT Press,

Cambridge, 1992)

36. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection
(The MIT Press, Cambridge, 1992)

37. K. Krawiec, P. Lichocki, in Genetic and Evolutionary Computation Conference, GECCO 2009,
Proceedings, Montreal, Québec, Canada, July 8–12, 2009, ed. by F. Rothlauf. Approximating

geometric crossover in semantic space (ACM, New York, 2009), pp. 987–994

38. K. Krawiec, B. Wieloch, in GECCO ’09: Proceedings of the 11th Annual conference on Genetic and
evolutionary computation. Functional modularity for genetic programming (ACM, Montreal, July

2009), pp. 995–1002

39. W.B. Langdon, in Proceedings of the Genetic and Evolutionary Computation Conference. Size fair

and homologous tree genetic programming crossovers (Morgan Kaufmann, July 1999), pp. 1092–1097

40. W. B. Langdon, R. Poli, Foundations of Genetic Programming (Springer, Berlin, 2002)

41. H. Majeed, C. Ryan, in Proceedings of the 9th European Conference on Genetic Programming. A

less destructive, context-aware crossover operator for gp, Lecture Notes in Computer Science

(Springer, Berlin, April 2006), pp. 36–48

42. H. Majeed, C. Ryan, in Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation (GECCO). On the constructiveness of context-aware crossover (ACM Press, New York,

July 2007), pp. 1659–1666

43. N. McPhee, B. Ohs, T. Hutchison, in Proceedings of 11th European Conference on Genetic Pro-
gramming. Semantic building blocks in genetic programming (Springer, Berlin, 2008) , pp. 134–145

44. N. Mori, B. McKay, N.X. Hoai, D. Essam, S. Takeuchi, A new method for simplifying algebraic

expressions in genetic programming called equivalent decision simplification. J. Adv. Comput. Intell.

Intell. Inform. 13(3), 237–244 (2009)

45. F. Nielson, H.R. Nielson, C. Hankin, Principles of Program Analysis. (Springer, Berlin, 2005)

46. H.R. Nielson, F. Nielson, Semantics with Applications: An Appetizer (Springer, London, 2007)

47. U.M. O’Reilly, F. Oppacher, Program search with a hierarchical variable length representation:

genetic programming, simulated annealing and hill climbing. Lect. Notes Comput. Sci. 866(1),

397–406 (1994)

48. R. Poli, W.B. Langdon, in Proceedings of Soft Computing in Engineering Design and Manufacturing
Conference. Genetic programming with one-point crossover (Springer, Berlin, June 1997), pp. 180–189

49. R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to Genetic Programming. Published via

http://lulu.com and freely available at http://www.gp-field-guide.org.uk, 2008. (With contributions by

J. R. Koza).

50. B.J. Ross, Logic-based genetic programming with definite clause translation grammars. New Gen.

Comput. 19(4), 313–337 (2001)

51. F. Rothlauf, Representations for Genetic and Evolutionary Algorithms, 2nd edn. (Springer, Berlin,

2006)

118 Genet Program Evolvable Mach (2011) 12:91–119

123

http://lulu.com
http://www.gp-field-guide.org.uk


52. F. Rothlauf, D. Goldberg, Redundant representations in evolutionary algorithms. Evol. Comput.

11(4), 381–415 (2003)

53. F. Rothlauf, M. Oetzel, in Proceedings of the 9th European Conference on Genetic Programming.

On the locality of grammatical evolution, lecture notes in computer science (Springer, Berlin, April

2006), pp. 320–330

54. R.P. Salustowicz, J. Schmidhuber, Probabilistic incremental program evolution. Evol. Comput. 5(2),

123–141 (1997)

55. W.A. Tackett, Selection, and the Genetic Construction of Computer Programs. PhD thesis, Uni-

versity of Southern California, USA, 1994

56. W.A. Tackett, A. Carmi, in Proceedings of the 1994 IEEE World Congress on Computational
Intelligence. The unique implications of brood selection for genetic programming (IEEE Press,

Orlando, Florida, USA, 27–29 June 1994)

57. N.Q. Uy, N.X. Hoai, M. O’Neill, in Proceedings of EuroGP09. Semantic aware crossover for genetic

programming: the case for real-valued function regression (Springer, Berlin, April 2009), pp. 292–302.

58. M.L. Wong, K.S. Leung, in Proceedings of the 7th IEEE International Conference on Tools with
Artificial Intelligence. An induction system that learns programs in different programming languages

using genetic programming and logic grammars (1995)

59. M.L. Wong, K.S. Leung, in Proceedings of the Fourth Congress of the Italian Association for
Artificial Intelligence. Learning programs in different paradigms using genetic programming

(Springer, Berlin, 1995)

60. P. Wong, M. Zhang, 2008 IEEE World Congress on Computational Intelligence, ed. by J. Wang.

SCHEME: caching subtrees in genetic programming (IEEE Computational Intelligence Society,

IEEE Press, Hong Kong, 1–6 June 2008)

Genet Program Evolvable Mach (2011) 12:91–119 119

123


	Semantically-based crossover in genetic programming: application to real-valued symbolic regression
	Abstract
	Introduction
	Background
	Semantics in genetic programming
	Alternative crossovers in genetic programming

	Methods
	Measuring semantics
	Semantic relationships
	Semantics aware crossover
	Semantic similarity-based crossover

	Experimental settings
	Comparative results
	SSC Parameter sensitivity analysis
	Some characteristics of semantic similarity based crossover
	Rates of semantically equivalent crossover events
	Operator locality
	Constructive effects

	Conclusions
	Assumptions and limitations

	Future work
	Acknowledgements
	References


