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Figure 1: Our dataset provides dense annotations for each scan of all sequences from the KITTI Odometry Benchmark [19].

Here, we show multiple scans aggregated using pose information estimated by a SLAM approach.

Abstract

Semantic scene understanding is important for various

applications. In particular, self-driving cars need a fine-

grained understanding of the surfaces and objects in their

vicinity. Light detection and ranging (LiDAR) provides pre-

cise geometric information about the environment and is

thus a part of the sensor suites of almost all self-driving

cars. Despite the relevance of semantic scene understand-

ing for this application, there is a lack of a large dataset for

this task which is based on an automotive LiDAR.

In this paper, we introduce a large dataset to propel re-

search on laser-based semantic segmentation. We anno-

tated all sequences of the KITTI Vision Odometry Bench-

mark and provide dense point-wise annotations for the com-

plete 360o field-of-view of the employed automotive LiDAR.

We propose three benchmark tasks based on this dataset:

(i) semantic segmentation of point clouds using a single

scan, (ii) semantic segmentation using multiple past scans,

and (iii) semantic scene completion, which requires to an-

ticipate the semantic scene in the future. We provide base-

line experiments and show that there is a need for more

sophisticated models to efficiently tackle these tasks. Our

dataset opens the door for the development of more ad-

vanced methods, but also provides plentiful data to inves-

tigate new research directions.

∗ indicates equal contribution

1. Introduction

Semantic scene understanding is essential for many ap-

plications and an integral part of self-driving cars. Par-

ticularly, fine-grained understanding provided by seman-

tic segmentation is necessary to distinguish drivable and

non-drivable surfaces and to reason about functional prop-

erties, like parking areas and sidewalks. Currently, such un-

derstanding, represented in so-called high definition maps,

is mainly generated in advance using surveying vehicles.

However, self-driving cars should also be able to drive

in unmapped areas and adapt their behavior if there are

changes in the environment.

Most self-driving cars currently use multiple different

sensors to perceive the environment. Complementary sen-

sor modalities enable to cope with deficits or failures of par-

ticular sensors. Besides cameras, light detection and rang-

ing (LiDAR) sensors are often used as they provide precise

distance measurements that are not affected by lighting.

Publicly available datasets and benchmarks are crucial

for empirical evaluation of research. They mainly ful-

fill three purposes: (i) they provide a basis to measure

progress, since they allow to provide results that are re-

producible and comparable, (ii) they uncover shortcomings

of the current state of the art and therefore pave the way

for novel approaches and research directions, and (iii) they

make it possible to develop approaches without the need to

first painstakingly collect and label data. While multiple
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#scans1 #points2 #classes3 sensor annotation sequential

SemanticKITTI (Ours) 23201/20351 4549 25 (28) Velodyne HDL-64E point-wise ✓

Oakland3d [36] 17 1.6 5 (44) SICK LMS point-wise ✗

Freiburg [50, 6] 77 1.1 4 (11) SICK LMS point-wise ✗

Wachtberg [6] 5 0.4 5 (5) Velodyne HDL-64E point-wise ✗

Semantic3d [23] 15/15 4009 8 (8) Terrestrial Laser Scanner point-wise ✗

Paris-Lille-3D [47] 3 143 9 (50) Velodyne HDL-32E point-wise ✗

Zhang et al. [65] 140/112 32 10 (10) Velodyne HDL-64E point-wise ✗

KITTI [19] 7481/7518 1799 3 Velodyne HDL-64E bounding box ✗

Table 1: Overview of other point cloud datasets with semantic annotations. Ours is by far the largest dataset with sequential

information. 1Number of scans for train and test set, 2Number of points is given in millions, 3Number of classes used for

evaluation and number of classes annotated in brackets.

large datasets for image-based semantic segmentation exist

[10, 39], publicly available datasets with point-wise annota-

tion of three-dimensional point clouds are still comparably

small, as shown in Table 1.

To close this gap we propose SemanticKITTI, a large

dataset showing unprecedented detail in point-wise annota-

tion with 28 classes, which is suited for various tasks. In this

paper, we mainly focus on laser-based semantic segmenta-

tion, but also semantic scene completion. The dataset is dis-

tinct from other laser datasets as we provide accurate scan-

wise annotations of sequences. Overall, we annotated all 22

sequences of the odometry benchmark of the KITTI Vision

Benchmark [19] consisting of over 43 000 scans. Moreover,

we labeled the complete horizontal 360◦ field-of-view of

the rotating laser sensor. Figure 1 shows example scenes

from the provided dataset. In summary, our main contribu-

tions are:

• We present a point-wise annotated dataset of point

cloud sequences with an unprecedented number of

classes and unseen level-of-detail for each scan.

• We furthermore provide an evaluation of state-of-the-

art methods for semantic segmentation of point clouds.

• We investigate the usage of sequence information for

semantic segmentation using multiple scans.

• Based on the annotation of sequences of a moving car,

we furthermore introduce a real-world dataset for se-

mantic scene completion and provide baseline results.

• Together with a benchmark website, the point cloud

labeling tool is also publicly available, enabling other

researchers to generate other labeled datasets in future.

This large dataset will stimulate the development of

novel algorithms, make it possible to investigate new re-

search directions, and puts evaluation and comparison of

these novel algorithms on a more solid ground.

2. Related Work

The progress of computer vision has always been driven

by benchmarks and datasets [55], but the availability of es-

pecially large-scale datasets, such as ImageNet [13], was

even a crucial prerequisite for the advent of deep learning.

More task-specific datasets geared towards self-driving

cars were also proposed. Notable is here the KITTI Vi-

sion Benchmark [19] since it showed that off-the-shelf so-

lutions are not always suitable for autonomous driving. The

Cityscapes dataset [10] is the first dataset for self-driving

car applications that provides a considerable amount of

pixel-wise labeled images suitable for deep learning. The

Mapillary Vistas dataset [39] surpasses the amount and di-

versity of labeled data compared to Cityscapes.

Also in point cloud-based interpretation, e.g., semantic

segmentation, RGB-D based datasets enabled tremendous

progress. ShapeNet [8] is especially noteworthy for point

clouds showing a single object, but such data is not directly

transferable to other domains. Specifically, LiDAR sensors

usually do not cover objects as densely as an RGB-D sensor

due to their lower angular resolution, in particular in vertical

direction.

For indoor environments, there are several datasets [48,

46, 24, 3, 11, 35, 32, 12] available, which are mainly

recorded using RGB-D cameras or synthetically generated.

However, such data shows very different characteristics

compared to outdoor environments, which is also caused

by the size of the environment, since point clouds captured

indoors tend to be much denser due to the range at which

objects are scanned. Furthermore, the sensors have differ-

ent properties regarding sparsity and accuracy. While laser

sensors are more precise than RGB-D sensors, they usually

only capture a sparse point cloud compared to the latter.

For outdoor environments, datasets were recently pro-

posed that are recorded with a terrestrial laser scanner

(TLS), like the Semantic3d dataset [23], or using automo-

tive LiDARs, like the Paris-Lille-3D dataset [47]. However,

the Paris-Lille-3D provides only the aggregated scans with
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point-wise annotations for 50 classes from which 9 are se-

lected for evaluation. Another recently used large dataset

for autonomous driving [57], but with fewer classes, is not

publicly available.

The Virtual KITTI dataset [17] provides synthetically

generated sequential images with depth information and

dense pixel-wise annotation. The depth information can

also be used to generate point clouds. However, these point

clouds do not show the same characteristics as a real rotat-

ing LiDAR, including defects like reflections and outliers.

In contrast to these datasets, our dataset combines a large

amount of labeled points, a large variety of classes, and se-

quential scans generated by a commonly employed sensor

used in autonomous driving, which is distinct from all pub-

licly available datasets, also shown in Table 1.

3. The SemanticKITTI Dataset

Our dataset is based on the odometry dataset of the

KITTI Vision Benchmark [19] showing inner city traffic,

residential areas, but also highway scenes and countryside

roads around Karlsruhe, Germany. The original odome-

try dataset consists of 22 sequences, splitting sequences

00 to 10 as training set, and 11 to 21 as test set. For con-

sistency with the original benchmark, we adopt the same

division for our training and test set. Moreover, we do not

interfere with the original odometry benchmark by provid-

ing labels only for the training data. Overall, we provide

23 201 full 3D scans for training and 20 351 for testing,

which makes it by a wide margin the largest dataset pub-

licly available.

We decided to use the KITTI dataset as a basis for our la-

beling effort, since it allowed us to exploit one of the largest

available collections of raw point cloud data captured with a

car. We furthermore expect that there are also potential syn-

ergies between our annotations and the existing benchmarks

and this will enable the investigation and evaluation of ad-

ditional research directions, such as the usage of semantics

for laser-based odometry estimation.

Compared to other datasets (cf. Table 1), we provide

labels for sequential point clouds generated with a com-

monly used automotive LiDAR, i.e., the Velodyne HDL-

64E. Other publicly available datasets, like Paris-Lille-3D

[47] or Wachtberg [6], also use such sensors, but only pro-

vide the aggregated point cloud of the whole acquired se-

quence or some individual scans of the whole sequence,

respectively. Since we provide the individual scans of the

whole sequence, one can also investigate how aggregating

multiple consecutive scans influences the performance of

the semantic segmentation and use the information to rec-

ognize moving objects.

We annotated 28 classes, where we ensured a large over-

lap of classes with the Mapillary Vistas dataset [39] and

Cityscapes dataset [10] and made modifications where nec-

road sidewalk car

buildingterrainvegetation

other-object

trunk

other-structure

parking pole

Figure 2: Single scan (top) and multiple superimposed

scans with labels (bottom). Also shown is a moving car

in the center of the image resulting in a trace of points.

essary to account for the sparsity and vertical field-of-view.

More specifically, we do not distinguish between persons

riding a vehicle and the vehicle, but label the vehicle and

the person as either bicyclist or motorcyclist.

We furthermore distinguished between moving and non-

moving vehicles and humans, i.e., vehicles or humans gets

the corresponding moving class if they moved in some scan

while observing them, as shown in the lower part of Fig-

ure 2. All annotated classes are listed in Figure 3 and a more

detailed discussion and definition of the different classes

can be found in the supplementary material. In summary,

we have 28 classes, where 6 classes are assigned the at-

tribute moving or non-moving, and one outlier class is in-

cluded for erroneous laser measurements caused by reflec-

tions or other effects.

The dataset is publicly available through a benchmark

website and we provide only the training set with ground

truth labels and perform the test set evaluation online. We

furthermore will also limit the number of possible test set

evaluations to prevent overfitting to the test set [55].

3.1. Labeling Process

To make the labeling of point cloud sequences practi-

cal, we superimpose multiple scans above each other, which

conversely allows us to label multiple scans consistently. To

this end, we first register and loop close the sequences using

an off-the-shelf laser-based SLAM system [5]. This step

is needed as the provided information of the inertial nav-

igation system (INS) often results in map inconsistencies,

i.e., streets that are revisited after some time have differ-

9299



ground structure vehicle nature human object
105

106

107

108

109

nu
m

be
r o

f p
oi

nt
s

ro
ad

sid
ew

al
k

pa
rk

in
g

ot
he

r-g
ro

un
d

bu
ild

in
g

ot
he

r-s
tru

ct
ur

e 
1

ca
r

tru
ck

bi
cy

cle

m
ot

or
cy

cle

ot
he

r-v
eh

icl
e

ve
ge

ta
tio

n

tru
nk

te
rra

in

pe
rs

on

bi
cy

cli
st

m
ot

or
cy

cli
st

fe
nc

e

po
le

tra
ffi

c 
sig

n

ot
he

r-o
bj

ec
t 1

ou
tli

er
 1

1 ignored for evaluation

Figure 3: Label distribution. The number of labeled points per class and the root categories for the classes are shown. For

movable classes, we also show the number of points on non-moving (solid bars) and moving objects (hatched bars).

ent height. For three sequences, we had to manually add

loop closure constraints to get correctly loop closed trajec-

tories, since this is essential to get consistent point clouds

for annotation. The loop closed poses allow us to load all

overlapping point clouds for specific locations and visualize

them together, as depicted in Figure 2.

We subdivide the sequence of point clouds into tiles of

100m by 100m. For each tile, we only load scans overlap-

ping with the tile. This enables us to label all scans con-

sistently even when we encounter temporally distant loop

closures. To ensure consistency for scans overlapping with

more than one tile, we show all points inside each tile and a

small boundary overlapping with neighboring tiles. Thus, it

is possible to continue labels from a neighboring tile.

Following best practices, we compiled a labeling instruc-

tion and provided instructional videos on how to label cer-

tain objects, such as cars and bicycles standing near a wall.

Compared to image-based annotation, the annotation pro-

cess with point clouds is more complex, since the annotator

often needs to change the viewpoint. An annotator needs on

average 4.5 hours per tile, when labeling residential areas

corresponding to the most complex encountered scenery,

and needs on average 1.5 hours for labeling a highway tile.

We explicitly did not use bounding boxes or other avail-

able annotations for the KITTI dataset, since we want to en-

sure that the labeling is consistent and the point-wise labels

should only contain the object itself.

We provided regular feedback to the annotators to im-

prove the quality and accuracy of labels. Nevertheless, a

single annotator also verified the labels in a second pass,

i.e., corrected inconsistencies and added missing labels. In

summary, the whole dataset comprises 518 tiles and over

1 400 hours of labeling effort have been invested with addi-

tional 10 − 60 minutes verification and correction per tile,

resulting in a total of over 1 700 hours.

3.2. Dataset Statistics

Figure 3 shows the distribution of the different classes,

where we also included the root categories as labels on the

x-axis. The ground classes, road, sidewalk, building, vege-

tation, and terrain are the most frequent classes. The class

motorcyclist only occurs rarely, but still more than 100 000

points are annotated.

The unbalanced count of classes is common for datasets

captured in natural environments and some classes will be

always under-represented, since they do not occur that of-

ten. Thus, an unbalanced class distribution is part of the

problem that an approach has to master. Overall, the distri-

bution and relative differences between the classes is quite

similar in other datasets, e.g. Cityscapes [10].

4. Evaluation of Semantic Segmentation

In this section, we provide the evaluation of several state-

of-the-art methods for semantic segmentation of a single

scan. We also provide experiments exploiting information

provided by sequences of multiple scans.

4.1. Single Scan Experiments

Task and Metrics. In semantic segmentation of point

clouds, we want to infer the label of each three-dimensional

point. Therefore, the input to all evaluated methods is a list

of coordinates of the three-dimensional points along with

their remission, i.e., the strength of the reflected laser beam

which depends on the properties of the surface that was hit.

Each method should then output a label for each point of a

scan, i.e., one full turn of the rotating LiDAR sensor.

To assess the labeling performance, we rely on the com-

monly applied mean Jaccard Index or mean intersection-

over-union (mIoU) metric [15] over all classes, given by

1

C

C∑

c=1

TPc

TPc + FPc + FNc

, (1)

where TPc, FPc, and FNc correspond to the number of true

positive, false positive, and false negative predictions for

class c, and C is the number of classes.

As the classes other-structure and other-object have ei-

ther only a few points and are otherwise too diverse with a

high intra-class variation, we decided to not include these

classes in the evaluation. Thus, we use 25 instead of 28

classes, ignoring outlier, other-structure, and other-object

during training and inference.
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Furthermore, we cannot expect to distinguish moving

from non-moving objects with a single scan, since this Velo-

dyne LiDAR cannot measure velocities like radars exploit-

ing the Doppler effect. We therefore combine the moving

classes with the corresponding non-moving class resulting

in a total number of 19 classes for training and evaluation.

State of the Art. Semantic segmentation or point-wise

classification of point clouds is a long-standing topic [2],

which was traditionally solved using a feature extractor,

such as Spin Images [29], in combination with a traditional

classifier, like support vector machines [1] or even semantic

hashing [4]. Many approaches used Conditional Random

Fields (CRF) to enforce label consistency of neighboring

points [56, 37, 36, 38, 62].

With the advent of deep learning approaches in image-

based classification, the whole pipeline of feature extrac-

tion and classification has been replaced by end-to-end deep

neural networks. Voxel-based methods transforming the

point cloud into a voxel-grid and then applying convolu-

tional neural networks (CNN) with 3D convolutions for ob-

ject classification [34] and semantic segmentation [26] were

among the first investigated models, since they allowed to

exploit architectures and insights known for images.

To overcome the limitations of the voxel-based represen-

tation, such as the exploding memory consumption when

the resolution of the voxel grid increases, more recent ap-

proaches either upsample voxel-predictions [53] using a

CRF or use different representations, like more efficient

spatial subdivisions [30, 44, 63, 59, 21], rendered 2D im-

age views [7], graphs [31, 54], splats [51], or even directly

the points [41, 40, 25, 22, 43, 28, 14].

Baseline approaches. We provide the results of six state-

of-the-art architectures for the semantic segmentation of

point clouds in our dataset: PointNet [40], PointNet++ [41],

Tangent Convolutions [52], SPLATNet [51], Superpoint

Graph [31], and SqueezeSeg (V1 and V2) [60, 61]. Further-

more, we investigate two extensions of SqueezeSeg: Dark-

Net21Seg and DarkNet53Seg.

PointNet [40] and PointNet++ [41] use the raw un-

ordered point cloud data as input. Core of these approaches

is max pooling to get an order-invariant operator that works

surprisingly well for semantic segmentation of shapes and

several other benchmarks. Due to this nature, however,

PointNet fails to capture the spatial relationships between

the features. To alleviate this, PointNet++ [41] applies indi-

vidual PointNets to local neighborhoods and uses a hierar-

chical approach to combine their outputs. This enables it to

build complex hierarchical features that capture both local

fine-grained and global contextual information.

Tangent Convolutions [52] also handles unstructured

point clouds by applying convolutional neural networks di-

rectly on surfaces. This is achieved by assuming that the

data is sampled from smooth surfaces and defining a tan-

gent convolution as a convolution applied to the projection

of the local surface at each point into the tangent plane.

SPLATNet [51] takes an approach that is similar to the

aforementioned voxelization methods and represents the

point clouds in a high-dimensional sparse lattice. As with

voxel-based methods, this scales poorly both in compu-

tation and in memory cost and therefore they exploit the

sparsity of this representation by using bilateral convolu-

tions [27], which only operates on occupied lattice parts.

Similarly to PointNet, Superpoint Graph [31], captures

the local relationships by summarizing geometrically ho-

mogeneous groups of points into superpoints, which are

later embedded by local PointNets. The result is a super-

point graph representation that is more compact and rich

than the original point cloud exploiting contextual relation-

ships between the superpoints.

SqueezeSeg [60, 61] also discretizes the point cloud in

a way that makes it possible to apply 2D convolutions to

the point cloud data exploiting the sensor geometry of a ro-

tating LiDAR. In the case of a rotating LiDAR, all points

of a single turn can be projected to an image by using a

spherical projection. A fully convolutional neural network

is applied and then finally filtered with a CRF to smooth

the results. Due to the promising results of SqueezeSeg and

the fast training, we investigated how the labeling perfor-

mance is affected by the number of model parameters. To

this end, we used a different backbone based on the Dark-

net architecture [42] with 21 and 53 layers, and 25 and 50

million parameters respectively. We furthermore eliminated

the vertical downsampling used in the architecture.

We modified the available implementations such that the

methods could be trained and evaluated on our large-scale

dataset. Note that most of these approaches have so far only

been evaluated on shape [8] or RGB-D indoor datasets [48].

However, some of the approaches [40, 41] were only possi-

ble to run with considerable downsampling to 50 000 points

due to memory limitations.

Results and Discussion. Table 2 shows the results of our

baseline experiments for various approaches using either di-

rectly the point cloud information [40, 41, 51, 52, 31] or a

projection of the point cloud [60]. The results show that the

current state of the art for point cloud semantic segmenta-

tion falls short for the size and complexity of our dataset.

We believe that this is mainly caused by the limited ca-

pacity of the used architectures (see Table 3), because the

number of parameters of these approaches is much lower

than the number of parameters used in leading image-based

semantic segmentation networks. As mentioned above, we

added DarkNet21Seg and DarkNet53Seg to test this hy-

pothesis and the results show that this simple modifica-

tion improves the accuracy from 29.5% for SqueezeSeg to

47.4% for DarkNet21Seg and to 49.9% for DarkNet53Seg.
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PointNet [40] 14.6 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7

SPGraph [31] 17.4 45.0 28.5 0.6 0.6 64.3 49.3 0.1 0.2 0.2 0.8 48.9 27.2 24.6 0.3 2.7 0.1 20.8 15.9 0.8

SPLATNet [51] 18.4 64.6 39.1 0.4 0.0 58.3 58.2 0.0 0.0 0.0 0.0 71.1 9.9 19.3 0.0 0.0 0.0 23.1 5.6 0.0

PointNet++ [41] 20.1 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9

SqueezeSeg [60] 29.5 85.4 54.3 26.9 4.5 57.4 68.8 3.3 16.0 4.1 3.6 60.0 24.3 53.7 12.9 13.1 0.9 29.0 17.5 24.5

SqueezeSegV2 [61] 39.7 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 36.3

TangentConv [52] 40.9 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5

DarkNet21Seg 47.4 91.4 74.0 57.0 26.4 81.9 85.4 18.6 26.2 26.5 15.6 77.6 48.4 63.6 31.8 33.6 4.0 52.3 36.0 50.0

DarkNet53Seg 49.9 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6 78.3 50.1 64.0 36.2 33.6 4.7 55.0 38.9 52.2

Table 2: Single scan results (19 classes) for all baselines on sequences 11 to 21 (test set). All methods were trained on

sequences 00 to 10, except for sequence 08 which is used as validation set.
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DarkNet53Seg

Figure 4: IoU vs. distance to the sensor.

Another reason is that the point clouds generated by Li-

DAR are relatively sparse, especially as the distance to the

sensor increases. This is partially solved in SqueezeSeg,

which exploits the way the rotating scanner captures the

data to generate a dense range image, where each pixel cor-

responds roughly to a point in the scan.

These effects are further analyzed in Figure 4, where the

mIoU is plotted w.r.t. the distance to the sensor. It shows

that results of all approaches get worse with increasing dis-

tance. This further confirms our hypothesis that the spar-

sity is the main reason for worse results at large distances.

However, the results also show that some methods, like SP-

Graph, are less affected by the distance-dependent sparsity

and this might be a promising direction for future research

to combine the strength of both paradigms.

Especially classes with few examples, like motorcyclists

and trucks, seem to be more difficult for all approaches. But

also classes with only a small number of points in a single

point cloud, like bicycles and poles, are hard classes.

Finally, the best performing approach (DarkNet53Seg)

with 49.9% mIoU is still far from achieving results that

are on par with image-based approaches, e.g., 80% on the

Cityscapes benchmark [10].

Approach num. parameters train time inference time

(million)
(

GPU hours
epoch

) (

seconds
point cloud

)

PointNet 3 4 0.5

PointNet++ 6 16 5.9

SPGraph 0.25 6 5.2

TangentConv 0.4 6 3.0

SPLATNet 0.8 8 1.0

SqueezeSeg 1 0.5 0.015

SqueezeSegV2 1 0.6 0.02

DarkNet21Seg 25 2 0.055

DarkNet53Seg 50 3 0.1

Table 3: Approach statistics.

4.2. Multiple Scan Experiments

Task and Metrics. In this task, we allow methods to ex-

ploit information from a sequence of multiple past scans

to improve the segmentation of the current scan. We fur-

thermore want the methods to distinguish moving and non-

moving classes, i.e., all 25 classes must be predicted, since

this information should be visible in the temporal informa-

tion of multiple past scans. The evaluation metric for this

task is still the same as in the single scan case, i.e., we eval-

uate the mean IoU of the current scan no matter how many

past scans were used to compute the results.

Baselines. We exploit the sequential information by com-

bining 5 scans into a single, large point cloud, i.e., the cur-

rent scan at timestamp t and the 4 scans before at times-

tamps t− 1, . . . , t− 4. We evaluate DarkNet53Seg and

TangentConv, since these approaches can deal with a larger

number of points without downsampling of the point clouds

and could still be trained in a reasonable amount of time.

Results and Discussion. Table 4 shows the per-class re-

sults for the movable classes and the mean IoU (mIoU) over

all classes. For each method, we show in the upper part of

the row the IoU for non-moving (unshaded) and in the lower

part of the row the IoU for moving objects (shaded). The
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TangentConv [52]
84.9 21.1 18.5 1.6 0.0 0.0

34.1
40.3 42.2 30.1 6.4 1.1 1.9

DarkNet53Seg
84.1 20.0 20.7 7.5 0.0 0.0

41.6
61.5 37.8 28.9 15.2 14.1 0.2

Table 4: IoU results using a sequence of multiple past scans

(in %). Shaded cells correspond to the IoU of the moving

classes, while unshaded entries are the non-moving classes.

performance of the remaining static classes is similar to the

single scan results and we refer to the supplement for a table

containing all classes.

The general trend that the projective methods perform

better than the point-based methods is still apparent, which

can be also attributed to the larger amount of parameters

as in the single scan case. Both approaches show difficul-

ties in separating moving and non-moving objects, which

might be caused by our design decision to aggregate multi-

ple scans into a single large point cloud. The results show

that especially bicyclist and motorcyclist never get correctly

assigned the non-moving class, which is most likely a con-

sequence from the generally sparser object point clouds.

We expect that new approaches could explicitly exploit

the sequential information by using multiple input streams

to the architecture or even recurrent neural networks to ac-

count for the temporal information, which again might open

a new line of research.

5. Evaluation of Semantic Scene Completion

After leveraging a sequence of past scans for seman-

tic point cloud segmentation, we now show a scenario that

makes use of future scans. Due to its sequential nature, our

dataset provides the unique opportunity to be extended for

the task of 3D semantic scene completion. Note that this is

the first real world outdoor benchmark for this task. Exist-

ing point cloud datasets cannot be used to address this task,

as they do not allow for aggregating labeled point clouds

that are sufficiently dense in both space and time.

In semantic scene completion, one fundamental prob-

lem is to obtain ground truth labels for real world datasets.

In case of NYUv2 [48], CAD models were fit into the

scene [45] using an RGB-D image captured by a Kinect

sensor. New approaches often resort to prove their effective-

ness on the larger, but synthetic SUNCG dataset [49]. How-

ever, a dataset combining the scale of a synthetic dataset and

usage of real-world data is still missing.

In the case of our proposed dataset, the car carrying the

LiDAR moves past 3D objects in the scene and thereby

records their backsides, which are hidden in the initial

scan due to self-occlusion. This is exactly the information

needed for semantic scene completion as it contains the full

3D geometry of all objects while their semantics are pro-

vided by our dense annotations.

Dataset Generation. By superimposing an exhaustive

number of future laser scans in a predefined region in front

of the car, we can generate pairs of inputs and targets that

correspond to the task of semantic scene completion. As

proposed by Song et al. [49], our dataset for the scene com-

pletion task is a voxelized representation of the 3D scene.

We select a volume of 51.2m ahead of the car, 25.6m

to every side and 6.4m in height with a voxel resolution of

0.2m, which results in a volume of 256×256×32 voxels to

predict. We assign a single label to every voxel based on the

majority vote over all labeled points inside a voxel. Voxels

that do not contain any points are labeled as empty.

To compute which voxels belong to the occluded space,

we check for every pose of the car which voxels are visi-

ble to the sensor by tracing a ray. Some of the voxels, e.g.

those inside objects or behind walls are never visible, so we

ignore them during training and evaluation.

Overall, we extracted 19 130 pairs of input and target

voxel grids for training, 815 for validation and 3 992 for

testing. For the test set, we only provide the unlabeled in-

put voxel grid and withhold the target voxel grids. Figure 5

shows an example of an input and target pair.

Task and Metrics. In semantic scene completion, we are

interested in predicting the complete scene inside a certain

volume from a single initial scan. More specifically, we use

as input a voxel grid, where each voxel is marked as empty

or occupied, depending on whether or not it contains a laser

measurement. For semantic scene completion, one needs to

predict whether a voxel is occupied and its semantic label

in the completed scene.

For evaluation, we follow the evaluation protocol of

Song et al. [49] and compute the IoU for the task of scene

completion, which only classifies a voxel as being occu-

pied or empty, i.e., ignoring the semantic label, as well as

mIoU (1) for the task of semantic scene completion over the

same 19 classes that were used for the single scan semantic

segmentation task (see Section 4).

State of the Art. Early approaches addressed the task of

scene completion either without predicting semantics [16],

thereby not providing a holistic understanding of the scene,

or by trying to fit a fixed number of mesh models to the

scene geometry [20], which limits the expressiveness of the

approach.

Song et al. [49] were the first to address the task of se-

mantic scene completion in an end-to-end fashion. Their

work spawned a lot of interest in the field yielding mod-

els that combine the usage of color and depth informa-
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Figure 5: Left: Visualization of the incomplete input for the semantic scene completion benchmark. Note that we show the

labels only for better visualization, but the real input is a single raw voxel grid without any labels. Right: Corresponding

target output representing the completed and fully labeled 3D scene.

tion [33, 18] or address the problem of sparse 3D fea-

ture maps by introducing submanifold convolutions [64] or

increase the output resolution by deploying a multi-stage

coarse to fine training scheme [12]. Other works exper-

imented with new encoder-decoder CNN architectures as

well as improving the loss term by adding adversarial loss

components [58].

Baseline Approaches. We report the results of four se-

mantic scene completion approaches. In the first approach,

we apply SSCNet [49] without the flipped TSDF as input

feature. This has minimal impact on the performance, but

significantly speeds up the training time due to faster pre-

processing [18]. Then we use the Two Stream (TS3D) ap-

proach [18], which makes use of the additional information

from the RGB image corresponding to the input laser scan.

Therefore the RGB image is first processed by a 2D seman-

tic segmentation network, using the approach DeepLab v2

(ResNet-101) [9] trained on Cityscapes to generate a se-

mantic segmentation. The depth information from the sin-

gle laser scan and the labels inferred from the RGB image

are combined in an early fusion. Furthermore, we modify

the TS3D approach in two steps: First, by directly using

labels from the best LiDAR-based semantic segmentation

approach (DarkNet53Seg) and secondly, by exchanging the

3D-CNN backbone by SATNet [33].

Results and Discussion. Table 5 shows the results of each

of the baselines, whereas results for individual classes are

reported in the supplement. The TS3D network, incorpo-

rating 2D semantic segmentation of the RGB image, per-

forms similar to SSCNet which only uses depth informa-

tion. However, the usage of the best semantic segmen-

tation directly working on the point cloud slightly out-

performs SSCNet on semantic scene completion (TS3D +

DarkNet53Seg). Note that the first three approaches are

based on SSCNet’s 3D-CNN architecture, which performs

a 4 fold downsampling in a forward pass and thus renders

them incapable of dealing with details of the scene. In

our final approach, we exchange the SSCNet-backbone of

TS3D + DarkNet53Seg with SATNet [33], which is capa-

ble of dealing with the desired output resolution. Due to

Completion Semantic Scene

(IoU) Completion (mIoU)

SSCNet [49] 29.83 9.53

TS3D [18] 29.81 9.54

TS3D [18] + DarkNet53Seg 24.99 10.19

TS3D [18] + DarkNet53Seg + SATNet 50.60 17.70

Table 5: Semantic scene completion baselines.

memory limitations, we use random cropping during train-

ing. During inference, we divide each volume into six equal

parts, perform scene completion on them individually and

subsequently fuse them. This approach performs much bet-

ter than the SSCNet based approaches.

Apart from dealing with the target resolution, a challenge

for current models is the sparsity of the laser input signal in

the far field as can be seen from Figure 5. To obtain a higher

resolution input signal in the far field, approaches would

have to exploit more efficiently information from high res-

olution RGB images provided along with each laser scan.

6. Conclusion and Outlook

In this work, we have presented a large-scale dataset

showing unprecedented scale in point-wise annotation of

point cloud sequences. We provide a range of different

baseline experiments for three tasks: (i) semantic segmen-

tation using a single scan, (ii) semantic segmentation using

multiple scans, and (iii) semantic scene completion.

In future work, we plan to provide also instance-level

annotation over the whole sequence, i.e., we want to distin-

guish different objects in a scan, but also identify the same

object over time. This will enable to investigate temporal

instance segmentation over sequences. However, we also

see potential for other new tasks based on our labeling ef-

fort, such as the evaluation of semantic SLAM.
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