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Abstract

Many applications of unpaired image-to-image transla-

tion require the input contents to be preserved semantically

during translations. Unaware of the inherently unmatched

semantics distributions between source and target domains,

existing distribution matching methods (i.e., GAN-based)

can give undesired solutions. In particular, although pro-

ducing visually reasonable outputs, the learned models usu-

ally flip the semantics of the inputs. To tackle this without

using extra supervisions, we propose to enforce the trans-

lated outputs to be semantically invariant w.r.t. small per-

ceptual variations of the inputs, a property we call “seman-

tic robustness”. By optimizing a robustness loss w.r.t. multi-

scale feature space perturbations of the inputs, our method

effectively reduces semantics flipping and produces transla-

tions that outperform existing methods both quantitatively

and qualitatively.

1. Introduction

Recently, unpaired image-to-image translation [11] has

been very popular in the computer vision community. Due

to its general assumptions on the inputs (unlabelled im-

ages collected from different domains) and the easy ac-

cessibility of training data (does not use paired images),

it is widely used in fields such as image manipulations,

style transfer, domain adaptation, data augmentation, etc.

[13, 58, 43, 22, 28, 9, 30, 41, 45, 2]. On the other hand,

unpaired image translation remains a very challenging task

owing to its unsupervised learning nature. Without paired

images that specify the exact domain mapping, one has to

rely on visual cues to perform distribution matching (i.e.,

via GANs [16]). Existing GAN-based methods all rely

on the adversarial loss that aims to optimally align image

statistics between translation images and the target ones (in

*Co-first authors; work partly done during an internship at X. Code

available at https://github.com/SeanJia/SRUNIT.

Figure 1: The class distributions in GTA vs. Cityscapes.

During unpaired image translation, the generator has to flip

the inputs’ semantics to match the target distributions. In-

stances from over-represented semantic classes in the source

domain (e.g., sky) can be flipped to those from underrepre-

sented classes (e.g., vegetation).

Figure 2: (top) Conceptually, forcing the distribution of

translated images to match the target one causes seman-

tics (the different colored shapes) of the input images to get

flipped. (bottom) An example of semantics flipping (high-

lighted in red boxes) from the GTA to Cityscapes task.

the marginal sense). However, what if the two distributions

should not be the same? In fact, the underlying distributions

of semantics from the two domains are usually different, let

alone the image distribution of translated images and target

one. We call this the unmatched semantics statistics prob-

lem, which is under-explored yet both critical and common

for unpaired image translation tasks.
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Similar to the language translation, the semantics of an

image should be preserved during translations. For in-

stance, in the GTA to Cityscapes dataset [12], while trees

look different across domains, their identity/semantics re-

mains the same. In the Horse to Zebra task [11], a horse

or zebra remains in the class Equus, not turning into a

shack. Consider the translation as a two-stage process:

firstly project an image from one domain to the shared

semantics space, and then project it to the other domain.

When the source and target images are projected to the

same semantic space and have different distributions in that

space, we say the data have unmatched semantics statistics.

Unpaired data from different domains generally have un-

matched semantics statistics, unless they are very carefully

constructed. For example, in the Horse to Zebra dataset,

there are more zebras than horses; in the GTA to Cityscapes

dataset, more trees in Cityscapes than in GTA (see Fig.

1). Given unmatched semantics statistics, forcibly match-

ing distributions between the translated and the target im-

ages can only give spurious solutions, where semantics get

flipped only to match the target semantics statistics (see Fig.

2 for an example). In Sec. 5, we demonstrate that semantics

flipping is a critical and common issue in various GAN-

based unpaired image translation frameworks.

There are a few direct attempts at preserving the seman-

tics during translations and thus reducing flipping. How-

ever, they either require extra supervision or pre-trained

models [22, 51] or are too restrictive (dataset-specific) and

prone to artifacts [7, 60, 56]. In this paper, we propose

to tackle this problem by encouraging that, during im-

age translations, perceptually similar contents should be

mapped to contents with high semantic similarity. We

call this property of the mapping as semantic robustness.

In essence, semantic robustness ensures a consistent map-

ping that prevents the semantics of the inputs from be-

ing flipped easily. Specifically, based on the recently pro-

posed framework CUT [40], we propose a semantic robust-

ness loss w.r.t. multi-scale feature space perturbations of

the input images. We call our method SRUNIT (Semanti-

cally Robust Unpaired Image Translation) and empirically

demonstrate its effectiveness in reducing semantics flipping.

SRUNIT outperforms existing GAN-based methods both

qualitatively and quantitatively on several common datasets.

2. Related Work

Unpaired Image-to-image Translation Although lack-

ing pixel-wise supervision, advances have been made in un-

paired image-to-image translation by utilizing Generative

Adversarial Networks (GANs) [16]. The central idea is to

minimize the statistical difference (measured using the dis-

criminators) between generated and target images by up-

dating the generators. These methods can roughly be sorted

into two-sided methods such as [32, 62, 29] and one-sided

counterparts such as [24, 34, 35].

Preserving Semantics in Image Translation More re-

cently, efforts have been made in preserving the semantic

content of the source images during the unpaired image

translation. There are several existing approaches. Cycle

consistency [62] is proposed to enforce bijective mappings

between domains so that semantic information will not be

lost during translation. Geometry consistency [15] enforces

equivariance of the generators regarding geometric trans-

formations. DistanceGAN [7] and HarmonicGAN [60] en-

courage visual similarities within the source domain to be

reflected in the target domain. A spectral constraint based

on the Fourier transform of the input images is proposed in

[56]. Attention-based methods [37, 52] are used to preserve

the background during the translations. Moreover, multiple

work [51, 8, 46, 33, 40] adopt the idea that input and out-

put images should be similar, measured by a function either

pre-defined or learned contrastively.

Robustness & Generalization of DNNs Semantic ro-

bustness and semantics flipping discussed in our paper is re-

lated to both adversarial robustness and generalization abil-

ity. Some work has tackled the adversarial robustness of

GANs [11, 6, 54]. And some [59, 53, 3] has explored their

generalization properties. In a broader context, both ad-

versarial attack and defence have been extensively studied

[48, 19, 23, 50, 49, 42, 17, 1], and many recent advances

have been made for understanding the generalizability of

DNNs [38, 47, 55, 5, 61, 14, 4, 27, 26].

3. Semantic Robustness

Many applications of unpaired image translation (style

transfer, domain adaptation, data augmentation [22, 28, 2])

require the semantics of the inputs to be preserved during

translations. In this section, we will discuss the semantics

flipping issue and the concept of semantic robustness.

3.1. Unmatched Semantics Statistics

Most existing approaches for unpaired image-to-image

translation do not explicitly study the mismatched distri-

butions of the semantics across source and target domains.

This prevalent phenomena in unpaired translation tasks usu-

ally incur serious artifacts (see Fig. 2 bottom row). To

begin with, let us define the terms. When translating im-

ages from one domain to the other, it is natural to assume

an intermediate semantics space where resides the infor-

mation to be preserved during translations. When convert-

ing images from a domain to the shared semantics space,

we refer to the resulting distribution in this space as se-

mantics distribution. Due to the nature of unpaired image

translation tasks where direct supervision of the paired re-

lations is missing, we should assume that the unpaired data
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from different domains have different semantics distribu-

tions (i.e., the unmatched semantics statistics). Most widely

available datasets fall into this category (e.g., see Fig. 1

for unmatched semantics statistics between GTA [44] and

Cityscapes [12]). A few exceptions are those originally con-

structed for paired translation (e.g., Maps to Photos [25]).

3.2. The Semantics Flipping Issue

We argue that provided the unmatched semantics statis-

tics between source and target domains, an inherent prob-

lem for GAN-based unpaired image translation frameworks

is the semantics flipping issue.

The central idea of GAN-based methods is to match the

image statistics between translated images and target im-

ages as much as possible. Multiple metrics for evaluating

the translation performance follow this principle, i.e. they

measure some sort of statistical distance between generated

and target images (FID, MMD, etc. [21, 18]). This is in-

deed problematic, as the generated and the target distribu-

tion should not be the same, provided that the source and

target domains have discrepancies in semantics statistics.

We observe that the learned translation models by existing

methods usually are undesired solutions (e.g., Fig. 2 bottom

row), which, although producing visually reasonable out-

puts, systematically flip contents into other semantics. This

is because only through semantics flipping can the gener-

ators produce images that match the statistics of the target

domain (see Fig. 1 as an illustration of this process).

3.3. Limitations of Existing Approaches

Most existing unpaired image translation frameworks do

not explicitly tackle and, in fact, suffer from the seman-

tics flipping issue (empirically demonstrated in Sec. 5).

For two-sided domain mapping methods, cycle consistency

[62] are the most popular technique which suggests using

bijective (and therefore information-preserving) mappings.

However, as pointed out in [11], CycleGAN can learn to

hide information in plain sight such that semantics flipping

still occurs while the information is preserved during the

translations. One-sided domain mapping approaches di-

rectly pose constraints on the generators to preserve mean-

ingful information. GcGAN [15] proposes geometry con-

sistency to enforce that the translation functions are equiv-

ariant w.r.t. common geometric transformations. How-

ever, spurious solutions with semantics flipping can also be

equivariant as such. Another line of work is to enforce some

sort of relations between input and output images (or image

patches), for example, by perceptual similarity or statistical

dependency [33, 40]. Since these methods have their corre-

spondence learned unsupervisedly (e.g., contrastively), its

inaccuracy can lead to spurious enforcement with more se-

mantics flipping (or artifacts). Alternatively, [56] uses a

spectral constraint to maintain semantics. The approach

might fail in general and was only shown to be successful in

translation tasks across visually similar domains. Although

methods with ground truth perceptual similarity can reduce

semantics flipping [22, 51], they require extra supervision

or pre-trained models that are not available for a general

unpaired image translation task.

3.4. Semantic Robustness to the Rescue

Other than directly enforcing relations between input and

output images, we propose to encourage that small percep-

tual variation of the input images (or patches) should not

change the semantics of the corresponding transformed im-

ages (or patches). We call this property of the generators as

semantic robustness. Notice that the perceptual similarity

between images (or patches) refers to the distance measured

in the feature space (e.g., CNN features of the images),

rather than in the raw pixel space. We argue that increasing

the semantic robustness of the generators can effectively re-

duce semantics flipping during translations. Intuitively, an

input image (or patch) should have its semantics invariant

under small perceptual perturbations, and thus, the seman-

tics of the corresponding translated image (or patch) should

also be invariant. Remember that semantics flipping hap-

pens as the generator is forced to match the target statis-

tics by transforming semantically over-represented contents

from the source domain to less represented ones (see Fig.

1). Semantic robustness encourages a consistent transla-

tion such that contents of the same semantics are not trans-

formed into contents of several different semantics. As a

result, it prevents forceful distribution matching and miti-

gates the flipping issue.

How do we obtain the semantics from images in the first

place? Without relying on extra supervision or pre-trained

models, contrastive learning approaches (e.g., [40]) can

learn to extract features that are domain-invariant, which

we consider as the semantics of the inputs. One might find

it intuitive to directly enforce that the translation should not

change these “semantics” of the input to reduce semantics

flipping. However, this direct approach does not work well

(see our ablation study in Sec. 6). Interestingly, these ex-

tracted semantics can be used to effectively reduce flipping

by instead enforcing semantic robustness (i.e., the seman-

tics of the translated image be invariant to perceptual varia-

tions of the inputs). This is partly because the latter indirect

constraint is a “soft” version of the former direct constraint

and is more robust w.r.t. the inaccuracy of the extracted se-

mantics which is contrastively learned.

4. Method

4.1. Preliminary: CUT

The goal of unpaired image-to-image translation is to

learn functions between two domains X and Y given train-
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ing samples {xi}
N

i=1, {yj}
M

j=1 sampled from pX(x) and

pY (y). Recently, several one-sided methods were proposed,

which essentially learn the generator G : X → Y and the

discriminator DY that aims to distinguish between images

{x} and translated images {F (y)}. Commonly, the train-

ing objective consists of multiple pieces. The first one is the

adversarial losses [16], Eqn. 1, for matching the marginal

distribution of generated images to that of the target images.

LGAN(G,DY , X, Y ) = Ey∼pY (y) [logDY (y)]

+ Ex∼pX(x) [log (1−DY (G(x))] (1)

The second part is usually a loss constraining the genera-

tor G to perverse desired contents during translations. For

instance, the recent state-of-the-art method Contrastive Un-

paired Translation (CUT) [40] tries to maximize the mu-

tual information between the input and generated output via

contrastive learning. It utilizes InfoNCE loss [39] to learn

an embedding that associates corresponding patches (of in-

put and translated images) to each other while disassoci-

ating them if otherwise. By doing so, it learns encoders

that extract domain-invariant features of the input images at

multiple scales. At each scale, the feature (an R
256 vector)

at one position from the input image is denoted as “query”

v; the corresponding feature in the translated image is de-

noted the “positives” v+; the features at N other locations

from the input images are the “negatives” v−. Formally, the

contrastive loss is set up as an (N + 1)–way classification

as below (where τ is the temperature).

ℓ
(

v,v+,v−
)

= (2)

− log

[

exp (v · v+/τ)

exp (v · v+/τ) +
∑N

n=1 exp
(

v · v−

n /τ
)

]

Although encouraging semantic correspondence be-

tween input and output images, CUT still suffers from se-

mantics flipping when the two domains have unmatched se-

mantics statistics. This is because the contrastively learned

semantics are not accurate enough to ensure successful cor-

respondence enforcement across domains. Nevertheless,

when combined with other techniques to improve semantic

robustness, these semantics extractors can be used to suc-

cessfully reduce semantics flipping.

4.2. Semantically Robust Unpaired Image Transla­
tion (SRUNIT)

Our method is based on CUT [40] and the semantic ro-

bustness we proposed in Sec. 3.4. As illustrated in Fig. 3,

in CUT, K layers (denoted {Gk}), including the input layer

G1 (an identity function), are selected from the first half

of the generator G. Together with the rest of the network,

denoted GK+1, we have G = GK+1◦GK◦· · ·◦G1. We fur-

ther define Gj
i = Gj◦· · ·◦Gi+1 as a forward propagation via

(j − i) components of G. For instance, G(x) = GK+1
1 (x).

During CUT training, at each scale k ∈ {1...K} (just like

in CUT, there are K scales in total), a feature extractor Fk

that consumes the output of Gk (a layer in the generator)

is learned by Eqn. 2, where v, v− and v+ are the outputs

of Fk. The optimization of Eqn. 2 encourages the feature

Fk(G
k
1 (G(x))) to remain close to Fk(G

k
1 (x)).

We consider the perceptual variations mentioned in our

semantic robustness concept as the random perturbations in

the output space of Gk, and consider outputs of Fk as the se-

mantics (by Eqn. 2 Fk extracts domain-invariant features).

Then, we propose to improve semantic robustness by mini-

mizing the loss Lrobust =
1
K

∑K

k=1 Lk, where

Lk = Ex

[ 1

||τk||2

∥

∥

∥
Fk(G

k
1 (x)) − (3)

Fk(G
k
1 (G

K+1
k (Gk

1 (x) + τk)))
∥

∥

∥

2

]

The τk refers to some random perturbation. As shown in

Fig. 3, Lk measures the distance between extracted seman-

tics at scale k from the input image and that of the cor-

responding translated image under feature space perturba-

tion to the input. We can see that minimizing Lk indirectly

enforces semantic robustness, which is the condition that

“transformed images should have their semantics invariant

to small feature space variations of the inputs”. Formally,

this condition can be measured by

Ex

[ 1

||τk||2

∥

∥

∥
Fk(G

k
1 (G(x))) − (4)

Fk(G
k
1 (G

K+1
k (Gk

1 (x) + τk)))
∥

∥

∥

2

]

Lk and Eqn. 4 are closely related by the triangle in-

equality since, by contrastive learning (Eqn. 2), we have

Fk(G
k
1 (G(x))) remain close to Fk(G

k
1 (x)). In fact, our

approach produces better translation results than directly

optimizing Eqn. 4, because the latter can harm the diver-

sity of the translation (the mode collapse issue). Optimiz-

ing Lk can be seen as an adaptive version of optimizing

Eqn. 4, adjusted by the distance between Fk(G
k
1 (G(x)))

and Fk(G
k
1 (x)). See Sec. 6 for empirical evidence and see

Appendix for a detailed discussion.

One might ask a question: why not directly minimize the

distance between Fk(G
k
1 (G(x))) and Fk(G

k
1 (x)) to enforce

semantics-preserving translations. This will make duplicate

efforts, similar to the contrastive loss (Eqn. 2) used in CUT.

We show in the ablation study (Sec. 6) that doing so can

actually hurt the performance.

Moreover, we adopt the patch-based approach so that

x refers to the input image patches. In practice, one can

choose to only include a random subset of {Lk} in each

training iteration to reduce the computational complexity of

optimizing Lrobust. See Sec. 5.3 for more details.
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Figure 3: Our method improves semantic robustness by making the semantics of translated output invariant to small feature

space variations of the inputs. The contents in the green box exemplify the data-flow for Lk at one specific scale k. There are

in total K such losses; each corresponds to one of the K selected layers in the generator, respectively.

4.3. Advantages Over Distance­Preserving Methods

Our semantic robustness approach is advantageous to the

distance-preserving approach (e.g., DistanceGAN & Har-

monicGAN [7, 60]), which aims to improve the semantic

consistency of the translations by maintaining the distance

between different parts of the same sample during the trans-

formations. See Sec. 6 for the empirical results.

Firstly, assuming no access to extra supervision or pre-

trained models, the distance used in this line of work is

based on image pixels, for instance, the (standardized) L1

distance between raw pixels or color histograms. Com-

pared to the CNN feature-based perceptual similarity used

in the concept of semantic robustness, pixel space similarity

metrics are far more sensitive to geometric transformations,

change of lighting conditions, etc.; thus, they usually fail to

capture the essential information in the images. The authors

of HarmonicGAN provide an option to use CNN features

from pre-trained models to measure visual distance, which

is domain-specific and requires prior knowledge, making

this approach restrictive. Ours utilizes the contrastively

learned features, being both universal and effective.

Secondly, the underlying principle of the distance-

preserving approach is usually violated, i.e., the visual

distance between contents in the source domain become

changed when translated to the target domain. For instance,

in the Label to Image task from Cityscapes [12] (i.e., trans-

lating semantic labels as inputs to street-view images), two

identical image patches of the same semantics should not be

mapped to visually identical outputs. Forcefully maintain-

ing the visual distance as such leads to serious artifacts and

hurts the diversity of the translations. Instead, our method

encourages the outputs to be semantically the same, which

can still be diverse and high-quality.

Thirdly, our method focuses on improving the robustness

of the translations from the source domain w.r.t. feature

space perturbations in all directions. Whereas, distance-

preserving methods do so only w.r.t. pixel space perturba-

tions in the direction of other source images (or in practice,

in the direction of other patches from the same source im-

age). This makes our approach much more efficient and

effective in reducing semantics flipping.

5. Experiments

In this section, we demonstrate how our method (denoted

SRUNIT) effectively reduces semantics flipping and pro-

duces translations that outperform existing approaches both

quantitatively and qualitatively for several popular unpaired

image translation tasks. In specific, we compare SRUNIT

with CycleGAN [62], GcGAN [15], DRIT [31] and CUT

[40]. Notice that some popular datasets are designed for

paired translation tasks and are not very realistic for un-

paired image translation (they admit perfectly aligned se-

mantics statistics across the domains). Therefore, we sub-

sample them (which aggravates the flipping issue) so that

the setup becomes more realistic.

5.1. Quantitative Evaluation

It is critical to choose the right metrics to quantitatively

evaluate the translation performance, as the focus of this pa-

per is on reducing semantics flipping. Popular metrics such

as FID and MMD [21, 18] ignore the unmatched seman-

tics statistics nature of unpaired image translation datasets

(see the discussion in Sec. 3.2); consequently, they are

not suitable and can be even misleading here. Instead, we
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Figure 4: Visual results of the Label to Image and GTA

to Cityscapes tasks (first and second column, respectively).

Row 2 of column 2 shows the ground truth mask as no such

ground truth image exists. Although not solved perfectly,

semantics flipping is effectively reduced by our method

(some improvements are highlighted in red boxes).

use datasets where (partial) information of the ground truth

translated results are available and use corresponding met-

rics for evaluation. Some datasets (e.g., Aerial Photo to

Google Map) directly provide ground truth correspondence,

easing the evaluation of the translation quality. Others (La-

bel to Image, GTA to Cityscapes, etc.) do not have such

“ground truth” translation. On these datasets, we follow the

common practice to compute metrics based on pre-trained

models [11, 15, 40]. The intuition is that the more accu-

rate the models (trained on source images) can classify the

target images, the better these generated images are [25].

5.1.1 Cityscapes Label → Image

Cityscapes [12] is a real-world image dataset popular for

benchmarking semantic segmentation and image transla-

tion. The dataset is originally constructed for paired trans-

lation. To ensure a reasonable level of unmatched semantics

statistics between the two domains, we sub-sample around

1500 images from the RGB semantic label images and 1500

from the street-view images according to K-means cluster-

ing results based on histograms of the semantic labels. Each

image is resized to 512 × 256 and during training, we ran-

domly crop the 256× 256 patches. As a result, the two do-

mains have unmatched semantics statistics. We use the 500

validation set in Cityscapes for evaluation (whose ground

truth semantic labels are provided). We use three metrics

(as in [40]) to provide a comprehensive evaluation of the

translation quality. They are the mean pixel accuracy, class

accuracy (i.e., class-weighted pixel accuracy) and mean IoU

(default metric for semantic segmentation). These metrics

are computed by using a light-weight publicly available

DeepLab V3 [10] model pre-trained on the Cityscapes se-

mantic segmentation task (refer to the Appendix for details).

We notice that, for these datasets, there are no standard

pre-trained models for evaluation across existing work (e.g.,

CUT uses DRN [57] and CycleGAN & GcGAN use FCN

[36]). We choose DeepLab V3 because its pre-trained mod-

els are public available and it is in general a better model

for semantic segmentation. Table 1 and Fig. 4 show that

SRUNIT produces results better than existing methods by a

large margin. All detailed information is in the Appendix.

5.1.2 GTA → Cityscapes

GTA5 [44] is another popular dataset of 24966 synthesized

images from the game Grand Theft Auto 5. We set aside

500 images from GTA5 for evaluation and use the remain-

ing ones together with all the 2975 Cityscapes images (from

Cityscapes’ fine-labeled training set) for training. Similar to

the Label to Image task, we resize all images to 512 × 256
and randomly crop 256 × 256 patches for training. The

two datasets have quite different semantics statistics (as dis-

played in Fig. 1). Again, we use the DeepLab model to

compute the three metrics. The quantitative results in Table

1 and qualitative results in Fig. 4 demonstrate the effective-

ness of our proposed SRUNIT.

5.1.3 Google Map → Aerial Photo

The Google Maps dataset [25] contains in total 2194 (map,

aerial photo) pairs of images around New York City and is

widely used in both paired and unpaired image translation

[25, 62, 15]. The dataset is split into 1096 pairs and 1098

pairs for training and test sets, respectively. Since it is origi-

nal constructed for paired image translation, we sub-sample

14278



Label → Image GTA → Cityscapes Map → Photo Photo → Map

method pxAcc clsAcc mIoU pxAcc clsAcc mIoU Dist Acc(δ1) Acc(δ2) Dist Acc(δ1) Acc(δ2)
CycleGAN 66.36 27.24 21.31 66.33 32.53 23.84 70.16 28.67 43.88 23.02 16.11 32.65

GcGAN 65.30 27.78 21.41 65.62 32.38 22.64 71.47 28.87 43.48 23.62 15.00 30.65

DRIT 72.74 28.13 22.06 64.28 32.17 20.99 70.87 28.97 43.56 24.19 13.94 29.01

CUT 75.09 29.70 23.43 64.59 32.19 20.35 70.28 28.86 44.07 23.44 16.25 31.34

SRUNIT (ours) 80.70 33.95 27.23 67.21 32.97 22.69 68.55 30.41 45.91 23.00 17.67 32.78

Table 1: Average pixel prediction accuracy (pxAcc), average class prediction accuracy (clsAcc), Mean IoU (mIoU), Average

L2 distance (Dist) and pixel accuracy with threshold (Acc) measured for the tasks. The best entries are highlighted in bold.

Figure 5: Visually in the Photo to Map tasks, our method effectively reduces semantics flipping (highlighted in red boxes).

map images and aerial photos from the training set (around

600 from each domain) so that there is a reasonable amount

of difference between the semantics statistics from the two

sets. We do so by K-means clustering the color histogram

of the images (see the Appendix for details). We use all

the 1098 test set pairs for evaluation. Images are resized

to 256 × 256 to accommodate all methods in our compari-

son. We measure the quality of translation by average pixel

L2 distance (Dist) and pixel accuracy (%), following [15],

where given a ground truth pixel pi = (ri, gi, bi) and the

prediction p′i = (r′i, g
′

i, b
′

i), the accuracy of p′i is computed

as 1 if max (|ri − r′i| , |gi − g′i| , |bi − b′i|) < δ and 0 oth-

erwise: We use δ = 30, 50 as the domain of aerial photos

has large diversity. Table 1 and Fig. 5 demonstrate the clear

advantages of our method over existing ones.

5.1.4 Aerial Photo → Google Map

The evaluation protocol is similar as above, except that we

use smaller δ = 3, 5 since the domain of google maps has

much less diversity than the other domain. Again, Table 1

and Fig. 5 show the advantage of our approach.

5.2. Qualitative Evaluation

Besides the aforementioned tasks, we show more visual

results on the following three popular datasets (all training

images resized to 256 × 256). In Fig, 6, we demonstrate

that SRUNIT produce images of better or comparable qual-

ity compared to others. Due to the lack of ground truth

translation information, it is not possible to quantitatively

measure how well our model reduces semantics flipping.

Horse → Zebra A famous dataset consists of 1067 and

1334 training images for horses and zebras, respectively

(link). The two domains have different semantics statistics.

Summer → Winter A dataset of photos of Yosemite con-

structed by authors of CycleGAN. The training set con-

sists of 1231 summer images and 962 winter images (link).

Again, the two domains have different semantics statistics.

Day → Night A dataset of outdoor scenes used in [25,

15]. While the original dataset consists of paired images, we

sub-sample 1418 day images and 391 night images so that

the semantics statistics are different (details in Appendix).

5.3. Implementation details

We follow CUT [40] for the choice of network architec-

ture and the training setup (learning rate, number of epochs,

etc.). The τk used in Eqn. 3 is sampled independently as

a vector for each coordinate of the feature maps produced

by Gk. We first project standard multivariate Gaussian ran-

dom variable into the unit sphere and then resize it with its

magnitude sampled uniformly in [10−7, T ], where the de-

fault T we choose is 0.1 (we fine-tune it in [0.01, 0.2]). We

set the default coefficient of the loss term Lrobust as 10−4,

and fine-tune it in [10−5, 10−3]. By default we compute
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Figure 6: Visual comparisons on the three datasets (Horse to Zebra, Summer to Winter, Day to Night). Semantics flipping

(or, in general, areas where our method improves over others) are highlighted in red boxes. See Appendix for more samples.

{Lk} (see Eqn. 3) for all 5 feature extractors {Fk} used in

the CUT paper. We fine-tune it by leaving one Lk out for

each variant. We find all these hyper-parameters relatively

robust. Optimizing Lrobust might lead to training instabil-

ity at the beginning of the adversarial training; thus we only

apply it after finishing 1
4 of the total epochs. See Appendix

for full implementation details.

6. Ablation Study

Here we justify the design choice of our proposed se-

mantic robustness loss Lrobust. We perform all the follow-

ing experiments on the Label to Image dataset as it is a rel-

atively challenging task. We use CUT as the backbone (as

used in SRUNIT). The results are shown in Table 2.

Firstly, we show our method’s advantage over the dis-

tance preserving approach (see also Sec. 4.3 for a dis-

cussion). We train a model denoted E1 by adding the

self-distance constraints from DistanceGAN [7] to the

CUT backbone and E2 by adding a patch-based distance-

preserving constraint in the style of HarmonicGAN [60]

(not exactly the same, though). To verify the necessity of

using feature extractor Fk in Lrobust, we train E3 by remov-

ing the function calls to Fk in Eqn. 3. To show that Eqn. 3 is

a better proxy of Eqn. 4 (as discussed in Sec. 4.2), we train

E4 by using Eqn. 4 instead of Eqn. 3 when optimizing the

Lrobust. We train a model E5 to illustrate that directly mini-

mizing the distance between semantics (extracted by Fk) of

the input and that of the output does not work (also see Sec.

4.2 for a discussion). We further show that applying con-

straints on the discriminator instead of the generator is not a

better way to improve the semantic robustness of the model.

We do so by training a model E6 with Lipschitz penalty [20]

on the discriminator in the spirit of WGAN [20]. We pro-

vide full details in the Appendix.

E1 E2 E3 E4 E5 E6 SRUNIT

pixAcc 74.46 75.31 75.42 76.38 74.86 76.25 80.70

clsAcc 29.84 30.13 30.43 31.13 29.79 30.92 33.95

mIoU 23.52 23.86 23.89 24.71 23.22 23.51 27.23

Table 2: Ablation studies (using CUT as backbone) on the

Label to Image task in defense of our choice in SRUNIT.

7. Conclusion

In this paper, we tackle the semantic flipping problem

in unpaired image translation which is critical for many of

its applications. We argue that the inherently unmatched

semantics distributions across different domains should be

responded to by improving the semantic robustness of the

generators. We do so by proposing a semantic robustness

loss that enforces the semantics of the translated images

to be invariant to the perceptual perturbations (specifically

the multi-scale feature space perturbations) of the inputs.

Quantitative and qualitative evaluations on multiple datasets

suggest that our approach can effectively reduce semantics

flipping that existing GAN-based methods suffer from.
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