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Abstract

Deciding “greater-than” relations among data items just given their encryptions is at the heart of

search algorithms on encrypted data, most notably, non-interactive binary search on encrypted data.

Order-preserving encryption provides one solution, but provably provides only limited security guarantees.

Two-input functional encryption is another approach, but requires the full power of obfuscation machinery

and is currently not implementable.

We construct the first implementable encryption system supporting greater-than comparisons on

encrypted data that provides the “best-possible” semantic security. In our scheme there is a public

algorithm that given two ciphertexts as input, reveals the order of the corresponding plaintexts and nothing

else. Our constructions are inspired by obfuscation techniques, but do not use obfuscation. For example,

to compare two 16-bit encrypted values (e.g., salaries or age) we only need a 9-way multilinear map.

More generally, comparing k-bit values requires only a (k/2 + 1)-way multilinear map. The required

degree of multilinearity can be further reduced, but at the cost of increasing ciphertext size.

Beyond comparisons, our results give an implementable secret-key multi-input functional encryption

scheme for functionalities that can be expressed as (generalized) branching programs of polynomial length

and width. Comparisons are a special case of this class, where for k-bit inputs the branching program is

of length k + 1 and width 4.

1 Introduction

Functional encryption [BSW11] is a public-key encryption system that supports “partial” decryption keys:

decrypting a ciphertext c = E(pk,m) using a key skf reveals f(m) and nothing else. Multi-input functional

encryption [GGG+14] is a generalization of functional encryption where the key skf acts on ℓ ciphertexts

c1 = E(pk,m1), . . . , cℓ = E(pk,mℓ) to reveal f(m1, . . . ,mℓ) and nothing else. Existing constructions for

general multi-input functional encryption are based on obfuscation and thus are not currently feasible to

implement, even for simple functionalities.

In this paper we present a construction for secret-key multi-input functional encryption from multilinear

maps. By restricting our attention to the secret-key setting, we are able to achieve a much more efficient

construction, without the full machinery of obfuscation and NIZK proofs.

For concreteness, in the introduction we present our results as they apply to a specific application called

order-revealing encryption [AKSX04, BCLO09, BCO11]. The paper body presents the results in their full

generality, namely as a secret-key multi-input functional encryption scheme.
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1.1 Order-revealing encryption

Definition. A secret-key encryption scheme is order-revealing1 [BCO11] if there is a public procedure that

takes two encrypted plaintexts as input and reports their lexicographic ordering. This procedure, which we

call the order-revealing algorithm, requires no secrets and can be evaluated by anyone. More precisely, an

order-revealing scheme is a tuple (G,E,D) of algorithms. Algorithm G outputs a pair (sk, comp) where sk

is a secret encryption key and comp(·, ·) is an efficient deterministic algorithm that takes two ciphertexts as

input and outputs either ‘<’ or ‘≥’. Algorithms E(sk,m) and D(sk, c) are standard encryption/decryption

algorithms where m ∈ {0, . . . , B} for some B. In addition to the standard correctness of decryption we also

require that for all (sk, comp) output by G and for all plaintexts m0,m1 we have:

m0 < m1 =⇒ Pr[comp( E(sk,m0) , E(sk,m1) ) =
′<′] = 1

m0 ≥ m1 =⇒ Pr[comp( E(sk,m0) , E(sk,m1) ) =
′≥′] = 1

An order-revealing encryption scheme is secure if a ciphertext reveals nothing about the corresponding

plaintext beyond its lexicographic relation relative to other ciphertexts. This is defined using a simple variant

of the standard semantic security game [GM82]: the adversary is given algorithm comp(·, ·) and access

to a “left-right-oracle” O(·, ·) that on input (m0,m1) returns E(sk,mb) for some b ∈ {0, 1} chosen at the

beginning of the game. After adaptively querying the oracle O the adversary outputs a guess b′ and wins

the game if b = b′. Let (m
(0)
0 ,m

(0)
1 ), . . . , (m

(q)
0 ,m

(q)
1 ) be the adversary’s queries to O. To ensure that the

adversary cannot use algorithm comp(·, ·) to trivially win the game we require that the relative ordering of

messages on the left is the same as the relative ordering on the right, namely for all 0 ≤ i, j ≤ q:

m
(i)
0 < m

(j)
0 ⇐⇒ m

(i)
1 < m

(j)
1

The scheme is secure if the adversary cannot win this game with non-negligible advantage. We refer to this

notion as best-possible semantic security. We give a complete (and more general) definition in Section 4.

Note that a public-key order-revealing encryption scheme is impossible: if an adversary has unrestricted

access to the encryption algorithm, he can use the encryption algorithm and the order-revealing algorithm

comp(·, ·) to decrypt any ciphertext using binary search without the secret key.

Applications. Order-revealing encryption (ORE) is motivated by the problem of answering range queries

on a remote encrypted database [AKSX04, BCLO09]. Consider a remote database holding encrypted pairs

(name, salary). The data owner wishes to retrieve all records with a salary greater than t. If salaries are

encrypted using an ORE then the database can sort all records on its own from lowest salary to highest. This

sorting can be done even when records are inserted sequentially into the database (perhaps by multiple users

who share the secret encryption key) and requires no interaction with the data owner(s). To issue the range

query the data owner sends the encryption of t under the ORE key. In response, the database first uses binary

search on the encrypted salaries to locate the smallest encrypted record R with a salary greater then t and

then simply sends all records to the “right” of R back to the user. Thus, for a database of n records, the

database’s work is O(log n) and requires only one round of interaction with the client, as in the case of a

cleartext database. Security of the ORE ensures that the database learns nothing beyond the relative ordering

of records and queries.

1In [BCO11] order revealing encryption was called “efficiently-orderable encryption.”
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Alternate approaches. Before describing our construction we briefly survey a few alternate constructions

for answering range queries on a remote encrypted database.

Boldyreva et al. [BCLO09, BCO11] describe an elegant primitive called Order Preserving Encryption

(OPE) where encryption preserves the relative ordering of plaintexts. Comparing encrypted data is then done

by simply comparing the corresponding ciphertexts. However, OPE leaks information about the relative

distances of plaintexts. Recent work of Malkin et al. [MTY13] constructs an OPE scheme with a partial

security guarantee, hiding the low-order bits of plaintexts, but still does not achieve best-possible semantic

security. Indeed, Boldyreva et al. [BCLO09] prove that no OPE scheme can possibly achieve best-possible

semantic security. In ORE, unlike OPE, comparisons are done with a dedicated algorithm comp(·, ·) which is

the reason best-possible semantic security can be achieved.

A very different approach to answering range queries on encrypted data uses garbled RAMs [LO13,

GHL+14]. With garbled RAMs the database can answer range queries without learning any information about

the data, but answering the range queries requires more rounds of interaction per query and the database’s

work is higher than with ORE.

Other approaches to answering range queries are based on public-key predicate encryption [BW07,

SBC+07, KSW08] and require a linear scan through the database. With ORE, range queries can be answered

in logarithmic time in the size of the database. We also mention a result of Popa et al. [PLZ13] who describe

an interactive protocol for answering range queries. Interaction is used to maintain a sorted data structure at

the database by offloading some comparisons to the client. Finally, we note that ORE is a special case of

secret-key two-input functional encryption [GGG+14].

1.2 Order revealing encryption: our construction

Our construction begins with a simple automaton for the comparison function on two inputs that we represent

as a low-width matrix branching program. We encrypt ciphertexts in a way such that given two independently-

created ciphertexts, anyone can run the comparison branching program to reveal the relative ordering of the

corresponding plaintexts. While our encryption scheme applies to any multi-input functionality expressed as

a matrix branching program (see Section 2.2), for the rest of this section we use the two-input comparison

automaton and its branching program as a concrete example to illustrate the construction.

The comparison automaton and branching program. Figure 1 shows a five-state automaton A that

computes the ordering of two inputs x = x1x2 · · ·xn and y = y1y2 . . . yn in {0, 1}n when the input is

processed in an interleaved order (of the form x1y1x2y2 · · ·xnyn). From this automaton we derive four

5× 5 matrices X0,X1,Y0,Y1, where each is the adjacency matrix of a subgraph of A: for b ∈ {0, 1}, the

matrix Xb is the adjacency matrix of the subgraph consisting only of the b-transitions used by input bits of

x, and the matrix Yb is the adjacency matrix of the subgraph consisting only of the b-transitions used by

input bits of y. Note that these matrices are not invertible because of the sink states in the automaton. This

introduces additional challenges in the security proof; however, we are able to handle branching programs

with non-invertible matrices using recent results of Sahai and Zhandry [SZ14].

Let ei be the 5-vector containing 1 in position i and zero elsewhere. Then the product e
⊺

1 ·
∏n

i=1 (Xxi
Yyi)

results in a vector with a single “1” in three possible locations (corresponding to either the “x > y”, “x < y”,

or “=” final states), and the location of the “1” determines the result of the comparison operation on x and y.

Hence, the matrices X0,X1,Y0,Y1 form a matrix branching program for the two-input comparison function.

In Section 3 we show that a simple re-ordering of the inputs reduces the matrix program length to only n+ 1
matrices each of dimension 4× 4, but for simplicity we ignore this optimization here.
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x>y$x<y$ 0$ 1$=$
xi=0$yi=1$ xi=1$ yi=0$

yi=1$yi=0$

0,1$ 0,1$

Figure 1: The 5-state comparison automaton on inputs x, y ∈ {0, 1}n where ‘=’ is the start

state. Input bits are processed in an interleaved order x1 y1 x2 y2 . . .

A1# D1# A2# D2# A3# D3#

cx#=#E(sk,##x1#x2#x3)#

cy#=#E(sk,##y1#y2#y3)#

⟶###z#

Figure 2: The order-revealing algorithm applied to encryptions of x1x2x3 and y1y2y3.

The ORE encryption scheme. Fix a prime q. The setup algorithm G uniformly samples 2n− 1 invertible

matrices R1, . . . ,R2n−1 from GL5(Zq). These matrices form the secret encryption key sk. During encryption

these matrices will be used to randomize the matrices of the comparison branching program using Kilian’s

randomization technique [Kil88]. We define two additional vectors R0 := e
⊺

1 and R2n := e5. The secret key

also contains the parameters for an asymmetric multilinear map [GGH13a] with 2n indices (i.e., of degree

2n). We divide the 2n indices into two disjoint size-n sets U1 and U2.

The encryption algorithm encrypts a plaintext x = x1x2 · · ·xn ∈ {0, 1}
n as follows. It first samples

a partition (S1, . . . , Sn) of U1 and a partition (T1, . . . , Tn) of U2. These partitions are sampled at random

from a family of partitions we call an “exclusive partition family.” They must satisfy a specific combinatorial

property needed to prevent certain “mix-and-match” attacks where the attacker tries to run the comparison

algorithm on improperly formed ciphertexts. We define and construct these partition families in Section 2.5.

They are a generalization of the “straddling sets” used in Barak et al. [BGK+14].

Next, the encryption algorithm samples random scalars α1, . . . , α2n ∈ Z
∗
q and constructs the 5 × 5

matrices

X̂i = αi · (R2i−2 Xxi
R

−1
2i−1) and Ŷi = αn+i · (R2i−1 Yxi

R
−1
2i )

for i ∈ [n] where we define R
−1
2n := e5. Recall that the matrices Ri are taken from the secret key and the

matrices X0,X1 and Y0,Y1 are the matrices in the comparison branching program. Because R0 and R2n

are vectors, so are X̂0 and Ŷn. All other ciphertext components are square matrices.

Finally, for i ∈ [n] the encryption algorithm encodes the entries of X̂i under the index set Si of the

multilinear map, and encodes the entries of Ŷi under the index set Ti. The resulting 2n encoded 5 × 5
matrices ({X̂i}

n
i=1, {Ŷj}

n
j=1) are output as the encryption of x ∈ {0, 1}n.

The order-revealing algorithm. Given two independently-created ciphertexts cx and cy corresponding

to plaintexts x and y, the order-revealing algorithm computes the interleaved product of the matrices in the

left half of cx with the matrices in the right half of cy. In other words, if cx = ({Ai}
n
i=1, {Bj}

n
j=1) and

cy = ({Ci}
n
i=1, {Dj}

n
j=1) then z = A1D1A2D2 · · ·AnDn, as shown in Figure 2. We compute z using the

4



multilinear map and the result is a single group element (a scalar) because A1 and Dn are vectors. Finally,

the algorithm zero-tests z and the outcome reveals the ordering of x and y. Zero-testing this z is possible

because it is an encoding of an element under the full 2n index set, by the structure of the partitions.

To verify that the final zero-test correctly reveals the ordering of x and y, observe that the scalar z expands

to the quantity

(
e
⊺

1 Xx1 R
−1
1

) (
R1Yy1R

−1
2

)
· · ·

(
R2n−2XxnR

−1
2n−1

)
(R2n−1Yyne5) (1.1)

Hence, z takes on a non-zero value if and only if the comparison automaton terminates in the state “x < y”.

Note that we omitted the scalars αi in the expansion (1.1) for ease of exposition. Their presence causes z to

be either 0 or non-zero, as opposed to 0 or 1.

Security. We prove the security of a generalization of this construction in the generic multilinear map

model [GGH+13b, BR14, BGK+14]. The use of Kilian’s randomization technique in the encryption key

restricts the adversary’s ability to manipulate ciphertext components in an elementary manner, such as by

computing products of matrices out of order. Also, the use of the random scalars α1, . . . , α2n prevents the

adversary from correlating multiple encryptions of plaintexts which share the same bit pattern. However,

there is still a large domain of attacks that the adversary could potentially take advantage of. For example, an

adversary can combine components from multiple ciphertexts to look for relations, or he can compare the

results of partial evaluations of the branching program on different inputs.

In order to handle these types of attacks, we use the combinatorial structure provided by our exclusive

partition families. Intuitively, the use of a random partition from an exclusive partition family for each

ciphertext ensures that if the adversary computes a partial evaluation of the branching program, or tries to

mix components from multiple ciphertexts, he will not be able to obtain a group element which is encoded in

the index set for the zero-tester, as required by the generic multilinear map model. In fact, it turns out that

the use of these exclusive partition families is indeed sufficient to prove security of the construction in the

generic model.

Performance. Our basic construction requires a (2n+ 2)-way multilinear map to evaluate comparisons

on n-bit numbers. However, simple optimizations, including re-ordering of the matrices in the branching

program, enables us to shrink the total length of the comparison branching program to only (n+ 1) matrices

each of dimension 4× 4 (see Section 2.2 for details). Consequently, we only need an (n+1)-way multilinear

map to evaluate comparisons on n-bit numbers. The secret encryption key contains 16n elements in Zq,

and each ciphertext is 16n − 8 encoded group elements. We can further reduce the required degree of

multilinearity by a factor of log2B by representing messages in base-B (instead of base-2) and modifying

the comparison automaton to compare one base-B digit per step. This shortens the length of the branching

program (and therefore the degree of multilinearity) by a factor of log2B, but at the cost of increasing

the number of states in the automaton by a factor of B and consequently increasing the number of group

elements in the ciphertext by a factor of approximately B2/ log2B. For example, moving to base B = 4
gives multilinearity (n/2 + 1), with ciphertexts requiring 18n− 24 group elements.

Concretely, for n = 16 bits, we can use a 9-linear map giving ciphertexts of 264 group elements. While

this scheme is still too inefficient for practical use, the construction can be implemented and provides an

important step towards more realistic ORE schemes. This is in contrast to the immense number of levels of

multilinearity required to obtain ORE from obfuscation-based constructions.
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Generalizing to multi-input functional encryption. While we used order-revealing encryption (ORE)

as an example application, our construction is more general: it gives a secret-key multi-input functional

encryption where the degree of multilinearity needed for decrypting with a key skf depends on the length of

the branching program representing f . In fact, every matrix in the branching program can depend on all the

bits of one of the inputs to f and this can be used to shrink the length of the branching program. We refer to

these as generalized branching programs and define them precisely in the next section.

Our base multi-input functional encryption scheme supports a single function f (such as comparison)

fixed a-priori during initial key generation. This function f defines the branching program relative to which

all encryptions are computed. This apparent single-function limitation is easily removed using universal

circuits: the functionality fixed a-priori is a universal circuit U that takes as input the description of a function

f and its inputs x1, . . . , xn and outputs f(x1, . . . , xn). Now, a functional encryption “key” skf for a function

f is simply the encryption of f under our encryption scheme. Given skf and the encryptions of x1, . . . , xn
the functionality for the universal circuit U can be used to compute f(x1, . . . , xn) in the clear.

1.3 Other related work

Multi-input functional encryption was introduced by Goldwasser et al. [GGG+14], who gave constructions

based on indistinguishability obfuscation [BGI+01, GGH+13b] and differing-inputs obfuscation [BGI+01,

BCP14, ABG+13].

Our construction of multi-input functional encryption is inspired by obfuscation techniques [GGH+13b,

BBC+14, AGIS14], but does not use obfuscation. Instead we build multi-input functional encryption directly

from multilinear maps. Several other results use obfuscation techniques to obtain more efficient constructions

directly from multilinear maps. Zhandry [Zha14] showed how to construct n-way Diffie-Hellman key ex-

change without trusted setup, a result that was previously known only using obfuscation [BZ14]. Concurrently

with this work, Garg et al. [GGHZ14] showed how to construct single-input functional encryption from

multilinear maps; however, their motivation was to obtain security proofs from concrete assumptions, rather

than efficiency. The constructions in this paper are considerably more efficient (we make use of a much

smaller number of matrices), but our security proof is in the generic multilinear map model.

Single-input functional encryption [BSW11] has been traditionally defined in the public-key settings

and studied extensively [O’N10, GVW12, AGVW13, BO13, CIJ+13, GGH+13b, GKP+13, BCP14]. In

this paper, however, we focus on secret-key (multi-input) functional encryption, which is sufficient for data

processing on a remote encrypted database, including order-revealing encryption. Focusing on the secret-key

setting enables us to give a simple construction from multilinear maps. Single-input secret-key functional

encryption was previously explored for the inner-product functionality by Shen et al. [SSW09] and more

generally by Goldwasser et al. [GKP+13]. Brakerski and Segev [BS14] recently showed how to convert any

secret-key functional encryption scheme into one where secret keys do not reveal their functionality.

2 Preliminaries

2.1 Conventions

For an integer n, we write [n] to denote the set {1, . . . , n}. For a finite set S, we write Uniform(S) to denote

the probability distribution that is uniform over the elements of S. When working with vectors in Z
n for some

integer n, for each i ∈ [n] we write ei to denote the ith unit column vector, i.e., the vector (x1, x2, . . . , xn)
⊺

such that xi = 1 and, for all i′ 6= i ∈ [n], we have xi′ = 0. We write GLw(Zq) to represent the set of all

w × w invertible matrices over Zq.

6



2.2 Matrix Branching Programs (MBPs)

In this section, we define a variant of matrix branching programs for which our main construction applies.

These generalized matrix branching programs are a sequence of efficiently computable Boolean circuits that

turn a given multi-variate input into a matrix.

Definition 2.1 (Generalized Matrix Branching Program). Let X ⊂ {0, 1}∗ be a set of possible input strings,

and let f : Xm → {0, 1} be a multi-input function. A generalized matrix branching program P of length ℓ
and width w, over Zq for a prime q, is a tuple of the form

P = ( q, m, d, inp, (M1, . . . , Mℓ) ) ,

where for each j ∈ [ℓ], the functionMj : X → Z
w×w
q is computable by an efficient deterministic algorithm.

The value inp is a lookup table of the form

inp = (inp(1), . . . , inp(ℓ)),

where for each j ∈ [ℓ], we have inp(j) ∈ [m]. The branching program takes m inputs and we say that at

step j it inspects input number inp(j) ∈ [m]. To simplify notation, we require the branching program to

inspect each of its m input variables exactly d times2 (so that the length of the program, ℓ, is precisely md).

We also introduce the following shorthand notations:

• For a branching program step j ∈ [ℓ], input slot i ∈ [m], and sub-index h ∈ [d], we write j = inp.j(i, h)
to signify that j is the step in which the program inspects input slot i for the hth time.

• For a branching program step j ∈ [ℓ] and sub-index h ∈ [d], we write h = inp.h(j) to signify that j is

the step in which the program inspects the corresponding input slot inp(j) for the hth time.

We say that P computes the function f if, for all inputs x = (x(1), . . . , x(m)) ∈ Xm,


∏

j∈[ℓ]

Mj(x
(inp(j)))


 [1, 1] = 0 ⇐⇒ f(x) = 1.

Since every program P computes a unique function f , we also write P (x) to denote f(x).

Following Sahai and Zhandry [SZ14], we also define the notion of a non-shortcutting matrix branching

program.

Definition 2.2 (Shortcuts in Matrix Branching Programs [SZ14]). A branching program has a shortcut on

input x = (x(1), . . . , x(m)) ∈ Xm if either:


∏

j∈[ℓ]

Mj(x
(inp(j)))


 · e1 = 0w×1 or e

⊺

1 ·


∏

j∈[ℓ]

Mj(x
(inp(j)))


 = 01×w

2We note that this assumption is without loss of generality, since given any program of length ℓ that does not satisfy this condition,

we can construct a new program whose value of d is the original program’s value of ℓ, and pad the program with dummy matrix

functions that always return the identity matrix regardless of their input string. (Alternatively, for practical applications, it is also

easy to adapt the techniques we describe to the general case, albeit at the expense of cumbersome notation.)
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In such a case, it is possible to determine that f(x) = 1 without carrying out the entire matrix product. We

say that a branching program is non-shortcutting if, for all inputs x, it has no shortcuts on x. We require that

every generalized matrix branching program is non-shortcutting.

We note that there are multiple ways to obtain a generalized matrix branching program from a circuit, or

from a time-bounded Turing machine or RAM. Barrington’s theorem [Bar86] shows how to convert a Boolean

circuit of depth d into a matrix branching program of length O(4d) and width 5. The work of Ananth, Gupta,

Ishai, and Sahai [AGIS14] takes a different approach to obtain MBPs for Boolean formulas that avoids the

complexity of Barrington’s construction. They construct a layered automaton for any Boolean formula which

consists of several states including a starting state and an accepting state together with edges denoting the

transitions between states based on the input bit values. Given such an automaton representation, a formula

can be evaluated by counting the number of paths between the starting and the accepting state. Ananth et al.

show that a Boolean formula of size s can be converted into a layered graph-based branching program with

O(s) layers with matrices of size O(s2). Thus, the size of the resulting MBP is O(s3). Subsequently, Sahai

and Zhandry [SZ14] improve the conversion, giving MBP’s of length O(s) and size O(s(log2 s)
2). Our

approach follows the general method of computing automata with generalized MBPs, but we observe that for

some problems such as comparing two-bit strings, we can directly construct extremely efficient automata that

do not use the general translation from formulas to automata.

For more details, we refer the reader to Section 3.

2.3 Randomized Matrix Branching Programs

In our construction, as in obfuscation constructions that use MBPs [GGH+13b, BGK+14, BR14, AGIS14],

we must make sure that the adversary always evaluates the MBP by multiplying together one matrix selection

for each step j ∈ [ℓ]. In particular, we must ensure that partial matrix products, which omit some steps, will

not reveal any information about the program.

The main ingredient we need here is the MBP randomization technique of Kilian [Kil88], in which we pre-

and post-multiply each matrix in the MBP by matching, invertible random “blinding” matrices R0, . . . ,Rℓ.

Intuitively, the resulting randomized MBP fixes the order in which the randomized MBP matrices can be

multiplied, i.e., requiring one matrix for each step in the original MBP. Any other product will also contain at

least one random “blinding” matrix, rendering the result useless to the adversary.

In addition, we combine Kilian’s randomization technique with “bookend vectors” ŝ, t̂, as introduced

in [GGH+13b], which further restrict the adversary to projecting a single scalar entry of the matrix product

resulting from the MBP evaluation (namely, the entry at position [1, 1]). Testing whether this scalar is zero

suffices to determine the Boolean output of the program, while preventing the adversary from learning extra

information by testing other matrix entries.

We now present the details of the randomized MBP construction.

Definition 2.3 (Randomized MBPs ([Kil88], adapted)). We define an efficient randomized procedure

MBPRand, such that, for a given generalized matrix branching program

P = ( q, m, d, inp, (M1, . . . , Mℓ) ) ,

the procedure MBPRand(P ) outputs a tuple P̂ of the form

P̂ =
(
q, m, d, inp, (M̂1, . . . , M̂ℓ), ŝ, t̂

)
,
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where, for each j ∈ [ℓ], the function M̂j : X → Z
w×w
q is represented, likeMj , as a Boolean circuit; and ŝ

and t̂ are vectors in Z
w
q .

The procedure MBPRand operates as follows. It samples (ℓ+1) invertible matrices R0, . . . ,Rℓ uniformly

at random from GLw(Zq). It computes the values

ŝ = e
⊺

1 R
−1
0 and t̂ = Rℓ e1,

and, for each j ∈ [ℓ], the function M̂j defined as

M̂j(x) = R
−1
j−1Mj(x)Rj .

Finally, it outputs the tuple

P̂ =
(
q, m, d, inp, (M̂1, . . . , M̂ℓ), ŝ, t̂

)
.

To evaluate a randomized MBP P̂ on an input x = (x(1), . . . , x(m)), we run each (randomized) ma-

trix function M̂j on the indicated input string x(inp(j)), producing a randomized matrix Mj . We write

MBPSelect(P̂ ,x) to denote the sequence of randomized matrices and bookend vectors (ŝ,M1, . . . ,Mℓ, t̂),

and to evaluate the program, we multiply all of these randomized matrices and vectors together. Formally, we

define the following procedures.

Definition 2.4 (Evaluation for Randomized MBPs ([Kil88], adapted)). Fix a generalized matrix branching

program P and a vector of inputs x = (x(1), . . . , x(m)) ∈ Xm, and suppose that

P̂ =
(
q, m, d, inp, (M̂1, . . . , M̂ℓ), ŝ, t̂

)
← MBPRand(P ).

For each j ∈ [ℓ], we define M̂j = M̂j(x
(inp(j))), and we define

MBPSelect(P̂ ,x) =
(
ŝ
⊺, M̂1, . . . , M̂ℓ, t̂

)
.

Finally, we define

MBPEval
(
ŝ
⊺, M̂1, . . . , M̂ℓ, t̂

)
= ŝ

⊺


∏

j∈ℓ

M̂j


 t̂.

Given the above definitions, the proof of the following lemma follows immediately.

Lemma 2.5 (Correctness for Randomized MBPs). Fix a generalized matrix branching program P , and a

vector of inputs x = (x(1), . . . , x(m)) ∈ Xm. Then,

MBPEval(MBPSelect(P̂ ,x)) = 0 ⇐⇒ f(x) = 1.

Ordinarily, for MBPs derived from Barrington’s theorem [Bar86], we would also be able to state a

simulation theorem, showing that the output distribution MBPSelect(P̂ ,x) depends only the output of

the original program, P (x). In our construction, however, we obtain much more efficient programs by

other techniques (Section 3), and the matrices Mj(x) in these programs do not always have full rank.

Indeed, the kernel of each matrix may depend on the input vector x, and as a result, the output distributions

MBPSelect(P̂ , ·) may be noticeably different for different inputs x0,x1, even if the outputs of the program,

P (x0) = P (x1), are ultimately identical.
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Instead of constructing a simulator, we rely on a weaker property that is still strong enough to prove secu-

rity of our main construction. Specifically, we show that even though the distributions MBPSelect(P̂ ,x0) and

MBPSelect(P̂ ,x1) may differ, they cannot be distinguished by a certain weak family of tests; in our construc-

tion (Section 5), we will show that these are the only tests an adversary can possibly perform in our security

model. To define such a family of tests, we refer to the following definition of Sahai and Zhandry [SZ14].

Definition 2.6 (Allowable Tests [SZ14]). Let p : Z2w+w2ℓ
q → Zq be a multilinear (multivariate) polynomial

over the entries of ŝ, t̂ ∈ Z
w
q and M̂1, . . . , M̂ℓ ∈ Z

w×w
q (as formal variables). We say p is an allowable test

polynomial if each monomial in the expansion of p contains at most one entry of each vector ŝ, t̂ and matrix

M̂1, . . . , M̂ℓ.

Lemma 2.7 (Security for Randomized MBPs). Fix a non-shortcutting generalized matrix branching program

P (over Zq, for q > 2λ), two input vectors x0,x1 such that P (x0) = P (x1), and an allowable test polynomial

p (Def. 2.6). Then either

Pr
[
P̂ ← MBPRand(P ) ; p(MBPSelect(P̂ ,xb)) = 0

]
= 1

for both bits b ∈ {0, 1}, or,

Pr
[
P̂ ← MBPRand(P ) ; p(MBPSelect(P̂ ,xb)) = 0

]
< negl(λ)

for both bits b ∈ {0, 1}.

Lemma 2.7 follows immediately from the results of Sahai and Zhandry [SZ14]; we defer the formal

treatment to Appendix A.1.

2.4 Multilinear Maps

Multilinear maps [BS03], also known as graded encodings, or graded multilinear maps [GGH13a, CLT13],

are a generalization of bilinear maps such as pairings over elliptic curves [Mil04, MOV93, Jou00, BF01].

Roughly speaking, a multilinear map lets us take a scalar x ∈ Fq and produce an encoded version, x̂ = [x]S ,

where S ⊆ U is a finite set, called an index set, that indicates the level of the encoding x̂ in a given hierarchy

(namely, the subsets of U ordered by inclusion).3

By convention, we will say that these index sets are made up of formal symbols, denoted by capital letters

(A,B,C), which serve the same role as formal variables in polynomials. To be fully precise, we state the

following definitions.

Definition 2.8 (Formal Symbol). A formal symbol is a bit string in {0, 1}∗, and distinct variables denote

distinct bit strings. A fresh formal symbol is any bit string in {0, 1}∗ that has not already been assigned to

another formal symbol.

Definition 2.9 (Index Sets). An index set is a set of formal symbols called indices. By convention, for

index sets we use set notation and product notation interchangeably, so that ABC represents {A,B,C}, and

ABC ∪D = ABCD.

Definition 2.10 (Multilinear Map ([BS03, GGH13a, CLT13])). A multilinear map over prime-order fi-

nite fields supports the following operations. Each of the operations (MM.Setup, MM.Add, MM.Mult,

MM.ZeroTest, MM.Encode) is implemented by an efficient randomized algorithm.

3We describe here the case of asymmetric multilinear maps, since this is the one relevant to our constructions in this work.
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• The setup procedure receives as input an index set U (Definition 2.9), which we refer to as the “top-level

index set”, as well as the security parameter λ (in unary). It produces public parameters pp (which

include an O(λ)-bit prime q), and secret evaluation parameters sk:

MM.Setup(U , 1λ) → (pp, sk)

• For each index set S ⊆ U , and each scalar x ∈ Zq, there is a set of strings [x]S ⊆ {0, 1}
∗, i.e., the set

of all valid encodings of x at index set S . 4 From here on, we will abuse notation to write [x]S to stand

for any element of [x]S (i.e., any valid encoding of x at the index set S).

• Elements at the same index set S ⊆ U can be added, with the result also encoded at S:

MM.Add(pp, [x]S , [y]S) → [x+ y]S

• Elements at two index sets S1,S2 can be multiplied, with the result encoded at the union of the two

sets, as long as their union is still contained in U :

MM.Mult(pp, [x]S1 , [y]S2) →

{
[xy]S1∪S2 if S1 ∪ S2 ⊆ U

⊥ otherwise

• Elements at the top level U can be zero-tested:

MM.ZeroTest(pp, [x]S) →

{
“zero” if S = U and x = 0 ∈ Zq

“nonzero” otherwise

• Using the secret parameters, one can generate a representation of a given scalar x ∈ Zq at any index

set S ⊆ U :

MM.Encode(sp, x, S) → [x]S

• For the trivial index set S = ∅, we specify that the only valid encoding of [x]∅ is just the scalar x ∈ Fq.

(So, for instance, we can perform subtraction via MM.Add, by scalar multiplication with −1.)

By convention, we refer to the cardinality of U as the degree of multilinearity of the map.5 Technically,

known instantiations of multilinear maps [GGH13a, CLT13] are only approximate, and have a “noise” term

that restricts the degree of multilinearity to a pre-specified polynomial in the security parameter. However,

this restriction will not affect our results in this work, and to keep the presentation simple we do not model

the restriction formally.

When the context is clear, we also abuse notation to write, for encoded elements â, b̂, the expression â+ b̂
to mean MM.Add(MM.pp, â, b̂); the expression âb̂ to mean MM.Mult(MM.pp, â, b̂); and likewise for other

arithmetic expressions.

4To be more precise, we define [x]S = {χ ∈ {0, 1}∗ : MM.IsEncoding(pp, χ, x,S)}, where the predicate MM.IsEncoding is

specified by the concrete instantiation of the multilinear map. In general, the predicate MM.IsEncoding is not necessarily efficiently

decidable—and indeed, for the security of the multilinear map, it should not be.
5In some cases, when we optimize a construction that uses multilinear maps, we find that we never need to encode elements of a

given singleton index set. Thus in general, for constructions that are optimized in this way, we relax the definition of multilinearity

degree to refer to the total number of sequential multiplications that must be performed on any encoded elements in the construction.
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The generic multilinear map model. To define security, we will operate in the generic multilinear map

model (also known as the generic graded encoding model [GGH+13b, BR14, BGK+14]). This model is very

similar to the generic group model [Sho97]—intuitively, in this model, the only operations an adversary can

use with encoded elements are the operations of the multilinear map. More precisely, we say a scheme that

uses multilinear maps is secure in the generic multilinear map model if, for any concrete adversary breaking

the real scheme, there is an ideal adversary breaking a modified scheme in which each concrete encoded

element is replaced by a “handle” (concretely, a fresh nonce), mapped to the actual encoded scalar in a table

unavailable to the adversary. Each multilinear map operation is replaced by an oracle query that takes two

handles and returns another fresh handle (creating a new table entry), except for the zero-test oracle query,

which, when given a handle, returns “zero” if the corresponding scalar in the table is zero, and “nonzero”

otherwise. We defer the formal definitions to Appendix C.

2.5 Exclusive Partition Families

Even though the randomized MBPs of Section 2.3 impose certain restrictions on how their matrices can be

multiplied together to remove the randomizing factors, this alone does not prevent an adversary from learning

more information than just the outputs of honest evaluations on the MBP. The issue is that the adversary may

execute “mix-and-match” attacks, using encoded matrices from multiple ciphertexts in the same evaluation.

Our construction will use the multilinear map’s index sets to enforce constraints on the adversary’s evaluation,

ruling out this kind of attack. As with the “straddling sets” technique of Barak et al. [BGK+14], in order

to use index sets to enforce this restriction, we need to design these index sets with some combinatorial

properties in mind.

In more detail, suppose U is the top-level index set in the multilinear map, and F is some family of

partitions of U . Intuitively, whenever we intend terms to be multiplied together (e.g., because they are matrix

elements from a consistent choice of ciphertexts), the index sets of those terms will partition U , so that the

product of the encoded elements can legally be zero-tested. We will design the partition family F so that our

intended partitions (those in F) are the only partitions of U that the adversary can possibly construct given

the index sets of the terms we provide, thereby ruling out “mix-and-match” attacks.

Formally, we define the following:

Definition 2.11 (Partition). The collection of sets P = {S1, . . . , Sd} is a partition of a set U if S1∪· · ·∪Sd =
U ; each Si is a nonempty subset of U ; and Si ∩ Sj = ∅ for each i 6= j.

Definition 2.12 (Exclusive Partition Family). Fix a set U , and a family F of partitions of U , where we write

the N partitions in the family F as the rows of the matrix:




S1,1 S1,2 · · · S1,d
...

...
. . .

...

SN,1 SN,2 · · · SN,d




We say that F is an (N , d)-exclusive partition family of U if the only partitions of U that can be formed

from sets in F are precisely the rows of the matrix. (Formally: for all (i1, j1), . . . , (im, jm) ∈ [N ]× [d], the

collection P = {Si1,j1 , . . . , Sim,jm} is a partition of U if and only if i1 = . . . = im and {j1, . . . , jm} = [d].)

We say that an exclusive partition family F is explicit if there is an efficient deterministic algorithm

which, when given i ∈ [N ], j ∈ [d], outputs the elements of Si,j (i.e., outputs the index of each element in

some canonical ordering of the elements of U ). We note that if F is explicit, then it is also easy to sample a
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partition (Si,1, . . . , Si,d) uniformly over all of the partitions in F , simply by choosing uniform i← [N ]. To

simplify notation, we write this sampling procedure as (Si,1, . . . , Si,d)
$
← F .

Construction 2.13 ((2λ, d)-Exclusive Partition Families). Let d, λ > 0 be integers, and let U be a set of size

(1 + (d− 1)(λ+ 1)). Denote the elements of U as

U = { a1, a2, . . . , ad, b2,1, . . . , b2,λ, . . . , bd,1, . . . , bd,λ } ,

and identify an index i ∈ [2λ] with the string ρ(i) ∈ {0, 1}λ that forms the binary representation of (i− 1).
Define

Si,1 = {a1} ∪
⋃

j∈{2,...,d}

{bj,k : ρ(i)k = 1}

and for each j ∈ {2, . . . , d}, define

Si,j = {aj} ∪ {bj,k : ρ(i)k = 0}.

Finally, define the family F(d, λ) = ((S1,1, . . . , S1,d), . . . , (SN,1, . . . , SN,d)).

Lemma 2.14 ((2λ, d)-Exclusive Partition Families). For integers d, λ > 0, the family F(d, λ) defined by

Construction 2.13 is an explicit (2λ, d)-exclusive partition family.

Proof. By construction, each (Si,1, . . . , Si,d) is a partition of U consisting of d sets, and the elements of each

set are efficiently computable. Now, suppose that for some choice of sets (i1, j1), . . . , (im, jm) ∈ [N ]× [d],
the collection P = {Si1,j1 , . . . , Sim,jm} is a partition of U . Then there exists some r∗ ∈ [m] such that the

set Sir∗ ,jr∗ contains a1. The only such sets are of the form:

Sir∗ ,jr∗ = Sir∗ ,1 = {a1} ∪
⋃

j∈{2,...,d}

{bj,k : ρ(ir∗)k = 1}

Assume for sake of contradiction that for some r ∈ [m], ir 6= ir∗ . We cannot have jr = 1, since this would

cover the element a1 twice: once by Sir∗ ,jr∗ , and once by Sir,jr . Thus jr ∈ {2, . . . , d}, and the set Sir,jr is

of the form:

Sir,jr = {ajr} ∪ {bjr,k : ρ(ir)k = 0}

But for each k ∈ [λ], the only sets that contain bjr,k also contain either a1 or ajr , and we already have

a1 ∈ Si∗,1 and ajr ∈ Sir,jr covered by the putative partition P . Hence the only elements bjr,k that are

covered by P are those of the form {bj,k : ρ(ir∗)k = 1} and {bj,k : ρ(ir)k = 0}. Since by assumption

ir 6= ir∗ , the strings ρ(ir), ρ(ir∗) differ on some bit k∗ ∈ [λ]. If ρ(ir∗)k∗ = 0 and ρ(ir)k = 1, then P fails

to cover bjr,k∗ , while if ρ(ir∗)k∗ = 1 and ρ(ir)k = 0, then P covers bjr,k∗ twice. In either case P is not a

partition of U , contradicting our assumption. So we conclude that ir∗ = i1 = . . . = im, and thus F is an

explicit (2λ, d)-exclusive partition family.

We also observe that our definition of exclusive partition families generalizes the straddling set systems of

Barak et al. [BGK+14]. Indeed, for any integer d > 0, a straddling set system Sd (as defined in [BGK+14])

is a (2, d)-exclusive partition family.
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3 Finite Automata as Branching Programs

In this section, we explain how to realize finite automata as matrix branching programs. A finite (non-

deterministic) automaton is a directed graph on w nodes, and we call w the size of the automaton. There

is a single node s marked as the start state, and a subset T of nodes marked as accept states. Every edge

(transition) is labeled by a symbol d from some universe U , and every node has at least one outgoing edge

labeled by d for each d ∈ U . On an input x ∈ Un, the automaton starts at the starting state s, and then reads

the digits of x one by one. When it reads a digit d, the automaton non-deterministically follows the edge(s)

out of the current node labeled by d. We call the current node the state of the automaton, and the automaton

accepts if one of the final states it arrives at after reading the entire input is an accept state.

In the case of multi-input functionalities, we have a choice of how we can order the input digits

when fed into the automaton. For example, on input x(1), . . . , x(m), we can order the input digits as

x
(1)
1 · · ·x

(1)
n x

(2)
1 · · ·x

(2)
n · · · . Alternatively, for some functionalities, it may be beneficial (or even required) to

interleave the digits, for example as x
(1)
1 x

(2)
1 · · ·x

(m)
n x

(1)
2 x

(2)
2 · · · .

Layered automata. We also consider the notion of a layered automaton. Such an automaton consists of n
“layers” labeled “1” through “n” of w states each, plus an additional starting layer labeled “0” which contains

the start state. The final layer n also contains a subset T of states marked as accept states. The automaton has

transitions only from layer i to layer i+ 1, so that the transitions from layer i only occur when reading the

ith input digit. Even though the graph representing a layered automaton contains nw + 1 nodes, we say that

the automaton has size w, the size of each layer. We note that any (non-layered) automaton of size w can

be easily converted to a layered automaton of size w by “unrolling” the automaton, and creating n identical

layers of size w.

From automata to branching programs. Any automaton can easily be converted into a matrix branching

program. Consider a w-state automaton that acts on m inputs, each of length n, and let ℓ = mn be the total

input length. Suppose the inputs are interleaved as

x
(i1)
k1

x
(i2)
k2

, . . . , x
(iℓ)
kℓ

.

For a digit d, let Gd be the directed graph on the w states of the automaton where state u has an edge to

state v if the automaton transitions from u to v when reading d. Order the states so that the start state is the

first state, and let Ab be the w × w adjacency matrix of Gb as a directed bipartite graph. For now, assume the

start state is also the unique accept state. Then the branching program has length ℓ, where inp(j) = ij , and

Mj(x
(ij)) = AT

x
(ij)

kj

.

To see why this works, consider the products

(1, 0, . . . , 0) ·
∏

j∈[r]

Mj(x
(inp(j))) = (1, 0, . . . , 0) ·

∏

j∈[r]

AT

x
(ij)

kj

for r = 0, . . . , ℓ. The result is a row vector of positive integers, where the value at position v is the number

of non-deterministic paths the automaton could follow from the start state to state v after reading the first r
digits. Thus the product ∏

j∈[ℓ]

Mj(x
(inp(j)))
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is non-zero in the upper left corner if and only if on reading x, there is some non-deterministic path from

the start state to itself. Since we assume the start state is the unique accept state, this is equivalent to the

automaton accepting.

For multiple accept states and/or accept states other than the start state, we modify the above slightly.

Let T ⊆ [w] be the subset of accept states, and let v ∈ {0, 1}w be the incidence vector for T . Then, pick an

invertible matrix P whose first column is v. The final matrixMℓ is set as

Mℓ = AT

x
(iℓ)

kℓ

· P,

and all other matrices are the same as before. Now, the upper left entry in the matrix
∏

j∈[r]Mj(x
(inp(j))) ·P

contains the sum of the number of paths from the start state to each of the accept states, and this sum is

non-zero if and only if the automaton accepts.

It is straightforward to adapt the conversion above to apply to layered automata as well. For a digit d and

position k, let Gk,d be the bipartite directed graph consisting of layers k − 1 and k and edges between them

labeled by d. Let Ak,d be the w×w adjacency matrix for the edges going from layer k− 1 to layer k labeled

by d. We note that for layered automata, we can collapse all the accept nodes in the final layer to a single

accept node, which will be the first node of the layer. This allows us to avoid the matrix P from above. Then,

define

Mj(x
(ij)) = AT

j,x
(ij)

kj

.

Optimization. Note that if inp(k) = inp(k + 1), we can merge Mk and Mk+1 into a single function

M′
k(x) =Mk(x) · Mk+1(x). This allows us to reduce the length of the branching program. We will use

this optimization below to shrink the length of our branching program for comparisons by a factor of two,

essentially for free.

3.1 Finite Automata for Comparisons

Clearly, it is not possible to compare two integers using a finite automaton if the input bits are processed

with all the bits of x occurring before all the bits of y (or vice versa). However, if we interleave the bits

as xnynxn−1yn−1xn−2 . . . , then a simple 5-state automaton is possible (see Figure 1). The five states are

labeled =, <,>, 0, 1. The state = represents that the automaton has read 2k total bits (k from each input),

and the bits from x equaled the bits from y. The state > (resp. <) represents that the automaton has read 2k
or 2k + 1 total bits (k from y, and k or k + 1 from x), and the integers x[1,k], y[1,k] represented by the k bits

of x and y read so far satisfy x[1,k] > y[1,k] (resp. x[1,k] < y[1,k]). The state 0 (resp. 1) represents that 2k + 1
bits have been read, the first k bits of x and y are equal, and the most recent bit (bit k + 1 of x) is 0 (resp. 1).

It is straightforward to determine the state transitions for this automaton. Intuitively, the automaton simply

keeps track of the most recent bit read, as well as the result of comparing the integers read so far. Using the

conversion above, this gives a width-5 branching program of length 2n.

3.2 Optimizing the Layered Automata

We introduce two optimizations on the finite automaton implementing the comparison function in order to

reduce the total number of steps for its evaluation, which corresponds to the number of matrix multiplications

in the decryption algorithm in our encryption scheme. While the above automaton reads one bit from each

input in turns, which results in as many transitions as the total bits length of the two inputs, our idea here is to
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process more than one bit from each of the two inputs at once. These transformations increase the number

of states, which no longer independent of the length of the input, and the number of transition symbols

in the automaton alphabet, but preserve the layered structure of the automaton which is required for our

construction.

We now make two optimizations. First, notice above that after reading 2k bits, the automaton is in one of

three possible states (=, >, or <), and that after reading 2k + 1 bits, the automaton is on one of four states

(>, <, 0, or 1). Therefore, it is straightforward to “unroll” the automaton into a layered automaton of total

width 4.

Next, in the interest of taking advantage of the optimization from the previous section, we want to collect

input bits from each input together into chunks that are as large as possible. One way to do this is to consider

representing the integer in a base B other than 2. The number of states will increase to B + 2, but the length

of the branching program will decrease by a factor of log2B.

As another independent optimization, we can also interleave the input bits as xnynyn−1xn−1xn−2 · · · .
Using this ordering, it is still possible to use a (B + 2)-state layered automaton, intuitively because the

automaton still only has to remember at most one digit of the input. The advantage of this order is that

input bits are read in pairs from the respective inputs, so the total length of the branching program shrinks

from 2⌈n/ log2B⌉ to ⌈n/ log2B⌉ + 1, while the width remains at B + 2. For simplicity, to implement

comparisons for order-revealing encryption in our main construction, we take B = 2, so that the total length

of the branching program is (n+ 1). We defer the formal description of the optimized branching program to

Appendix B.

4 Secret-Key Multi-Input Functional Encryption (SK-MIFE)

We now discuss the definition of secret-key multi-input functional encryption (SK-MIFE), which is a special

case of the definition of multi-input functional encryption (MIFE) in [GGG+14].

In fact we will specialize this definition further, to the case of SK-MIFE with a single function evaluation

key (1SK-MIFE). We note that it is straightforward to construct ordinary SK-MIFE (enabling multiple

function keys) from 1SK-MIFE, as follows. We can set the single functionality in 1SK-MIFE to be a

universal branching program, U(f, x1, . . . , xn), which takes as one of its inputs the function f to be evaluated.

In this SK-MIFE scheme, the key to evaluate a particular function f will be the 1SK-MIFE encryption

1SK-MIFE.Enc(sk, 1, f) (for input slot 1 in the universal program U).

We also note that 1SK-MIFE already covers the application of order-revealing encryption (ORE), since

here we only want to enable a single function on MIFE ciphertexts: namely, the comparison function. As we

will see below, working with 1SK-MIFE enables us to achieve a much more efficient construction. Thus, we

will restrict our attention to 1SK-MIFE here.

4.1 Definitions

A single-key, secret-key multi-input functional encryption (1SK-MIFE) scheme

Π = (1SK-MIFE.Setup, 1SK-MIFE.Enc, 1SK-MIFE.Dec)

supports the following operations. Each operation is implemented by a randomized algorithm, which (with

all but negligible probability) runs in time polynomial in its input length and the security parameter λ.
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• The setup procedure takes as input a security parameter λ and a program P , given as an m-input matrix

branching program (Section 2.2) over Zq for some prime q > 2λ. The setup procedure outputs an

evaluation key ek and a secret key sk.

1SK-MIFE.Setup(λ, P ) → (ek, sk)

• The encryption procedure takes as input a secret key sk, an input variable index i ∈ [m], and an input

x ∈ X , and outputs a ciphertext ct.

1SK-MIFE.Enc(sk, i, x) → ct

• The decryption procedure takes as input an evaluation key ek and ciphertexts ct(1), . . . , ct(m), and

outputs a computation result b ∈ {0, 1}.

1SK-MIFE.Dec(ek, ct(1), . . . , ct(m)) → b

Definition 4.1 (1SK-MIFE Correctness). A 1SK-MIFE scheme Π is correct if for any uniform multi-input

matrix branching program P , and any inputs x(1), . . . , x(m) ∈ X , if (ek, sk)← 1SK-MIFE.Setup(λ, P ) and

for each i ∈ [m] it is the case that ct(i) ← 1SK-MIFE.Enc(sk, i, x(i)), then,

1SK-MIFE.Dec(ek, ct(1), . . . , ct(m)) → P (x(1), . . . , x(m)).

Security. It is clearly impossible to achieve (standard) semantic security for 1SK-MIFE, since by design,

our scheme must leak some information about the plaintexts—namely, the result of evaluating the 1SK-MIFE

program P on every possible choice of query plaintext tuple. Our goal, then, is best-possible semantic security,

in which we leak only this information. In this respect, our security definition is similar to IND-OCPA in the

special case of order-preserving (or order-revealing) encryption [BCLO09], but of course we must generalize

it for 1SK-MIFE. Our definition is also similar to the indistinguishability-based definitions of (general)

multi-input functional encryption given by Goldwasser et al. [GGG+14]. We now present the formal details.

Definition 4.2 (1SK-MIFE Security Game). Fix a generalized matrix branching program P (to be used in

the 1SK-MIFE scheme). For an adversary A, and for each “world” bit b ∈ {0, 1}, we define the experiment

Expt1SK-MIFE
P,Q,b (A), parameterized over a number of queries Q:

Experiment Expt1SK-MIFE
P,Q,b (A):

1. A receives an evaluation key ek, where (ek, sk)← 1SK-MIFE.Setup(λ, P ).

2. A makes Q adaptive queries to a left-or-right encryption oracle, as follows. For

each t ∈ [Q], the adversary sends queryt = (it, xt,0, xt,1), and is given a ciphertext

ctt ← 1SK-MIFE.Enc(sk, it, xt,b).

3. A outputs a bit b′ ∈ {0, 1}, which is the output of the experiment.
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Definition 4.3 (Input-Consistent Queries). In an execution trace of the experiment Expt1SK-MIFE
P,Q,b (A) (Defi-

nition 4.2), let t1, . . . , tm ∈ [Q] be time steps in the adversary’s query sequence, such that for every input

slot index i ∈ [m], we have queryti [1] = i (i.e., at time t1, the adversary queried for input slot 1; at time t2,

the adversary queried for input slot 2; and so on). Then we say the query time sequence τ = (t1, . . . , tm) is

input-consistent. Furthermore, for each world bit b ∈ {0, 1}, we say that such an input-consistent sequence τ

selects the vector of inputs xτ,b = (xt1,b, . . . , xtm,b).

Definition 4.4 (Execution Trace). Fix an adversary A in the generic multilinear map model (Definition C.1).

We define the execution trace of the experiment Expt1SK-MIFE
P,Q,b (A) to be the sequence of all oracle query-

response pairs, both between A and the challenger and between A and the multilinear map oracle.

Definition 4.5 (Admissibility of Execution Traces). An execution trace of the experiment Expt1SK-MIFE
P,Q,b (A)

is admissible if the Q adaptive queries made by the adversary satisfy the following condition: for every

input-consistent query time sequence τ ∈ [Q]m, letting xτ,b denote the vector of inputs selected by τ in

world b, we have P (xτ,0) = P (xτ,1).

We note that admissibility can be checked, for any given execution trace, in time O([Q]m) ·poly(λ, |P |)),
simply by testing the condition every possible sequence τ . Thus, if m is a constant—e.g., for order-revealing

encryption, where the arity of the comparison program is m = 2—then admissibility can be checked in

polynomial time. For general programs P , the arity m may be ω(1), in which case admissibility may not be

efficiently checkable. Nevertheless, we can still define IND-security the same way.

Definition 4.6 (IND-security for 1SK-MIFE). A 1SK-MIFE scheme Π is Q-IND-secure if, for all generalized

matrix branching programs P , and all efficient adversaries A, the quantity

Adv1SK-MIFE
P,Q (A) = |W0 −W1|

is negligible, where for each world bit b ∈ {0, 1} we define

Wb = Pr
[
Expt1SK-MIFE

P,Q,b (A) outputs 1 and yields an admissible execution trace
]
.

Application to order-revealing encryption. Our motivating application of 1SK-MIFE is order-revealing

encryption (ORE). In this case, the program P is a matrix branching program for the comparison func-

tion (Section 3), which takes two bit strings x, y ∈ {0, 1}n representing numbers in binary, and returns 1 if

x ≤ y. The 1SK-MIFE evaluation key ek then fills the role of the comparison algorithm in ORE.

Strictly speaking, in addition to the comparison algorithm, ORE requires that someone who holds the

secret key can also decrypt each ciphertext, revealing the original string x ∈ {0, 1}n. We can accomplish this

by including, along with the 1SK-MIFE ciphertext, another encryption of x under an ordinary (semantically-

secure) symmetric encryption scheme, and including this scheme’s secret key as part of the key in ORE.

5 Our 1SK-MIFE Construction

Consider an m-input generalized matrix branching program (MBP) of length ℓ. We construct a 1SK-MIFE

for the function computed by this MBP. To encrypt an input x ∈ X we construct the set of matrices obtained

by considering the input (x, . . . , x) ∈ Xm to the MBP. We randomize each matrix in the branching program

as in Section 2.3 by using a randomizing matrix taken from the secret key. These randomizing matrices Ri

are fixed at key generation time and used for all encryptions. The encryption procedure then chooses random
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scalars α1, . . . , αℓ and, more importantly, chooses random index sets for a multilinear map with which to

encode each of the matrices (these index sets are chosen from an exclusive partition family which, as we will

see, have the properties needed for correctness and security). The encryptor encodes each randomized matrix

using its assigned index set and outputs the set of encoded matrices as the encryption of x. Now, to compute

the MBP function given m independently-created ciphertexts we can select appropriate encoded matrices

from each ciphertext and compute their product using the multilinear map, as done in the ORE example in

Section 1. We then zero-test the result to learn the output of the function in the clear.

The challenge with this approach is to guarantee that any meaningful evaluation has to use all of the

matrices in a set of m ciphertexts and no other elements. In other words, the difficulty in the security proof lies

in preventing attacks that evaluate the decryption function by mixing matrices from different encryptions for

the same input position. We resolve this issue by relying on exclusive partition families from Definition 2.12.

For each input position i that determines d matrices in the generalized MBP, we construct a (2λ, d)-exclusive

partition familyF (i). To encrypt a message for that position, we sample at random a partition (S
(i)
1 , . . . , S

(i)
d )

from the family F (i) and use the sets from the partition as the index sets for encoded matrices included in the

encryption. The properties of the exclusive partition families guarantee that MBP evaluations using matrices

from ciphertexts generated by sampling different partitions from F (i) will fail because the result will not be

encoded with respect to the index set for the zero-tester.

We now describe the formal construction for the above intuition.

Construction 5.1 (1SK-MIFE). The 1SK-MIFE construction consists of the following procedures:

• 1SK-MIFE.Setup(λ, P ):

The setup procedure receives as input a security parameter λ and a generalized matrix branching

program P : Xm → {0, 1} of the form

P = ( q, m, d, inp, (M1, . . . , Mℓ) ) ,

as described in Section 2.2, where X ⊂ {0, 1}∗ is a space of possible input strings, eachMj : X →
GLw(Zq) is expressed as a Boolean circuit, and ℓ = md.

For each input variable index i ∈ [m], let F (i) be a (2λ, d)-exclusive partition family (Lemma 2.14)

over a set Ui of O(dλ) fresh formal indices (Section 2.4), and let As, At also be fresh formal indices.

The setup procedure forms a top-level universe of indices

U = AsAt

∏

i∈[m]

Ui,

and generates corresponding parameters for a multilinear map

(MM.pp, MM.sp)← MM.Setup(U , q).

Then, it randomizes P via the method of Definition 2.3, producing a randomized program P̂ as

P̂ = MBPRand(P ) =
(
q, m, n, inp, (M̂1, . . . , M̂ℓ), ŝ, t̂

)
.

Finally, it outputs the evaluation key ek and the secret key sk:

ek =
(
MM.pp, P, [ŝ]As

,
[
t̂
]
At

)
sk = (MM.sp, P̂ )

(using MM.Encode(MM.sp, ·, ·) to generate fresh encoded elements [ŝ]As
,
[
t̂
]
At

).
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• 1SK-MIFE.Enc(sk, i, x):

The encryption procedure receives as input the secret key sk = (MM.sp, P̂ ), an input variable index

i ∈ [m], and a plaintext x ∈ X (to be encrypted to the ith input slot of the branching program).

Let F (i) be a (2λ, d)-exclusive partition family (Lemma 2.14) over Ui, as defined in 1SK-MIFE.Setup

above. The encryption procedure samples a partition uniformly at random from the family F (i) of the

form (
S
(i)
1 , . . . , S

(i)
d

)
$
← F (i).

The procedure also chooses scalars α1, . . . , αd ← Z
∗
q uniformly at random. Finally, for each h ∈ [d],

the procedure generates the following fresh encoded elements (using MM.Encode(MM.sp, ·, ·)):

cth :=
[
αh M̂inp.j(i,h)(x)

]
S
(i)
h

,

and outputs the ciphertext ct = (ct1, . . . , ctd).

• 1SK-MIFE.Dec(ek, ct(1), . . . , ct(m)): The decryption procedure receives as input the public parameters

ek = (MM.pp, P, [ŝ]As
,
[
t̂
]
At
), along with m ciphertexts ct(1), . . . , ct(m). Each ciphertext is parsed

as

ct(i) = (ct
(i)
1 , . . . , ct

(i)
d ) =

(
Ĉ

(i)
1 , . . . Ĉ

(i)
d

)
,

where the entries of the matrices Ĉ
(i)
h are encoded elements in the multilinear map. Then, using the

multilinear map operations (MM.Add, MM.Mult), it computes

z = [ŝ]As
·


∏

j∈[ℓ]

Ĉ
(inp(j))
inp.h(j)


 ·

[
t̂
]
At

.

Using the operation MM.ZeroTest, the procedure tests whether z encodes zero in Fq, and outputs 1 if

so, and 0 otherwise.

Functional correctness follows from the definition of Construction 5.1, along with the correctness of the

multilinear map procedures. Formally, we state the following theorem.

Theorem 5.2. Construction 5.1 is correct (Definition 4.1).

To prove Theorem 5.2, we first show that for a given evaluation on m honestly-generated ciphertexts,

all of the index sets “match up” for each i ∈ [m], so that the result z is a valid zero-test query; this follows

from the properties of exclusive partition families (Definition 2.12). Then, we show that the actual value

of z corresponds to the execution of the original program; this follows by correctness of the randomization

procedure MBPRand (Definition 2.3).

Proof. Fix a multi-input matrix branching program P , a security parameter λ, and a tuple of plaintext inputs

x = (x(1), . . . , x(m)). Let (ek, sk)← 1SK-MIFE.Setup(λ, P ), and suppose that for each i ∈ [m], we have

ct(i) ← 1SK-MIFE.Enc(sk, i, x(i)). Then we claim that 1SK-MIFE.Dec(sk, x(1), . . . , x(m))→ P (x).
To begin, we write:

ct(i) = (M̂
(i)
1 , . . . , M̂

(i)
d ),
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where the entries of the each matrix M̂
(i)
h are encoded elements in the multilinear map. Note that 1SK-MIFE.Dec

outputs the result of zero-testing the following encoded element:

z = [ŝ]As
·


∏

j∈[ℓ]

M̂
(inp(j))
inp.h(j)


 ·

[
t̂
]
At

Hence, for correctness, it suffices to show that for honestly constructed ciphertexts, z is a valid (non-⊥)

encoded element at the top-level index set U , and that z’s value in Zq is zero precisely when P evaluates to 1
on x.

By definition, for any j ∈ [ℓ], we have j = inp.j(inp(j), inp.h(j)) (Section 2.2). Thus by construction of

1SK-MIFE.Enc:

z = [ŝ]As
·


∏

j∈[ℓ]

[
α′
j M̂j(x

(inp(j)))
]
S
(inp(j))
inp.h(j)


 ·

[
t̂
]
At

,

for some α′
j ∈ Z

∗
q chosen by 1SK-MIFE.Enc on some input. Now, note that

{
S
(inp(j))
inp.h(j) : j ∈ [ℓ]

}
=

{
S
(i)
h : i ∈ [m], h ∈ [d]

}
. (5.1)

Since for each i ∈ [m], the tuple (S
(inp(j))
h )h∈[d] is a partition of Ui (Lemma 2.14), we conclude that the

right-hand side of (5.1) is a partition of (U \ (As ∪ At)), and thus so is the left-hand side. Hence each

MM.Mult operation performed by the functional decryption procedure is valid, and the result z is an element

of Zq encoded at the top-level universe U .

It only remains to establish that z encodes zero precisely when the program evaluates to 1 on the

corresponding inputs. We have that

z =




∏

j∈[ℓ]

α′
j


 ŝ ·


∏

j∈[ℓ]

M̂j(x
(inp(j)))


 · t̂



U

,

and hence, by the correctness of the randomized encoding (Lemma 2.5),

z =




∏

j∈[ℓ]

α′
j


 ·


∏

j∈[ℓ]

Mj(x
(inp(j)))


 [1, 1]



U

.

Since each α′
j ∈ Z

∗
q is invertible, z encodes zero if and only if


∏

j∈[ℓ]

Mj(x
(inp(j)))


 [1, 1] = 0,

so by the definition of the branching program, we conclude that

z = 0 ⇐⇒ P (x) = 1.
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Remark 5.3. As written, Construction 5.1 requires an (ℓ+2)-way multilinear map to support the computation

of z in 1SK-MIFE.Dec. However, we note that we could optimize the construction so that 1SK-MIFE.Enc

pre-multiplies the vectors ŝ and t̂ with the first and last matrices, respectively, Ĉ
(inp(1))
inp.h(1), Ĉ

(inp(ℓ))
inp.h(ℓ), · · · . This

would enable us to reduce the degree of the computation from (ℓ+2) to ℓ (and hence obtain better parameters

for the multilinear map); in the special case of order-revealing encryption, we have ℓ = k + 1, and thus we

reduce the degree required from (k + 3) to (k + 1). For simplicity, however, we present the construction

without this optimization.

Remark 5.4 (Multi-Bit Output). For simplicity, we present our SK-MIFE construction only for functions

that output a single bit. However, the construction can easily be extended to functions with multi-bit output in

a number of ways. First, if a given generalized branching program already outputs k bits6, then we can output

the same k bits via the techniques of Sahai and Zhandry, replacing the bookend vectors ŝ, t̂ by randomized

diagonal matrices as described in [SZ14]. This transformation yields multi-bit output at essentially no

additional performance cost. Alternatively, for arbitrary programs (not represented efficiently as multi-bit

branching programs a priori), we can also simply run k copies of our scheme in parallel, supporting multi-bit

output at the cost of a factor k loss in efficiency.

5.1 Security proof

Our main theorem states that the construction above indeed yields a secure 1SK-MIFE scheme.

Theorem 5.5 (1SK-MIFE Security). The 1SK-MIFE construction of Section 5 is poly(λ)-IND-secure in the

generic multilinear map model.

Before proving Theorem 5.5, we first give a few relevant definitions and lemmas. Our proof techniques in

this section are similar to those in related works that use the generic multilinear map model [BR14, BGK+14].

Remark 5.6 (Queries Referring to Formal Polynomials). Formally, the generic multilinear map model is

defined in terms of oracle queries on “handles” (nonces). In any particular security game, however, it is

usually more intuitive to regard each oracle query as a formal polynomial. The formal variables are specified

in terms of the expressions initially supplied to the MM.Encode procedure (as appropriate to the security

game), and the adversary can construct new polynomials by making oracle queries for the generic-model

ring operations MM.Add, MM.Mult. Rather than operating on a handle, then, we can think of each valid

MM.ZeroTest query as referring to a formal polynomial encoded at the top-level universe U . The result of

the query is “zero” precisely if the given polynomial evaluates to zero, when its variables are instantiated

with the real joint distribution over their values in Zq, generated as in the actual security game. For precise

definitions, we refer the reader to Appendix C.1.

Structure lemmas. Our 1SK-MIFE construction uses index sets to enforce constraints on the adversary’s

evaluation (as depicted in Figure 3). The purpose of these constraints is to prevent the adversary from

constructing zero-test queries that are inconsistent—i.e., use encodings that “mix and match” elements of

different ciphertexts. To show that our design indeed prevents these undesired queries, we first state and prove

a few simple definitions and “structure lemmas”, showing that all valid query polynomials have a certain

form.

6In such a branching program, the output is determined by the upper left k1 × k2 submatrix (k = k1k2) of the final matrix

product, as opposed to just the upper left entry. The output of the program is the k1 × k2 Boolean matrix indicating which entries in

the submatrix are 0.
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Figure 3: The matrices of two 1SK-MIFE ciphertexts, ct = (ct
(1)
1 , ct

(1)
2 , ct

(1)
3 ) and ct′ =

(ct1
′(1), ct2

′(1), ct3
′(1)) (both encrypted to slot 1), with the index set of each matrix depicted

below it. Since the index sets are defined by two different elements of the same exclusive

partition family, the adversary cannot “mix and match” elements from the two ciphertexts.
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Definition 5.7 (Query-Consistent Polynomials). For an execution trace of the experiment Expt1SK-MIFE
P,Q,b (A)

in the generic multilinear map model, consider any input-consistent sequence τ = (t1, . . . , tm) of query times

(Definition 4.3). By definition of the encryption procedure, the corresponding ciphertexts for those query

times are encoded elements that refer to formal polynomials (Remark 5.6) of the form ctti,h = αti,hM̂ti,h,

where αti,h is a scalar and M̂ti,h is a w × w matrix. We now define the formal polynomial

ατ =
∏

i∈[m], h∈[d]

αti,h

(intuitively, the α coefficient that would be present, for a given query sequence τ , in an honest evaluation of

the program), as well as the tuple of formal polynomials

M̂|τ =
(
M̂tinp(1),inp.h(1), . . . , M̂tinp(ℓ),inp.h(ℓ)

)

(intuitively, the matrices whose entries would be involved in an honest evaluation of the program). Finally,

we say that a formal polynomial zτ ,b is consistent with the query sequence τ if it can be expressed as a

polynomial in the entries of the correct vectors and matrices (ŝ, M̂|τ , and t̂), scaled by the correct blinding

coefficient, ατ . More precisely, zτ is consistent with τ if it is identically equal to a formal polynomial of the

form

zτ = ατ · pτ (ŝ, M̂|τ , t̂)

for some polynomial pτ of degree poly(λ).

Lemma 5.8 (Decomposition of Zero-Test Queries). Fix any efficient adversary A. In the experiment

Expt1SK-MIFE
P,Q,b (A), with all but negligible probability, every MM.ZeroTest query made by A that is valid (i.e.,

whose handle is at the top-level universe U ), refers to a polynomial (Remark 5.6) formally equal to a sum of

(potentially exponentially many) query-consistent polynomials of the form

z =
∑

τ

ατ · pτ (ŝ, M̂|τ , t̂),

and each polynomial pτ is allowable (Definition 2.6) and consistent with a query sequence τ (Definition 5.7).

Proof. Consider any valid formal polynomial z submitted to MM.ZeroTest. First, we expand the polynomial

z into a sum of monomials (for purposes of analysis, not by the scheme), and collect like terms with respect

to the α variables. Each term in the resulting expression must be encoded at the top-level universe U , since

some valid zero-testing handle refers to their sum. This means, in particular, that the index set of each term

must contain a partition of every Ui.
The only variables available to the adversary whose index sets contain elements of Ui are the ciphertexts

ctt,h generated during time steps t ∈ T (i), where T (i) is the set of all times at which the adversary made

chosen-plaintext queries for input slot i. For these time steps, we will assume that the partitions selected by

the challenger: (
Pt = (S

(i)
t,1 , . . . , S

(i)
t,d) : t ∈ T

(i)
)

are distinct, since each is drawn independently uniform from a family of size 2λ, regardless of the adversary’s

queries, and thus by the birthday bound a collision occurs with negligible probability.

This implies that the index sets S
(i)
t,h are distinct elements of the exclusive partition family Fit , and thus

by Lemma 2.14, for each i ∈ [m], the only monomials whose index sets can cover each Ui all share the
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same value of the partition Pt (and hence of t), and thus are precisely products of one element from each

component of the same query ciphertext, ctti . Finally, for each h ∈ [d], we note that the hth term of each such

ciphertext contains precisely the factors αti,h and Mti,h. Thus, letting τ = (t1, . . . , tm) ⊆ [Q], we conclude

that such monomials have precisely a leading factor of ατ , while the remaining factors are drawn from M|τ ,

as desired. We observe that each such monomial (and hence their sum, pτ ) must be allowable (Definition 2.6),

since all entries of each vector and matrix ŝ, M̂|τ , t̂ are encoded at the same index set, and thus the monomial

can only include one factor from each. Finally, the degree of the polynomial pτ must be at most poly(λ),
since the index set of any formal polynomial grows with its degree, and the size of any valid index set is

bounded by the size of the top-level universe U .

We are now ready to present the main proof of Theorem 5.5.

5.2 Proof of Theorem 5.5

Proof. Fix an efficient adversary A for the experiment Expt1SK-MIFE
P,poly(λ),b(A) in the generic graded encoding

model. We will show that for every admissible trace π in the experiment (Definition 4.5), except for failure

events of negligible probability, the probability that the experiment yields the trace π when b = 0 differs by a

negligible amount from the probability that it yields the trace π when b = 1. It then follows immediately that

Adv1SK-MIFE
P,Q (A) = |W0 −W1| is negligible, as desired.

First, we note that in any trace π, the only responses sent toA are either (a) handles in the multilinear map,

via MM.Encode, from the public parameters and from ciphertexts generated for chosen-plaintext queries;

(b) handles in the multilinear map, via MM.Add,MM.Mult, from queries to the generic map oracleM; or

else (c) answers to MM.ZeroTest queries on handles in the multilinear map. Since in the generic model the

handles for (a) and (b) are uniform independent nonces, their distribution clearly does not depend on b. Thus,

our task reduces to showing that for each MM.ZeroTest query, the probability of each response (“zero”,

“nonzero”) differs by a negligible amount between the cases b = 0 and b = 1. The claim will then follow by a

union bound, since A (being efficient) can make only polynomially many oracle queries.7

Fix a valid MM.ZeroTest query, which refers to a formal multivariate polynomial z (Remark 5.6,

Definition C.2. By Lemma 5.8, z is identically equal to a polynomial of the form

∑

τ

ατ · pτ (ŝ, M̂|τ , t̂) ,

where each polynomial pτ is allowable (Definition 2.6) and consistent with the query sequence τ (Defini-

tion 5.7). For each bit b ∈ {0, 1}, let xτ ,b = (xt1,b, . . . , xtm,b) be the chosen-plaintext queries corresponding

to τ in the adversary’s execution trace up to the point of query z. Since by assumption the execution trace is

admissible (Definition 4.5), we have P (xτ ,0) = P (xτ ,1). By Lemma 2.7, we now conclude that each formal

polynomial pτ , when evaluated on the real distribution of values in Zq from the oracle’s table, is either zero

with probability 1 for both values of b ∈ {0, 1}, or else is nonzero with all but negligible probability for both

values of b ∈ {0, 1}. We consider the following cases:

• Suppose that for all τ in the formal sum for z, the polynomial pτ evaluates to zero on its argument’s

entire support. In this case, the entire query z will evaluate to zero always, regardless of the value of b.

7Technically, we must also show that the distribution of the values in the oracle’s table, conditioned on each possible subsequence

of past oracle query-response pairs (assuming no failure events), has negligible statistical distance from its prior distribution from

MM.Setup; this follows by a standard conditional probability argument, given that the probability of each failure event is negligible.
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• Suppose that for some τ
∗ in the formal sum for z, the polynomial pτ∗ evaluates to zero negligibly

often, regardless of the value of b (and consider the lexicographically first such τ
∗, without loss of

generality). Then for both values of b, when the query z is instantiated with the real distribution of

all values except the α variables, pτ∗ evaluates to a polynomial function of the α variables which,

with all but negligible probability, is not identically zero. Since the distribution over the α variables

is statistically close to independently uniform over Zq, the Schwartz-Zippel lemma implies that the

entire query z will evaluate to a nonzero value regardless of the value of b, except for failure events

with negligible probability.

Thus, for each MM.ZeroTest query, the probability that the answer is “zero” differs by a negligible amount

between the cases b = 0 and b = 1, as desired.

6 Extensions

Stateful Encryption. In the construction of Section 5, since encryption is required to be stateless, we

need to generate a fresh partition for each encryption (and rely on the birthday bound to prevent collisions).

However, in many applications of SK-MIFE, it may be reasonable to modify the encryption procedure to

be stateful. For instance, suppose a client is encrypting an entire database to be stored on a remote server

(and later queried according to the functions for which we reveal MIFE evaluation keys). Here the client

may know the contents of the entire database in advance, or may be able to retain local state between

interactions with the server. In either case, if the maximum number of database elements N is known in

advance, then we can simply replace the (2λ, d)-exclusive partition families in the construction (Section 5)

with (2⌈logN⌉, d)-exclusive partition families, and instead of sampling a partition index uniformly at random

for each encryption, use the partitions in order: the ith partition for the ith encryption operation, for each

i ∈ [N ].

7 Conclusions

We presented a secret-key multi-input functional encryption scheme for functionalities that can be captured

by a generalized branching programs of polynomial length and width. An interesting functionality in this

family is comparison which enables comparisons of symmetrically encrypted data. We refer to this specific

functionality as order-revealing encryption (ORE). ORE can be used to answer range queries on symmetrically

encrypted data in one round and in logarithmic time in the size of the database.

Our construction is inspired by obfuscation techniques, but does not use obfuscation. Instead it is built

directly from multilinear maps and is substantially simpler than current obfuscation-based schemes. While

the resulting order-revealing encryption (ORE) scheme is still too inefficient for practical use, it provides a

first step towards building usable ORE systems. We hope that future work will further improve the efficiency

of ORE and, more generally, the efficiency of secret-key multi-input functional encryption.
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A Proofs

A.1 Proof of Lemma 2.7

To prove the lemma, we need some additional facts about formal polynomials over entries of matrices, for

which we refer to the work of Sahai and Zhandry [SZ14].

Let w ∈ Z
+. Let M̂1 be a 1×w matrix (that is, a row vector), M̂k for k ∈ [2, n− 1] be w×w matrices,

and M̂n be a w × 1 matrix (that is, a column vector).

Definition A.1 ([SZ14]). Let w, M̂k be as above. Consider a multilinear polynomial p on the variables in

{M̂k}k∈[n]. We call p allowable if each monomial in the expansion of p contains at most one variable from

each of the M̂k.

An example of an allowable polynomial is the matrix product polynomial M̂1M̂2 · · · M̂n. Now, fix a

(large) field F, and let Mk be matrices over F of the same shape as M̂k for k = 1, . . . , n. Let Rk be w × w
matrices of variables for k ∈ [n], and let R−1

k be the inverse matrix of Rk. Let R0 = Rn+1 = 1. Now

suppose we set

M̂k = Rk−1 ·Mk ·R
−1
k

Now given a polynomial p over the M̂k, there are two ways of looking at p: as a polynomial over its

formal variables (the M̂k), and as a rational function over the matrices Rk. We now give conditions for

which we can relate the two:

Theorem A.2 ([SZ14]). Let F, w,Mk,Rk, M̂k be as above. Consider an allowable polynomial p in the M̂k,

and suppose p, after making the substitution M̂k = Rk−1 ·Mk ·R
−1
k , is identically 0 as a rational function

over the matrices Rk. Then the following is true:
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• If M1M2 · · ·Mn 6= 0, then p is identically zero as a polynomial over its formal variables, namely the

M̂k.

• If M1M2 · · ·Mn = 0 but

M1M2 · · ·Mn−1 6= 01×dn

M2 · · ·Mn−1Mn 6= 0d2×1

then p, as a polynomial over the M̂k, is a constant multiple of the matrix product polynomial

M̂1M̂2 · · · M̂n.

We note that Sahai and Zhandry [SZ14] used the adjugate matrix R
adj
k instead of the inverse matrix R

−1
k

in Theorem A.2. However, the only difference between these two matrices is a multiplicative factor equal to

the determinant det(Rk), which with overwhelming probability is non-zero. It is therefore straightforward to

adapt their proof to use the matrices R−1
k in the case of large fields F, which is the only setting we consider.

Now we can prove Lemma 2.7. We have matrices

MBPSelect(P̂ ,xb) =
(
ŝ
⊺, M̂b

1, . . . , M̂
b
ℓ, t̂

)

for some b, and an allowable polynomial p over them. We are given that

MBPEval(MBPSelect(P̂ ,x0)) = 0 ⇐⇒ MBPEval(MBPSelect(P̂ ,x1)) = 0.

We also know that P is a non-shortcutting branching program. Our goal is to show that

p(MBPSelect(P̂ ,x0)) = 0 ⇐⇒ p(MBPSelect(P̂ ,x0)) = 0

with overwhelming probability.

There are two cases. If p is a multiple of the matrix product polynomial MBPEval, then the lemma

follows trivially. In the case where p is not a multiple of MBPEval, we can invoke Theorem A.2 and see that

with overwhelming probability p evaluates to non-zero for both b = 0 and b = 1.

In particular, assume p is not a multiple of the matrix product polynomial. If p evaluates to zero with

non-negligible probability, by the Schwartz-Zippel lemma, it must be identically zero as a polynomial

over the randomization matrices R. If MBPEval(MBPSelect(P̂ ,xb)) 6= 0 for both b, then the matrices

ŝ
⊺, M̂b

1, . . . , M̂
b
ℓ, t̂ satisfy the first set of requirements in Theorem A.2, and it follows that p is identically

zero as a polynomial over the variables MBPSelect(P̂ ,xb), which means it is also a (zero) multiple of the

matrix product polynomial, a contradiction.

Alternatively, if MBPEval(MBPSelect(P̂ ,xb)) = 0 for both b, then because P is non-shortcutting, it

follows that ŝ⊺, M̂b
1, . . . , M̂

b
ℓ, t̂ satisfy the second set of requirements in Theorem A.2. This then shows that

p is a multiple of the matrix product polynomial, a contradiction.

B Optimized Branching Program for Comparisons

In Section 3, we outline an approach to optimizations on layered automata. For completeness, we now give

the full description of a layered automaton for the comparisons problem.

Let x, y ∈ [Bt − 1] be represented in base B: x = xt−1 . . . x1x0, y = yt−1 . . . y1y0. We interleave x, y
as xt−1yt−1yt−2xt−2xt−3 . . . . Our four state layered automaton is as follows:
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• Layer 4i: Every fourth layer, starting with layer 0, has B+2 states with labels >,=, <, ∅1, . . . , ∅B−1.

The state >,=, < states represent the result of comparing the first 2i digits of x with the first 2i digits of

y. In other words, starting at the start state, we will reach state = (resp. >, <) if the integer represented

by the first 2i digits of x is equal to (resp. greater than, less than) the integer represented by the first 2i
digits of y. For layer 0, we mark = as the start state. The ∅i states are not used. Upon reading digit 4i
as d, which is digit 2i of x, the automaton will make the following transitions from layer 4(i− 1) + 3
to 4i (layer 4(i− 1) + 3 is described below):

– >→>

– <→<

– d→=

– d′ →> for d′ < d

– d′ →< for d′ > d

• Layer 4i+ 1: Every fourth layer, starting with layer 1, has the states >,<, 0, . . . , B − 1. > (resp. <)

are carried over from layer 4i: the integer represented by the first 2i bits of x is greater than (resp.

less than) the integer represented by the first 2i bits of y. The state d for a digit d ∈ {0, . . . , B − 1}
represents that the first 2i bits of x are identical to the first 2i bits of y, and digit 2i+ 1 of x is equal to

d. Upon reading digit 4i+ 1 as d, which is digit 2i+ 1 of x, the automaton will make the following

transitions from layer 4i to 4i+ 1:

– >→>

– <→<

– =→ d

– ∅i → d

• Layer 4i + 2: Every fourth layer, starting with layer 2, has the states >,=, <, ∅1, . . . , ∅B−1. The

states are identical to layer 4i, in the sense that they represent the comparison of the first 2i+ 1 digits

of x to the first 2i+ 1 digits of y. The only difference is the transitions, since the transition into layer

4i+ 2 is determined by most recent digit of y rather than x. The transition on reading digit d are as

follows:

– >→>

– <→<

– d→=

– d′ →< for d′ < d

– d′ →> for d′ > d

• Layer 4i + 3: Every fourth layer, starting with layer 1, has the states >,<, 0, . . . , B − 1. <,> are

carried over from layer 4i+2, and represent the comparison of the first 2i+1 digits of each integer, in

the case where they are not equal. In the case where they are equal, and the most recent digit (which is

the digit 2i+ 1 of y) is d, the automaton will be in state d. This gives the following transitions, which

are identical to layer 4i+ 1:

– >→>
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– <→<

– =→ d

– ∅i → d

C The Generic Multilinear Map Model

To define security for multilinear maps, we now define a generic model, represented by a stateful oracle

M, that captures the multilinear map functionality. We say a scheme that uses multilinear maps is “secure

in the generic multilinear map model” if, for any concrete adversary breaking the real scheme, there is an

ideal adversary breaking a modified scheme in which every access to the multilinear map operations (both

by the construction and by the adversary) is replaced by access to a stateful oracleM which performs the

corresponding arithmetic operations internally. Our definition of the oracleM is essentially the same as in

other works which use the generic multilinear map model [BR14, BGK+14]). We define the oracle formally

as follows.

Definition C.1 (Ideal Multilinear Map Oracle ([GGH+13b, BR14, BGK+14])). An ideal multilinear map

oracle is a stateful oracleM that responds to queries as follows.

• On a query MM.Setup(U , 1λ), the oracle will generate a value sp as a fresh nonce (i.e., distinct from

any previous choices) uniformly at random from {0, 1}λ, generate a prime q as in the real setup

procedure, set pp = q, and return (pp, sp). It will also store the values generated, initialize an internal

table T ← {} (to store “handles”, as described below), and set internal state so that subsequent

MM.Setup queries fail.

• On a query MM.Encode(k, x, S), where k ∈ {0, 1}λ and x ∈ Zq, the oracle will check that k = sp

and S ⊆ U (returning ⊥ if the check fails). If the check passes, the oracle will generate a fresh nonce

(“handle”) h uniformly at random from {0, 1}λ, add the entry h 7→ (x,S) to the table T , and return h.

• On a query MM.Add(k, h1, h2), where k, h1, h2 ∈ {0, 1}
λ, the oracle will check that k = pp, and that

the handles h1, h2 are present in its internal table T , and are mapped to values, resp., (x1,S1) and

(x2,S2) such that S1 = S2 = S ⊆ U (returning ⊥ if the check fails). If the check passes, the oracle

will generate a fresh handle h uniformly at random from {0, 1}λ, set x← x1 + x2 ∈ Zq, add the entry

h 7→ (x,S) to the table T , and return h.

• On a query MM.Mult(k, h1, h2), where k, h1, h2 ∈ {0, 1}
λ, the oracle will check that k = pp, and

that the handles h1, h2 are present in its internal table T , and are mapped to values, resp., (x1,S1)
and (x2,S2) such that S1 ∪ S2 ⊆ U (returning ⊥ if the check fails). If the check passes, the oracle

will set x← x1 · x2 ∈ Zq, generate a fresh handle h uniformly at random from {0, 1}λ, add the entry

h 7→ (x,S1 ∪ S2) to the table T , and return h.

• On a query MM.ZeroTest(k, h), where k, h ∈ {0, 1}λ, the oracle will check that k = pp, and that the

table T contains an entry h 7→ (x,U) (immediately returning ⊥ if the check fails). If the check passes,

the oracle will return “zero” if x = 0 ∈ Zq, and “nonzero” otherwise.
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C.1 Queries Referring to Formal Polynomials

As mentioned above in Remark 5.6, to establish security of our construction (Theorem 5.5), we use a more

intuitive characterization of the generic multilinear map model: rather than queries in terms of “handles”

(nonces), as defined formally in Appendix C, we refer to the model in terms of formal polynomials whose

variables are instantiated with real distributions. The following definitions make this language precise.

Definition C.2 (Formal Polynomials for Handles). During the game Expt1SK-MIFE
P,Q,b (A) (Section 4.1) in the

generic multilinear map model (Definition C.1), we say that an oracle handle h refers to a formal polynomial

p (at index set S) if either:

• The handle h is the result of running MM.Encode(sp, ŝ, As) (resp., MM.Encode(sp, t̂, At)) during

1SK-MIFE.Setup, where S = As (resp., At), and p is the formal variable ŝ (resp., t̂).8

• The handle h is the result of running MM.Encode(sp, Ĉ, S) during 1SK-MIFE.Enc (for some index

set S), where the matrix Ĉ was computed as:

Ĉti,h = αti,h M̂inp.j(i,h)(xti,b)

:= αti,h M̂ti,h

and p is the product of the formal variables αti,h and M̂ti,h.

• The handle h is the result of a query MM.Add(h1, h2) and p is the polynomial p1 + p2, where h1
refers to p1 (at S) and h2 refers to p2 (at S) at the time of the query.

• The handle h is the result of a query MM.Mult(h1, h2) and p is the polynomial p1p2, where h1 refers

to p1 (at S1) and h2 refers to p2 (at S2) at the time of the query; S1 ∩ S2 = ∅; and S = S1 ∪ S2.

• The handle h is the result of a query MM.Encode(⊥, c, ∅) for a scalar c ∈ Zq; p is the constant

polynomial c; and S = ∅.

Definition C.3 (Real Values for Formal Polynomials). During the game Expt1SK-MIFE
P,Q,b (A) (Section 4.1) in

the generic multilinear map model (Definition C.1), for a formal polynomial p, we say that the real value of p
is r ∈ Zq if either:

• The polynomial p is the formal variable ŝ (resp., t̂), and r is the value of the variable at the time of

instantiation in 1SK-MIFE.Setup.

• The polynomial p is the formal variable αti,h (resp., M̂ti,h), and r is the value of the variable at the

time of instantiation in 1SK-MIFE.Enc.

• The polynomial p is formally written as p1 + p2 for some p1, p2; the real value of p1 is r1; the real

value of p2 is r2; and r = r1 + r2.

• The polynomial p is formally written as p1p2 for some p1, p2; the real value of p1 is r1; the real value

of p2 is r2; and r = r1r2.

• The polynomial p is formally written as c for a constant c ∈ Zq, and r = c.

8Note that in Definition C.2, as in the constructions above (Section 5), we interpret all multilinear map operations componentwise

for vectors and matrices. Thus, for instance, MM.Encode (sp, ŝ, As) means that MM.Encode is invoked w times, once on each

component of the vector ŝ, and Definition C.2 should be interpreted to hold for each of w corresponding formal variables.
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Definition C.4 (Index Sets for Formal Polynomials). During the game Expt1SK-MIFE
P,Q,b (A) (Section 4.1) in the

generic multilinear map model (Definition C.1), for a formal polynomial p, we say that the index set of p is

S ⊂ U if either:

• The polynomial p is the formal variable ŝ (resp., t̂), and S is the value of the index set chosen at the

time of instantiation in 1SK-MIFE.Setup.

• The polynomial p is the formal variable αti,h (resp., M̂ti,h), and S is the value of the index set chosen

at the time of instantiation in 1SK-MIFE.Enc.

• The polynomial p is formally written as p1 + p2 for some p1, p2; the index set of p1 is S; and the

index set of p2 is S.

• The polynomial p is formally written as p1p2 for some p1, p2; the index set of p1 is S1; the index set

of p2 is S2; and S = S1 ∪ S2.

• The polynomial p is formally written as c for a constant c ∈ Zq, and S = ∅.

As an immediate consequence of these definitions, we note the following intuitive properties:

Lemma C.5 (Uniqueness of Real Values). During the game Expt1SK-MIFE
P,Q,b (A) (Section 4.1) if the polynomials

p1 and p2 are identically equal and the real value (Def. C.3) of p1 is r, then the real value of p2 is r.

Proof. Since p1 ≡ p2, they are identical when expanded into a sum of monomials. Thus it suffices to prove

the claim for a single distributive step. If the real value of (p1 + p2)p3 is r, then by case analysis we conclude

that that the real values of p1, p2, p3 are, resp., some r1, r2, r3 such that (r1 + r2)r3 = r. Hence the real

value of p1p3 + p2p3 is r1r3 + r2r3 as desired.

Lemma C.6 (Uniqueness of Index Sets). During the game Expt1SK-MIFE
P,Q,b (A) (Section 4.1) if the polynomials

p1 and p2 are identically equal and the index set (Def. C.4) of p1 is r, then the index set of p2 is r.

Proof. Since p1 ≡ p2, they are identical when expanded into a sum of monomials. Thus it suffices to prove

the claim for a single distributive step. If the index set of (p1 + p2)p3 is S, then by case analysis we conclude

that that the index sets of p1, p2, p3 are, resp., S1, S1, and S3, for some sets S1, S3 such that S1 ∪ S3 = S.

Hence the index set of both p1p3 and p2p3 is S1∪S3 = S, and thus so is that of their formal sum p1p3+p2p3,

as desired.

Lemma C.7 (Evaluation Commutes With Substutition). During the game Expt1SK-MIFE
P,Q,b (A) (Section 4.1) in

the generic multilinear map model (Definition C.1), suppose a handle h is mapped to r ∈ Zq in the oracle’s

table at index set S. Then h refers (Def. C.2) to a formal polynomial p whose index set (Def. C.4) is S and

whose real value (Def. C.3) is r.

Proof. By structural induction on the definition of the mapping.

In the proofs of Theorem 5.5 and associated lemmas, we make use of Lemmas C.5, C.6, C.7 implicitly.
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