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Abstract— The problem of image based localization has a
long history both in robotics and computer vision and shares
many similarities with image based retrieval problem. Existing
techniques use either local features or (semi)-global image
signatures and consider the retrieval either in the context of
topological mapping or loop closure detection. The difficulty of
the location recognition problem is affected by large appearance
and viewpoint variation between the query view and reference
dataset and presence of large number of non-discriminative
structures due to vegetation, sky and road. In this work
we show that semantic segmentation of images leading to
labeling of man-made structures can inform the traditional
bag-of-visual words models to obtain proper feature weighting
and improve the overall location recognition accuracy. We
also demonstrate additional capability of identifying individual
buildings and estimating their extent in images, providing the
essential building block for sub-sequent geo-location. Towards
this end we introduce a new challenging outdoors urban dataset
exhibiting large variations in appearance and viewpoint.

I. INTRODUCTION

The problem of image based localization and place recog-

nition entails for each query view retrieving the nearest view

from the reference dataset of views. Many variations of this

problem have been considered in the past and the existing

methods typically differ in the acquisition mode of the query

and reference views, the choice of image and reference

dataset representation and the associated matching strategy.

This task is challenging due to often large changes in

appearance due to illumination, viewpoint or season between

the query views and the reference dataset and the size and

the nature of the environment and the dataset. The two

commonly used representations for the problem are either

local feature based methods or (semi) global signatures. In

computer vision literature, many approaches use the bag-of-

visual-words representations, followed by spatial verification.

In this setting local features are weighted by a TF-IDF [7]

scheme which considers the discriminative nature of the

features. The evaluations are typically done on structured

datasets as Google street-view with dense sampling of canon-

ical viewpoints or in less structures settings utilizing geo-

tagged images from photo-sharing sites such as Panoramio

or Flickr. In the context of autonomous navigation, typical

evaluation of these methods assumed rather small variations

in the viewpoint and moderate variation in appearance as

the sequences were acquired from very similar viewpoints

along the same driving routes and under similar imaging
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conditions [3]. Alternative representations have been pro-

posed more recently, which are robust with respect to more

significant changes in imaging conditions, such as day and

night [15] and seasonal and weather changes [13], but in

all these settings the viewpoint variations are very small as

the reference dataset model and the test images were were

acquired by the same vehicle along the same route. This

proposed work aims to extend the resources used to create the

reference data for location recognition and geo-location and

considers unstructured datasets with large variations in view-

point and appearance due to seasonal changes. In order to be

able to match views with smaller overlap we adopt bag-of-

visual-words approach followed by spatial verification. The

traditional weighting schemes for local features are however

often not adequate, especially in the environment with many

repetitive image structures which are not discriminative for

locations.

Contribution: We demonstrate that the availability of se-

mantic information about the presence of man-made land-

mark structures such as buildings, can enhance the traditional

local feature based methods when the viewpoint change

and appearance changes is more significant. Focusing the

matching on man-made structures, helps to discard irrelevant

features from the scene which often act as confusers in

various voting strategies, such as trees, vegetation and road

features are often not discriminative of location. We show

(1) that semantic segmentation of images into commonly

encountered semantic categories and explicit labeling of

man-made structures provides an improvement in retrieval

accuracy of traditional bag-of-words methods with spatial

verification despite large viewpoint variation between the

query views and reference views; (2) we further demon-

strate the capability of these local features to categorize

individual building instances and estimate their extent in

query views. This obtained semantic representation can be

exploited further for semantic localization and mapping as

well as determining geographic location of the query views.

II. RELATED WORK

The problem of visual place recognition has been studied

extensively by many and the existing approaches vary in the

proposed image representation and associated matching strat-

egy as well as datasets used for evaluation. In the computer

vision literature the approaches often bear similarity with

image based retrieval techniques, where the considered base-

line method is often the bag-of-visual-words representation,

followed by spatial verification of top retrieved images using

geometric constraints [17]. Various improvements of this

methods include learning better vocabularies, developing bet-



ter quantization and spatial verification methods [14], [24],

[25], employing more sophisticated models of dependence

of local features [3] or improving the scalability [19].

In the context of visual place recognition, in contrast to

image based retrieval, there is often additional structural

information available which can be exploited towards the

task. In case the locations and/or landmarks are covered

by many views 3D reconstruction techniques can help in

quatiftying the ’matchability’ of individual features. Authors

in [1] chose the stable keypoints which are detectable across

many different views and trained a randomized decision tree

classifier per keypoint and used these classifiers to classify

the new images. In [18] authors built adjacency matrix

between reference images and then find the clusters within

training images. During the recall, they first classify the

image by assigning it to most likely image cluster and then

retrieve the score using TF-IDF weighting scheme. In [10]

learn the confusion weight for each feature exploiting the

geographic location of the unweighted retrieved views and

in [8] the authors trained exemplar SVM per image in the

training set where the negative set are the images which have

similar cosine distance but they are far away.

In robotics setting, the existing approaches use both

local feature based methods as well as alternative image

signatures. In traditional loop-closure detections problem

variations of local features have been used effectively by

many [11], [3], typically followed by spatial verification

and/or global registration of the entire trajectories. To tackle

the challenged posed by large appearance variations due

to seasonal or time of the day changes alternative image

representations have been deployed. In [15] authors used

low resolution patches discriminative for locations. In [13]

authors adopt the strategy proposed by [5] and use mid-level

patches endowed by HOG descriptors are used accompanied

by per-location training procedure which determines which

patches are discriminative for the location assuming that

large variety of images under different imaging conditions

are acquired per location. This approach can effectively select

the HOG scene signatures which are then used for pose

estimation, but it does require many images of the location

under different imaging conditions to learn what aspects of

the location are discriminative.

The retrieval approach of [10] is the most similar to our

method in selecting the features which are informative for

localization and suppressing the ones which are confusing.

We instead of learning the weight for each feature using

the GPS coordinates, we propose to use general purpose

semantic segmentation techniques [20] to classify features

to different semantic categories and filter those which do not

belong to man-made landmark structures.

While in the current work we focus only on the use of

semantic information to guide the location recognition, we

also take it one further step to detect the location and extent

of man-made landmark structures in query views. This is

motivated by recent approaches to semantic localization [2],

which use the traditional object detection pipelines [4] to

generate hypotheses about presence of objects and their

extent and bearing in images, followed by the particle filter

based localization. The current work naturally extends the

type of semantic information which can be considered for

this task. Our final goal is to aid localization and geo-

localization using the meta-data associated with the maps

along with the images on an autonomous agent engaged in

navigation in outdoors environment using visual sensing.

III. PROPOSED METHOD

In the following section we describe the baseline bag-

of-words approach, the semantic segmentation component

which is used to filter out the confusing features and

the strategy for detecting the individual buildings and

their extent in the query views. The dataset used in our

experiments and additional details of the algorithms can be

found in the experiments section.

We use the bag-of-words BoW representation as the core

of our method. The dataset of images we consider, is a

sparse set of views capturing the majority of landmarks man-

made structures on our campus, with small or no viewpoint

overlap between the views. Local features are more suitable

for these conditions, due to their smaller extent and capability

of tolerating larger viewpoint variations. Matching larger

signatures for the views which have a small overlap would

pose difficulties. Given the reference set of images, the

standard BoW method clusters the SIFT features to build

vocabulary of visual words. One of the weakness of the BoW

representation is that it treats all the features being present

in the image with the same weight. TF-IDF weighting [7]

tackles this problem by defining two terms. The first one is

term frequency which is the frequency of occurrence of that

word and the second term is inverse document frequency

which is inversely proportional to the number of documents

in which each word occurs. Even though TF-IDF improves

the performance considerably, it still considers all the visual

words present in the image. Therefore, if there are many

frequently occurring words with small IDF weights in the

query image, the product of the frequency of that word and

the corresponding IDF weight would be large. Consequently,

it changes the meaning of the the query image representation.

We propose to rectify this problem by exploiting the semantic

information available in the image.

A. Semantic Segmentation

The semantic labels we consider are five commonly oc-

curring semantic categories in street scenes - ground, sky,

building, car, tree. Our approach for semantic labeling is

based on using a single bottom-up segmentation of the image

where the superpixels are characterized with a variety of

features including color, texture, location and perspective

cues. The labeling is performed using boosting classifiers

which automatically compute feature relevance. The pro-

posed semantic segmentation approach is closely related

to [9] and [22]. The labeling is done on superpixels obtained

by the color based over segmentation scheme proposed in [6].

The evaluation of the performance of the boosting classifier,



Fig. 1. Semantic Segmentation. Left: original image; Right: color coded
semantic categories. Detected man-made structure are colored red.

details of the training procedure as well as comparison to the

state of the art systems, is described in more detail in [21].

An example of the obtained semantic layout is shown in

Fig. 1.

B. Semantically Aware Image Retrieval

In the absence of semantic information, the BoW

approach with traditional TF-IDF weighting of visual words

often retrieves incorrect images from the reference dataset.

For example, Fig 2(a) depicts an example of such situation.

As it is shown, the query image contains considerable

amount of vegetation and if we use the TF-IDF score to

find the top matches, only one of the retrieved images

contains the building of interest and the rest is dominated by

vegetation. This is the case that in spite of the fact that IDF

weight of the visual words capturing the vegetation is small

due to frequent occurrences in most of the scenes but since

there are many of them in the image, the TF component

becomes large as well as the TF-IDF weight. In other

words, these features contaminate the TF-IDF weighted

BoW representation. Vegetation is not the only category

which causes confusion. Other semantic categories such

as road, sidewalks can also mislead the feature weighting.

Another aspect which has drawn recent attention [13] is

the robustness to changes in appearance due to the season

change. Since the seasonal changes mostly affect the

appearance of vegetation, not considering these features

We first build vocabulary of all of the SIFT features using

k-means algorithm and then we compute the IDF term for

each of the visual words in the vocabulary (Algorithm 1,

lines 1 and 2). We compute the semantic segmentation [21]

for all images in the reference set labelling each pixel as

belonging to one of the 5 semantic categories man-made

structure, sky, grass, road, trees, vegetation. Given this

information we discard the local SIFT features which do

not belong to man-made structure regions (Algorithm 1, line

3). In order to compensate for the semantic segmentation

errors, we determine whether a local feature is belongs

to man-made structure region by considering 7 × 7 pixel

patch around each feature and checking whether at least 50

percent of the pixels in this patch are labeled as man-made

structure/building. Other semantic categories can be chosen

as well. After semantically-pruning the features which do

not belong to buildings, we recompute the TF component

for each of the training images and compute new TF-IDF

BoW representation (Algorithm 1, line 4). It is worth noting

that there might be a visual word which occurs both on

a man-made structure and other semantic classes. In this

case, we do not eliminate all the occurrences of that visual

words. We only eliminate the ones which are not in our

desired semantic regions. This is different from [10] where

they compute the weight of each visual word for all of its

occurrences regardless of the semantic category each feature

belongs to and we do not need to have GPS coordinate for

each of the images.

In the test phase, we extract the SIFT features from query

image and assign each of the SIFT features to one of the

visual words in the learned vocabulary. We then compute TF-

IDF representation using the IDF and the frequency of visual

words in the query image (Algorithm 2, line 1). We retrieve

top N matches by finding K-nearest neighbor using the cosine

distance between the query feature vector and semantically-

pruned feature vectors of training images (Algorithm 2, line

2). Note that we do not discard any of the SIFT features

which are not inside of the buildings in the test phase. That

is because we have already eliminated their counter part

features from the training images which decreases the effect

of such features on the final cosine distance significantly.

In order to build the dictionary of the visual words, we

use all the features regardless of the semantic categories. If

we only use features belonging to man-made structures, our

dictionary overfits to the features on man-made structures

and it does not generalize well to the features present in

the query image. Examples of comparison of the nearest

view retrieval with and without semantic pruning can be

found in figure 2, where left side are the nearest views

retrieved with the baseline BoW methods and right column

are the nearest views retrieved with semantically weighted

BoW methods. Note that the semantic weighting for TF-

IDF notable improves the number of correctly retrieved

views in top k matches. This superior performance can

be also observed after spatial geometric verification stage.

The quantitative comparison can be found in Table I in the

experimental section.

C. Building categorization and detection

The approach described in the previous section enables

us to retrieve relevant images from the reference dataset.

The retrieval results could be further refined using spa-

tial verification using RANSAC with motion model of the

choice (homography, essential matrix, trifocal tensor etc).

This would yield possible refinement of the results. In the

case the reference images have GPS coordinates one could

then proceed with geometric verification and pose estimation

between the query view and retrieved images provided that

at least two geometrically consistent images were available.

This strategy was used in the past by [24], [25] as means

of computing geographic location of the query view. In

many practical settings, it is often difficult to find the two

views with sufficient overlap and even if we have enough

overlap between images, there is no guarantee that the

resulting pose estimates would be correct due to the repetitive



(a) Baseline (b) Our method

(c) Baseline (d) Our method

Fig. 2. Qualitative comparison between baseline TF-IDF BoW and our method. At each cell, the left image is the query image and the right images are
the top 8 retrieved matches. The matches are shown from left to right in row order. Correct retrieved images are indicated by red rectangle. (a) and (b)
illustrate the effect of vegetation on the performance of image retrieval. (c) and (d) illustrate the effect of season change on the retrieval. Note that our
method not only retrieves more relevant images but also the retrieved set contains all the building which are present in the query image and it has more
visual overlap with the query image.

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

(a) (b)

Fig. 3. Illustration of horizontal extent finding procedure. (a) contains all the retrieved images and the horizontal extents of the buildings are shown with
the dashed vertical lines. The color of the lines corresponds to the color of diagrams in the right column. (b) contains the overall unnormalized probability
for the top 8 matched images.

structures on different sides of buildings exhibit the same

visual appearance. Fig. 4 illustrates such a situation where

one of the retrieved images have the same visual features but

it is taken from the other side of the building.

In our setting we seek a representation which could be

deployed in the semantic localization setting given a map

represented by landmarks [2] and does does not rely on the

constraints such as similarity of robot’s trajectory in the train-

ing and test phase or retrieving two images with sufficient

overlap and accurate GPS coordinates. Semantic localization

can be formulated as other traditional localization problems

in the particle filtering framework. Without GPS or trajectory

constraints, each particle can represent feasible locations and

is characterized by the observation likelihood of the image

given a 2D map of the presence of landmarks and buildings.

The observation likelihood of the image at particular location

requires a method for identifying and localizing buildings in

the image. Similarly to the localization methods using range

sensors, we want to compute the relative bearing of each of

the buildings in an image. We assume that that tilt and roll

of camera is small and the problem of bearing estimation

is equal to finding horizontal extent of the buildings in the

image field of view. Horizontal extent of a building is a

bounding box that has a height of image and it contains

a specific building. Fig 4 visualizes the horizontal extent.

We address the problem of computing horizontal extent

of a building in three parts: 1) semantic segmentation 2)

retrieving similar images to the query image using the

semantic information 3) computing the horizontal extent of

the building in the scene from the retrieved images.

Finding Horizontal extent: In this section, we want to

transfer the knowledge from the training images to the test

images. Let B = {b1, b2, ..., bnb
} be the set of buildings

in the training dataset. Let P i be the set of features in the

ith retrieved image and Q be the set of features in the query

image. pij represents the jth feature in the ith retrieved image



Fig. 4. Illustration of horizontal extent: The query image is the one which
has circle around its balloon and the other two images are retrieved images.
The yellow and red dashed lines represent the horizontal bearing of the
building in the image and its meaning in the real word is shown with the
same color.

and qk denotes the kth feature in query image. If pij and qk
correspond to each other and pij is on building b, then it is

likely that feature qk will be on building b too. In order to find

feature correspondence we use the standard method by [12]

followed the symmetric matching to keep only the mutual

matches. For the geometric verification stage we use 5-point

algorithm [16] (Algorithm 3, line 1) to find the inliers.

We next proceed with estimation of horizontal extents in

images. We discretize the horizontal field of view into

columns c ∈ C and for each column in the query image,

we compute the likelihood of column c containing building

b ∈ B using the top N retrieved images. The idea is to

transfer the labeled information from the inlier features in

the retrieved set to the query image and then accumulate all

the likelihoods to get the overall probability of each building

b given each column c. Therefore, it is important to make

sure that the ith retrieved image is actually correct. That is

it contains at least one common building with query image

Iq . p(Iq|Iti ) is the likelihood of ith retrieved image having

common building with query image Iq and it is equal to

p(Iq|Iti ) = α× |Mi| × Si (1)

where |Mi| is the number of inlier matches between query

image Iq and the retrieved image Iti . Si is the cosine distance

between the feature vector of query image and the retrieved

image and α is the normalization factor. The more inlier

features there are, the more likely that we retrieved correct

image. In addition, having higher cosine distance means that

the feature vectors are more similar and again the likelihood

increases (Algorithm 3 line 2). We also define p(qk|p
i
j) which

is equal to likelihood of feature pij be the correct match for

qk and is equal to N (||pij − qk||2, σ
2

s) (Algorithm 3, line

3). The larger the euclidean distance between features, the

less likely it would be that this feature is a correct match.

We also need to determine which building each feature pij
belongs to. To do this, we use the building label information

and building identity available in the dataset. p(b|pij) is the

probability of feature pij be on building b and it is equal to

the frequency of pixels in the 7× 7 pixels neighborhood of

the feature point and being labeled as b over the number of

pixels in the patch, which is 49 in our case (Algorithm 3,

line 4). Last but not the least, the probability of identity of

each column is not independent of its neighboring columns

because buildings are continuous. We enforce this by prop-

agating the probability of each column to its neighbors by

a weight of N
(

xqk − c, σ2

x

)

(Algorithm 3, lines 5 and 6).

The following equation consolidates all of the probabilities

we discuss in this section.

p(b|c) = βc ×
∑

f,It
i
,qk,p

i
j

[

p(Iq|Iti )× p(qk|p
i
j)×

p(b|pij)×N
(

xqk − c, σ2

x

)]

(2)

where βc is the normalization factor for column c. Fig. 3

illustrates the procedure more clearly.

IV. EXPERIMENTS

A. Dataset

Majority of the datasets are either images of commonly

photographed landmarks, with single landmark being the

dominant central part of the image or structured datasets like

StreetView dataset, where images of urban streets are taken at

regularly sampled intervals from canonical viewpoints. In our

case the goal was to collect a dataset which would have good

coverage in terms of visibility of landmarks on our campus,

but the landmarks themselves would not be the central part

of each image. We selected a subset of buildings on the

campus and collected images of the buildings. Some of the

images contain only some part of the buildings. There are

also images which have the close-up of the buildings. The

dataset consist of 849 images which we partitioned it into

almost equally sized sets for test and train sets. The images

are taken by cell-phone camera. For all the images we labeled

the identity of the buildings which are present in addition

to the horizontal extent of each of the buildings in each

image. For the images in the training set, we applied semantic

segmentation and label each of the segments as background

if they do not contain any part with label building, or with

the identity of the building if they lie on any of the buildings.

B. Semantic Based Retrieval

In order to build the dictionary of visual words, we gath-

ered all the sift features of the images with peak threshold

for key point detection equal to 0. We used vlfeat [23]

implementation of approximate k-means algorithm to build

our vocabulary. We increased the number of clusters until the

idf histogram of the dictionary has larger entropy indicating

discriminative properties of certain visual words. We use

the vocabulary of 7000 visual words. For the semantic

segmentation, we used the implementation of our previous

work [21]. Since we are interested in retrieving images

which has the overlapping set of the buildings with the query

image, we define the precision and recall as follows. Recall

is the number of correctly retrieved buildings in the top N

matches over the number of buildings which are present
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Fig. 5. The F-1 score with various number of retrieved images. F-1 scores
are computed using top 1, 4, 8, 12, and 16 matches.

TABLE I

COMPARISON OF IMAGE RETRIEVAL PRECISION USING TOP N MATCHES

N=1 N=4 N=8 N=12 N=16

Baseline 0.7596 0.7579 0.7406 0.7164 0.6990
Our Method 0.8050 0.7857 0.7664 0.7466 0.7326

in the query image. Correctly retrieved buildings are those

being present in the query image. Precision is the number

of relevant images over the number of retrieved images. An

image is considered to be relevant, if the set of the buildings

in that image has overlap with the set of the buildings present

in the query image. Precision and recall for our method and

baseline is included in table I and II. Our method improves

the overall precision. However, when the number of retrieved

images grow, the recall for our method become slightly less

than the baseline. The reason for that is in the scenes which

buildings take small portion of the scene, the baseline method

retrieves images with the similar structure to the query

image which does not necessarily mean that they contain the

correct building. When the number of images being retrieved

increases, the probability of retrieving images that contain the

actual building by chance will increase. Fig 2 is an example

of such situation. This phenomenon also shows itself in the

top 1 retrieval. To be more concrete, we have also computed

the F-1 score with various number of retrieved images. Fig. 5

shows the diagram of F-1 score with/without using semantic

information. As it is shown, semantic information improves

the result without exerting extra computational cost in the

test phase which is appealing in robotic applications. Note

that no spatial verification applied on the retrieved images to

refine the retrieved short list.

C. Estimating Horizontal Extent

In order to estimate the horizontal extent of the building,

we used 5-points algorithm implementation of the [16]

in RANSAC framework. Having found the inlier matches

between the query image and semantically-pruned features

TABLE II

COMPARISON OF IMAGE RETRIEVAL RECALL USING TOP N MATCHES

N=1 N=4 N=8 N=12 N=16

Baseline 0.6727 0.8638 0.9426 0.9588 0.9751

Our Method 0.7060 0.8749 0.9312 0.9546 0.9641

TABLE III

QUANTITATIVE EVALUATION OF THE HORIZONTAL EXTENT

ESTIMATION ACCURACY

N=1 N=4 N=8 N=12 N=16

Baseline 0.4458 0.6046 0.6384 0.6370 0.6308
Our Method 0.5331 0.7514 0.8025 0.8145 0.8218

in the training images, we calculate the weight of the features

using (2) for all the buildings and one extra category which

represent background. we used σx = 16. We classify each

column c to b∗c such that b∗c = argmaxbp(b|c). We compared

our performance with the baseline method for estimating

horizontal extent. In the baseline algorithm, matching process

is done between all the features in the query image and

all the features in the training images. For evaluation, we

labeled the horizontal extent of each image manually. We

defined the accuracy of horizontal extent estimation as ratio

of the number of columns which are correctly classified as

one of the buildings over the total number of columns having

building. Table III shows the quantitative comparison of

using semantic or not in estimation of the horizontal extent.

As it is shown, our method improves by retrieving more and

more images. On the other hand, the performance plateaus

with the increase in the number of retrieved images. The

main reason is the accuracy advantage of our method over

the baseline method in retrieving correct images. Another

phenomenon which occurs by the increase the number of

retrieved images is that the accuracy of the baseline starts

decreasing with the grow in the size of the retrieval set.

This is due to the fact that that the images which are being

retrieved is not accurate and they cause confusion and as

a result it leads to confusion of the method in estimating

horizontal extent of the building.

V. CONCLUSIONS

We have demonstrated that the capability of detecting

man-made structures can enhance the traditional local feature

based methods when the viewpoint change and appearance

changes are more significant. Focusing the matching on man-

made structures, helps to discard irrelevant features from

the scene which often act as confusers in various voting

strategies, such as trees, vegetation and road features are

often not discriminative of location. Towards this end we

have introduced a new dataset for building localization and

recognition. In addition to the building detection problem,

we have shown that the local features can be used to

categorize the individual building instances and their extent

in images. At the moment we evaluate the building local-

ization approach using commonly used measure for measure

performance of object detectors, but in the future work we

plan to tie it together with the semantic geo-localization and
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Fig. 6. Qualitative evaluation of our method with and without semantic information. The first column is the query image and column (b) and (c) show the
top retrieved image. Column (d) illustrate the estimated horizontal extent using only the top retrieved images in column (b). The vertical dash line represent
the ground truth of the horizontal extents of buildings in the query image and the solid lines represent unnormalized probabilities for each column.

evaluate the accuracy of determining the geographic location

of the agent.
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[25] Wei Zhang and Jana Košecká. Image based localization in urban
environments. In 3DPVT06, pages 33–40, 2006.


