Semantically Secure Order-Revealing
Encryption: Multi-input Functional Encryption
Without Obfuscation

Dan Boneh! ™| Kevin Lewi', Mariana Raykova?, Amit Sahai®,
Mark Zhandry!, and Joe Zimmerman'

L Stanford University, Stanford, US
dabo@cs.stanford.edu
2 SRI International, Menlo Park, US
3 Computer Science, UCLA and Center for Encrypted Functionalities,
Los Angeles, US

Abstract. Deciding “greater-than” relations among data items just
given their encryptions is at the heart of search algorithms on encrypted
data, most notably, non-interactive binary search on encrypted data.
Order-preserving encryption provides one solution, but provably pro-
vides only limited security guarantees. Two-input functional encryption
is another approach, but requires the full power of obfuscation machinery
and is currently not implementable.

We construct the first implementable encryption system supporting
greater-than comparisons on encrypted data that provides the “best-
possible” semantic security. In our scheme there is a public algorithm
that given two ciphertexts as input, reveals the order of the correspond-
ing plaintexts and nothing else. Our constructions are inspired by obfus-
cation techniques, but do not use obfuscation. For example, to compare
two 16-bit encrypted values (e.g., salaries or age) we only need a 9-way
multilinear map. More generally, comparing k-bit values requires only a
(k/2+1)-way multilinear map. The required degree of multilinearity can
be further reduced, but at the cost of increasing ciphertext size.

Beyond comparisons, our results give an implementable secret-key
multi-input functional encryption scheme for functionalities that can be
expressed as (generalized) branching programs of polynomial length and
width. Comparisons are a special case of this class, where for k-bit inputs
the branching program is of length k + 1 and width 4.

1 Introduction

Functional encryption [BSW11] is a public-key encryption system that supports
“partial” decryption keys: decrypting a ciphertext ¢ = E(pk, m) using a key sky
reveals f(m) and nothing else. Multi-input functional encryption [GGG+14] is
a generalization of functional encryption where the key sk acts on £ ciphertexts
c1 = E(pk,mq),...,ce = E(pk,myg) to reveal f(mq,...,my) and nothing else.

© International Association for Cryptologic Research 2015
E. Oswald and M. Fischlin (Eds.): EUROCRYPT 2015, Part II, LNCS 9057, pp. 563-594, 2015.
DOI: 10.1007/978-3-662-46803-6_19

564 D. Boneh et al.

Existing constructions for general multi-input functional encryption are based
on obfuscation and thus are not currently feasible to implement, even for simple
functionalities.

In this paper we present a construction for secret-key multi-input functional
encryption from multilinear maps. By restricting our attention to the secret-key
setting, we are able to achieve a much more efficient construction, without the
full machinery of obfuscation and NIZK proofs.

For concreteness, in the introduction we present our results as they apply
to a specific application called order-revealing encryption [AKS+04, BCL+-09,
BCO11]. The paper body presents the results in their full generality, namely as
a secret-key multi-input functional encryption scheme.

1.1 Order-Revealing Encryption

Definition. A secret-key encryption scheme is order-revealing' [BCO11] if there
is a public procedure that takes two encrypted plaintexts as input and reports
their lexicographic ordering. This procedure, which we call the order-revealing
algorithm, requires no secrets and can be evaluated by anyone. More precisely, an
order-revealing scheme is a tuple (G, E, D) of algorithms. Algorithm G outputs
a pair (sk,comp) where sk is a secret encryption key and comp(+, -) is an efficient
deterministic algorithm that takes two ciphertexts as input and outputs either
‘<’or ‘>’. Algorithms E(sk,m) and D(sk, ¢) are standard encryption/decryption
algorithms where m € {0,..., B} for some B. In addition to the standard cor-
rectness of decryption we also require that for all (sk,comp) output by G and
for all plaintexts mg, m; we have:

mo < mq = Pr[comp(E(sk,mg) , E(sk,m;)) ='<'] =
mo > my = Prlcomp(E(sk,mq) , E(sk,my)) ='>] =

An order-revealing encryption scheme is secure if a ciphertext reveals nothing
about the corresponding plaintext beyond its lexicographic relation relative to
other ciphertexts. This is defined using a simple variant of the standard semantic
security game [GM82]: the adversary is given algorithm comp(-,-) and access to
a “left-right-oracle” O(-,-) that on input (mg,m;) returns E(sk,m;) for some
b € {0,1} chosen at the beginning of the game. After adaptively querying the
oracle O the adversary outputs a guess b’ and wins the game if b = b'. Let
(méo)7 mgo)), . (méq), mg‘n) be the adversary’s queries to . To ensure that the
adversary cannot use algorithm comp(:,-) to trivially win the game we require
that the relative ordering of messages on the left is the same as the relative
ordering on the right, namely for all 0 <4,j < ¢:

(4) (7) (#)

my’ <mg’ = m @

< my

The scheme is secure if the adversary cannot win this game with non-negligible
advantage. We refer to this notion as best-possible semantic security. We give a
complete (and more general) definition in Section 3.

! In [BCO11] order revealing encryption was called “efficiently-orderable encryption.”

Semantically Secure Order-Revealing Encryption 565

Note that a public-key order-revealing encryption scheme is impossible: if an
adversary has unrestricted access to the encryption algorithm, he can use the
encryption algorithm and the order-revealing algorithm comp(-, -) to decrypt any
ciphertext using binary search without the secret key.

Applications. Order-revealing encryption (ORE) is motivated by the problem
of answering range queries on a remote encrypted database [AKS+04, BCL+09].
Consider a remote database holding encrypted pairs (name, salary). The data
owner wishes to retrieve all records with a salary greater than t. If salaries are
encrypted using an ORE then the database can sort all records on its own from
lowest salary to highest. This sorting can be done even when records are inserted
sequentially into the database (perhaps by multiple users who share the secret
encryption key) and requires no interaction with the data owner(s). To issue the
range query the data owner sends the encryption of ¢ under the ORE key. In
response, the database first uses binary search on the encrypted salaries to locate
the smallest encrypted record R with a salary greater then ¢ and then simply
sends all records to the “right” of R back to the user. Thus, for a database
of n records, the database’s work is O(logn) and requires only one round of
interaction with the client, as in the case of a cleartext database. Security of the
ORE ensures that the database learns nothing beyond the relative ordering of
records and queries.

Alternate Approaches. Before describing our construction we briefly survey
a few alternate constructions for answering range queries on a remote encrypted
database.

Boldyreva et al. [BCL409,BCO11] describe an elegant primitive called Order
Preserving Encryption (OPE) where encryption preserves the relative ordering
of plaintexts. Comparing encrypted data is then done by simply comparing the
corresponding ciphertexts. However, OPE leaks information about the relative
distances of plaintexts. Recent work of Malkin et al. [MTY13] constructs an OPE
scheme with a partial security guarantee, hiding the low-order bits of plaintexts,
but still does not achieve best-possible semantic security. Indeed, Boldyreva
et al. [BCL+09] prove that no OPE scheme can possibly achieve best-possible
semantic security. In ORE, unlike OPE, comparisons are done with a dedicated
algorithm comp(-,-) which is the reason best-possible semantic security can be
achieved.

A very different approach to answering range queries on encrypted data uses
garbled RAMs [LO13,GHL+14]. With garbled RAMs the database can answer
range queries without learning any information about the data, but answer-
ing the range queries requires more rounds of interaction per query and the
database’s work is higher than with ORE.

Other approaches to answering range queries are based on public-key predi-
cate encryption [BW07,SBC+07, KSWO08] and require a linear scan through the
database. With ORE, range queries can be answered in logarithmic time in the
size of the database. We also mention a result of Popa et al. [PLZ13] who describe

566 D. Boneh et al.

an interactive protocol for answering range queries. Interaction is used to main-
tain a sorted data structure at the database by offloading some comparisons to
the client. Finally, we note that ORE is a special case of secret-key two-input
functional encryption [GGG+14].

1.2 Order Revealing Encryption: Our Construction

Our construction begins with a simple automaton for the comparison function
on two inputs that we represent as a low-width matrix branching program. We
encrypt ciphertexts in a way such that given two independently-created cipher-
texts, anyone can run the comparison branching program to reveal the relative
ordering of the corresponding plaintexts. While our encryption scheme applies
to any multi-input functionality expressed as a matrix branching program (see
Section 2.2), for the rest of this section we use the two-input comparison automa-
ton and its branching program as a concrete example to illustrate the construc-
tion.

The Comparison Automaton and Branching Program. Fig.1 shows a
five-state automaton A that computes the ordering of two inputs © = x1x2 - -z,
and ¥ = y1¥2...yn in {0,1}"™ when the input is processed in an interleaved
order (of the form z1y122ys2 - - - £, yn). From this automaton we derive four 5 x 5
matrices Xg, X1, Yq, Y1, where each is the adjacency matrix of a subgraph of A:
for b € {0,1}, the matrix X} is the adjacency matrix of the subgraph consisting
only of the b-transitions used by input bits of z, and the matrix Y, is the
adjacency matrix of the subgraph consisting only of the b-transitions used by
input bits of y. Note that these matrices are not invertible because of the sink
states in the automaton. This introduces additional challenges in the security
proof; however, we are able to handle branching programs with non-invertible
matrices using recent results of Sahai and Zhandry [SZ14].

Let e; be the 5-vector containing 1 in position ¢ and zero elsewhere. Then the
product e] - [T, (X;,Y,,) results in a vector with a single “1” in three possible
locations (corresponding to either the “z > y”, “o < y”, or “=" final states), and
the location of the “1” determines the result of the comparison operation on x
and y. Hence, the matrices Xy, X1, Yo, Y1 form a matrix branching program for
the two-input comparison function. In the full version we show that a simple re-
ordering of the inputs reduces the matrix program length to only n + 1 matrices
each of dimension 4 x 4, but for simplicity we ignore this optimization here.

¥=0 y=l
01 0,1
yEl o x=0 //\Q v
<X<Y/ 10/ L= 1) \X>U
Fig. 1. The 5-state comparison automaton on inputs z,y € {0,1}" where ‘=" is the

start state. Input bits are processed in an interleaved order 1 y1 z2 y2 ...

Semantically Secure Order-Revealing Encryption 567

The ORE Encryption Scheme. Fix a prime g. The setup algorithm G uni-
formly samples 2n — 1 invertible matrices Ry, ..., Ro,—1 from GL5(Z,). These
matrices form the secret encryption key sk. During encryption these matrices
will be used to randomize the matrices of the comparison branching program
using Kilian’s randomization technique [Kil88]. We define two additional vectors
Ry := €] and Ry, := e5. The secret key also contains the parameters for an
asymmetric multilinear map [GGH13a] with 2n indices (i.e., of degree 2n). We
divide the 2n indices into two disjoint size-n sets U; and Us.

The encryption algorithm encrypts a plaintext @ = zyz5 - - -z, € {0,1}" as
follows. It first samples a partition (S, ...,S,) of Uy and a partition (71, ...,T},)
of Us. These partitions are sampled at random from a family of partitions we call
an “exclusive partition family.” They must satisfy a specific combinatorial prop-
erty needed to prevent certain “mix-and-match” attacks where the attacker tries
to run the comparison algorithm on improperly formed ciphertexts. We define
and construct these partition families in Section 2.5. They are a generalization
of the “straddling sets” used in Barak et al. [BGK+14].

Next, the encryption algorithm samples random scalars aq, ..., @, € Zj and
constructs the 5 x 5 matrices

Xi = Q- (Rgi,Q Xm R22£1> and Yi = Qp4i* (RQifl Ywi REZI)

for i € [n] where we define R, := es. Recall that the matrices R; are taken
from the secret key and the matrices X, X7 and Yy, Y1 are the matrices in the
comparison branching program. Because Ry and Ry, are vectors, so are X, and
Y,,. All other ciphertext components are square matrices.

Finally, for ¢ € [n] the encryption algorithm encodes the entries of X; under
the index set S; of the multilinear map, and encodes the entries of Y; under the
index set T;. The resulting 2n encoded 5 x 5 matrices ({X;}7_,, {Y; }1_1) are
output as the encryption of z € {0,1}".

c, = E(sk, x; X, X3)

/

LA]

D, A, D, As — 7

¢ = E(sk, Y1iYs y3)

Fig. 2. The order-revealing algorithm applied to encryptions of x1x2x3 and y1y2ys

568 D. Boneh et al.

The Order-Revealing Algorithm. Given two independently-created cipher-
texts ¢, and ¢, corresponding to plaintexts x and y, the order-revealing algorithm
computes the interleaved product of the matrices in the left half of ¢, with the
matrices in the right half of ¢,. In other words, if ¢, = ({A;}7_,,{B;}7_,) and
cy = ({Ci}iy, {D;}7-;) then 2 = A1D;AyDy - -- A, Dy, as shown in Fig. 2. We
compute z using the multilinear map and the result is a single group element
(a scalar) because A; and D,, are vectors. Finally, the algorithm zero-tests z
and the outcome reveals the ordering of x and y. Zero-testing this z is possi-
ble because it is an encoding of an element under the full 2n index set, by the
structure of the partitions.

To verify that the final zero-test correctly reveals the ordering of x and y,
observe that the scalar z expands to the quantity

(el Xo, RTY) (R1Yy, Ry 1) -+ (Ron—2Xo, Ry) (Ron—1Yy,e5) (1)

Hence, z takes on a non-zero value if and only if the comparison automaton
terminates in the state “x < y”. Note that we omitted the scalars «; in the
expansion (1) for ease of exposition. Their presence causes z to be either 0 or
non-zero, as opposed to 0 or 1.

Security. We prove the security of a generalization of this construction in the
generic multilinear map model [GGH+13b,BR14, BGK+14]. The use of Kilian’s
randomization technique in the encryption key restricts the adversary’s abil-
ity to manipulate ciphertext components in an elementary manner, such as
by computing products of matrices out of order. Also, the use of the random
scalars aq, . .., as, prevents the adversary from correlating multiple encryptions
of plaintexts which share the same bit pattern. However, there is still a large
domain of attacks that the adversary could potentially take advantage of. For
example, an adversary can combine components from multiple ciphertexts to
look for relations, or he can compare the results of partial evaluations of the
branching program on different inputs.

In order to handle these types of attacks, we use the combinatorial structure
provided by our exclusive partition families. Intuitively, the use of a random
partition from an exclusive partition family for each ciphertext ensures that if
the adversary computes a partial evaluation of the branching program, or tries to
mix components from multiple ciphertexts, he will not be able to obtain a group
element which is encoded in the index set for the zero-tester, as required by the
generic multilinear map model. In fact, it turns out that the use of these exclusive
partition families is indeed sufficient to prove security of the construction in the
generic model.

Performance. Our basic construction requires a (2n+2)-way multilinear map to
evaluate comparisons on n-bit numbers. However, simple optimizations, includ-
ing re-ordering of the matrices in the branching program, enables us to shrink
the total length of the comparison branching program to only (n + 1) matrices

Semantically Secure Order-Revealing Encryption 569

each of dimension 4 x 4 (see Section 2.2 for details). Consequently, we only need
an (n + 1)-way multilinear map to evaluate comparisons on n-bit numbers. The
secret encryption key contains 16n elements in Z,, and each ciphertext is 16n — 8
encoded group elements. We can further reduce the required degree of multilin-
earity by a factor of log, B by representing messages in base-B (instead of base-2)
and modifying the comparison automaton to compare one base-B digit per step.
This shortens the length of the branching program (and therefore the degree of
multilinearity) by a factor of log, B, but at the cost of increasing the number of
states in the automaton by a factor of B and consequently increasing the number
of group elements in the ciphertext by a factor of approximately B?/log, B. For
example, moving to base B = 4 gives multilinearity (n/2 + 1), with ciphertexts
requiring 18n — 24 group elements.

Concretely, for n = 16 bits, we can use a 9-linear map giving ciphertexts of
264 group elements. While this scheme is still too inefficient for practical use,
the construction can be implemented and provides an important step towards
more realistic ORE schemes. This is in contrast to the immense number of levels
of multilinearity required to obtain ORE from obfuscation-based constructions.

Generalizing to Multi-input Functional Encryption. While we used order-
revealing encryption (ORE) as an example application, our construction is more
general: it gives a secret-key multi-input functional encryption where the degree
of multilinearity needed for decrypting with a key sk s depends on the length of the
branching program representing f. In fact, every matrix in the branching program
can depend on all the bits of one of the inputs to f and this can be used to shrink
the length of the branching program. We refer to these as generalized branching
programs and define them precisely in the next section.

Our base multi-input functional encryption scheme supports a single func-
tion f (such as comparison) fixed a-priori during initial key generation. This
function f defines the branching program relative to which all encryptions are
computed. This apparent single-function limitation is easily removed using uni-
versal circuits: the functionality fixed a-priori is a universal circuit U that takes
as input the description of a function f and its inputs z1,...,x, and outputs
f(z1,...,2,). Now, a functional encryption “key” sk for a function f is simply
the encryption of f under our encryption scheme. Given sk and the encryptions
of z1,...,x, the functionality for the universal circuit U can be used to compute
f(z1,...,x,) in the clear.

1.3 Other Related Work

Multi-input functional encryption was introduced by Goldwasser et al.
[GGG+14], who gave constructions based on indistinguishability obfusca-
tion [BGI401,GGH+13b] and differing-inputs obfuscation [BGI+01,BCP14,
ABG+13].

Our construction of multi-input functional encryption is inspired by obfusca-
tion techniques [GGH+13b,BBC+14, AGI+14], but does not use obfuscation.

570 D. Boneh et al.

Instead we build multi-input functional encryption directly from multilinear
maps. Several other results use obfuscation techniques to obtain more efficient
constructions directly from multilinear maps. Zhandry [Zhal4] showed how to
construct n-way Diffie-Hellman key exchange without trusted setup, a result
that was previously known only using obfuscation [BZ14]. Concurrently with
this work, Garg et al. [GGH+14] showed how to construct single-input functional
encryption from multilinear maps; however, their motivation was to obtain secu-
rity proofs from concrete assumptions, rather than efficiency. The constructions
in this paper are considerably more efficient (we make use of a much smaller
number of matrices), but our security proof is in the generic multilinear map
model.

Single-input functional encryption [BSW11] has been traditionally defined
in the public-key settings and studied extensively [O’N10,GVW12,AGV+13,
BO13,C1J+13,GGH+13b, GKP+13,BCP14]. In this paper, however, we focus
on secret-key (multi-input) functional encryption, which is sufficient for data
processing on a remote encrypted database, including order-revealing encryption.
Focusing on the secret-key setting enables us to give a simple construction from
multilinear maps. Single-input secret-key functional encryption was previously
explored for the inner-product functionality by Shen et al. [SSW09] and more
generally by Goldwasser et al. [GKP+13]. Brakerski and Segev [BS14] recently
showed how to convert any secret-key functional encryption scheme into one
where secret keys do not reveal their functionality.

2 Preliminaries

2.1 Conventions

For an integer n, we write [n] to denote the set {1,...,n}. For a finite set S,
we write Uniform(S) to denote the probability distribution that is uniform over
the elements of S. When working with vectors in Z" for some integer n, for
each i € [n] we write e; to denote the i*® unit column vector, i.e., the vector
(x1,%2,...,2,)7 such that z; = 1 and, for all i’ # i € [n], we have x;; = 0. We
write GL,,(Z,) to represent the set of all w x w invertible matrices over Zg.

2.2 Matrix Branching Programs (MBPs)

In this section, we define a variant of matrix branching programs for which our
main construction applies. These generalized matrix branching programs are
a sequence of efficiently computable Boolean circuits that turn a given multi-
variate input into a matrix.

Definition 2.1 (Generalized Matrix Branching Program). Let X C
{0,1}* be a set of possible input strings, and let f : XY™ — {0,1} be a multi-
input function. A generalized matriz branching program P of length ¢ and width
w, over Zq for a prime g, is a tuple of the form

P:(q7 m, da inpa (Mla ERE) M@))7

Semantically Secure Order-Revealing Encryption 571

where for each j € [f], the function M; : X — ZJ** is computable by an
efficient deterministic algorithm. The value inp is a lookup table of the form

inp = (inp(1), ..., inp(¢)),

where for each j € [¢], we have inp(j) € [m]. The branching program takes
m inputs and we say that at step j it inspects input number inp(j) € [m].
To simplify notation, we require the branching program to inspect each of its m
input variables exactly d times? (so that the length of the program, ¢, is precisely
md). We also introduce the following shorthand notations:

— For a branching program step j € [¢], input slot i € [m], and sub-index
h € [d], we write j = inp.j(i, h) to signify that j is the step in which the
program inspects input slot i for the A*™" time.

— For a branching program step j € [(] and sub-index h € [d], we write
h = inp.h(j) to signify that j is the step in which the program inspects
the corresponding input slot inp(j) for the A" time.

We say that P computes the function f if, for all inputs x = (2™, ... (™) ¢
xm

[I MiE™D)) 11]=0 = fx =1

J€E[)

Since every program P computes a unique function f, we also write P(x) to
denote f(x).

Following Sahai and Zhandry [SZ14], we also define the notion of a non-
shortcutting matrix branching program.

Definition 2.2 (Shortcuts in Matrix Branching Programs [SZ14]). A
branching program has a shortcut on input x = (z(M, ..., (™)) € X™ if either:

H M ('np) -ep = 0’LU><1 or eI . H M mp(j))) — Ole

Jel Jel

In such a case, it is possible to determine that f(x) = 1 without carrying out
the entire matrix product. We say that a branching program is non-shortcutting
if, for all inputs x, it has no shortcuts on x. We require that every generalized
matrix branching program is non-shortcutting.

2 We note that this assumption is without loss of generality, since given any program
of length ¢ that does not satisfy this condition, we can construct a new program
whose value of d is the original program’s value of ¢, and pad the program with
dummy matrix functions that always return the identity matrix regardless of their
input string. (Alternatively, for practical applications, it is also easy to adapt the
techniques we describe to the general case, albeit at the expense of cumbersome
notation.).

572 D. Boneh et al.

We note that there are multiple ways to obtain a generalized matrix branch-
ing program from a circuit, or from a time-bounded Turing machine or RAM.
Barrington’s theorem [Bar86] shows how to convert a Boolean circuit of depth
d into a matrix branching program of length O(49) and width 5. The work of
Ananth, Gupta, Ishai, and Sahai [AGI+14] takes a different approach to obtain
MBPs for Boolean formulas that avoids the complexity of Barrington’s construc-
tion. They construct a layered automaton for any Boolean formula which con-
sists of several states including a starting state and an accepting state together
with edges denoting the transitions between states based on the input bit val-
ues. Given such an automaton representation, a formula can be evaluated by
counting the number of paths between the starting and the accepting state.
Ananth et al. show that a Boolean formula of size s can be converted into a
layered graph-based branching program with O(s) layers with matrices of size
O(s?). Thus, the size of the resulting MBP is O(s®). Subsequently, Sahai and
Zhandry [SZ14] improve the conversion, giving MBP’s of length O(s) and size
O(s(logy 5)?). Our approach follows the general method of computing automata
with generalized MBPs, but we observe that for some problems such as compar-
ing two-bit strings, we can directly construct extremely efficient automata that
do not use the general translation from formulas to automata.

For more details, we refer the reader to the full version.

2.3 Randomized Matrix Branching Programs

In our construction, as in obfuscation constructions that use MBPs [GGH+13D,
BGK+14,BR14,AGI+14], we must make sure that the adversary always evalu-
ates the MBP by multiplying together one matrix selection for each step j € [{].
In particular, we must ensure that partial matrix products, which omit some
steps, will not reveal any information about the program.

The main ingredient we need here is the MBP randomization technique of
Kilian [Kil88], in which we pre- and post-multiply each matrix in the MBP
by matching, invertible random “blinding” matrices Ry, ..., Ry. Intuitively, the
resulting randomized MBP fixes the order in which the randomized MBP matri-
ces can be multiplied, i.e., requiring one matrix for each step in the original MBP.
Any other product will also contain at least one random “blinding” matrix, ren-
dering the result useless to the adversary.

In addition, we combine Kilian’s randomization technique with “bookend
vectors” §,t, as introduced in [GGH+13b], which further restrict the adversary
to projecting a single scalar entry of the matrix product resulting from the MBP
evaluation (namely, the entry at position [1,1]). Testing whether this scalar is
zero suffices to determine the Boolean output of the program, while preventing
the adversary from learning extra information by testing other matrix entries.

We now present the details of the randomized MBP construction.

Definition 2.3 (Randomized MBPs ([Kil88], adapted)). We define an
efficient randomized procedure MBPRand, such that, for a given generalized
matrix branching program

Semantically Secure Order-Revealing Encryption 573

P:(q7 m, da inpa (Mla ey Mf))a

the procedure MBPRand(P) outputs a tuple P of the form
P: (q? m7 d7 inp7 (M17 M) Me)’ é’ E))

where, for each j € [{], the function Mj : X — Z*Y is represented, like My,
as a Boolean circuit; and § and t are vectors in Ly .

The procedure MBPRand operates as follows. It samples (¢ + 1) invertible
matrices Ro, ..., Ry uniformly at random from GL,(Z,). It computes the values

s=eJR;" and t=Rye,
and, for each j € [{], the function ./\>lj defined as
M;(z) =R M;(2) R;.

Finally, it outputs the tuple

P:(q, m, d, inp, (Ml, ceey My), 8, f).

To evaluate a randomized MBP P on an input x = (M, ... 2(™), we run
each (randomized) matrix function 1\7Ij on the indicated input string z("P())
producing a randomized matrix M;. We write MBPSeIect(P, x) to denote the
sequence of randomized matrices and bookend vectors (§, My, ..., My, f:), and to
evaluate the program, we multiply all of these randomized matrices and vectors
together. Formally, we define the following procedures.

Definition 2.4 (Evaluation for Randomized MBPs ([Kil88], adapted)).
Fiz a generalized matriz branching program P and a vector of inputs x =
(™, ...z e X™, and suppose that
P=(g m d inp, (WM, ..., M), 8, £) < MBPRand(P).
For each j € [€], we define M; = M,;(z("0)) and we define
MBPSelect(P, x) = (éT, M, ..., My, E).
Finally, we define
MBPEval (éT, M, ..., My, £) = &7 (J]™y) &
jer

Given the above definitions, the proof of the following lemma follows imme-
diately.

574 D. Boneh et al.

Lemma 2.5 (Correctness for Randomized MBPs). Fiz a generalized
matriz branching program P, and a vector of inputs x = (x(l), e ,x(m)) e xm.
Then,

MBPEval(MBPSelect(P,x)) =0 <<= f(x)=1.

Ordinarily, for MBPs derived from Barrington’s theorem [Bar86], we would
also be able to state a simulation theorem, showing that the output distribution
MBPSeIect(P,x) depends only the output of the original program, P(x). In
our construction, however, we obtain much more efficient programs by other
techniques , and the matrices M;(z) in these programs do not always have full
rank. Indeed, the kernel of each matrix may depend on the input vector x, and
as a result, the output distributions MBPSeIect(I:’7 -) may be noticeably different
for different inputs xg,x1, even if the outputs of the program, P(xq) = P(x1),
are ultimately identical.

Instead of constructing a simulator, we rely on a weaker property that is still
strong enough to prove security of our main construction. Specifically, we show
that even though the distributions MBPSelect(P, x() and MBPSelect(P,x;) may
differ, they cannot be distinguished by a certain weak family of tests; in our
construction (Section 4), we will show that these are the only tests an adversary
can possibly perform in our security model. To define such a family of tests, we
refer to the following definition of Sahai and Zhandry [SZ14].

Definition 2.6 (Allowable Tests [SZ14]). Letp: Zgw“"% — Zg be a multi-

linear (multivariate) polynomial over the entries of é,f: e Z}I’J and Ml, o ,1\7[@ S
Zg*" (as formal variables). We say p is an allowable test polynomial if each

monomial in the expansion of p contains at most one entry of each vector §,t
and matriz My, ..., My.

Lemma 2.7 (Security for Randomized MBPs). Fiz a non-shortcutting
generalized matriz branching program P (over Z,, for g > 2’\), two input vectors
X0, X1 such that P(xq) = P(x1), and an allowable test polynomial p (Def. 2.6).
Then either

Pr [P « MBPRand(P) ; p(MBPSelect(P,xy)) = 0} —1
for both bits b € {0,1}, or,
Pr [P — MBPRand(P) ; p(MBPSelect(P,x;)) = 0} < negl(A)

for both bits b € {0,1}.

Lemma 2.7 follows immediately from the results of Sahai and Zhandry [SZ14];
we defer the formal treatment to the full version.

Semantically Secure Order-Revealing Encryption 575

2.4 Multilinear Maps

Multilinear maps [BS03], also known as graded encodings, or graded multilinear
maps [GGH13a,CLT13], are a generalization of bilinear maps such as pairings
over elliptic curves [Mil04, MOV93,Jou00, BF01]. Roughly speaking, a multilin-
ear map lets us take a scalar « € I, and produce an encoded version, & = [z]g,
where S C U is a finite set, called an index set, that indicates the level of the
encoding # in a given hierarchy (namely, the subsets of I ordered by inclusion).3
By convention, we will say that these index sets are made up of formal
symbols, denoted by capital letters (A, B, C'), which serve the same role as formal
variables in polynomials. To be fully precise, we state the following definitions.

Definition 2.8 (Formal Symbol). A formal symbolis a bit string in {0, 1}*,
and distinct variables denote distinct bit strings. A fresh formal symbol is any bit
string in {0,1}* that has not already been assigned to another formal symbol.

Definition 2.9 (Index Sets). An indez setis a set of formal symbols called
indices. By convention, for index sets we use set notation and product notation
interchangeably, so that ABC represents {A, B,C}, and ABCUD = ABCD.

Definition 2.10 (Multilinear Map ([BS03, GGH13a,CLT13])). A multi-
linear map over prime-order finite fields supports the following operations. Each
of the operations (MM.Setup, MM.Add, MM.Mult, MM.ZeroTest, MM.Encode) is
implemented by an efficient randomized algorithm.

— The setup procedure receives as input an index set i (Definition 2.9), which
we refer to as the “top-level index set”, as well as the security parameter
A (in unary). It produces public parameters pp (which include an O(\)-bit
prime q), and secret evaluation parameters sk:

MM .Setup(U, 1>‘) — (pp, sk)

— For each index set S C U, and each scalar x € Zg, there is a set of strings
[z]s € {0,1}*, i.e., the set of all valid encodings of x at index set S. * From
here on, we will abuse notation to write [x]s to stand for any element of [z]s
(i.e., any valid encoding of = at the index set S).

— Elements at the same index set S C U can be added, with the result also
encoded at S:

MM.Add(pp, [z]s, [¥ls) — [*+¥yls

3 We describe here the case of asymmetric multilinear maps, since this is the one
relevant to our constructions in this work.

* To be more precise, we define [z]s = {x € {0,1}* : MM.IsEncoding(pp, X, z,S)},
where the predicate MM.IsEncoding is specified by the concrete instantiation of the
multilinear map. In general, the predicate MM.IsEncoding is not necessarily efficiently
decidable—and indeed, for the security of the multilinear map, it should not be.

576 D. Boneh et al.

Elements at two index sets S1, Sy can be multiplied, with the result encoded
at the union of the two sets, as long as their union is still contained in i:

zy|s, ifSTUS, CU
MM.Mult(pp, [a]s,, [y]s,) — 4 “Hsiose i S1UE
il otherwise
— Elements at the top level U can be zero-tested:
“zero” ifS=Uandx=0¢€Z,

MM.ZeroTest(pp, [z]s) —]
“nonzero” otherwise

Using the secret parameters, one can generate a representation of a given
scalar x € Z, at any index set S C U:

MM.Encode(sp, z, S) — [z]s

— For the trivial index set S =), we specify that the only valid encoding of
[x]p is just the scalar x € F,. (So, for instance, we can perform subtraction
via MM.Add, by scalar multiplication with —1.)

By convention, we refer to the cardinality of U as the degree of multilinearity
of the map.® Technically, known instantiations of multilinear maps [GGH13a,
CLT13] are only approximate, and have a “noise” term that restricts the degree
of multilinearity to a pre-specified polynomial in the security parameter. How-
ever, this restriction will not affect our results in this work, and to keep the
presentation simple we do not model the restriction formally.

When the context is clear, we also abuse notation to wrlte for encoded
elements a, b the expression a + b to mean MM. Add(MM.pp, & b) the expression
ab to mean MM.Mult(MM.pp, a, b)7 and likewise for other arithmetic expressions.

The Generic Multilinear Map Model. To define security, we will operate
in the generic multilinear map model (also known as the generic graded encoding
model [GGH+13b,BR14,BGK+14]). This model is very similar to the generic
group model [Sho97]—intuitively, in this model, the only operations an adver-
sary can use with encoded elements are the operations of the multilinear map.
More precisely, we say a scheme that uses multilinear maps is secure in the
generic multilinear map model if, for any concrete adversary breaking the real
scheme, there is an ideal adversary breaking a modified scheme in which each
concrete encoded element is replaced by a “handle” (concretely, a fresh nonce),
mapped to the actual encoded scalar in a table unavailable to the adversary.

5 In some cases, when we optimize a construction that uses multilinear maps, we
find that we never need to encode elements of a given singleton index set. Thus in
general, for constructions that are optimized in this way, we relax the definition of
multilinearity degree to refer to the total number of sequential multiplications that
must be performed on any encoded elements in the construction.

Semantically Secure Order-Revealing Encryption 577

Each multilinear map operation is replaced by an oracle query that takes two
handles and returns another fresh handle (creating a new table entry), except
for the zero-test oracle query, which, when given a handle, returns “zero” if the
corresponding scalar in the table is zero, and “nonzero” otherwise. We defer the
formal definitions to the full version.

2.5 Exclusive Partition Families

Even though the randomized MBPs of Section 2.3 impose certain restrictions
on how their matrices can be multiplied together to remove the randomizing
factors, this alone does not prevent an adversary from learning more informa-
tion than just the outputs of honest evaluations on the MBP. The issue is that
the adversary may execute “mix-and-match” attacks, using encoded matrices
from multiple ciphertexts in the same evaluation. Our construction will use the
multilinear map’s index sets to enforce constraints on the adversary’s evalua-
tion, ruling out this kind of attack. As with the “straddling sets” technique of
Barak et al. [BGK+14], in order to use index sets to enforce this restriction, we
need to design these index sets with some combinatorial properties in mind.

In more detail, suppose U is the top-level index set in the multilinear map,
and F is some family of partitions of U. Intuitively, whenever we intend terms to
be multiplied together (e.g., because they are matrix elements from a consistent
choice of ciphertexts), the index sets of those terms will partition U, so that
the product of the encoded elements can legally be zero-tested. We will design
the partition family F so that our intended partitions (those in F) are the only
partitions of U that the adversary can possibly construct given the index sets of
the terms we provide, thereby ruling out “mix-and-match” attacks.

Formally, we define the following:

Definition 2.11 (Partition). The collection of sets P = {S1,...,5q4} is a
partition of a set U if S1U---USy =U; each S; is a nonempty subset of U; and
S;NS; =0 for each i # j.

Definition 2.12 (Exclusive Partition Family). Fiz a set U, and a family
F of partitions of U, where we write the N partitions in the family F as the

rows of the matriz:
S11 S12 00 S1d

SniSn2 - SN
We say that F is an (N, d)-exclusive partition family of U if the only par-
titions of U that can be formed from sets in F are precisely the rows of the
matriz. (Formally: for all (i1,41),. .., (im,Jm) € [N] x [d], the collection P =
{Sisj1s- - 3Sim jm) 18 @ partition of U if and only if i1 = ... = iy, and {J1,

ey dmy =1d].)

We say that an exclusive partition family F is explicit if there is an efficient
deterministic algorithm which, when given i € [N], j € [d], outputs the elements

578 D. Boneh et al.

of S;; (i.e., outputs the index of each element in some canonical ordering of
the elements of U). We note that if F is explicit, then it is also easy to sample
a partition (S;1,...,S5;4) uniformly over all of the partitions in F, simply by
choosing uniform i « [N]. To simplify notation, we write this sampling proce-

dure as (S;1,...,5:4) & F.

Construction 2.13 ((2*,d)-Exclusive Partition Families). Let d, A > 0
be integers, and let U be a set of size (1 + (d — 1)(A 4 1)). Denote the elements
of U as

U:{a17a27"'aad7 b2,1;"'ab2,)\7 R bd,l,"';bd,)\}v

and identify an index i € [2*] with the string p(i) € {0,1}* that forms the binary
representation of (i — 1). Define

Sii={a1} U U {bjr 2 p(i)r = 1}

je{2,...,d}
and for each j € {2,...,d}, define
Sig ={a;} U {bjx : p(i)r = 0}
Finally, define the family F(d,\) = ((S1,1,...,51,4),.--,(Sn,1,-..,SN.4)).

Lemma 2.14 ((2*,d)-Exclusive Partition Families). For integers d, A > 0,
the family F(d,)\) defined by Construction 2.13 is an explicit (2*, d)-exclusive
partition family.

Proof. By construction, each (S;1,...,5:4) is a partition of U consisting of
d sets, and the elements of each set are efficiently computable. Now, suppose
that for some choice of sets (i1, 1), .., (im,Jm) € [IN] X [d], the collection P =
{Si; j1s---+Si,.5m) 1s a partition of U. Then there exists some r* € [m] such
that the set .S; . ; . contains a;. The only such sets are of the form:

Sivere =Sicn={a1} U |J bk : plip)r =1}

J€{2,...,d}

Assume for sake of contradiction that for some r € [m], 4, # i,.~. We cannot
have j. = 1, since this would cover the element a; twice: once by S; and
once by S, ;. Thus j,. € {2,...,d}, and the set S;_;, is of the form:

S =1aj.} U {bj, x : p(ir)r = 0}

But for each k € [A], the only sets that contain b;, ; also contain either a; or
a;,., and we already have a1 € S;+ 1 and a;, € 5, ;. covered by the putative
partition P. Hence the only elements b;, , that are covered by P are those of
the form {b;x : p(ir+)r = 1} and {bjr : p(ir)r = 0}. Since by assumption
ip # ipx, the strings p(i,), p(iy~) differ on some bit k* € [A]. If p(i,«)= = 0 and

s Jr*)

Semantically Secure Order-Revealing Encryption 579

p(iy)k = 1, then P fails to cover bj, x~, while if p(i,+)x» = 1 and p(i,) = 0, then
P covers bj, i« twice. In either case P is not a partition of U, contradicting our
assumption. So we conclude that i« =1i; = ... = 4,,, and thus F is an explicit
(2*, d)-exclusive partition family.

We also observe that our definition of exclusive partition families generalizes
the straddling set systems of Barak et al. [BGK+14]. Indeed, for any integer
d > 0, a straddling set system S; (as defined in [BGK+14)) is a (2, d)-exclusive
partition family.

3 Secret-Key Multi-Input Functional Encryption
(SK-MIFE)

We now discuss the definition of secret-key multi-input functional encryption (SK-
MIFE), which is a special case of the definition of multi-input functional encryp-
tion (MIFE) in [GGG+14].

In fact we will specialize this definition further, to the case of SK-MIFE with
a single function evaluation key (1SK-MIFE). We note that it is straightforward
to construct ordinary SK-MIFE (enabling multiple function keys) from 1SK-
MIFE, as follows. We can set the single functionality in 1SK-MIFE to be a
universal branching program, U(f,z1,...,x,), which takes as one of its inputs
the function f to be evaluated. In this SK-MIFE scheme, the key to evaluate a
particular function f will be the 1ISK-MIFE encryption 1SK-MIFE.Enc(sk, 1, f)
(for input slot 1 in the universal program U).

We also note that 1ISK-MIFE already covers the application of order-revealing
encryption (ORE), since here we only want to enable a single function on MIFE
ciphertexts: namely, the comparison function. As we will see below, working with
1SK-MIFE enables us to achieve a much more efficient construction. Thus, we
will restrict our attention to 1SK-MIFE here.

3.1 Definitions

A single-key, secret-key multi-input functional encryption (1SK-MIFE) scheme
IT = (1SK-MIFE.Setup, 1SK-MIFE.Enc, 1SK-MIFE.Dec)

supports the following operations. Each operation is implemented by a random-
ized algorithm, which (with all but negligible probability) runs in time polyno-
mial in its input length and the security parameter .

— The setup procedure takes as input a security parameter A\ and a program
P, given as an m-input matrix branching program (Section 2.2) over Z, for
some prime ¢ > 2*. The setup procedure outputs an evaluation key ek and
a secret key sk.

1SK-MIFE.Setup(\, P) — (ek, sk)

580 D. Boneh et al.

— The encryption procedure takes as input a secret key sk, an input variable
index 7 € [m], and an input € X, and outputs a ciphertext ct.

1SK-MIFE.Enc(sk,i,2) — ct

— The decryption procedure takes as input an evaluation key ek and ciphertexts
ct® ... ct™) and outputs a computation result b € {0,1}.

1SK-MIFE.Dec(ek, ct™ ... ct™) — b

Definition 3.1 (1SK-MIFE Correctness). A 1SK-MIFE scheme II is cor-
rect if for any uniform multi-input matriz branching program P, and any inputs
M 2 € X, if (ek, sk) « 1SK-MIFE.Setup(\, P) and for each i € [m] it
is the case that ct") « 1SK-MIFE.Enc(sk,4,2(®), then,

1SK-MIFE.Dec(ek, ct™®, ... ct™) — P® ... 2m).

Security. It is clearly impossible to achieve (standard) semantic security for
1SK-MIFE, since by design, our scheme must leak some information about the
plaintexts—namely, the result of evaluating the 1ISK-MIFE program P on every
possible choice of query plaintext tuple. Our goal, then, is best-possible seman-
tic security, in which we leak only this information. In this respect, our secu-
rity definition is similar to IND-OCPA in the special case of order-preserving
(or order-revealing) encryption [BCL+09], but of course we must generalize it
for 1SK-MIFE. Our definition is also similar to the indistinguishability-based def-
initions of (general) multi-input functional encryption given by Goldwasser et al.
[GGG+14]. We now present the formal details.

Definition 3.2 (1SK-MIFE Security Game). Fiz a generalized matriz branch-
ing program P (to be used in the 1SK-MIFE scheme). For an adversary A, and
for each “world” bitb € {0,1}, we define the experiment Expt}%é;EAIFE(A), param-

eterized over a number of queries Q:

Experiment Expt}gfgjzﬂlFE(A) :

1. A receives an evaluation key ek, where (ek,sk) « 1SK-MIFE.Setup(), P).

2. A makes Q adaptive queries to a left-or-right encryption oracle, as follows.
For each t € [Q), the adversary sends query, = (it, Tt,0, T1,1), and is given
a ciphertext cty < 1SK-MIFE.Enc(sk, i¢, z¢p).

3. A outputs a bit b’ € {0,1}, which is the output of the experiment.

Definition 3.3 (SInput Con51stent Queries). In an execution trace of the
experiment Exptpg WFE(A) (Definition 3.2), let t1, ..., tm € [Q] be time steps
in the adversary’s query sequence, such that for every input slot index i € [m],
we have query, [1] =i (i.e., at time ty, the adversary queried for input slot 1;
at time ta, the adversary queried for input slot 2; and so on). Then we say the
query time sequence T = (t1,...,tm) is input-consistent. Furthermore, for each
world bit b € {0,1}, we say that such an input-consistent sequence T selects the
vector of inputs Xrp = (Tty by -« Tty b)-

Semantically Secure Order-Revealing Encryption 581

Definition 3.4 (Execution Trace). Fiz an adversary A in the generic
multilinear map model. We define the execution trace of the experiment
Expt}g?g:l';ﬂlFE(A) to be the sequence of all oracle query-response pairs, both

between A and the challenger and between A and the multilinear map oracle.

Definition 3.5 (Admissibility of Execution Traces). An execution trace
of the experiment Expt})?g:,ﬁﬂlFE(A) s admissible if the Q adaptive queries made
by the adversary satisfy the following condition: for every input-consistent query
time sequence T € [Q]™, letting X, denote the vector of inputs selected by T in

world b, we have P(x;0) = P(X,1).

We note that admissibility can be checked, for any given execution trace,
in time O([Q]™) - poly (X, |P|)), simply by testing the condition every possible
sequence 7. Thus, if m is a constant—e.g., for order-revealing encryption, where
the arity of the comparison program is m = 2—then admissibility can be checked
in polynomial time. For general programs P, the arity m may be w(1), in which
case admissibility may not be efficiently checkable. Nevertheless, we can still
define IND-security the same way.

Definition 3.6 (IND-security for 1SK-MIFE). A 1SK-MIFE scheme II
18 Q-IND-secure if, for all generalized matrix branching programs P, and all
efficient adversaries A, the quantity

Adv}DS’CKQ'MlFE(A) = [Wo — Wh|
is negligible, where for each world bit b € {0,1} we define

Wy, = Pr [EXpt?éjQMFE(A) outputs 1 and yields an admissible execution trace } .

Application to Order-Revealing Encryption. Our motivating application
of 1ISK-MIFE is order-revealing encryption (ORE). In this case, the program P
is a matrix branching program for the comparison function, which takes two bit
strings x,y € {0,1}" representing numbers in binary, and returns 1 if z < y.
The 1SK-MIFE evaluation key ek then fills the role of the comparison algorithm
in ORE.

Strictly speaking, in addition to the comparison algorithm, ORE requires that
someone who holds the secret key can also decrypt each ciphertext, revealing the
original string = € {0,1}". We can accomplish this by including, along with the
1SK-MIFE ciphertext, another encryption of x under an ordinary (semantically-
secure) symmetric encryption scheme, and including this scheme’s secret key as
part of the key in ORE.

4 Our 1SK-MIFE Construction

Consider an m-input generalized matrix branching program (MBP) of length ¢.
We construct a 1SK-MIFE for the function computed by this MBP. To encrypt

582 D. Boneh et al.

an input x € X we construct the set of matrices obtained by considering the
input (z,...,2) € X™ to the MBP. We randomize each matrix in the branch-
ing program as in Section 2.3 by using a randomizing matrix taken from the
secret key. These randomizing matrices R; are fixed at key generation time and
used for all encryptions. The encryption procedure then chooses random scalars
Qi, . ..,ap and, more importantly, chooses random index sets for a multilinear
map with which to encode each of the matrices (these index sets are chosen from
an exclusive partition family which, as we will see, have the properties needed for
correctness and security). The encryptor encodes each randomized matrix using
its assigned index set and outputs the set of encoded matrices as the encryp-
tion of z. Now, to compute the MBP function given m independently-created
ciphertexts we can select appropriate encoded matrices from each ciphertext and
compute their product using the multilinear map, as done in the ORE example
in Section 1. We then zero-test the result to learn the output of the function in
the clear.

The challenge with this approach is to guarantee that any meaningful eval-
uation has to use all of the matrices in a set of m ciphertexts and no other
elements. In other words, the difficulty in the security proof lies in preventing
attacks that evaluate the decryption function by mixing matrices from differ-
ent encryptions for the same input position. We resolve this issue by relying on
exclusive partition families from Definition 2.12. For each input position 4 that
determines d matrices in the generalized MBP, we construct a (2%, d)-exclusive
partition family F®. To encrypt a message for that position, we sample at ran-
dom a partition (SY), ey S((;)) from the family F(V and use the sets from the
partition as the index sets for encoded matrices included in the encryption. The
properties of the exclusive partition families guarantee that MBP evaluations
using matrices from ciphertexts generated by sampling different partitions from
F® will fail because the result will not be encoded with respect to the index set
for the zero-tester.

We now describe the formal construction for the above intuition.

Construction 4.1 (1SK-MIFE). The 1SK-MIFE construction consists of
the following procedures:

— 1SK-MIFE.Setup(A, P):
The setup procedure receives as input a security parameter A and a gener-
alized matrix branching program P : X™ — {0,1} of the form

P:(CL m, da inp7 (M17 ey M@))7

as described in Section 2.2, where X C {0,1}* is a space of possible input
strings, each M, : X — GL(Z,) is expressed as a Boolean circuit, and
{=md.

For each input variable index i € [m], let () be a (2*, d)-exclusive partition
family (Lemma 2.14) over a set U; of O(d) fresh formal indices (Section 2.4),

Semantically Secure Order-Revealing Encryption 583

and let Ay, A; also be fresh formal indices. The setup procedure forms a top-
level universe of indices

u=4a.4, 11 .

i€[m]

and generates corresponding parameters for a multilinear map
(MM.pp, MM.sp) «— MM.Setup(U, q).

Then, it randomizes P via the method of Definition 2.3, producing a ran-
domized program P as

~

P = MBPRand(P) = (q, m, n, inp, (My, ..., My), &, ﬁ).

Finally, it outputs the evaluation key ek and the secret key sk:

ek = (MM.pp, P, 3, , [f]A,,) sk = (MM.sp, P)

(using MM.Encode(MM.sp,-,-) to generate fresh encoded elements
8, + [t].4,)-

1SK-MIFE.Enc(sk, i, z):

The encryption procedure receives as input the secret key sk = (MM.sp, P),
an input variable index i € [m], and a plaintext z € X' (to be encrypted to
the " input slot of the branching program).

Let F@) be a (2*,d)-exclusive partition family (Lemma 2.14) over U;, as
defined in 1SK-MIFE.Setup above. The encryption procedure samples a par-
tition uniformly at random from the family F* of the form

(s, ..., sy & 70,

The procedure also chooses scalars ay,...,aq < Zj uniformly at random.
Finally, for each h € [d], the procedure generates the following fresh encoded
elements (using MM.Encode(MM.sp, -, -)):

ctp 1= O‘hMinp.j(i,h)(I)} @
Sh

and outputs the ciphertext ct = (cty,...,ctq).

1SK-MIFE.Dec(ek, ct™), ..., ct(™): The decryption procedure receives as

input the public parameters ek = (MM.pp, P, [8], , [f] At)’ along with m
ciphertexts ct(®), ..., ct(™) . Each ciphertext is parsed as

ct(= (ctgi),...7ctg)) = (CY), Cg)) ,

584 D. Boneh et al.

where the entries of the matrices (AJS) are encoded elements in the multilinear
map. Then, using the multilinear map operations (MM.Add, MM.Mult), it
computes

N A~(inp(3)) N
Z = [S]Ad ’ H Cl(npp}EZJ)) ’ [t] A"
Jeld
Using the operation MM.ZeroTest, the procedure tests whether z encodes
zero in F,, and outputs 1 if so, and 0 otherwise.

Functional correctness follows from the definition of Construction 4.1, along
with the correctness of the multilinear map procedures. Formally, we state the
following theorem.

Theorem 4.2. Construction 4.1 is correct (Definition 3.1).

To prove Theorem 4.2, we first show that for a given evaluation on m
honestly-generated ciphertexts, all of the index sets “match up” for each ¢ € [m],
so that the result z is a valid zero-test query; this follows from the properties
of exclusive partition families (Definition 2.12). Then, we show that the actual
value of z corresponds to the execution of the original program; this follows by
correctness of the randomization procedure MBPRand (Definition 2.3).

Proof. Fix a multi-input matrix branching program P, a security param-
eter A\, and a tuple of plaintext inputs x = (:c(l),...,x(m)). Let
(ek,sk) <« 1SK-MIFE.Setup(\, P), and suppose that for each i €
[m], we have ct®) « 1SK-MIFE.Enc(sk,i,z("). Then we claim that
1SK-MIFE.Dec(sk, 2™, ... (™) — P(x).
To begin, we write:
ct® = (v, M),

where the entries of the each matrix l\A/IE;) are encoded elements in the multilinear
map. Note that 1SK-MIFE.Dec outputs the result of zero-testing the following
encoded element:

e=[8,, [T] ™ | -8,
JE[]

Hence, for correctness, it suffices to show that for honestly constructed cipher-
texts, z is a valid (non-_L) encoded element at the top-level index set U, and that
z’s value in Zg is zero precisely when P evaluates to 1 on x.

By definition, for any j € [¢], we have j = inp.j(inp(j), inp.h(j)) (Section 2.2).
Thus by construction of 1SK-MIFE.Enc:

z=[8],, - H {0‘9 Mj(x(inp(j)))}S»(fnp(j)) ’ [ﬂ Ay

j€l inp.h(j)

Semantically Secure Order-Revealing Encryption 585

for some 04;- € Z; chosen by 1SK-MIFE.Enc on some input. Now, note that

{sfn'gphm) je [e]} - {s}j’ L€ [m]he [d]} . 2)
Since for each i € [m], the tuple (S,S'np(])))he[d] is a partition of ¢/; (Lemma 2.14),
we conclude that the right-hand side of (2) is a partition of (U \ (A5 U A¢)), and
thus so is the left-hand side. Hence each MM.Mult operation performed by the
functional decryption procedure is valid, and the result z is an element of Z,
encoded at the top-level universe U.

It only remains to establish that z encodes zero precisely when the program
evaluates to 1 on the corresponding inputs. We have that

s = HO‘ §- HMj(x(i”p(j))) -t

JEl] J€le] u

and hence, by the correctness of the randomized encoding (Lemma 2.5),

2 = Ha . HM (e (Y | [1,1]

JE[¢] u

Since each oz9 € Z, is invertible, z encodes zero if and only if

H M, (('nP(J)) [1,1] = 0,

JE[]
so by the definition of the branching program, we conclude that
z=0 < Pkx)=1L1

Remark 4.3. As written, Construction 4.1 requires an (¢ + 2)-way multilinear
map to support the computation of z in 1SK-MIFE.Dec. However, we note that we
could optimize the construction so that 1SK-MIFE.Enc pre-multiplies the vectors
§ and t with the first and last matrices, respectively, C”:T)phg;, C.(r:gphfgv --. This
would enable us to reduce the degree of the computation from (¢ + 2) to ¢
(and hence obtain better parameters for the multilinear map); in the special
case of order-revealing encryption, we have { = k 4+ 1, and thus we reduce the
degree required from (k4 3) to (k4 1). For simplicity, however, we present the
construction without this optimization.

Remark 4.4 (Multi-Bit Output). For simplicity, we present our SK-MIFE con-
struction only for functions that output a single bit. However, the construction
can easily be extended to functions with multi-bit output in a number of ways.

586 D. Boneh et al.

First, if a given generalized branching program already outputs k bits®, then we
can output the same k bits via the techniques of Sahai and Zhandry, replacing
the bookend vectors §, t by randomized diagonal matrices as described in [SZ14].
This transformation yields multi-bit output at essentially no additional perfor-
mance cost. Alternatively, for arbitrary programs (not represented efficiently as
multi-bit branching programs a priori), we can also simply run k copies of our
scheme in parallel, supporting multi-bit output at the cost of a factor k loss in
efficiency.

4.1 Security Proof

Our main theorem states that the construction above indeed yields a secure
1SK-MIFE scheme.

Theorem 4.5 (1SK-MIFE Security). The 1SK-MIFE construction of
Section 4 is poly(\)-IND-secure in the generic multilinear map model.

Before proving Theorem 4.5, we first give a few relevant definitions and lem-
mas. Our proof techniques in this section are similar to those in related works
that use the generic multilinear map model [BR14, BGK+14].

Remark 4.6 (Queries Referring to Formal Polynomials). Formally, the generic
multilinear map model is defined in terms of oracle queries on “handles” (nonces).
In any particular security game, however, it is usually more intuitive to regard
each oracle query as a formal polynomial. The formal variables are specified
in terms of the expressions initially supplied to the MM.Encode procedure (as
appropriate to the security game), and the adversary can construct new polyno-
mials by making oracle queries for the generic-model ring operations MM.Add,
MM.Mult. Rather than operating on a handle, then, we can think of each valid
MM.ZeroTest query as referring to a formal polynomial encoded at the top-level
universe U. The result of the query is “zero” precisely if the given polynomial
evaluates to zero, when its variables are instantiated with the real joint distribu-
tion over their values in Z,, generated as in the actual security game. For precise
definitions, we refer the reader to the full version.

Structure Lemmas. Our 1SK-MIFE construction uses index sets to enforce
constraints on the adversary’s evaluation (as depicted in Fig. 3). The purpose of
these constraints is to prevent the adversary from constructing zero-test queries
that are inconsistent—i.e., use encodings that “mix and match” elements of
different ciphertexts. To show that our design indeed prevents these undesired
queries, we first state and prove a few simple definitions and “structure lemmas”,
showing that all valid query polynomials have a certain form.

5 In such a branching program, the output is determined by the upper left k1 x ks
submatrix (k = k1k2) of the final matrix product, as opposed to just the upper left
entry. The output of the program is the ki x k2 Boolean matrix indicating which
entries in the submatrix are 0.

Semantically Secure Order-Revealing Encryption 587

@ @ ® @) () @
a ct; ct; ct3 ct, cts

_‘ﬁ !

ct

Gl | ct,® | [NctiUM| ct,;® | NCEEE | ct,?

Fig. 3. The matrices of two 1SK-MIFE ciphertexts, ct = (ctgl),ctgl),ctgl)) and ct’ =
(ct1’™ cto’ D ct3’ M) (both encrypted to slot 1), with the index set of each matrix
depicted below it. Since the index sets are defined by two different elements of the
same exclusive partition family, the adversary cannot “mix and match” elements from
the two ciphertexts.

Definition 4.7 (Query-Consistent Polynomials). For an execution trace

of the experiment Exptgg:'g/”FE(A) in the generic multilinear map model, consider
any input-consistent sequence T = (t1,...,tm) of query times (Definition 3.3).

By definition of the encryption procedure, the corresponding ciphertexts for those
query times are encoded elements that refer to formal polynomials (Remark 4.6)
of the form cty, p, = ati,hl\A/Iti,h, where oy, p, 15 a scalar and l\A/Ithh s aw X w
matriz. We now define the formal polynomial

Or = H ati,h

i€[m], he(d]

(intuitively, the a coefficient that would be present, for a given query sequence
T, in an honest evaluation of the program), as well as the tuple of formal poly-
nomials

Mtinp(2)7inp'h(l)>

(intuitively, the matrices whose entries would be involved in an honest evaluation
of the program). Finally, we say that a formal polynomial z; p, is consistent with

M|T = (Mtinp(l),inp.h(l)a)

588 D. Boneh et al.

the query sequence T if it can be expressed as a polynomial in the entries of
the correct vectors and matrices (8, M|,., and t), scaled by the correct blinding
coefficient, a.. More precisely, z, is consistent with T if it is identically equal
to a formal polynomial of the form

Zr = Or 'pf(éa M|7‘a E)
for some polynomial pr of degree poly(\).

Lemma 4.8 (Decomposition of Zero-Test Queries). Fiz any efficient
adversary A. In the experiment Expt};s,gjg/“FE(A), with all but negligible proba-
bility, every MM.ZeroTest query made by A that is valid (i.e., whose handle is
at the top-level universe U), refers to a polynomial (Remark 4.6) formally equal
to a sum of (potentially exponentially many) query-consistent polynomials of the
form

z = Za‘r 'pr(ga M|7'7 {—')7

and each polynomial p- is allowable (Definition 2.6) and consistent with a query
sequence T (Definition 4.7).

Proof. Consider any valid formal polynomial z submitted to MM.ZeroTest. First,
we expand the polynomial z into a sum of monomials (for purposes of analysis,
not by the scheme), and collect like terms with respect to the « variables. Each
term in the resulting expression must be encoded at the top-level universe U,
since some valid zero-testing handle refers to their sum. This means, in partic-
ular, that the index set of each term must contain a partition of every U;.

The only variables available to the adversary whose index sets contain ele-
ments of U; are the ciphertexts ct; j, generated during time steps t € 7 () where
T is the set of all times at which the adversary made chosen-plaintext queries
for input slot i. For these time steps, we will assume that the partitions selected
by the challenger:

(P= (s 80t e TO)

are distinct, since each is drawn independently uniform from a family of size 2%,
regardless of the adversary’s queries, and thus by the birthday bound a collision
occurs with negligible probability.

This implies that the index sets SISl})L are distinct elements of the exclusive
partition family J;,, and thus by Lemma 2.14, for each 4 € [m], the only mono-
mials whose index sets can cover each U; all share the same value of the partition
P, (and hence of t), and thus are precisely products of one element from each
component of the same query ciphertext, ct;,. Finally, for each h € [d], we note
that the At term of each such ciphertext contains precisely the factors o, n, and
My, ». Thus, letting 7 = (t1,...,tn) C [Q], we conclude that such monomials
have precisely a leading factor of a, while the remaining factors are drawn from
M] -, as desired. We observe that each such monomial (and hence their sum, p,)
must be allowable (Definition 2.6), since all entries of each vector and matrix

Semantically Secure Order-Revealing Encryption 589

é,l\?[\,-,f are encoded at the same index set, and thus the monomial can only
include one factor from each. Finally, the degree of the polynomial p, must be
at most poly(\), since the index set of any formal polynomial grows with its
degree, and the size of any valid index set is bounded by the size of the top-level
universe U.

We are now ready to present the main proof of Theorem 4.5.

4.2 Proof of Theorem 4.5

Proof. Fix an efficient adversary A for the experiment Expt}gs,pK(‘)ll\;',l(':,\ELb(A) in the
generic graded encoding model. We will show that for every admissible trace 7 in
the experiment (Definition 3.5), except for failure events of negligible probability,
the probability that the experiment yields the trace m when b = 0 differs by a
negligible amount from the probability that it yields the trace m when b = 1.
It then follows immediately that Adv}:fg'MlFE(A) = |Wy — W1| is negligible, as
desired.

First, we note that in any trace =, the only responses sent to A are either
(a) handles in the multilinear map, via MM.Encode, from the public parameters
and from ciphertexts generated for chosen-plaintext queries; (b) handles in the
multilinear map, via MM.Add, MM.Mult, from queries to the generic map oracle
M; or else (¢) answers to MM.ZeroTest queries on handles in the multilinear map.
Since in the generic model the handles for (a) and (b) are uniform independent
nonces, their distribution clearly does not depend on b. Thus, our task reduces
to showing that for each MM.ZeroTest query, the probability of each response
(“zero”, “nonzero”) differs by a negligible amount between the cases b = 0 and
b = 1. The claim will then follow by a union bound, since A (being efficient) can
make only polynomially many oracle queries.”

Fix a valid MM.ZeroTest query, which refers to a formal multivariate poly-
nomial z (Remark 4.6). By Lemma 4.8, z is identically equal to a polynomial of

the form A
Za‘r 'pr(é7 M|7'7 t))

where each polynomial p. is allowable (Definition 2.6) and consistent with the
query sequence 7 (Definition 4.7). For each bit b € {0, 1}, let X, = (¢, 0, - - -,
xt,,») be the chosen-plaintext queries corresponding to 7 in the adversary’s
execution trace up to the point of query z. Since by assumption the execution
trace is admissible (Definition 3.5), we have P(xr) = P(x+1). By Lemma 2.7,
we now conclude that each formal polynomial p., when evaluated on the real
distribution of values in Z, from the oracle’s table, is either zero with probability

" Technically, we must also show that the distribution of the values in the oracle’s
table, conditioned on each possible subsequence of past oracle query-response pairs
(assuming no failure events), has negligible statistical distance from its prior distri-
bution from MM.Setup; this follows by a standard conditional probability argument,
given that the probability of each failure event is negligible.

590 D. Boneh et al.

1 for both values of b € {0, 1}, or else is nonzero with all but negligible probability
for both values of b € {0,1}. We consider the following cases:

— Suppose that for all 7 in the formal sum for z, the polynomial p, evaluates
to zero on its argument’s entire support. In this case, the entire query z will
evaluate to zero always, regardless of the value of b.

— Suppose that for some 7* in the formal sum for z, the polynomial p,« eval-
uates to zero negligibly often, regardless of the value of b (and consider the
lexicographically first such 7%, without loss of generality). Then for both
values of b, when the query z is instantiated with the real distribution of all
values except the « variables, p,~ evaluates to a polynomial function of the
« variables which, with all but negligible probability, is not identically zero.
Since the distribution over the « variables is statistically close to indepen-
dently uniform over Z,, the Schwartz-Zippel lemma implies that the entire
query z will evaluate to a nonzero value regardless of the value of b, except
for failure events with negligible probability.

Thus, for each MM.ZeroTest query, the probability that the answer is “zero”
differs by a negligible amount between the cases b =0 and b = 1, as desired.

5 Extensions

Stateful Encryption. In the construction of Section 4, since encryption is
required to be stateless, we need to generate a fresh partition for each encryp-
tion (and rely on the birthday bound to prevent collisions). However, in many
applications of SK-MIFE, it may be reasonable to modify the encryption proce-
dure to be stateful. For instance, suppose a client is encrypting an entire database
to be stored on a remote server (and later queried according to the functions for
which we reveal MIFE evaluation keys). Here the client may know the contents
of the entire database in advance, or may be able to retain local state between
interactions with the server. In either case, if the maximum number of database
elements N is known in advance, then we can simply replace the (2, d)-exclusive
partition families in the construction (Section 4) with (2M°8 N1 d)-exclusive par-
tition families, and instead of sampling a partition index uniformly at random
for each encryption, use the partitions in order: the ‘" partition for the i*!
encryption operation, for each i € [N].

6 Conclusions

We presented a secret-key multi-input functional encryption scheme for function-
alities that can be captured by a generalized branching programs of polynomial
length and width. An interesting functionality in this family is comparison which
enables comparisons of symmetrically encrypted data. We refer to this specific
functionality as order-revealing encryption (ORE). ORE can be used to answer
range queries on symmetrically encrypted data in one round and in logarithmic
time in the size of the database.

Semantically Secure Order-Revealing Encryption 591

Our construction is inspired by obfuscation techniques, but does not use
obfuscation. Instead it is built directly from multilinear maps and is substan-
tially simpler than current obfuscation-based schemes. While the resulting order-
revealing encryption (ORE) scheme is still too inefficient for practical use, it
provides a first step towards building usable ORE systems. We hope that future
work will further improve the efficiency of ORE and, more generally, the effi-
ciency of secret-key multi-input functional encryption.

Acknowledgments. This work was supported by NSF, the DARPA PROCEED pro-
gram, a grant from ONR, and by a Google faculty scholarship. Opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of DARPA.

Research supported in part from a DARPA/ONR PROCEED award, NSF Fron-
tier Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox
Faculty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects Agency through the U.S. Office
of Naval Research under Contract N00014-11-1-0389. The views expressed are those
of the author(s) and do not reflect the official policy or position of the Department of
Defense, the National Science Foundation, or the U.S. Government.

References

[ABG+13] Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs
obfuscation and applications. IACR Cryptology ePrint Archive 2013, 689
(2013)

[AGI+14] Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation:
Avoiding barrington’s theorem. IACR Cryptology ePrint Archive 2014,
222 (2014)

[AGV+13] Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional
encryption: new perspectives and lower bounds. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 500-518.
Springer, Heidelberg (2013)

[AKS+04] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryp-
tion for numeric data (2004)

[Bar86] Barrington, D.A.: Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. In: Proceedings, 18th ACM
STOC, pp. 1-5 (1986)

[BBC+14] Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.:
Obfuscation for evasive functions. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 26-51. Springer, Heidelberg (2014)

[BCL4-09] Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving sym-
metric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol.
5479, pp. 224-241. Springer, Heidelberg (2009)

592 D. Boneh et al.

[BCO11]

[BCP14]

[BFO1]

[BGI+01]

[BGK+14]

[BO13]

[BR14]

[BS03]

[BS14]

[BSW11]

[BW07]

[BZ14]

[CLI+13]

Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption
revisited: improved security analysis and alternative solutions. In: Rog-
away, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 578-595. Springer,
Heidelberg (2011)

Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In:
Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52-73. Springer,
Heidelberg (2014)

Boneh, D., Franklin, M.: Identity-based encryption from the weil pair-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213-229.
Springer, Heidelberg (2001)

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vad-
han, S.P., Yang, K.: On the (im)possibility of obfuscating programs. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1-18. Springer,
Heidelberg (2001)

Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: protecting obfus-
cation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 221-238. Springer, Heidel-
berg (2014)

Bellare, M., O’Neill, A.: Semantically-secure functional encryption: pos-
sibility results, impossibility results and the quest for a general definition.
In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS,
vol. 8257, pp. 218-234. Springer, Heidelberg (2013)

Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 1-25. Springer, Heidelberg (2014)

Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptog-
raphy. Contemporary Mathematics 324(1), 71-90 (2003)

Brakerski, Z., Segev, G.: Function-private functional encryption in the
private-key setting. Cryptology ePrint Archive, Report 2014/550, 2014.
http://eprint.iacr.org/

Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253-273.
Springer, Heidelberg (2011)

Boneh, D., Waters, B.: Conjunctive, subset, and range queries on
encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 535-554. Springer, Heidelberg (2007)

Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor trac-
ing, and more from indistinguishability obfuscation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480-499.
Springer, Heidelberg (2014)

De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.:
On the achievability of simulation-based security for functional encryp-
tion. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 519-535. Springer, Heidelberg (2013)

http://eprint.iacr.org/

[CLT13]

[GGG+14]

[GGH13a]

[GGH-+13b)

[GGH+14]

[GHL+14]

[GKP+13]

[GMS2]

[GVW12]

[Jou0o]

[Kil88]
[KSWO08]

[LO13]

[Mil04]

[MOV93]

Semantically Secure Order-Revealing Encryption 593

Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476-493. Springer, Heidelberg (2013)

Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H.,
Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 578-602. Springer, Heidelberg (2014)

Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1-17. Springer, Heidelberg (2013)

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. Cryptology ePrint Archive, Report 2013/451, 2013. http://
eprint.iacr.org/

Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional
encryption without obfuscation. Cryptology ePrint Archive, Report
2014/666 (2014). http://eprint.iacr.org/

Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.:
Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 405-422. Springer, Heidelberg (2014)

Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In:
STOC (2013)

Goldwasser, S., Micali, S.: Probabilistic encryption and how to play men-
tal poker keeping secret all partial information. In: STOC, pp. 365-377
(1982)

Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption
with bounded collusions via multi-party computation. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162-179.
Springer, Heidelberg (2012)

Joux, A.: A one round protocol for tripartite diffie-hellman. In: Pro-
ceedings of the 4th International Symposium on Algorithmic Number
Theory, pp. 385-394 (2000)

Kilian, J.: Founding cryptography on oblivious transfer. In: STOC (1988)

Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146-162. Springer, Heidelberg
(2008)

Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719-734.
Springer, Heidelberg (2013)

Miller, V.J.: The Weil pairing, and its efficient calculation. Journal of
Cryptology (2004)

Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve loga-
rithms to logarithms in a finite field. IEEE Transactions on Information
Theory 39(5), 1639-1646 (1993)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

594 D. Boneh et al.

[MTY13]
[O°N10]
[PLZ13]

[SBC+07]

[Sho97]

[SSW09]

[S714]

[Zhal4]

Malkin, T., Teranishi, I., Yung, M.: Order-preserving encryption secure
beyond one-wayness. IACR Cryptology ePrint Archive 2013, 409 (2013)

O’Neill, A.: Definitional issues in functional encryption. Cryptology
ePrint Archive, Report 2010/556 (2010). http://eprint.iacr.org/

Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-
preserving encoding. In: S&P, pp. 463-477 (2013)

Shi, E., Bethencourt, J., Chan, H.T., Song, D.X., Perrig, A.: Multi-
dimensional range query over encrypted data. In: S&P, pp. 350-364
(2007)

Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256—266.
Springer, Heidelberg (1997)

Shen, E.; Shi, E., Waters, B.: Predicate privacy in encryption systems.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457-473. Springer,
Heidelberg (2009)

Sahai, A., Zhandry, M.: Obfuscating low-rank matrix branching pro-
grams. Cryptology ePrint Archive, Report 2014/773 (2014). http://
eprint.iacr.org/

Zhandry, M.: How to avoid obfuscation using witness PRFs. Cryptology
ePrint Archive, Report 2014/301 (2014). http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

	Semantically Secure Order-Revealing Encryption: Multi-input Functional Encryption Without Obfuscation
	1 Introduction
	1.1 Order-Revealing Encryption
	1.2 Order Revealing Encryption: Our Construction
	1.3 Other Related Work

	2 Preliminaries
	2.1 Conventions
	2.2 Matrix Branching Programs (MBPs)
	2.3 Randomized Matrix Branching Programs
	2.4 Multilinear Maps
	2.5 Exclusive Partition Families

	3 Secret-Key Multi-Input Functional Encryption (SK-MIFE)
	3.1 Definitions

	4 Our 1SK-MIFE Construction
	4.1 Security Proof
	4.2 Proof of Theorem 4.5

	5 Extensions
	6 Conclusions

