
Semantics and Verification

of UML Activity Diagrams

for Workflow Modelling

Promotiecommissie:
Prof. dr. R. J. Wieringa (promotor)
Prof. dr. W. M. P. van der Aalst, Technische Universiteit Eindhoven
Prof. dr. G. Engels, Universität Paderborn
Prof. dr. H. Brinksma
Dr. M. M. Fokkinga (referent)
Dr. ir. P. W. P. J. Grefen
Prof. dr. W. H. M. Zijm (voorzitter)

The research reported in this thesis has been financially sup-
ported by the Netherlands Organisation for Scientific Re-
search (NWO), within the scope of project nr. 612-62-02,
Deontic Activity and Enterprise Modeling with an Object-
oriented Notation (DAEMON).

SIKS Dissertation Series No. 2002-15
The research reported in this thesis has been carried out under
the auspices of SIKS, the Dutch Research School for Informa-
tion and Knowledge Systems.

CTIT Ph.D.-thesis Series No. 02-44
Centre for Telematics and Information Technology (CTIT)
University of Twente
P.O. Box 217, 7500 AE Enschede
The Netherlands

Copyright c© 2002 Rik Eshuis, Wierden, The Netherlands.

ISBN: 90-365-1820-2
ISSN: 1381-3617; no. 02-44 (CTIT Ph.D.-thesis series)

SEMANTICS AND VERIFICATION

OF UML ACTIVITY DIAGRAMS

FOR WORKFLOW MODELLING

PROEFSCHRIFT

ter verkrijging van

de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,

prof. dr. F.A. van Vught,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op vrijdag 25 oktober 2002 te 15.00 uur.

door

Hendrik Eshuis

geboren op 17 september 1975

te Almelo

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. R. J. Wieringa

Acknowledgements

Although I wrote this thesis, I couldn’t have done it without the help of several
people. First of all, I thank my promotor Roel Wieringa, who managed to find time
to read my obscure manuscripts, and more importantly provided useful feedback
to improve them. Roel gave me the freedom to pursue my own research interests
and helped me to phrase the results in an understandable way.

I thank the other members of my promotion committee, Wil van der Aalst,
Gregor Engels, Ed Brinksma, Maarten Fokkinga, and Paul Grefen, for their useful
comments on a previous version of this thesis.

Besides Roel, several other people influenced the contents of this thesis. Paul
Grefen and Wijnand Derks were always willing to have a good discussion on work-
flow modelling. Wil van der Aalst and Jörg Desel provided helpful criticism on a
paper that forms the basis of Chapter 8. Working with Juliane Dehnert confronted
me with a Petri net view on workflow modelling, which has been very illuminating
for me. Mathematicians Maarten Fokkinga and David Jansen managed to increase
the precision of my statements.

In 2001, I attended the FASE conference, part of ETAPS, to present a paper
on the requirements-level semantics. In a keynote talk at this conference, Bran
Selic rejected what he called ‘platonic abstractions’ like the perfect synchrony
hypothesis, because they are, in his opinion, unrealistic and unimplementable.
Even though I disagree with him, his talk triggered me to define a low-level
implementation-level semantics that does not satisfy perfect synchrony, and to
prove that the two semantics have similar behaviour.

Room mates David Jansen and Wijnand Derks, as well as the rest of the IS
and DB group, provided a pleasant atmosphere to work in. Secretaries Sandra
Westhoff, Suse Engbers and Els Bosch managed my travels by plane and train.
Maarten Fokkinga and Rick van Rein guided the research I did for my Master’s
thesis in such a stimulating way that it made me think of doing a PhD.

Last but not least, I’d like to thank my friends and family. Omdat dit de
afsluiting van mijn onderwijscarrière is, wil ik graag twee personen in het bijzonder
bedanken: mijn vader en moeder hebben me door de jaren heen altijd gesteund in
alles wat ik deed: Pa en ma, bedankt!

Rik Eshuis, October 2002

vi

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem statement . 7

1.3 Problem solving approach . 8

1.4 Outline . 9

2 Workflow concepts 11

2.1 Workflows . 11

2.2 Workflow management . 13

2.3 Architecture of workflow systems 16

2.4 Reactive systems . 17

2.5 Interpreting workflow specifications 20

3 Syntax of activity diagrams 23

3.1 Syntactic constructs . 23

3.2 Activity hypergraphs . 31

3.3 From activity diagram to activity hypergraph 35

3.4 Specifying activities . 38

4 Design choices in semantics of activity diagrams 41

4.1 Mathematical structure . 41

4.2 Petri net token-game semantics versus statechart semantics 43

4.3 Issues in reactive semantics . 45

4.4 Two reactive semantics . 48

5 Two formal semantics of activity diagrams 55

5.1 Clocked Transition System . 55

5.2 Step semantics . 57

5.3 Requirements-level semantics . 61

5.4 Implementation-level semantics . 67

Appendix: Token-game semantics . 75

viii Contents

6 Relation between the two formal semantics 77

6.1 Differences between the two semantics 78

6.2 Similarities between the two semantics 92

6.3 Conclusion . 103

7 Advanced activity diagram constructs 105

7.1 Dynamic concurrency . 105

7.2 Object nodes and object flows . 108

7.3 Deferred events . 116

7.4 Interrupt regions . 116

8 Comparison with Petri nets 119

8.1 Modelling events . 120

8.2 Modelling steps . 124

8.3 Modelling data . 129

8.4 Modelling activities . 131

8.5 Modelling the implementation-level semantics 133

8.6 Petri nets for workflow modelling 133

8.7 What is a Petri net? . 134

8.8 Discussion and conclusion . 136

9 Related work 139

9.1 Statecharts . 139

9.2 OMG semantics of UML activity diagrams 144

9.3 Other work on UML activity diagrams 147

9.4 The state of the practice . 149

9.5 Other workflow modelling languages 149

9.6 Active databases . 150

9.7 Transactional workflows . 151

9.8 Conclusion . 151

10 Verification of functional requirements 153

10.1 Temporal logic . 155

10.2 From infinite to finite state space 160

10.3 Strong fairness . 163

10.4 Implementation . 166

10.5 Example verifications . 169

10.6 State explosion . 173

10.7 Related work . 180

10.8 Conclusion and future work . 183

Contents ix

11 Case studies 185

11.1 Seizure of goods under criminal law 185
11.2 Order procedure within IT department 194
11.3 Lessons learned . 198
11.4 Conclusion and future work . 199

12 Conclusion and future work 201

12.1 Conclusion . 201
12.2 Summary of main contributions . 202
12.3 Future work . 204

A Notational conventions 205

Bibliography 207

Index 220

Abstract 223

Samenvatting 225

x Contents

Chapter 1

Introduction

In this thesis, we show how model checking can be used to verify functional re-
quirements on workflow specifications. To specify workflows, we use UML activity
diagrams. Since UML activity diagrams lack a formal semantics, we define a formal
semantics for activity diagrams that is suitable for workflow modelling.

To define the problem more precisely, in Section 1.1 we introduce some termi-
nology. Then, in Section 1.2, we define the problem. In Section 1.3, we explain
the problem-solving approach. Section 1.4 gives an outline of the remainder of
this thesis.

1.1 Background

A workflow is an operational business process. Workflow management is con-
cerned with the control and coordination of workflows. Several computer-based
systems have been developed that implement workflow management, either as a
dedicated system or as part (component) of a larger system, for example as part
of an Enterprise Resource Planning system. We call such systems workflow man-
agement systems1 (WFMSs). Workflow management systems, once used, are vital
for an organisation, since the processes that they support are usually primary and
secondary processes. Malfunctioning of WFMSs hampers the functioning of or-
ganisations, and may lead to a decline in the quality of products and services that
the organisation delivers to society. In recent years, there has been a trend to
use WFMSs to integrate distributed systems which may be cross-organisational.
In this case malfunctioning of one WFMS can affect more than one organisation,
making the correct functioning of a WFMS even more critical than before.

An important function of WFMSs is to enforce certain ordering rules between

1In this thesis, we use the term ‘workflow management system’ to denote every computer
system or part of a computer system that implements workflow management functionality, even
though in literature the term is reserved for a dedicated computer system.

2 Chapter 1 · Introduction

business activities. For instance, in a workflow that handles insurance claims, an
example ordering rule could be that after a claim is registered, it is checked. Apart
from ordering rules, a WFMS enforces other rules, for example allocation rules,
which state to which actor in the organisation a WFMS may allocate an activity.
In this thesis, however, we only consider ordering rules.

Rules that a WFMS must enforce, like ordering and allocation rules, are spec-
ified in a workflow specification. A workflow specification (synonyms: workflow
design, workflow schema) defines a workflow that behaves according to the rules
defined in its workflow specification.

Running example. Throughout this thesis we use the workflow of a small
production company as running example (adapted from an example pro-
vided by the Workflow Management Coalition [161]). The workflow begins
when the company receives an order. Next, the departments Production

and Finance are put to work. After the order has been received, Finance

checks whether the customer’s account limit is not exceeded by accepting
the order. If Finance rejects the order, the whole workflow stops. Otherwise,
Finance sends a bill to the customer and waits until the customer pays. If
the customer does not pay within two weeks, Finance sends a reminder to
the customer. If the payment arrives, Finance handles the payment. If the
payment is ok, Finance has finished. Otherwise, the customer is notified and
another bill is sent to the customer, and the subprocess described before is
repeated. After the order has been received, Production checks whether the
desired product is still in stock. If not, a production plan is made to produce
the product. If according to Finance the order can be accepted, the product
is either produced according to the made production plan, or taken from
stock. If both Production and Finance have finished, the product is shipped
to the customer and the workflow stops.

Like any design, a workflow specification needs to be communicated to differ-
ent groups of people, like end users, managers, and technical staff. Hence, it is
desirable that workflow specifications are written in a language that is known to
all these groups. One way to achieve this is to use a standard language. More-
over, it is desirable that the workflow language is graphical. Experience shows
that graphical languages are easier to understand by most people than textual
ones (consider for example the large amount of graphical languages for specifying
systems in engineering sciences [69] and computer science [157]).

Currently, no such graphical standard language for workflow modelling ex-
ists. The Workflow Management Coalition, an industrial standardisation body
for Workflow Management, has proposed a textual standard language [160], but
the purpose of that language is to facilitate the interchange of workflow specifi-
cations between software products, not between people. Consequently, models in
this language are hard to read by people.

Some people have proposed to use Petri nets as a standard language for work-
flow modelling [2, 55, 58, 132]. Petri nets are graphical. With Petri nets, business
activities and the ordering between business activities can be specified. This aspect

1.1 · Background 3

of workflows is called the control-flow dimension or process dimension of workflows
in literature [2, 118]. Petri nets offer some support for modelling resources as well
(the resource dimension of workflows), but they are not widely used for this pur-
pose.

Recently, another modelling language has been proposed for describing and
defining workflows, namely UML activity diagrams [150, 59, 71]. The Unified
Modeling Language (UML) is a de-facto industry standard consisting of several
graphical languages for representing software system designs [150]. The language
of activity diagrams is one of these graphical languages. The notation of activity
diagrams is based on Petri nets, flowcharts and statecharts. Like Petri nets, activ-
ity diagrams are useful for modelling business activities and the ordering between
business activities. Activity diagrams offer some limited support for modelling
resources, but they cannot model the resource usage of workflows very well. In
this thesis, we use UML activity diagrams to model the process dimension of
workflows. Figure 1.1 shows the activity diagram of the workflow of the running
example. Ovals represent activity states, rounded rectangles represent wait states,
and directed edges represent transitions. Further details on the notation are given

Receive

order

Check stock

Send bill

Ship order

Check

customer

Make pro−

duction plan

Produce

[else][insufficient stock]

[else]

WAIT−3
Handle

payment

receive

payment

Fill order

[customer ok]

[insufficient stock]

[else]

WAIT−2

WAIT−1

WAIT−4

WAIT−5

[payment ok]

Notify

customer

[customer ok]

[else]

[else]

Send

reminder

after(2 weeks)

Figure 1.1 Workflow of production company

4 Chapter 1 · Introduction

in Chapter 3.

Any workflow specification has to satisfy several requirements, depending upon
the workflow that is being modelled. For example, if the workflow specification is
put to use in an organisation, an example requirement could be that its workflow
instances do not deadlock. Or in the case of a workflow that handles insurance
claims, that a claim is only accepted if it has been checked twice. Such require-
ments are called functional requirements. Functional requirements specify what
should be done. They are contrasted to performance requirements, that specify
how well something should be done. An example of a performance requirement is:
“95% of all workflow instances are handled within one week”. Every performance
requirement presupposes a functional requirement, since specifying how well some-
thing should be done presupposes specifying what should be done as well. In this
thesis, we only consider functional requirements.

Functional requirements of workflows can be checked at run-time by inspect-
ing the behaviour of the WFMS, the organisation and the environment of the
organisation, such as customers. If some requirement is seen to be violated, the
corresponding workflow specification can be repaired. But not only the workflow
specification needs to be repaired, the running workflow instances of this erro-
neous specification must be repaired as well. For example, some part of a running
workflow instance may have to be redone, or perhaps the whole workflow instance
must start all over. If a workflow specification has a lot of workflow instances or if
performing a certain activity is very costly, repairing is very expensive. Moreover,
it may displease customers. It is therefore desirable to detect errors in a workflow
specification before the workflow specification is put to use.

Some errors can be found by thoroughly testing the workflow specification with
some example scenarios before using it in a WFMS. But since a workflow specifica-
tion can have infinitely many scenarios due to loops and data, not every possible
scenario can be tested. The main disadvantage of testing is that, as Dijkstra
pointed out [52], it shows the presence of errors, but not their absence. In other
words, if the workflow specification passes all tests, it is still uncertain whether
or not the workflow specification satisfies the requirement. Another disadvantage
of testing is that repairing an erroneous model can still be very costly, since some
previous design steps, like mapping a workflow specification to the input language
of the workflow management system, may have to be redone completely.

It is therefore desirable to detect errors in a workflow specification at design
time, not at run time. There are several ways to do this. The simplest way is to
visually inspect a workflow specification. Drawback of inspection, however, is that
like with testing not all errors may be spotted. Moreover, workflow specifications
can be very complex due to the presence of parallelism, event-driven behaviour,
real time, data and loops. If the workflow specification is too complex, visual
inspection may not be possible or reliable anymore. In addition, the meaning of a
workflow specification is usually ambiguous and unclear, that is, different people
may attach a different meaning to a workflow specification. Consequently, different

1.1 · Background 5

people might answer the question whether the workflow specification satisfies a
particular requirement differently.

A workflow specification can be made unambiguous and clear by attaching a
formal, mathematical semantics to the workflow specification. A formal semantics
maps a workflow specification to a mathematical structure2. This mathematical
structure we call the formal semantics of the workflow specification. Advantage
of a workflow specification with a formal semantics is that it has an unambiguous
and clear meaning, because there is only one mathematical structure that is the
meaning of the specification. Another advantage of a formal semantics is that it
provides a basis for tool support. Tools can mechanically verify requirements on
workflow specifications that are so complex that they cannot be verified manually
by a person. A formal semantics makes clear what has to be implemented in a
tool and does not leave tool implementors with any open issues in the semantics
that they have to resolve in order to implement the semantics.

But not every formal semantics is suitable for a workflow specification. The
mathematical structure represents the real-world behaviour of the workflow, so
that the mathematical structure can be used to analyse the real workflow. So, the
mathematical structure must represent the execution of the real workflow accu-
rately, otherwise the mathematical structure may satisfy a particular requirement
while the real workflow does not, or the mathematical structure may fail to satisfy
a requirement whereas the workflow does satisfy this requirement. This relation
between actual workflow execution and mathematical structure is depicted in Fig-
ure 1.2.

The main problem with UML activity diagrams is that they have no formal seman-
tics. Although the OMG has provided a semantics for UML [150], this semantics
is informal. As pointed out above, verification of functional requirements of work-
flow specifications requires a formal semantics. In addition, the OMG semantics
of UML activity diagrams is not entirely suitable for workflow modelling. In other
words, a formalisation of the OMG semantics of UML activity diagrams does not
represent workflow execution accurately. We show this in Chapter 9.

As Petri nets have a formal semantics, they do not have this problem. In fact,
some authors [73] have proposed to just use the Petri net token-game semantics for
activity diagrams, as the syntax of activity diagrams resembles the syntax of Petri
nets. The formal semantics of Petri nets has been defined, however, independently
from workflow modelling. Although there is a lot work done on applying Petri nets
to workflow modelling (see Chapter 8), we do not know of any work in literature
in which the relation between a Petri net semantics and the real-world behaviour
of workflows is sketched. It is therefore unclear whether there is a semantics of
Petri nets that resembles the real-world behaviour of workflows. It is true that

2In systems engineering [20], this mathematical structure is usually called a ‘model’. What
we call ‘workflow specification’ would be called a ‘workflow design’ in systems engineering. In
computer science, however, the term ‘model’ is used in a broader sense and includes the notion
of a semi-formal design (specification) with a formal syntax but with an informal, intuitive
semantics. To avoid confusion, we do not use the word ‘model’ in this thesis.

6 Chapter 1 · Introduction

Workflow specification

Mathematical structureActual workflow execution
is similar to

 WFMS &

actors &

environ−

ment

formal

semantics

Figure 1.2 Relation between workflow execution and formal semantics

there are some WFMSs that use the syntax of Petri nets for specifying workflows.
It is doubtful, however, whether these WFMSs attach the token-game semantics
of Petri nets to such specifications (Section 8.8). (See Chapter 8 for an extensive
comparison of our activity diagram semantics with different Petri net semantics.)

A popular approach to the verification of functional requirements of hardware and
software systems is model checking [42, 43]. Model checking is a technique for auto-
matically verifying functional requirements of behavioural models. The functional
requirements are specified in temporal logic. The checked behavioural models are
mathematical structures and should not be confused with workflow specifications.
Several tools, called model checkers, exist that implement model checking. Model
checkers verify a functional requirement by searching the complete state space of
the behavioural model. If the model checker does not find an error, the require-
ment is certain to hold. If the model checker does find an error, the model checker
returns a counterexample in the form of a sequence of states that violates the
requirement. For example, if a behavioural model fails to satisfy the functional
requirement that it does not contain a deadlock, then the model checker returns
a sequence of states that leads to the deadlock state. This feedback of the model
checker can help the modeller in finding the error and repairing it.

The most important other technique for formal verification of functional prop-
erties is theorem proving [43]. Advantage of model checking over theorem proving
is that with model checking, user requirements can be verified automatically with-
out any user interaction, whereas with theorem proving, user interaction may be
required. Also, if the functional requirement fails to hold, the model checker re-
turns a counterexample whereas theorem provers do not do this. Finally, model
checkers are faster than theorem provers [43].

Disadvantage of model checking is that the model checker can handle finite
state spaces only, whereas theorem proving can handle both finite and infinite

1.2 · Problem statement 7

state spaces. (The state space of the model must be finite, since model checking
is an exhaustive search on the state space of the model.)

But even a finite state space may be too large in practice to be verified by
a model checker. This problem is alleviated by symbolic model checkers, which
represent the state space symbolically. A symbolic representation of the state space
can be model checked more efficiently than an explicit representation. Symbolic
model checking has been successfully applied to behavioural models that have over
1020 states [28].

In this thesis, we use model checking to verify functional requirements.

1.2 Problem statement

Having sketched the background of this thesis, we now formulate the goal of this
thesis as follows.

The goal of this thesis is to define a formal semantics of activity dia-
grams that is suitable for workflow modelling. The semantics should
allow verification of functional requirements using model checking.

The goal sketched above is still rather vague. We make it more concrete by stating
two requirements that must be satisfied by the formal semantics. These require-
ments help to evaluate the developed semantics and also give guidance in finding
a suitable semantics.

The formal semantics must represent workflow behaviour accurately.

Since we use activity diagrams to model the process dimension of workflows,
we only consider the process dimension of workflow behaviour in this thesis, not
the resource dimension. By ‘accurately’, we mean that the formal semantics of an
activity diagram as workflow specification is a realistic and faithful representation
of the real-world behaviour of the corresponding workflow. From an inaccurate
semantics, no reliable analysis results can be inferred. Then analysis is useless
and ineffective. Therefore, the semantics must represent all relevant aspects of
workflow behaviour.

The formal semantics must be “easy to analyse” for a model checker.

Ideally, to allow for efficient model checking, the state space of the semantics
of an activity diagram must be as small as possible.

These two requirements on the semantics are conflicting. An accurate seman-
tics of activity diagrams for workflow modelling deals with all relevant aspects of
the execution of workflows in an organisation. It will therefore be more detailed
and more difficult to analyse than an inaccurate semantics. Whereas a simple

8 Chapter 1 · Introduction

semantics that is easy to analyse will contain less details, and will therefore be less
accurate than a more complex semantics.

We do not put the requirement that the formal semantics must be “easy to use” by
a workflow modeller. No matter how praiseworthy such a requirement is, it is hard
to validate, and requires a large empirical evaluation of the semantics, which is
beyond the scope of this thesis. Nevertheless, we think that a semantics satisfying
the two requirements listed above, especially the first one, will likely be easier to
use by workflow modellers than a semantics not satisfying these requirements.

An often heard claim is that a semantics should be “simple”. The argument is
that using a simple semantics complex constructs can be modelled in a structured
way. But a simple semantics is not by definition a good semantics, because it
can be too simple. Then the semantics is inaccurate. Or as the German architect
Tessenow once said: “The simplest is not always the best, but the best is always
simple”. We therefore do not require the formal semantics to be simple.

We will not be concerned with the question how our semantics could be im-
plemented by a state of the art WFMS. The problem with commercial state of
the art WFMSs is that the semantics they attach to an input workflow specifica-
tion is not known. Only by observing the behaviour of the WFMSs at run time,
some of the meaning becomes known, but not all of it. And the textual standard
language proposed by the Workflow Management Coalition [160] does not even
have a formal semantics. It is therefore not possible to relate any formal execution
semantics, not even the Petri net one, to the behaviour of a real-world WFMS.
Nevertheless, in Chapter 9 we briefly relate the current state of the art WFMSs
to our semantics, but not in detail.

1.3 Problem solving approach

We solve the problem in five steps.

1. We study the domain of workflow modelling in order to identify requirements
on the formal semantics of activity diagrams. The requirements are char-
acteristics of workflow executions that in our opinion should be reflected in
the formal semantics. The study is based on literature and on several case
studies that we did.

2. We define a formal semantics for activity diagrams that satisfies the require-
ments identified in the first step. We take the existing execution semantics of
statecharts and Petri nets as starting point. Petri nets are investigated be-
cause they look like activity diagrams and because they are frequently used
for formal workflow specification. Statecharts are investigated because they
too look like activity diagrams, but in addition the current UML semantics
of activity diagrams is defined in terms of statecharts. Statecharts are not
used very often for formal workflow specification.

1.4 · Outline 9

We define the semantics directly on the syntax of activity diagrams. The
alternative is to translate the syntax of activity diagrams into the syntax of
a formal language, that already has a formal semantics. This is the approach
adopted in almost every other formalisation of UML activity diagrams (see
Chapter 9). Drawback of this approach is that the design choices made in
the semantics of the formal language are made to apply to UML activity
diagram as well. Although in principle there is nothing wrong with this, it
may have several awkward consequences for workflow modelling, as we show
in Chapter 9 for several of these other formalisations.

3. In fact, we will define two semantics. The first one, called the requirements-
level semantics, is easy to analyse but somewhat abstract, whereas the sec-
ond one, called the implementation-level semantics, is difficult to analyse
but an accurate representation of the behaviour of real workflows. Both
semantics are based on existing semantics.

4. We study the relation between the two semantics in order to find out for
which activity diagrams and which requirements the requirements-level se-
mantics and implementation-level semantics give similar results. For such ac-
tivity diagrams and requirements, we can safely use the requirements-level se-
mantics and obtain verification results that also hold for the implementation-
level semantics. In addition, we gain more insight in the differences and
similarities between the two semantics.

5. We use the requirements-level semantics to verify functional requirements
of workflow specifications using model checking. Thus we can evaluate how
well that semantics can be used to verify requirements of workflow models.
We focus on functional requirements and activity diagrams that are invariant
under the requirements-level and implementation-level semantics in the sense
as described in the previous item. Thus, the obtained verification results
carry over to the implementation-level semantics, even though that semantics
is considerably more complex than the requirements-level semantics.

1.4 Outline

The remainder of this thesis is structured according to the problem solving ap-
proach outlined above.

Chapter 2 explains and analyses the domain of workflow modelling. An inter-
pretation of workflow specifications is presented. We will argue that a workflow
specification prescribes the behaviour of a WFMS, but not of the organisation in
which the WFMS is embedded.

Chapter 3 defines the syntax of activity diagrams. The underlying structure of
an activity diagrams is formally defined. The specification of activities is discussed.

10 Chapter 1 · Introduction

Chapter 4 discusses the design choices made in our semantics. The choices are
motivated by the analysis of the domain of workflow modelling that was done in
Chapter 2. Both the Petri net and statechart execution semantics are considered
as a starting point for the semantics. The statechart execution is chosen, since it
fits our purposes best. The requirements-level and implementation-level semantics
are informally introduced.

Chapter 5 formally defines the requirements-level and implementation-level
semantics. The semantics is defined in terms of transition systems.

Chapter 6 studies the similarities and differences between the requirements-
level and implementation-level semantics. A class of activity diagrams that have
similar behaviour, at a certain level of abstraction, in the requirements-level se-
mantics and implementation-level semantics, is defined.

Chapter 7 discusses possible semantics for some constructs not considered in
the previous chapters. Among others, object flows are discussed.

Chapter 8 compares the two semantics with several Petri net variants. The
comparison focuses on the modelling of several aspects of workflow modelling.

Chapter 9 compares the two semantics with other related work, including the
informal OMG semantics of UML activity diagrams and formalisations of that
semantics. Other formal workflow modelling languages are also discussed.

Chapter 10 discusses tool support that we developed for verification of func-
tional requirements on activity diagrams using model checking. The tool trans-
lates an activity diagrams into an input for a model checker according to our
requirements-level semantics. If the model checker returns a counterexample, the
tool highlights a corresponding path through the activity diagram. The tool allows
the verification of workflow specifications that have event-driven behaviour, data,
real time and loops. A class of functional requirements that are insensitive to the
requirements-level and implementation-level semantics is defined. If a functional
requirement in this class is verified against an activity diagram of the class defined
in Chapter 6, the result of the verification under the requirements-level semantics
is the same as the result under the implementation-level semantics.

Chapter 11 applies the verification approach of Chapter 10 to two real-life case
studies, that are based on workflows actually in use in organisations. Lessons
learned are discussed.

Chapter 12 contains conclusions, a summary of contributions, and gives direc-
tions for future work.

Preliminary results of the research reported in this thesis appear in the follow-
ing publications [63, 64, 65, 66, 67].

Chapter 2

Workflow concepts

In this chapter we explain and analyse the domain of workflow modelling. First we
focus on workflows in general, then we zoom in on workflow management systems,
and finally we explain how we interpret workflow specifications. In the remainder
of this thesis we use the analysis done in this chapter to define and motivate our
semantics.

Section 2.1 explains what workflows are. Section 2.2 explains how workflow
management systems coordinate workflows. Section 2.3 discusses the architecture
of workflow management systems. Section 2.4 focuses on the class of software sys-
tems that workflow management systems belong to, the class of reactive systems.
Finally, Section 2.5 discusses various possible interpretations of a workflow spec-
ification. The first three sections of this chapter are based on literature (among
others [2, 31, 76, 81, 82, 103, 118, 135, 159, 161]) and several case studies that we
did.

2.1 Workflows

The following concepts are important for workflow modelling (see Figure 2.1). A
business process is an ordered set of business activities. The goal of a business
process is to deliver a certain requested service or product. For example, if John
Smith sends an insurance claim to his insurance company, then a business process
that handles the insurance claim will be started in the insurance company.

A business activity or activity is an amount of work that is uninterruptible
and that is performed in a non-zero span of time. For example, in an insurance
company possible activities are Check credit and Handle payment . Activities are
done by actors. Actors are persons or machines. A machine can be a computer.
A person usually makes use of a computer (machine) to do his activities. If an
actor is a machine, no interaction with a person is needed to do the activity. So
then the activity is automatic.

12 Chapter 2 · Workflow concepts

Workflow

Business

process

(Business)

 Activity

Actor

Person Machine

has

Role

performed by

{disjoint,complete}

Case attribute

Work item

uses

Figure 2.1 Workflow concepts and their relation

A workflow is an operational business process. A workflow specification defines
a workflow. A workflow specification is also called workflow schema or workflow
design. The Workflow Management Coalition (WFMC) calls a workflow specifi-
cation a process definition [161]. An instance of a workflow specification is called
a case.

In a case, work items are passed and manipulated. An example of a case is the
process that handles the insurance claim of John Smith. An example of a work
item is the claim form of John Smith. More in general, in a case case attributes
are read and updated. Case attributes are work items and other relevant data of
the case. Actors update case attributes in activities. Case attributes, including
work items, are usually stored in a database system; see Sections 2.2 and 2.3.

At any moment in time, the case may be distributed over several actors. A dis-
tributed part of the case we call a thread , borrowing terminology from UML [150].
Each thread has a local state. There are two kinds of local state.

• In an activity state an actor is executing an activity in a part of the case.

• In a wait state the case is waiting for some external event or temporal event.

We allow multiple instances of states to be active at the same time. For exam-
ple, suppose that two activities A,B that are active in parallel are each followed
by the same activity C . That is, if A (B) terminates, C starts. If both A and B
terminate at the same time, the result is that two instances of C will be active at
the same time. The global state of the case is therefore a bag (synonym: multiset),
rather than a set, of local states of the distributed parts of the case.

The definition, creation, and management of cases is done by a workflow man-
agement system (WFMS), on the basis of workflow specifications. In this thesis,
any computer system that implements workflow management functionality is called

2.2 · Workflow management 13

a WFMS. In Sections 2.2 and 2.3, we explain how WFMSs control and coordinate
cases using workflow specifications.

Workflow specifications have two important dimensions: the process or control-
flow dimension and the resource dimension. The process dimension concerns the
ordering of activities in time (what activities have to be done in what order). The
resource dimension concerns the structure of the resources in the organisation
(who has to do an activity).

In the process dimension, there are several ordering constructs possible between
activities. The most obvious ones are sequence (activity A is done before activity
B), choice (either A or B is done but not both), parallel composition (A and B
are done in parallel), and iteration (A is done zero or more times, after which B is
done). Van der Aalst et al. [7] have found other ordering constructs that are also
used in existing workflow specifications.

In the resource dimension, the relevant characteristics of the actors are mod-
elled. Actors are grouped according to organisational units they belong to. Actors
are also grouped according to roles. A role is a set of characteristics of actors [161].
For people, a role can refer to skills, responsibility, or authority. For example, in
an insurance company an example role might be senior officer. For machines, a
role can refer to computing capabilities, for example a machine with the Windows
NTTMoperating system. For each activity a role is specified that states which
actors are allowed to do the activity. For example, if an insurance claim of over
� 5000 is processed, it might be specified that the activity Check payment is done
by somebody with the senior officer role. Roles link activities and actors, and thus
link the process and resource dimension.

Sometimes, the intermediate concept of a group is used. A group is a set of
actors, who all can play the same role. By allocating an activity to a group of
actors, rather than to a single actor, actors have more flexibility in selecting their
work and a more efficient division of labour can be brought about. To keep the
presentation simple, we do not consider groups in this thesis.

In this thesis, we focus on modelling the process dimension of workflows. When
we use the term workflow specification, we refer to a specification that describes the
process dimension of a workflow. In the remainder of this chapter, we sometimes
refer to the resource dimension, i.e. actors, in order to explain the concept of
workflow management more clearly.

2.2 Workflow management

Before we explain how workflow management systems (WFMSs) coordinate work-
flows, we discuss the subtle difference between a WFMS on the one hand, and a
workflow system (WFS) on the other hand. A WFMS is a general purpose ma-
chine; it needs a workflow specification to make it useful for a particular purpose.
Compare this to a computer that needs a program to compute something specific
and a database management system that needs a database schema to store some

14 Chapter 2 · Workflow concepts

Environment

Organisation

Workflow system

enable new

activity
termination

event

eventresponse

Actor Database system

control data

begin transaction

end transaction

Figure 2.2 Function of workflow system. Arrows denote communication

specific data. A WFMS that is instantiated with one or more workflow specifica-
tions is called a workflow system (WFS), just like a database management system
instantiated with one or more database schemas is called a database system. Until
now, when we used the term ‘WFMS’, we sometimes intended a WFS. From now
on, we will use the term ‘WFS’ whenever we mean a WFMS instantiated with a
workflow specification.

Cases are controlled and coordinated by workflow systems (WFSs). For each
case that a WFS controls and coordinates, the WFS ensures that the actors do
the activities of that case in the right order, by informing the right actors at the
right time that they have to do some activities. Which order is right and which
actor is right is specified in the workflow specification with which the WFS was
instantiated. Enforcement of rules in a workflow specification by a WFS is called
enactment [161].

Figure 2.2 shows how a WFS interacts with actors and a database system.
Actors, database system and WFS together are part of the organisation. The
organisation has an environment with which it interacts. The most important
entities in the environment are the customers to which the organisation delivers
its products and services.

A WFS informs actors that they may start some new activities. When an
actor completes, it notifies the WFS that it has finished its activity. An actor is
under the social obligation to only start an activity once the WFS has notified him
that he may start the activity. Moreover, an actor should finish an activity he is
working on. These may seem obvious constraints or assumptions; nevertheless we
state them here explicitly for better understanding of workflow management.

2.2 · Workflow management 15

A typical input event for a WFS is an activity termination event. If a WFS
receives an activity termination event, the WFS must decide what activities have
to be done next. In order to decide this, the WFS needs to know what activities
are currently being executed. In other words, the WFS needs to know the state
of the case. In the example workflow of the production company (Figure 1.1), the
WFS must know that it is in state Receive order when the termination event of
activity Receive order occurs, in order to make the right decision1.

In addition, the WFS needs to know what transitions are possible from the
current state to another state. The WFS makes a decision by choosing one of
the possible transitions and taking it. By taking a transition the state of the
case is changed. For example, in the workflow of the production company, there
is only one transition leaving state Receive order. Thus, if activity Receive order
terminates, the WFS can only decide to next enable activities Check stock and
Check customer and update the state of the case from Receive order to Check
stock, Check customer.

Next, the WFS needs to allocate the activities to some actors. The WFS first
looks at the role specified for each new activity and chooses an actor that belongs
to this role. It then allocates the activity to this actor, and informs the actor that
it should do the activity.

Both the possible states of a case and transitions between these states are
defined in a workflow specification. In addition, the workflow specification contains
allocation rules, specified in terms of roles and actors, but we leave them out of
the discussion as they do not belong to the process dimension. Using the workflow
specification, the WFS maintains the state of each case. If an event occurs, the
WFS routes the case: it changes the state of the case, i.e., it takes a transition, and
informs the relevant actors what activities have to be done next. Typical input
events are activity termination events, but other events (e.g. external, temporal)
are also possible (see Section 2.4). We come back to the issue of state and transition
in Section 2.4

Every case has some data associated with it, for example the name and address
of the applicant of an insurance claim. The data is used and changed by actors in
activities, and maintained by a database system. A database system ensures that
all data it maintains is consistent and stays consistent [56, 152]. For example, if
the name of a client is changed, the database system removes the previous name,
in order to ensure that each client in the database system only has one name.
Moreover, a database system ensures that the data is maintained in a reliable way.
Reliability means that if the database system fails or goes down, the data can be
recovered.

The unit of consistent and reliable database access is called a transaction [56,
152]. An (ACID) transaction [56, 152] is a sequence of update (change) and read
(use) operations on a database that must be executed atomically and in isolation

1Throughout this thesis, names of activities are written in italic whereas names of nodes and
states are written in sans serif.

16 Chapter 2 · Workflow concepts

from each other. Execution of an activity corresponds to a transaction: During
execution of an activity, the database is accessed by the actor, in order to read
or update some data. There are many possible links between an activity and
a transaction [79]. One transaction can correspond to one or more activities or
even the whole workflow. In this thesis, we make the choice that every activity
corresponds to a unique ACID transaction. The ACID transaction is started by
the WFS when the activity starts executing; the ACID transaction is ended by the
WFS when the activity has terminated. More advanced transaction concepts with
relaxed atomicity and isolation, are also possible for workflows, see for example
Grefen et al. [83], but we do not consider those here.

Two important properties of transactions are atomicity and isolation. Atom-
icity means that a transaction is not done partially: either it completes or is
undone. Isolation means that two parallel transactions do not interfere with each
other: intermediate results of each transaction are hidden from other transac-
tions. An example of interference is when two parallel transactions both update
the same address. The WFS can prevent interference by forbidding two interfering
transactions, i.e., their corresponding activities, to be active at the same time.

Unlike actors, the WFS does not update data, since it does not do activities,
but coordinates them. Sometimes, however, the WFS uses (reads) data variables
to decide which activity should be started next. These variables are stored in the
database system. For example, if Check stock terminates, the WFS uses boolean
insufficient stock in order to decide whether or not Make production plan needs to
be done. Such data is called control data [102]. All data other than control data
is called production data [102]. A typical example of production data are work
items. As production data is not used by a WFS, we do not consider it here. So
case attributes represent control data.

The whole organisation is an open system that interacts with its environment.
Therefore, the environment can interact with each of the parts of the organisation,
as shown in Figure 2.3. For example, a customer of the production company can
interact with the company, with employees of the company (the actors), with a
database system, and even with the WFS, for example to retrieve the current state
of his order.

2.3 Architecture of workflow systems

Figure 2.3 shows the architecture of an abstract workflow system; it decomposes
the workflow system in Figure 2.2. The architecture is based upon several existing
architectures of WFSs [31, 81, 118, 159]. Note that the architecture focuses on the
process dimension of workflows; the resource dimension is left out. In this thesis
we assume that the WFS controls a single case. A generalisation to a WFS that
controls multiple cases is straightforward under the assumption that cases do not
interact with each other. The main components of the WFS are the queue and the
router. The environment interacts with the WFS by putting events in the queue.

2.4 · Reactive systems 17

Router

Queue
event

Workflow System

Clock
time timeClock Managerevent

event

begin transaction

end transaction

enable new activity

control data

Figure 2.3 Abstract workflow system architecture

On basis of these events and the current state of the case, the router component
of the WFS routes the case as prescribed by the workflow specification of the case.
As a result, some new activity instances can be started. All attributes of a case,
i.e., both production and control data, are stored in the database (see Figure 2.2).
The state of the case is maintained by the WFS itself. In this thesis, we do not
treat the state of the case as a case attribute; instead, it is a kind of meta attribute
of the case. Scheduled timeouts are maintained and raised by the clock manager
on basis of an internal clock.

Note that the case attributes are updated during an activity by the actors, not
by the WFS. For example, an actor may update a work item by editing it with
a word processor. But the transitions between the states of the case (activity or
wait) are performed by the WFS, not by an actor. By taking these transitions the
WFS routes the case.

2.4 Reactive systems

Workflow systems are reactive systems. A reactive system is a software system
that maintains an ongoing interaction with its environment [91, 122, 157]. The
goal of a reactive system is to create certain desirable effects in its environment
by reacting to input events in a certain way. For a WFS, characteristic input
events are activity termination events, in Figure 1.1 for example the termination
of activity Receive order . A WFS uses other events as well, that we will describe
below. And a characteristic desirable effect of a WFS to an activity termination
event is the enabling of new activity instances, for example enabling Check stock
and Check customer if Receive order terminates, and informing the appropriate
actors that they have to do some new activities.

The reaction of a reactive system often depends upon the current state of the
system and the input event that is responded to. As we saw in Section 2.2, this
is also true for WFSs. For example, in Figure 1.1, if event receive payment occurs,
then activity Handle payment will only be started if the case is in state WAIT-3.
Moreover, the reaction may leave the system in a different state than it was before.
So in the activity diagram of Figure 1.1, if event receive payment occurs while the
case is in state WAIT-3, the next state of the case will be Handle payment. The

18 Chapter 2 · Workflow concepts

Event State Condition Action Next state
Receive order
terminates

Receive
order

enable
Check stock ,
Check customer

Check stock,
Check cus-
tomer

Check stock
terminates

Check stock insufficient
stock

enable Make
production plan

Make produc-
tion plan

Check stock
terminates

Check stock ¬ insufficient
stock

WAIT-1

receive pay-
ment

WAIT-3 enable
Handle payment

Handle pay-
ment

Table 2.1 Some ECA rules for workflow of production company (Figure 1.1)

WFS reaches this state by routing the case.
Reactive systems are often contrasted to transformational systems [91, 122,

157]. A transformational system computes an output from an input. The output
only depends upon the input and not upon some internal state of the system. The
output does not have any intended effect upon the environment. A transforma-
tional system only interacts with its environment to collect input and to deliver
output. During computation, the interaction of a transformational system with
its environment is not important.

Reactive systems should also be contrasted with active systems. An active
system decides itself when it will do something and what it will do then: it does
not respond to its environment. An active system has therefore no interaction with
its environment, i.e., it is closed, whereas a reactive system is open. Nevertheless,
parts of the active system can interact with each other, in other words, they can
react to each other. At a suitable level of abstraction, a reactive system composed
with an environment is a closed, active system.

The behaviour of a reactive system can be described using reaction rules of
the form event-condition-action (ECA) [157]. An ECA rule e-c-a has the following
meaning:

if event e occurs and condition c is true, then do action a

The condition can refer to an internal state of the system. Actions can update the
internal state of the system. Table 2.1 shows some ECA rules for the workflow of
the production company. Since we are only concerned with the process dimension
of workflows, the selection and notification of actors (the resource dimension) is
not shown as part of the action.

Note that second and third entry of Table 2.1 together represent a choice.
Although the outcome of this choice is presumably influenced by the environment
of the WFS, i.e., attribute insufficient stock is updated in one of the activities, the
choice is made by the WFS.

ECA rules implement the ordering rules mentioned in Section 2.1, thus enforc-

2.4 · Reactive systems 19

Named

Event

Condition change Temporal

Termination When After

{disjoint,complete}

{disjoint,complete}

Figure 2.4 Event classes

ing sequence. In Chapter 3, we will see that ECA rules are also used in activity
diagrams to label the edges.

We now describe the three components of an ECA rule in more detail.

Events. An event is some instantaneous, discrete change in the state of the
world [157]. Examples of events are pushing a button, receiving a letter, picking
up the phone. Since events are instantaneous, they occur at a point in time; they
do not have any duration. An event can also be modelled in UML; there it is
called a signal [150].

There are several kinds of events, some general and some particular for work-
flows (see Figure 2.4). First, the change that the event signifies can be referred to
by giving a name to the change itself or to the condition that changes [157]. This
gives us two kinds of events. Both kinds can be specified in UML [150].

• A named event is an event that is given an unique name [150, 157]. For
example, in Figure 1.1 receive payment is an external event.

• A condition change event is an event that represents that a boolean condition
has become true[150, 157]. To represent condition change events, UML uses
the keyword when. For example, when(c) is the condition change event that
represents that condition c becomes true.

Second, a temporal event is a moment in time to which the system is expected
to respond, i.e. some deadline [150, 157]. In the UML, there are two kinds of
temporal events, relative and absolute. Relative temporal events are specified
with the after keyword whereas absolute temporal events are specified with the
when keyword. The after(n) event expression, where n is a positive integer, means
that n time units after the source of the edge was entered a timeout is generated.

20 Chapter 2 · Workflow concepts

For example in Figure 1.1, two weeks after node WAIT-3 is entered, a timeout is
generated. The when(t) event expression, where t represents a set of points in
time, means that the first timepoint from now that is in t , a temporal event is
generated. For example, if today is March 15, then the temporal event of when(first
of month) will be generated at April 1.

Third, a typical kind of event in a workflow is a termination event , which
denotes that a certain activity has terminated (it is not important who the actor
was). Above, we have already seen examples of termination events. Termination
events can be seen as a special kind of condition change event; it will be convenient,
however, to treat them separately from condition change events. Termination
events cannot be denoted in UML.

A useful distinction between events is whether they are generated by the en-
vironment or by the system. If an event is generated by the environment of the
system, so outside the system, it is external . If an event is generated by the system,
it is internal . An event is either external or internal but not both.

Finally, an event can be either broadcast or point-to-point. A broadcast event
eb can trigger arbitrarily many ECA rules with event label eb at the same time,
whereas a point-to-point event ep can trigger at most one ECA rule with label ep .

Conditions. Conditions are boolean expressions. They can only refer to the
internal state of the case and to control data, i.e., to some case attributes. Evalu-
ating a condition should not have a side effect.

Actions. The only actions we consider are changing the state of the case, notify-
ing the appropriate actors that they have to do some new activities, and generating
internal events. In Section 2.5, we will see that the informing of actors can be ab-
stracted from. We do not consider update actions on case attributes, as case
attributes are updated by actors in activities, not by a WFS.

2.5 Interpreting workflow specifications

In this thesis we use activity diagrams to specify workflows. Since the goal of the
thesis is to define a semantics for activity diagrams, we must devote some attention
to the question what actually the meaning of a workflow specification is. In other
words, what does a workflow specification specify?

As explained in Section 2.3, a workflow specification defines ordering rules, in
this case ECA rules, between business activities. The ordering rules prescribe how
a WFS must behave in order to ensure that activities are done in the right order.
The meaning of a workflow specification should therefore be defined in terms of a
WFS.

Adopting this interpretation has some subtle consequences. We can illustrate
this best by referring to the definition of activity state. As explained in Section 2.1,
in an activity state of a workflow, an actor is busy executing an activity. This

2.5 · Interpreting workflow specifications 21

description takes the perspective of the organisation. From the perspective of the
WFS, however, an activity state of a workflow is a state in which the WFS has
enabled some activity by informing some actor that he can start the activity. The
WFS waits in the activity state for an activity termination event, that signifies
that the actor has completed the activity.

Consequently, for the WFS, the activity is a kind of black box. Only the
outcome of an activity has an effect on the execution of the workflow; how this
outcome is reached is not interesting from the perspective of a WFS. Activities
are therefore specified declaratively. An imperative specification would imply that
the WFS does the activity. But the outcome of an activity is not computed by
the WFS. We therefore specify activities declaratively as black boxes.

Another consequence is that we abstract from the fact that an actor may not
be immediately available to do a certain activity. If a WFS enters an activity state,
it merely informs the relevant actor that he should do the corresponding activity,
but the actor does not have to start immediately. During analysis, we will assume
that the actor behaves in a fair way: he will eventually execute the activity.

Putting this one step further, we altogether abstract from actors. We just
assume that an activity, once enabled, will terminate. That an actor is needed to
perform an activity is irrelevant for the process dimension of workflows.

The most important consequence, however, is that the workflow specification
specifies a reactive system, since a WFS is a reactive. Usually another interpre-
tation is adopted, namely that a workflow specification specifies an active system.
For example, if a Petri net is used to model a workflow, representing activities by
transitions, it is tacitly assumed that an active system is modelled: the transitions
in a Petri net are active transitions, not reactive ones (see Chapter 8). Activities
then are white boxes rather than black boxes. Under such an interpretation, a
workflow specification presumably specifies the behaviour of the entire organisa-
tion, including the WFS, and its environment, rather than only the WFS. (A Petri
net cannot model only the organisation, since even an organisation is reactive: it
interacts with its environment, for example customers.) It may be clear that it is
far more difficult to model a complete organisation and its environment accurately
than to model a single WFS accurately. We therefore do not interpret a workflow
specification as specifying an active system.

Summarising, states in a workflow specification are states of a WFS during
which it waits for some events. When the events occur, the ECA rules of the
workflow specification tell the WFS what it should do. Activities are specified
declaratively as black boxes. Actors are abstracted from.

22 Chapter 2 · Workflow concepts

Chapter 3

Syntax of activity diagrams

This chapter introduces the syntax of activity diagrams, as described in the current
version (1.4) of UML [150]. The semantics, the mapping from the syntax to a
mathematical structure, will be defined in the next chapters.

Section 3.1 explains the syntactic constructs that can be used in UML activity
diagrams. Section 3.2 introduces the notion of an activity hypergraph as the un-
derlying syntactic structure of a UML activity diagram. Section 3.3 explains how
an activity diagram maps into an activity hypergraph. Finally, Section 3.4 explains
how activities are specified. The first section is based on the UML standard [150].

3.1 Syntactic constructs

An activity diagram is a directed graph, consisting of nodes and directed edges.
The most commonly used nodes are shown in Figure 3.1. An activity diagram
models the behaviour of a system. A node represents a state of the system. (Our
terminology differs slightly from literature, where the term ‘state’ is used instead
of ‘node’; and likewise ‘transition’ instead of ‘edge’. Since the terms ‘state’ and

A

atomic activity node

WAIT

wait node compound activity node

fork/join node decision/merge node initial node final node

A

Figure 3.1 Activity diagram nodes

24 Chapter 3 · Syntax of activity diagrams

‘transition’ denote a semantic concept, not a syntactic one, we prefer the terms
‘node’ and ‘edge’.)

In an atomic activity state1 the system waits for termination of an activity
that has been enabled upon entry of the state. In a wait state the system waits
for the occurrence of an event, e.g. some deadline occurs or a customer sends
some additional information. A wait state is also used for synchronisation of a
thread with other parallel threads; in the wait state the system then waits for the
completion of the other parallel threads. We come back to this issue on page 28.
In a compound activity state another activity diagram is executed. This other
activity diagram is started when the compound state is entered. When the activity
diagram finishes, the compound activity state is left.

The system starts in the initial state and ends in one or more final states.
A final state means local termination of the corresponding thread; other parallel
threads can still continue to execute. Using a fork (a bar with one incoming edge
and more than one outgoing edge) a thread can be split in several parallel threads.
Using a join (a bar with more than one incoming edge and one outgoing edge)
multiple parallel threads can be merged into one thread. In a decision (a diamond
with one incoming edge and more than one outgoing edge) one of the outgoing
edges is chosen, if the incoming edge is taken. In a merge (a diamond with more
than one incoming edge and one outgoing edge) the outgoing edge is taken, if one
of the incoming edges is taken.

Nodes are linked by directed edges, that represent sequence. We will use the
term ‘edge’ throughout this thesis to stand for directed edge. The node that the
edge leaves is called the source; the node that the edge enters is called the target .
The edge always points at the target. An edge is labelled with an ECA rule e[c]/a,
where e is an event expression, c a guard condition expression, and a an action
expression. Events are also called signals in UML. Each of these three components
is optional. An edge with label e[c]/a has the following meaning: If the system
is in the source state, the event e occurs, and the guard condition c evaluates to
true, then the source state is left, the actions a are performed, and the target state
is entered. Since the transition is triggered by the occurrence of e, event e is called
the trigger event or simply trigger of the edge in UML [150]. Note the similarity
with the ECA rules discussed in Section 2.4.

Sometimes we give an edge a name for ease of identification. We write this
name in front of the ECA label, followed by a colon. For example, e1 : e[c]/a
labels an edge with name e1 and ECA label e[c]/a.

We now discuss events, guards, and actions in more detail. The events that
can be specified in activity diagrams we already listed in Section 2.4. Termination
events are not specified explicitly in an activity diagram. We use the convention
that an edge leaving an activity node A and having no visible event label, is
implicitly labelled with a termination event that signifies that the enabled activity
A has terminated. Below, we will forbid that an edge that leaves an activity state

1UML 1.4 calls an activity node an action state [150].

3.1 · Syntactic constructs 25

has any other event expression in its label, since that would denote an interrupt,
whereas an activity cannot be interrupted, since it is atomic.

A guard expression is a boolean expression that can refer to local variables of
the activity diagram. The local variables of an activity diagram are booleans, in-
tegers and strings. Guard expressions can be combined using the logical operators
∧, ∨ and ¬ . Special guard expressions are the in and else predicates. Predicate
in(name), where name is a node name, is true if and only if the system is in state
name. Predicate else can only be used to label an edge that leaves a decision node
(represented by diamond). It cannot be combined with other guard expressions,
so for example [else ∧ x=10] is not a guard expression. Predicate else abbreviates
the negation of the disjunction of the guard labels of the other edges that leave
the decision node. For example in Figure 1.1, the else predicate on the edge that
enters node Notify customer abbreviates not(payment ok). If an edge does not have
a guard expression, the edge is implicitly labelled with guard expression [true].

Actions are done by the system if and when it takes the edge. The only action
expressions we allow are sets of send event action expressions. The events in the
set are generated if the edge is taken. Other action expressions in an edge label
would change the case attributes. But case attributes are changed by actors in
activities, not by the WFS. We therefore do not allow any other action expressions.

The UML defines some extra symbols for event sending and reception. The
sending of an event can be represented by a convex pentagon that looks like a
rectangle with a triangular point on one side. The label of the symbol specifies
which event is sent. Figure 3.2(a) shows an example. The event sending symbol
is similar to a wait node whose outgoing edge generates the event. The activity
diagram in Figure 3.2(a) is equivalent to the activity diagram in Figure 3.2(b).

The reception of an event can be represent by a concave pentagon that looks
like a rectangle with a triangular notch in one of its sides. The label of the symbol
specifies which event is received. Figure 3.2(c) shows an example. This symbol is
similar to a wait node whose outgoing edge is triggered by the event. The activity
diagram in Figure 3.2(c) is equivalent to the activity diagram in Figure 3.2(d).

The notation presumes that a wait node only has one outgoing edge. If a wait
node has more than one outgoing edge, such as node WAIT-3 in Figure 1.1, then
the notation cannot be used for this node.

We will not use these extra symbols in the remainder of this thesis.

UML constructs removed.

• Update actions on edges. As explained above, an update action would denote
an update on a case attribute. But case attributes are updated in activities
by actors, not in transitions by the WFS. We therefore do not have update
actions on edges. Note that technically speaking, update actions can be
added without a problem to the syntax and semantics, along similar lines as
in existing semantics for statecharts [46, 62].

26 Chapter 3 · Syntax of activity diagrams

e

eA

(c)

(a)

B

B

(b)

/e

e

BA

A B

(d)

WAIT

WAITA

Figure 3.2 Abbreviations for event sending and event reception

Note that the state of the case is not represented as a case attribute. The
WFS updates the state of the case while routing the case.

• Synchronisation states synchronise parallel threads. A synchronisation state
is similar to a wait state; the only difference is that it has a bound whereas
as a wait state has not. The bound limits the number of outgoing edges
that can be taken, but does not limit the number of times the wait state is
entered [150].

Synchronisation states can be added without a problem, but we do not con-
sider them here. We did not need them in our case studies.

• Do-activities in UML 1.4 are activities performed by the software system.
In our case, the software system is a WFS. The activity states in an activity
diagram then represent execution of business activities. Business activities
are done by actors, not by the WFS. So we do not use do-activities to model
business activities.

• Swimlanes allocate activities to software packages, actors, or organisational
units. We do not consider swimlanes, since they are part of the resource
dimension of workflow modelling and do not impact the execution semantics
of activity diagrams. We here assume that enough resources are available to
carry out every enabled activity eventually.

• An object flow node represents an object in a certain state. Objects are
processed in activities. An object can be input to an activity, represented
by a dashed edge from an object flow node to an activity node, or output
from an activity, represented by a dashed edge from an activity node to an
object flow node.

The semantics of object flows and object flow nodes in the new UML ver-
sion (2.0) will differ considerably from the semantics in version 1.4 of UML,
current at the time of writing (2002). We explain this in Chapter 7. Objects
are not control data. So object flows and object flow nodes are not needed

3.1 · Syntactic constructs 27

to model the process dimension of workflows. We come back to object flows
in Chapter 7.

• Other constructs, like deferred events and dynamic concurrency, we discuss
in Chapter 7.

Pseudo nodes and compound edges. Although we stated at the beginning
of this section that nodes represent states, this is not true for all nodes in an
activity diagram. The fork and join node and the decision and merge node are
called pseudo nodes in UML2 [150]. Pseudo nodes do not represent system states
but are syntactic sugar used to glue edges together. A set of edges that is glued
together is called a compound edge in UML [150].

Compound edges have the following two properties. First, a compound edge
is atomic: either all edges in the compound edge are taken, or none. Second, all
edges in the compound edge are taken at the same time. That is, it is not allowed
to first take the first part of a compound edge, then wait for some event, and then
take the second part.

The intended meaning of a fork or join node and decision or merge node is
as follows. Both a fork node and a join node are AND nodes. All incoming and
all outgoing edges of an AND node belong to the same compound edge and thus
are taken simultaneously. Both a decision node and a merge node are OR nodes.
Precisely one of the incoming and one of the outgoing edges of the OR node belong
to the same compound edge and thus are taken simultaneously. In Section 3.3 we
discuss this in more detail.

Like an ordinary edge, a compound edge has an ECA label. The ECA label is
derived from the edges contained in the compound edge as follows.

• The trigger event of the compound edge is the trigger event of one of the
component edges. Below we require that at most one edge in the compound
edge has a trigger event.

• The guard of the compound edge is the conjunction of the guard conditions
of all the edges in the compound edge.

• The set of send actions of the compound edge is the union of each individual
set of send actions of every edge in the compound edge.

By taking the edges in a compound edge, some non-pseudo nodes are left (the
sources) and other non-pseudo nodes are entered (the targets). We call these nodes
the sources and targets of the compound edge. To describe the effect of taking
a compound edge only the sources and targets of the compound edge need to be
known. The edges that are part of the compound edge and the pseudo nodes
that link them can be abstracted from. So, we can model a compound edge as a

2UML defines initial and final nodes also as pseudo nodes, but since these do not glue edges
together, we regard them as real nodes in this thesis.

28 Chapter 3 · Syntax of activity diagrams

transition from some sources to some targets. Such a transition is called a directed
hyperedge, or hyperedge for short.

The difference between a (directed) hyperedge and a (directed) edge is that a
hyperedge can have more than one source and more than one target whereas an
edge always has a single source and a single target. So an edge can be seen as a
hyperedge with a single source and a single target. Like an edge, a hyperedge is
labelled with an ECA rule. The ECA rule of a hyperedge is the ECA rule of the
corresponding compound edge.

Due to compound edges, the syntactic structure underlying a UML activity
diagram is not a graph, but a hypergraph. A hypergraph is graph with hyperedges
instead of edges. In Section 3.2, we will formally define the hypergraph structure
that underlies a UML activity diagram. In Section 3.3, we will explain how an
activity diagram maps into a hypergraph.

Concurrent termination. With a join, two or more parallel threads can be
merged into one thread. Both the incoming and outgoing edges of the join are
part of the same compound edge and thus are taken at the same time.

If more than one of the sources is an activity node, this may lead to awkward
situations. As explained above, the intended meaning of an activity node is that
the system waits for termination of an activity that has been enabled upon entry
of the state; the activity node is left when the activity terminates. But when
two activity nodes are both sources of the same compound edge, this meaning no
longer holds.

For example, in Figure 3.3(a) activities A and B are active in parallel. Both
need not terminate at the same time. So suppose A terminates before B . Then
ideally node A should be left, since in A the system waits for the termination of
activity A. But the other edge that leaves B is not yet enabled.

There are two options for the system: either staying in A, or leaving A and
not yet entering the join node. With the first option, the system is still in A even
though A has terminated. That is not desirable, since the intended meaning of
an activity state is that the corresponding activity has not yet terminated; the
state is left when the corresponding activity terminates. We therefore reject the
first option. With the second option, the system must stay somewhere between A

A

B

A

B

WAIT−1

WAIT−2

(a) (b)

Figure 3.3 Concurrent termination

3.1 · Syntactic constructs 29

and the join. Then, the state of the system is apparently the edge leaving A and
entering the join node. But an edge is not a state: a system cannot ‘be’ in an
edge. An edge merely denotes sequence between states, but is not a state itself.
We therefore reject the second option too.

Hence we forbid the activity diagram in Figure 3.3(a). A corrected version is
shown in Figure 3.3(b). When either A or B terminates in the corrected workflow
model, immediately the corresponding activity node is left. When both activities
have terminated the final state can be reached. It is possible to introduce the
convention that Figure 3.3(a) abbreviates Figure 3.3(b). But to be totally explicit
about the semantics of activity diagrams, we will not do that.

We therefore require that if a compound edge leaves an activity node, it does
not leave any other node. The constraint ensures that if an activity terminates,
the corresponding activity node can be left by taking a compound edge. An activ-
ity diagram not meeting this constraint can be easily transformed in an activity
diagram that does meet these constraints by inserting an extra wait node after
every appropriate activity node, as illustrated in Figure 3.3. In the next section
we will formalise this constraint. The UML standard [150] does not impose this
constraint.

Constraints on syntax. Constraints labelled UML are defined in the UML
standard [150]. All other constraints are defined by us.

1. UML Every edge that leaves an activity node or a compound activity node
is only triggered by a termination event, i.e., it does not have a visible event
label.

Event expressions other than termination events would denote an interrupt,
whereas an activity cannot be interrupted, since it is atomic.

2. UML If two edges both leave the same decision node, then they do not both
have label [else].

Otherwise the predicate else would be ill-defined.

3. UML Every pseudo node has at least one incoming and at least one outgoing
edge, except the initial node (only has outgoing edges) and the final node
(only has incoming edges).

This constraint prevents that the system gets stuck while taking a compound
edge.

4. UML Every edge that leaves a pseudo node does not have a trigger event.

UML Every edge that enters a join node does not have a trigger event.

These constraints ensure that a compound edge is triggered by a single event.

5. UML Every edge that leaves an initial node does not have a trigger event.

30 Chapter 3 · Syntax of activity diagrams

The initial state should be immediately left when the activity diagram is
started. If an edge that leaves an initial node would have a trigger event,
the initial state may not be immediately left, since the trigger event may not
occur.

6. Between a join or fork node and any other kind of node, there can be at
most one edge. The UML has a softer constraint: it is allowed to have more
than one edge between a join or fork node and another pseudo node.

This constraint rules out activity diagrams in which a join gets stuck. For
example, in Figure 3.4 the join requires that both edges leaving the decision
node are taken whereas the decision only allows one edge to be taken. We
therefore forbid the activity diagram in Figure 3.4, even though the UML
accepts it.

[g]

WAIT

[else]

A

Figure 3.4 Ill-defined join

This constraint also rules out activity diagrams in which by taking a fork
node the same node is entered twice. For example, the activity diagram
Figure 3.5(a) is forbidden, since the same node B is entered twice. But this
is not a serious restriction. Figure 3.5(b) shows an activity diagram that
does not violate this rule and that has the same intended meaning as the
activity diagram Figure 3.5(a): after activity A completes, two instances of
B are started. In general, activity diagrams in which taking a fork enters
a certain node n twice can be simulated by activity diagrams in which the
fork enters n and a copy of n with the same label as n.

(a) (b)

A B A

B

B

Figure 3.5 Example of forbidden fork and allowed fork

UML 1.4 has adopted a constraint that every activity diagram must have bal-
anced forks and joins, that is, every fork must be eventually followed by a join,
and multiple layers of forks and joins must be well nested. This constraint ensures

3.2 · Activity hypergraphs 31

that every activity diagram can be translated into a UML statechart, which gives
the semantics of an activity diagram in UML 1.4. UML 2.0, under development at
the time of writing, will not adopt this constraint, as it will define the semantics of
activity diagrams independently from statecharts. We too have not adopted such
a constraint, as it restricts the concurrency (parallelism) that can be expressed in
an activity diagram (see Section 9.1).

3.2 Activity hypergraphs

In the previous section (page 27), we saw that a compound edge corresponds closely
to a hyperedge. Thus, we can model an activity diagram with its compound edges
as a hypergraph: a graph with hyperedges instead of edges. In this section, we
define such a hypergraph structure, called an activity hypergraph. This structure
is not defined in the UML standard. The activity hypergraph is the syntactic
structure for which we will define two execution semantics. Figure 3.6 shows the
activity hypergraph that underlies the activity diagram in Figure 1.1. Section 3.3
explains how an activity diagram maps into an activity hypergraph.

Receive

order

Check

stock

Send bill

Ship

 order

Check

customer

Make pro−

duction plan
Produce

[not insufficient stock]
[insufficient stock]

WAIT−3
Handle

payment
receive

payment

Fill order

WAIT−2

WAIT−1

WAIT−4

WAIT−5

[payment ok]
[not customer ok]

[customer ok]

[customer ok & insufficient stock]

[not customer ok]

[customer ok &

not insufficient stock]

[not payment ok]

Notify

customer

Send

reminder

after(2 weeks)

Figure 3.6 Activity hypergraph of activity diagram in Figure 1.1

32 Chapter 3 · Syntax of activity diagrams

Syntax of activity hypergraphs. We assume there is a set of activities Activities
and a set of events Events . Set NamedInternalEvents is defined below; it is a subset
of Events .

An activity hypergraph is a tuple (Nodes ,Events ,Guards,HyperEdges ,LVar)
where:

• Nodes is the set of nodes,

• Events is the set of event expressions,

• Guards is the set of guard expressions,

• HyperEdges is the transition relation between the nodes of the activity dia-
gram,

• LVar the set of local variables. Every variable in a guard expression is a
local variable.

We now discuss these elements in more detail. Set Nodes is partitioned into
set AN of activity nodes, set WN of wait nodes, set FN of final nodes, and one
initial node initial . Every activity node has an associated activity, denoted by
the function act : AN � Activities , that is enabled upon entry of the node. In
Section 3.4 we discuss how activities can be specified. To distinguish between an
activity and an activity node, activities are written in italic whereas activity nodes
are written in sans serif. We use the convention that in the activity diagram, an
activity node a is labelled with the (name of the) activity act(a) it controls. So
we have for example act(Check stock) = Check stock . Note that different activity
nodes may have the same label, since they may enable the same activity. Wait
nodes are labelled WAIT with an additional number for ease of reference.

Set Events is partitioned as follows. There are several kinds of events: named
external events, named internal events, condition change events, termination events,
and temporal events (cf. Section 2.4). These event types are mutually exclusive:
an event has only one type. We partition set Events in six subsets:
NamedExternalEvents , NamedInternalEvents , ConditionChangeEvents ,
TerminationEvents , WhenEvents and AfterEvents . Sets WhenEvents and
AfterEvents together comprise the set of temporal events. Note that an event in
WhenEvents is a temporal event, not a condition change event.

A termination event denotes that a certain activity node has terminated. By
function act , the termination event indirectly also denotes which activity has ter-
minated. The bijective function term defines for each termination event the ac-
tivity node that has terminated.

term : TerminationEvents�AN

A termination event refers to an activity node and not directly to a terminated
activity for the following reason. An activity can belong to more than one activity

3.2 · Activity hypergraphs 33

node, i.e., more than one activity node can enable the same activity. So, more
than one instance of the same activity can be active at the same time. Then if
one activity instance completes, only knowing which activity terminates does not
provide enough information to decide which node should be left.

As explained in Section 2.4, events can be either external or internal, but
not both. Whether an event is external or internal depends upon its type. Named
events can be either external or internal. Condition change events and termination
events are always external. Temporal events are a special case: they could be
considered either as external or internal. We consider them as external here.

We also explained in Section 2.4 that an event can either be broadcast, trigger-
ing possibly more than one compound edge, or point-to-point, triggering at most
one compound edge. Function sendtype : Events� {bc, p2p} specifies for each
event whether it is broadcast or point-to-point.

Every activity termination event is point-to-point, since it denotes completion
of one instance of an activity node. Every timeout event (after) is point-to-point,
since the timeout is generated some finite amount of time after the corresponding
compound edge became relevant. Every global temporal event (when) is broad-
cast. Named events and condition change events can be either point-to-point or
broadcast. In this thesis, we use the convention, however, that they are broadcast.
This convention is also adopted in UML.

Table 3.1 summarises the kind of events and their properties. Completion
events denote completion of a wait node. They are only needed in the implemen-
tation-level semantics, which we define in Section 5.4. For a motivation why they
are needed, see Section 5.4. Although completion events are not used in the syntax
of activity hypergraphs, for the sake of completeness, we have included them here.

Set Guards is the set of all boolean expressions on set LVar , using boolean
connectors ∧, ∨, ¬ . Special guard expression is in(name), which is true if and
only if the system is in node name.

Hyperedges have several parameters. For every hyperedge h ∈ HyperEdges ,
source(h) is a non-empty set of source nodes, from which the hyperedge h departs.
The source nodes are left if h is taken. Symmetrically, target(h) is a non-empty

Event type external internal broadcast point-to-point

named x x x (x)
condition change x x (x)
termination x x
when (temporal) x x
after x x
completion x x (x)

Table 3.1 Event properties. An entry ‘(x)’ is possible, but not considered in this
thesis

34 Chapter 3 · Syntax of activity diagrams

set of target nodes, which are entered if the hyperedge h is taken.
Like every edge in an activity diagram, every hyperedge h in an activity hyper-

graph is labelled with an ECA rule. The trigger event of h is denoted by event(h).
Below, we will put the constraint that a hyperedge cannot be triggered by more
than one event. Thus, a hyperedge has either no trigger event or only one trigger
event. We use symbol ⊥ as a special event label to denote that a hyperedge has
no trigger event. So event(h) ∈ Events ∪ {⊥}.

Every hyperedge h has a guard expression (possibly [true]), denoted guard(h).
Guard expression guard(h) should be valid, i.e. guard(h) ∈ Guards.

Moreover, every hyperedge h has an action expression. The only action expres-
sions we allow in hyperedges are sets of send event actions; other action expres-
sions would change the case attributes, which is undesirable, as case attributes are
changed in activities. Given a hyperedge h, the set of events generated by taking
h is denoted sendactions(h). Every hyperedge h can only generate named internal
events: sendactions(h) ⊆ NamedInternalEvents .

Local variables in LVar represent the case attributes. As explained on page 16,
case attributes represent control data.

Note. In the remainder of this thesis, we will use the term ‘activity diagram’
when we actually mean an activity hypergraph. And we will show activity dia-
grams when we actually intend to show activity hypergraphs. This is not harmful,
however, as each activity diagram maps into a unique activity hypergraph (see
Section 3.3).

Constraints on activity hypergraphs.

1. For every hyperedge h that has activity node a as source, a is the only
source of h. Consequently, if a hyperedge has more than one source, none of
its sources is an activity node.

∀ h ∈ HyperEdges ∀ a ∈ AN • a ∈ source(h) ⇒ source(h) = {a}

We motivated this constraint already on page 28.

2. Every hyperedge that leaves an activity node is labelled with a corresponding
activity termination event.

∀ h ∈ HyperEdges ∀ a ∈ AN • a ∈ source(h) ⇒

(event(h) ∈ TerminationEvents ∧ term(event(e)) = a)

3. The initial node is only part of the sources of a hyperedge. Moreover, if it is
source of a hyperedge, it is the only source of that hyperedge.

∀ h ∈ HyperEdges • initial
∈ target(h)

∧ (initial ∈ source(h) ⇒ source(h)= {initial})

3.3 · From activity diagram to activity hypergraph 35

A final node is only part of the targets of a hyperedge. Moreover, if it is
target of a hyperedge, no non-final node is target of that hyperedge.

∀ h ∈ HyperEdges • FN ∩ source(h) = �

∧ (FN ∩ target(h)
= � ⇒ target(h) ⊆ FN)

4. Hyperedges leaving the initial node have no trigger events, and the disjunc-
tion of their guard expressions is a tautology.

∀ h ∈ HyperEdges • source(h) = {initial} ⇒

event(h) = ⊥

∧
∨

{ guard(h) | h ∈ HyperEdges ∧ source(h) = {initial} }

This constraint ensures that the initial state can be left immediately (see
Constraint 5 on page 29).

3.3 From activity diagram to activity hypergraph

The mapping from activity diagrams to activity hypergraphs consists of three
steps: (1) rewriting of some syntactic expressions, (2) eliminating hierarchy (com-
pound activity nodes), and (3) computing hyperedges. Steps 1 and 3 have been
implemented in TCM [60].

Rewriting of some syntactic expressions. First, else is replaced by the ex-
pression it abbreviates. Second, we replace every after(t) label of hyperedge h with
after(t ,h). This replacement makes the after constraint unique for two hyperedges,
ensuring that if two hyperedges have the same after label, there is no confusion as
to for which hyperedge the timeout is meant. Third, edges leaving some activity
node a and having no trigger event are labelled with term−1(a).

Eliminating hierarchy. An activity diagram can contain compound activity
nodes. Every compound activity node is decomposed into another activity diagram
that specifies the behaviour of the compound activity node. We require that
the transitive closure of the decomposition relation be acyclic. We eliminate a
compound activity node n by replacing n by its corresponding activity diagram.
The initial and final nodes of the corresponding activity diagram are OR nodes,
which are eliminated as follows. Every compound edge that enters n is glued
together with every compound edge that leaves the initial node. Every compound
edge that leaves n is glued together with every compound edge that enters one of
the final nodes.

36 Chapter 3 · Syntax of activity diagrams

Computing hyperedges. We first define a compound edge. A compound edge
is a set of edges that are linked by AND (fork/join) and OR (decision/merge)
nodes, satisfying the following constraints.

• If an edge in a compound edge ce enters or leaves an AND node, then every
edge that leaves or enters the AND node is part of ce.

• If an edge in a compound edge ce enters (leaves) an OR node, then there is
one edge in ce that leaves (enters) the OR node.

Not every compound edge that satisfies above rules is well-defined. Compound
edges are not well-defined if they contain cycles. Cycles are bad for the following
reasons.

• Sometimes a compound edge with a cycle is unreachable: the compound edge
does not start with an non-pseudo node. For example, in Figure 3.7(a) there
are two compound edges, namely {e1,e2,e4} and {e2,e3}. The compound
edge {e2,e3} is not well-defined since it is unreachable.

• Sometimes a compound edge with a cycle is reachable but cannot be exe-
cuted. For example, in Figure 3.7(b) there is one compound edge, namely
{e5,e6,e7,e8}. This compound edge is reachable but not executable: Edge
e6 can only be taken after e7 has been taken, whereas edge e7 can only be
taken after e6 has been taken (remember that an edge denotes sequence).
So e6 and e7 cannot be taken, and therefore the compound edge cannot be
taken.

Above discussion can be summarised by quoting the definition of a (well-
defined) compound edge in the UML standard [150]: “a [well-defined] compound
edge is an acyclical, unbroken chain of edges”.

As explained on page 28, the effect of a compound edge can be specified with a
hyperedge. The hyperedge specifies which nodes are left and which are entered if
the compound edge is taken. The hyperedge neither refers to the edges contained
in the compound edge, nor to the pseudo nodes that link them.

W1 W2
e5: e8:

e6:

e7:

e3:

e2:

W1
e1:

W2
e4:

(a) (b)

Figure 3.7 Two ill-defined compound edges

3.3 · From activity diagram to activity hypergraph 37

[h]

[g] [g]

[h]

A

A

A

B

A

B

A

A

A

B

A

B

B

C

B

C

C

C

B

C

B

C

C

C

Figure 3.8 Example computations of hyperedges

We compute hyperedges by processing the pseudo nodes of the activity diagram
one by one. Figure 3.8 shows the most simple mappings. An OR node with n
incoming or n outgoing edges maps into n new hyperedges. An AND node maps
into one new hyperedge.

The only difficulty that arises is when an AND node is connected with an OR
node. Then the order of processing is significant: processing an AND node before
an OR node gives a different result than processing an OR node before an AND
node. For example, the pseudo nodes in the activity diagram on the lefthand side
in Figure 3.9 can be processed in two ways. Processing the OR node before the
AND nodes gives the hypergraph in the top right, whereas processing the AND
node before the OR node gives the hypergraph in the bottom right. The intended
mapping is the one on the bottom right: either node W3 or W4 is entered but not
both. So, AND nodes should be processed before OR nodes.

By Constraint 6 on activity diagrams, listed on page 30, we have that com-
putation of a compound edge always produces a set of source nodes and a set of
target nodes, rather than a bag.

Like an edge, a hyperedge has an ECA label. The ECA label of the hyperedge
can be derived from the labels of the edges that are glued together. By Constraint 4
on activity diagrams, listed on page 29, at most one edge in a compound edge has
a trigger event. This trigger event is the trigger event for the hyperedge. The
guard condition of the hyperedge is the conjunction of the guard conditions of the
edges that are part of the corresponding compound edge. The events generated

38 Chapter 3 · Syntax of activity diagrams

wrong

right

W1

W2

W3

W4

W1

W2

W1 W3

W3

W4

W4W2

Figure 3.9 Two possible computations of hyperedges

by the hyperedge are the events generated by the edges of the compound edge.

3.4 Specifying activities

Above, we focused on possible semantics for edges in an activity diagram. We now
focus on the semantics of nodes, more precisely the semantics of activity nodes.

We explained in Section 2.5 that the actual execution of activities falls outside
the scope of the system being modelled, a WFS, since activities are done by actors.
Moreover, we do not model actors; we simply assume that an activity, once it
becomes enabled, will terminate sometime in the future. The only relevant aspect
of the execution of an activity is that when it terminates, some of the control data
may have been changed. This affects the routing of the case.

We therefore specify the effect of an activity declaratively using pre and post-
conditions. A precondition is a logical expression that is used by the WFS to
decide when the activity may be started. A postcondition is a logical expression
that is used by the WFS to decide when the activity has been completed. Both
pre and postconditions refer to control data.

Unfortunately, pre and postconditions do not have a standard semantics as
pointed out by Bussler [29]. That is, they can be interpreted differently by different
WFSs. For example, if in the workflow of Figure 3.10(a) activity A completes
and x is 5, then some WFSs will stop the whole workflow, i.e, the workflow of
Figure 3.10(a) behaves similar to the workflow of Figure 3.10(b). Other WFSs,
however, will wait until x gets a value greater than 10 (Figure 3.10(c)). Yet other
WFSs will skip B and proceed with C (Figure 3.10(d)). Similarly, a postcondition
has different interpretations too. If a postcondition fails to hold, the WFS can
decide that the activity has to be redone, or that the whole workflow is stopped.

Since pre and postconditions have such an unclear semantics, we decide not to
model them implicitly as in Figure 3.10(a) but explicitly using guard conditions
as in Figures 3.10(b)-(c). Then the semantics of the pre and postcondition follows

3.4 · Specifying activities 39

A B C

Precondition: x>10

A B C
[x>10]

[else]

A B C

when(x>10)

A B C
[x>10]

[else]

WAIT

[else]

[x>10]

(a)

(b)

(c)

(d)

Figure 3.10 Workflow with precondition and three possible interpretations

immediately from the workflow specification.
In Section 2.2 we explained that a WFS can prevent interfering activities from

being active simultaneously, thus enforcing isolation between activities. In order
to do so, the WFS needs to know what activities interfere with each other. The
interference information can be defined either explicitly by the workflow designer,
or the WFS can derive it automatically from the specification of activities. In this
thesis we only consider the last option.

In database theory, a useful criterion for detecting interference between trans-
actions is serialisability [56, 152]. Roughly speaking, if two transactions both
simultaneously access (observe/update) the same variable and in addition one up-
dates the variable, then the two transactions are not serialisable (commutative)
and thus they interfere with each other. We take a similar approach and specify
for each activity the variables it observes (reads) and the variables it updates.
From this information, the WFS can derive whether or not two activities interfere
with each other.

Formally, in every activity a ∈ Activities that is controlled by an activity
diagram, some local variables may be observed or updated . We denote the observed

40 Chapter 3 · Syntax of activity diagrams

variables by Obs(a) ⊆ LVar , and the updated variables by Upd(a) ⊆ LVar . We
require these two sets to be disjoint for each activity. Note however that it is
possible to have Obs(a) = Upd(b), if a
= b.

Two activities are in conflict or interfere, if one of them observes or updates
a local variable that the other one updates. (This definition is similar to the
definition of conflict equivalence in database theory [56, 152].)

A�B ⇔ (Obs(A) ∪ Upd(A)) ∩ Upd(B)
= �

∨ (Obs(B) ∪ Upd(B)) ∩ Upd(A)
= �

Note that this particularly implies that we only allow autoconcurrency (two in-
stances of the same activity that are active at the same time) if the autoconcurrent
activity does not update any variables.

The environment of the organisation may also change or update some variables,
denoted Obs(env) and Upd(env) where env is a special symbol, env
∈ Activities ,
representing the environment. The WFS cannot prevent the environment from
interfering with an activity that accesses the same variable; such a prevention is
the job of the database system.

For our running example (see Figure 1.1 on page 3), we specify that activity
Check stock updates variable insufficient stock, that Check customer updates cus-
tomer ok, and that Handle payment updates payment ok. The environment does
not update any of these variables.

Chapter 4

Design choices in semantics

of activity diagrams

We use UML activity diagrams to specify workflows. As explained in Chapter 2,
a workflow specification prescribes how a workflow system should behave. We
therefore motivate and define the execution semantics of activity diagrams in terms
of WFSs (see Section 2.5). In this chapter we discuss the design choices we make
in our semantics for activity diagrams. We give an informal introduction to two
semantics that both satisfy the same design choices, but are otherwise completely
different. One is a high-level semantics which assumes that a WFS is infinitely fast
and reacts immediately to events, whereas the other one is a low-level semantics
which does not make this assumption. In the next chapter, we formally define these
two semantics. A comparison of both semantics with Petri nets can be found in
Chapter 8. A comparison with other related work can be found in Chapter 9.

Section 4.1 explains what (a state of) the mathematical structure looks like.
The design choices that we made for the semantics are motivated by the domain of
workflow systems as explained in Chapter 2. Section 4.2 looks at how an activity
diagram changes states. We study two existing execution semantics, the Petri net
token-game semantics and the statechart semantics. Since the statechart semantics
fits our purposes best, we take that semantics as a starting point. Section 4.3 lists
several issues in the semantics that have to be resolved, and for each issue we
show the choice that we make in order to resolve the issue. Section 4.4 informally
introduces two semantics that both satisfy these choices but that are otherwise
completely different from each other.

4.1 Mathematical structure

From the discussion in Chapter 2, we conclude that workflow systems have the
following characteristics.

42 Chapter 4 · Design choices in semantics of activity diagrams

• A WFS is reactive. A reactive system runs in parallel with its environment
and responds (reacts) to input events by creating certain desirable effects in
the environment [91, 157]. For a WFS, typical input events are activity
termination events, in Figure 1.1 for example that the Receive order activity
node terminates. Other events are also possible (cf. Figure 2.4 on page 19).
And characteristic desirable effects for a WFS are the enabling of new activity
instances.

• A WFS has coordination functionality. A WFS does not execute the
activities themselves, but it merely coordinates the execution of the activities
by the actors (people or machines)1. For example, in Figure 1.1 (page 3) the
WFS does not check a customer itself, but merely tells the relevant actors
that one of them can start checking the customer. Case attributes are only
changed in activities by actors, not by the WFS.

The semantics of activity diagrams must be able to represent these aspects
accurately.

As explained in Chapter 1, every formal semantics is a mapping of a syntactic
structure into a mathematical structure. The structure we use in this thesis is
that of a run (to be precise, a set of runs). A run (or a trace or scenario) is a
sequence of states connected by state changes. A state is a condition of the world,
for example: activity Receive order is being executed. A state change is a change
in condition of the world, for example: activity Receive order terminates. State
changes are instantaneous. Non-instantaneous state changes can always be split
into an instantaneous begin and end state change. So time only elapses in a state.

Runs are frequently used to give a semantics to reactive systems [90, 122].
They are also used as a semantic domain in model checking [42]. So, runs are
suitable to represent the behaviour of workflows and in addition can be used for
model checking functional requirements. Moreover, the UML action semantics [12]
employs a similar notion as semantic domain.

Since a run is a possible behaviour of a WFS, states of the run are states of
the WFS. Keeping in mind the characteristics of a WFS, we define that a state of
a run consists of the following components:

• the state of the case (i.e, which nodes in the activity diagram are active,
possibly multiple times),

• the queue of input events of the WFS,

• the case attributes and their values, and

• the scheduled timeouts and the value of the internal clock.

1Sometimes, there can be confusion if the WFS runs on the same computer as the application
software that performs an activity; but even then the application software differs from the WFS.

4.2 · Petri net token-game semantics versus statechart semantics 43

A queue of input events is needed because of the first characteristic: a WFS is
a reactive system. In a reactive system state changes are caused by input events.
This means that the WFS must have some interface with the environment to
observe the input events. We therefore use an input queue in which events are
kept. The case attributes are needed to evaluate the guard conditions on the
hyperedges, i.e., they are only used for routing the case. Timeouts are raised by
the WFS itself, on the basis of an internal clock.

The second WFS characteristic, coordination, has several implications. First,
activities are done by the environment in states of the WFS, i.e, during an activity
state the WFS waits for an activity to complete (see Section 2.5). Activities
take non-zero time to execute. Second, an activity is specified declaratively, in
particular its postcondition. This was explained already in Section 2.5. Third,
in a reaction case attributes are not changed. Instead, changing (updating) of
case attributes is done by the environment of the WFS. Also, the WFS does not
maintain the case attributes, this is done by its environment (usually by a database
system).

4.2 Petri net token-game semantics versus state-

chart semantics

We now have to decide how an activity diagram changes state. In other words, we
have to define the execution semantics of an activity diagram. Since in an activity
diagram a change of state is modelled by an edge (a hyperedge in an activity
hypergraph), we look at the semantics of a (hyper)edge in this section. We keep
in mind that an activity diagram prescribes how a WFS behaves.

So the question to answer is: When is a hyperedge taken? There are several
existing semantics for graphical notations that answer this question differently.
The most relevant ones for activity diagrams are Petri nets, since they look like
activity diagrams, and statecharts, because they too look like activity diagrams
and in addition the current UML semantics of activity diagrams is defined in
terms of statecharts, even though this will be changed in the future. Various
semantics for Petri nets have been defined, but we focus on the standard token-
game semantics used for low-level Petri nets. Timed and stochastic Petri nets have
a more complicated semantics that is too complex for our purposes. Statecharts
are notorious for their many semantics; in 1994, Von der Beeck [18] listed already
over twenty different semantics, without considering object-oriented statechart
variants. The introduction of UML has increased the number of semantics of
statecharts considerably. All the different statechart semantics agree, however, on
the semantics of hyperedges that we sketch below. Introductions to Petri nets and
their semantics are by Peterson [136], Reisig [141] and Murata [129]. Introductions
to statecharts and their semantics are by Harel [88], Harel and Naamad [90] and
Wieringa [157].

44 Chapter 4 · Design choices in semantics of activity diagrams

e[c]/a

Petri net

Statechart

Figure 4.1 Differences between Petri net token-game and statechart semantics

There are two major differences between the Petri net token-game semantics and
statechart semantics of hyperedges2. First, in a Petri net, a hyperedge (transition)
is enabled once its input places are in the current marking. In a Petri net, a label
on a hyperedge does not influence the enabledness of that hyperedge; the label
is not interpreted. So, in Figure 4.1 the hyperedge in the Petri net is enabled
iff its input place is filled with a token. In a statechart, a hyperedge (transition)
is enabled once the system is in the input states of the hyperedge and both its
trigger event occurs and its guard condition is true. The trigger event and guard
condition are specified in the label of the hyperedge; the label is interpreted. So,
in Figure 4.1 the hyperedge in the statechart is enabled iff its input state is active
and event e occurs and the condition c is true.

Second, in a Petri net an enabled hyperedge may be taken, but it does not have
to be taken. In a statechart, an enabled hyperedge must be taken, since the event
occurrence must be responded to. Consequently, in Figure 4.1 if the hyperedge in
the Petri net is enabled, we still do not know whether or not the hyperedge in the
Petri net is taken. Whereas if the hyperedge in the statechart is enabled, we do
know that it is taken.

These differences in semantics of hyperedges are due to a difference in intended
use of the notation. Petri nets, under the token-game semantics, model the re-
source usage of closed, active systems. Resources are represented by tokens. The
presence of a token in a place gives information about the possibility to perform
certain transitions, i.e., to use the resources in a certain way. A closed, active
system decides itself when it should do something, i.e., take a transition; there
is no environment to provide stimuli to the closed, active system. By contrast,
statecharts model open, reactive systems. The environment of an open, reactive
system provides the system with input events. The system must react to these
events. The current state of a statechart gives information about what will happen
if certain events occur. We conclude that the statechart semantics of hyperedges
matches the domain of reactive systems best.

Based on this analysis we draw the following conclusion. Since we use an activity

2In both Petri nets and statecharts a hyperedge is called a transition, but we prefer the term
‘hyperedge’ since ‘transition’ denotes a semantic concept, as explained on page 23.

4.3 · Issues in reactive semantics 45

diagram as workflow specification, and a workflow specification prescribes how a
WFS behaves, edges in an activity diagram (hyperedges in an activity hypergraph)
are transitions by the WFS. A WFS is a reactive system. The statechart semantics
represents reactive behaviour of a system more accurately than the Petri net token-
game semantics. We therefore take the statechart semantics as starting point of
our semantics.

After having defined our formal semantics in Chapter 5, we will study in Chap-
ter 8 whether and how Petri nets can be used to simulate our reactive semantics
of activity diagrams.

4.3 Issues in reactive semantics

In the statechart semantics, or rather any reactive semantics, the system takes
a hyperedge, i.e., makes a transition to another state, in response to some input
events. There are several issues that have to be decided upon in defining a se-
mantics for reactive systems. We label each choice that we make with a checked
symbol �.

First of all, can more than one event occur at the same time? We make two
observations. First, although the chance of two events occurring simultaneously
is rather small, it is not equal to zero. Second, the reactive system (WFS) will
respond to events by inspecting the contents of the queue. If no two events can
occur simultaneously, the rate at which events occur in the environment must be
slower that the rate at which the WFS reads input events (sampling rate). We do
not want to impose such a restriction upon the environment and therefore do not
make such an assumption.

� Events can occur simultaneously.

From this choice, it follows that two event occurrences are either simultaneous,
or some time elapses between them.

Second, can an event trigger one or more than one hyperedge at the same
time? We allow an event in general to be either broadcast, triggering arbitrarily
many hyperedges, or point-to-point, triggering at most one hyperedge (see Sec-
tion 2.4). As explained in Section 3.2, however, some events have a fixed sendtype,
for example activity termination events. It does not make sense to broadcast an
activity termination event of activity A, leaving arbitrarily many activity nodes
that enable A, since only one instance of A has terminated and therefore only one
activity node should be left. If an event can both be broadcast and point-to-point,
we use the broadcast interpretation as default (see Table 3.1 on page 33).

� Events can be either broadcast or point-to-point.

From these two choices, it follows that more than one hyperedge can be taken
at the same time. Two hyperedges h and h′ can be taken at the same time either

46 Chapter 4 · Design choices in semantics of activity diagrams

because their trigger events occur at the same time, or they have the same trigger
event which is broadcast. The collection of hyperedges that is taken at the same
time is called a step in statechart terminology [90, 150].

Third, during execution of the system, the event queue is filled with events. The
system reads the events from the event queue and reacts to them. There should
however be some removal policy. If an event is not removed after it is processed,
it would continue to have an effect, which is undesirable. Since the result of the
event occurrences is the taking of some hyperedges (a step), the events should be
removed after these hyperedges have been taken.

� An event is removed after the step in which it is processed has been taken.

Fourth, there are some obvious constraints that steps must satisfy. For exam-
ple, every hyperedge in the step must be triggered by one of the input events, and
no two hyperedges can leave the same node instance at the same time. In the
next chapter, we will formalise these constraints. One not so obvious, but very
important constraint is that a step is maximal. This constraint is satisfied by every
statechart semantics. Not imposing this constraint would imply that some hyper-
edges that are enabled would not have to be part of the step, so would not have
to be taken. Since an event is removed from the input after the subsequent step
has been taken, this would mean that some input events would not cause all their
effects, although, according to the workflow model, they should have these effect
(enabled hyperedges should be taken). In other words, then the WFS would not
react fully to these input events. That is why we require that a step be maximal.

� Steps are maximal.

Fifth, events can be processed either immediately upon arrival or at fixed points
in time, that is, at ticks of the clock, for example once every hour. The former is
called an event-driven model whereas the latter is called a time-driven model. In
Statemate both response regimes are supported: there the event-driven model
is called an asynchronous time model, since it is asynchronous with respect to the
system clock, whereas the time-driven is called a synchronous time model, since
it is synchronous with ticks of the system clock. In previous work [62, 63, 64],
we used the terms ‘clock-asynchronous’ and ‘clock-synchronous’ semantics. The
terminology we use here is borrowed from control theory [17].

For workflow modelling, the event-driven model is more appropriate. The
time-driven model is useful for embedded systems.

� Events are processed when they arrive (event-driven model).

Sixth, it must be decided what should happen if an event occurs that has no
effect in the current state of the system. In statecharts, as in control theory in
general, the assumption is made that input events cannot be blocked. Instead, the
system should be able to respond to every possible event occurrence. If no effect is

4.3 · Issues in reactive semantics 47

WAIT−1

WAIT−2

WAIT−3

WAIT−4

WAIT−5

e1:e/f

e2:e

e3:f

Figure 4.2 Event generation

specified, nothing happens. We adopt this assumption too. UML statecharts also
adopt this assumption, but in addition allow for the deferring of an event that has
no effect in the current state. As soon as the system reaches a state in which the
event is not deferred, the event is responded to. We come back to the deferring of
events in Chapter 7.

The alternative assumption is to block an unexpected event reception until the
system is ready to respond to it. This latter choice is made in process algebra [97,
127], but it puts a constraint upon the environment. We do not want to put such
a constraint upon the environment.

� Event receptions cannot be blocked.

Finally, we discuss what happens when events are generated. There are two
different ways of interpreting event generation. The first one is to let the generated
events have an effect in the current step (chosen in the fixpoint statechart seman-
tics of Pnueli and Shalev [140]), the second one is to let the generated events have
an effect in the next step (chosen in the Statemate statechart semantics [90]).
To illustrate the difference between these two options, suppose in Figure 4.2 the
current configuration is [WAIT-1,WAIT-2] and event e occurs. If edge e1 is taken,
then according to the fixpoint semantics event f is immediately available and con-
sequently edge e3 can be taken simultaneously with edge e1. Whereas in the
Statemate semantics, event f can only be sensed after the step in which it is
generated is taken, so after edge e1 is taken. Consequently, if the current config-
uration is [WAIT-1,WAIT-2], and event e occurs, in the fixpoint semantics either
step [e1,e2] or [e1,e3] is taken, but in the Statemate semantics, step [e1,e2] is
taken. Step [e1,e3] is counterintuitive here, since it seems that event e is ignored
in node WAIT-2. So there are circumstances in which the fixpoint semantics com-
putes a counterintuitive step (this was first pointed out by Leveson et al. [117]
using a similar example, but they mistakenly attribute the fixpoint semantics to
Statemate). That is why in practice the Statemate approach is taken, even in
the UML. We adopt the Statemate interpretation for event generation as well,
since it is also adopted by UML.

� Generated events are sensed in the next step.

48 Chapter 4 · Design choices in semantics of activity diagrams

� Events can occur simultaneously.
� Events can be either broadcast or point-to-point.
� An event is removed after the step in which it is processed has been taken.
� Steps are maximal.
� Events are processed when they arrive (event-driven model).
� Event receptions cannot be blocked.
� Generated events are sensed in the next step.

Table 4.1 General choices made in our reactive activity diagram semantics

As an aside, note in this interpretation too, there are anomalies. One may for
example get infinite loops of event generation that trigger each other, as pointed
out by Leveson et al. [117]; see Figure 4.3 and the corresponding discussion on
page 50.

Table 4.1 summarises the general choices that we made. The first six assump-
tions are made in every statechart semantics, including Statemate and UML.
(Statemate supports both an event-driven (asynchronous time) and time-driven
(synchronous time) model [90].) Some of the choices are also made in other formal
methods, like process algebra, but none of them makes the same choices. The last
choice is made by both Statemate [90] and UML [150]. The fixpoint semantics
of Pnueli and Shalev [140], in which the alternative property is adopted, is widely
studied by theoretical computer scientists, but we do not know of any practical
application of this semantics. There is no tool that implements it.

Although we have made these choices, we have left open a lot of other issues.
Many different semantics can be defined that satisfy the properties listed above.
In this thesis we will define two semantics, which are completely different from
each other, even though both satisfy all the properties listed in Table 4.1. We
introduce these two semantics in the next section.

4.4 Two reactive semantics

Having resolved some general issues in the previous section, we still have a lot
of other issues to decide upon. The main issues we did not deal with is whether
the processing of events, i.e. reacting to them, takes time or not. This question is
answered differently in various statechart semantics. In the classical statechart se-
mantics, such as the fixpoint semantics of Pnueli and Shalev [140] and the State-

mate semantics of Harel and Naamad [90], the assumption is made that event
processing (“taking a hyperedge”) does not take time.

This assumption is an example of what is called the perfect technology assump-
tion in software engineering. The perfect technology assumption, introduced by
McMenamin and Palmer [124] and subsequently adopted in Yourdon’s structured
analysis [162], states that the system under development has infinite processing
power: It reacts infinitely fast and has infinitely many resources. The perfect

4.4 · Two reactive semantics 49

technology assumption is adopted in order to focus on specifying the interaction
of a system with its environment, without being bothered by limitations of the
implementation platform on top of which the system is implemented. In other
words, the perfect technology assumption is adopted to focus on specifying what
the requirements of a system are, so what effects the system should achieve in its
environment, rather than on specifying how well the system achieves these effects,
for example how fast a response is. Models satisfying perfect technology are called
essential-level models in structured analysis [124, 162], but we prefer the term
requirements-level models.

In modern statechart semantics, especially the object-oriented variants, the
perfect technology assumption is dropped. It is dropped because it is considered
to be unrealistic. The most important statechart semantics in this group are the
(informal) UML statechart semantics, and its predecessor, the ROOM statechart
semantics [146]. Models that do not make the perfect technology assumption we
call implementation-level models.

As an aside, note that although the perfect technology assumption is usually
made in structured analysis statecharts and not in object-oriented statecharts, this
does not mean that an implementation-level semantics cannot be used in struc-
tured analysis, or a requirements-level semantics in object-oriented statecharts.
For example, in earlier work [62] we defined a requirements-level semantics for
UML statecharts.

In this thesis, we will define a requirements-level and an implementation-level
semantics for activity diagrams, both in terms of WFSs.

Requirements-level semantics. The requirements-level semantics we define is
based upon the Statemate semantics of statecharts [90]. The perfect technology
assumption abstracts from internal implementation details of the WFS. In the
requirements-level semantics the WFS is therefore considered as a black box.

If the processing of events does not take time (by perfect technology), and
events are processed upon arrival (event-driven model), then the logical choice
is to let events be processed immediately. So, if an event occurs, the system
(WFS) starts immediately processing the event and does not take time to process
the events. In other words, an event occurs simultaneously with the subsequent
reaction of the system. This assumption is called the perfect synchrony hypothesis.
It was introduced by Berry and Gonthier [19] for the synchronous programming
language Esterel and it was also adopted for other synchronous languages [86],
including the asynchronous (event-driven) semantics of Statemate [90].

One may wonder how the perfect synchrony hypothesis is implemented in prac-
tice. For sure, no system will react immediately to an event. In synchronous
languages, the hypothesis translates into the constraint that the system is fast
enough to be ready before the next event occurs [19]. So the system reaction may
take time, but it is always in time, before the next event arrives. Note that this
actually puts a constraint upon the environment of the system, rather than the

50 Chapter 4 · Design choices in semantics of activity diagrams

WAIT−2 WAIT−3

e2:f/g

e3:g/f

h
WAIT−1

e1:e/f

Figure 4.3 Diverging activity diagram

system itself.

We will pursue a different justification of the requirements-level semantics, by
relating it (in Chapters 6 and 10) to another semantics, the implementation-level
semantics discussed below, that does not have the perfect synchrony hypothesis.

As explained in the previous section, the system reacts to events by taking a
step. If the system enters a new state by taking a step, some internal events can
be generated and some hyperedges can be enabled in this new state, because their
guard is true and either their trigger events were generated in the previous step
or they do not have a trigger event. In that case the new state is unstable. By the
perfect synchrony hypothesis, in such an unstable state immediately a new step is
taken and another state is entered. If this other state is also unstable, again a step
is taken, and a new state is entered. This sequence of taking a step and entering
a new state is repeated until finally a state is reached in which there are no events
in the queue and there are no enabled hyperedges. Such a state is stable. The
sequence of steps that is taken is called a superstep [90].

The superstep may be nonterminating, because some hyperedges may enable
each other. If a superstep does not terminate, we say the superstep diverges. A
simple example of a diverging superstep is shown in Figure 4.3. If the system is in
state WAIT-1 and event e occurs, then edge e1 is taken and event f is generated.
The resulting state is unstable because edge e2 is enabled. Then, if edge e2 is
taken, event g is generated and edge e3 becomes enabled. And taking edge e3
generates event f, so edge e2 becomes enabled again. The superstep then diverges:
it never terminates. This drawback of the Statemate semantics was first pointed
out by Leveson et al. [117].

One final issue that we must decide upon is whether a single event is processed
at a time or all events are processed in parallel. Under the perfect synchrony hy-
pothesis, it makes more sense to process all events at the same time. We therefore
assume that all events are processed in parallel. This assumption is also made in
Statemate [90].

Figure 4.4 shows an example run of the activity diagram in Figure 1.1 (activity
hypergraph in Figure 3.6) under this semantics. In each state, the set of running
activities is shown, as well as the variables that are updated by one of these running
activities. The end value of a case attribute that is updated in an activity a can

4.4 · Two reactive semantics 51

{Receive

 order}

state 1 state 2

{Check stock,

Check customer}

{Make pro−

duction plan,

Check customer}

Receive order Check stock

state 3

insufficient stock

customer ok

{Make pro−

duction plan,

Send bill}

Check customer

state 4

terminates terminates terminates

being updated

customer ok

being updated

initial

state

Figure 4.4 Example run in requirements-level semantics

{Receive

 order}

state 1 state 3

{Check stock,

Check customer}

{routing,

Check customer},

Receive order Check stock

state 4

insufficient stock

customer ok

state 4

terminates terminates

being updated

customer ok

being updated

initial

state
state 2

{routing}

{Make pro−

duction plan,

 routing}

state 6

{Make pro−

duction plan,

Send bill}

 state 5

{routing}

...

...

state 7

Check customer

terminates

{routing,

Check customer},

customer ok

being updated

Figure 4.5 Example run in implementation-level semantics

52 Chapter 4 · Design choices in semantics of activity diagrams

be derived from the activity that is started when a terminates.

Implementation-level semantics. In the second semantics, the perfect tech-
nology assumption is dropped. Hence, the perfect synchrony hypothesis is dropped
as well. So a reaction of the WFS takes time, and input events are not immedi-
ately reacted to. In particular, while the WFS is busy reacting, the next events
can already occur. The semantics is based upon the OMG semantics of UML
statecharts [150]. In the implementation-level semantics, the WFS is considered
as a white box, consisting of the components shown in Figure 2.3 on page 17. The
Router component is responsible for producing the desired reaction: routing the
case to the new state, enabling some new activity instances to start. Figure 2.3
resembles the architecture of workflow systems [31, 81, 118, 159], and also the
informal UML definition of state machines, underlying UML statecharts [150].

Since the perfect technology assumption is not made, the Router compo-
nent has limited capacity. So it takes time to process an event, whereas in the
requirements-level semantics the WFS is infinitely fast. Moreover, we will assume
that a Router processes one event at a time, rather than arbitrarily many as in the
requirements-level semantics. Harel and Gery [89] call this single-event process-
ing. The informal OMG semantics of UML statecharts [150] also uses single-event
processing.

When the Router starts routing, it picks some input event from the queue. It
routes the case by updating the state of the case, enabling some new activities
to start, scheduling some new timeouts, and removing some scheduled timeouts,
because they have become irrelevant in the new state of the case. Afterwards,
the Router starts processing the next event from the queue. Since the next input
events might have arrived while the Router was busy routing the case, the content
of the queue might have changed during routing. Note that this is impossible in
the requirements-level semantics, since there routing is instantaneous.

Figure 4.5 shows an example run of the activity diagram in Figure 1.1 (activity
hypergraph in Figure 3.6) under this semantics. In Figure 4.5, the term routing
denotes that the Router is busy routing the case. The imperfect WFS in Figure 4.5
has the same input events as the perfect WFS of Figure 4.4. Note that the run
in the implementation-level semantics (Figure 4.5) has twice as many states as
the comparable run in the requirements-level semantics (Figure 4.4). In general,
implementation-level runs have many more states than requirements-level runs.

Figure 4.6 shows in more detail how the state components of the WFS change
state during a run in the implementation-level semantics. Note that also in this
semantics state changes are instantaneous. The scheduled timeouts are not shown
in the figure. A state change in a reactive system is either caused by (1) the
occurrence of some input events, (2) picking of an event from the queue by the
Router, (3) the reading of the current values of the case attributes by the Router,
or (4) changing of the state of a case, leaving or entering states, by the Router.
A state change can also consist of a combination of (1) with one of (2), (3) or

4.4 · Two reactive semantics 53

requirements-level semantics implementation-level semantics

- perfect technology - imperfect technology
- parallel-event processing - single-event processing
- event is immediately responded to - event is responded to at some later time

Table 4.2 Differences between requirements and implementation-level semantics

(4). In the requirements-level semantics, these four state changes always happen
simultaneously.

The first and second type of state change only affect the state of the queue:
the events are added to the queue (first) and removed (second state change). The
third state change only affects the case attributes: the current value of each case
attributes is read in order to evaluate the guard conditions on hyperedges. Note
that case attributes are maintained by the database, not by the WFS. So, the
WFS merely needs a copy of them in order to evaluate guard conditions and route
the case to the desired next state. The fourth type of state change only affect the
state of the case: some nodes become active, others become inactive.

Summary. Table 4.2 sums up the differences between the two semantics. Note
that although in the implementation-level semantics one event at a time is pro-
cessed, still more than one event can occur at the same time. But in the re-
quirements-level semantics events occurring in parallel are processed in parallel,
whereas in the implementation-level semantics these events are processed one by
one (single-event processing).

Evaluating the two semantics, the requirements-level semantics is easy to anal-
yse, but not completely accurate, because no real WFS will satisfy the perfect
synchrony hypothesis. The implementation-level semantics is more accurate, but
also more difficult to analyse than the requirements-level semantics. Runs in the

case state

case attributes

clock

queue

WFS

state

WFS

state

WFS

state

update

events occur

run

update

WFS

state

update update
...

(1) (2)

WFS

state

WFS

state

(3)

...
update update update update

...

(4)

WFS

state

WFS

state

Figure 4.6 Structure of run in implementation-level semantics

54 Chapter 4 · Design choices in semantics of activity diagrams

implementation-level semantics are harder to relate to the original activity diagram
than runs in the requirements-level semantics, because in the implementation-level
semantics there is a delay between the occurrence of an event and the subsequent
reaction of the WFS to that event occurrence, whereas in the requirements-level
semantics, there is no such delay. For example, the run in Figure 4.5 is harder
to match with the activity diagram of Figure 1.1 than the run in Figure 4.4.
Moreover, the implementation-level semantics is more difficult to analyse for a
verification tool, because there will be more states due to the delay in response to
event occurrences.

In this thesis, we focus on analysis of functional properties of workflows, for ex-
ample the absence of deadlock. As we will show in Chapter 10, for such properties,
it does not matter whether the requirements-level semantics or implementation-
level semantics is chosen: if a workflow specification contains for example a dead-
lock in one semantics, it also will have the deadlock in the other semantics and vice
versa. So we can use the requirements-level semantics for analysis of such proper-
ties with the assurance that the analysis result will also hold when the workflow
specification is executed under the implementation-level semantics.

Note that we do not specify how the environment behaves. In general, the
exact behaviour of the environment is unknown. In our model checking semantics,
we have simply assumed that the environment can behave in every possible way,
i.e., chaotically (see Chapter 5 for more details). For analysis purposes, we assume
that the environment behaves in a fair way; see Chapter 10.

Chapter 5

Two formal semantics of

activity diagrams

In the previous chapter, we informally introduced a requirements-level semantics
and an implementation-level semantics for activity diagrams. In this chapter we
define these two semantics formally. In the next chapter we will study similarities
and differences between the two semantics.

Section 5.1 defines the semantic structure that we use, a Clocked Transition
System. Section 5.2 defines the semantics of steps. As explained in the previous
chapter, a step is the basic unit of reaction. The step semantics is used in both
the requirements-level semantics and implementation-level semantics. Sections 5.3
and 5.4 define the requirements-level semantics and the implementation-level se-
mantics. Each semantics maps an activity hypergraph to a Clocked Transition
System. The requirements-level semantics has been implemented in a software
tool (see Chapter 10). We use a variant of the Z notation [148]; Appendix A
explains the notational conventions we use.

To stress the difference of both semantics with a Petri net token-game seman-
tics, at the end of this chapter we define a Petri net-like token-game semantics for
activity hypergraphs in an appendix.

Apart from the work that has been done on Clocked Transition Systems, men-
tioned below in Section 5.1, another source of inspiration has been the work of
Damm et al. [46], in which a formal semantics of Statemate statecharts is de-
fined in terms of a Clocked Transition System-like model. The layout of formulas
has been heavily influenced by the writings of Leslie Lamport [114].

5.1 Clocked Transition System

A transition system specifies states and transitions between these states. In this
thesis, states are assignments of values to variables. Such an assignment is called

56 Chapter 5 · Two formal semantics of activity diagrams

a valuation. A valuation maps a variable to a value. From now on, we will use
the term ‘state’ as a synonym for ‘valuation’. For example, if x is an integer, a
possible valuation σ could define σ(x) = 10. A transition from one state to another
represents that some variables are assigned a different value, i.e., the valuation
changes. Assume some variables Var and a (typed) data domain D. Formally, a
valuation σ is a total, type preserving mapping from Var to D:

σ : Var�D

The set of all valuations on set Var is denoted Σ(Var). A transition system whose
states are valuations is called a Kripke structure [42].

A Clocked Transition System (CTS) [109, 123] extends a transition system with
some extra variables, clocks, that measure the passage of time. Clocks increase
uniformly whenever time progresses. They can be reset in system transitions.
Clock variables always have type real.

There is one special clock variable MC , that represents the master clock, i.e.
the global time. The master clock MC can never be reset.

The other clocks are represented by set RT of clock variables, the Running
Timers. We will change the content of the set RT at run time by adding and
removing clocks. We therefore assume that there always “enough” timers available,
i.e. not in RT , such that they can be added to RT . The reservoir of available clocks
we call ClockReservoir .

Non-clock variables are called discrete variables in CTS jargon [109, 123]. They
are represented by a set Disc.

Formally, a Clocked Transition System (CTS) is a tuple (Var , −→ , σinit) where:

• Var = Disc ∪ RT ∪ {MC} is a finite set of variables,

• −→ ⊆ Σ(Var) × Σ(Var) is the transition relation,

• σinit ∈ Σ(Var) is the initial valuation.

Instead of writing (σ, σ′) ∈ −→ , we write σ−→σ′.
This definition differs slightly from the original definition of a Clocked Tran-

sition System [109, 123]. In the original definition, Clocked Transition Systems
have a constraint on all clocks, called the time progress condition or clock in-
variant, from which a special transition relation −→ tick is implicitly derived that
represents the passage of time. We will explicitly define a similar transition rela-
tion to represent the passage of time; in this definition we will enforce a constraint
similar to the clock invariant.

The transition relation −→ is partitioned in two sets, data transitions , in which
the clocks do not increase but can be reset and in which discrete variables can
change arbitrarily, and time transitions in which clocks increase but discrete vari-
ables do not change. So data transitions are instantaneous, but time transitions
are not. Note there is no transition possible in which both clocks are increased
and some discrete variables change value.

A path of a CTS is an infinite sequence π of valuations, π = σ0σ1 . . . satisfying:

5.2 · Step semantics 57

• Initiation: σ0 = σinit ,

• Consecution: for every i = 0, 1, . . ., the valuation σi+1 is a −→ successor of
σi , i.e., σi −→σi+1.

A run is a path satisfying

• Time divergence: The sequence σ0(MC)σ1(MC) . . . grows beyond any bound,
i.e., the value of MC increases beyond any bound.

Thus a run cannot have Zeno behaviour.

5.2 Step semantics

Computing a step. A node can become active or inactive during execution.
If it is entered, it becomes active: the system is in the corresponding state. If

the node is left, it becomes inactive: the system is not in the corresponding state.
Since activity diagrams allow for the specification of parallelism (fork and join),
more than one node can be active at the same time. All the active nodes together
represent the global state, called the configuration. Since we use activity diagrams
to model workflows, a configuration is a global state of the case (cf. page 12).

Formally, the configuration is a bag of nodes. The configuration is not a set,
because a node can be active more than once at the same time. Figure 5.1 shows an
example to illustrate this. If a customer wants some goods and not enough goods
are in stock, the company can already send the goods in stock to the customer
and produce the remaining goods in parallel. So Produce partial order and Take
partial order from stock are active at the same time. If Take partial order from stock
terminates, node Send partial shipment is entered. If next Produce partial order
terminates, node Send partial shipment is entered again. Then two instances of
node Send partial shipment are active at the same time, because the two shipments
are processed in parallel. Thus, the configuration is a bag of nodes, rather than a
set.

Let C denote the current configuration, C : bag Nodes and let E be the bag of
input events, E : bag Events , to which the system responds by taking a step.

Produce

partial order

Take partial order

 from stock

Send partial

shipment

e1:

Figure 5.1 Multiple simultaneous instantiations of Send partial shipment

58 Chapter 5 · Two formal semantics of activity diagrams

A hyperedge is relevant in C if its sources are contained in the current con-
figuration. A hyperedge can be relevant more than once, since its source nodes
can be more than once in the configuration. For example, if in Figure 5.1 the
current configuration C is [Send partial shipment, Send partial shipment], then two
instances of e1 are relevant. A hyperedge cannot be relevant more often than the
number of times any of its source nodes is in the configuration. The bag of relevant
hyperedges, relevant(C), is defined as follows:

relevant(C)
df

= { h �→ n ∈ HyperEdges × �1 |

settobag(source(h)) ⊑ C

∧ n = min({C ♯ s | s ∈ source(h) })

}

where ⊑ denotes bag containment, function settobag maps a set into an equivalent
bag:

settobag(S)
df

= {s �→ 1 | s ∈ S}

and, given a set X of natural numbers, min(X) returns the minimum number of
the numbers in X , and B ♯ el counts the number of times element el occurs in bag
B .

A hyperedge is enabled iff it is relevant, it is triggered by an event in the input
E , and its guard evaluates to true. A guard expression can contain variables. To
evaluate a guard expression, each variable must have a value. A guard is evaluated
in a valuation σ by substituting for every variable v its value σ(v). If g is true in
valuation σ, this is written as σ |= g. For example, if σ(x) = 10 then σ |= x ≥ 5
but σ
|= x = 8. The bag enabledσ(C ,E) of enabled hyperedges is defined formally
as follows.

enabledσ(C ,E)
df

= { h �→n ∈ HyperEdges × �1 |

h �→ n ∈ relevant(C)

∧ (event(h) � E ∨ event(h) = ⊥)

∧ σ |= guard(h)

}

where � is bag membership and as before ⊥ denotes the absence of a trigger event
(see page 34).

A special guard expression is the in predicate. Given a node n, in(n) abbrevi-
ates n � C .

Given a configuration C and a bag E of input events, a bag of hyperedges
H is defined to be consistent, written consistent(C ,E ,H), iff all hyperedges can
be taken at the same time. Some hyperedges cannot be taken at the same time,
because either (i) they leave some sources node more often than possible in the

5.2 · Step semantics 59

configuration, or (ii) some point-to-point event in E triggers more than one hy-
peredge in H .

consistent(C ,E ,H)
df

⇔ (⊎h�H settobag(source(h))) ⊑ C

∧ ∀ e � E • sendtype(e)=p2p ⇒

length({ h �→n ∈ H | event(h)=e }) ≤ E ♯ e

where ⊎ denotes bag union, p2p stands for point-to-point (see page 33) and where
length(B) counts the number of elements in bag B : X ��1:

length({x �→ n})
df

= n

length({x �→ n} ⊎ B)
df

= n + length(B)

Configuration C is interfering iff some of the activities enabled by the activity
nodes in C update the same variable v , so they conflict.

interfering(C)
df

⇔ ∀ a, b � C • a
= b ⇒ ¬ (a � b)

∧ a = b ⇒ C ♯ a = 1

A bag of hyperedges H is defined to be maximal iff for every enabled hyperedge
h, the bag H ⊎ [h] is inconsistent or the configuration reached next is interfering.
Notation [h] denotes a bag that only contains h. We will define function nextconfig
below.

maximalσ(C ,E ,H)
df

⇔ ∀ h � enabledσ(C ,E) • h
� H ⇒

(¬ consistent(C ,E ,H⊎[h])

∨ interfering(nextconfig(C ,H⊎[h])))

Finally, predicate isStep defines a bag of hyperedges S to be a step iff every
hyperedge in S is enabled, S is maximal and consistent, and the next configuration
is noninterfering. The two semantics that we will define in the next sections both
use the predicate isStep.

isStepσ(C ,E ,S)
df

⇔ S ⊑ enabledσ(C ,E)

∧ consistent(C ,E ,S)

∧ ¬ interfering(nextconfig(C ,S))

∧ maximalσ(C ,E ,S)

This definition of a step is declarative. Steps can be computed, given some
bag H of enabled hyperedges, by splitting H into maximal, consistent bags of
hyperedges that do not lead to interfering next configurations.

Effect of step on configuration. By taking a step, some nodes are left and
others are entered. Given a step H , the function left returns the bag of nodes that

60 Chapter 5 · Two formal semantics of activity diagrams

are left if all the hyperedges in H are taken and the function entered returns the
bag of nodes that are entered if all the hyperedges in H are taken:

left(H)
df

=
⊎

h�H

settobag(source(h))

entered(H)
df

=
⊎

h�H

settobag(target(h))

By taking a step the configuration changes. The function nextconfig returns the
next configuration, given a configuration C and a consistent bag of hyperedges H :

nextconfig(C ,H)
df

= (C � left(H)) ⊎ entered(H)

Example. Consider the example activity diagram in Figure 1.1 and its under-
lying activity hypergraph in Figure 3.6. As explained on page 40, we let activity
Check stock update the boolean variable insufficient stock, activity Check customer
the boolean variable customer ok, and Handle payment the boolean variable pay-
ment ok. Suppose the current configuration is [Check stock, Check customer]. In
order to give an impression of all the different execution possibilities in this config-
uration, we have listed in Table 5.1 for each of the relevant inputs that may occur,
the configuration that is entered subsequently by taking a step. The computed
step is implied by the reached configuration.

insufficient
stock

true true false false

customer ok true false true false

Terminating
activity node

Check stock [Check cus-
tomer, Make
production
plan]

[Check cus-
tomer, Make
production
plan]

[Check
customer,
WAIT-1]

[Check
customer,
WAIT-1]

Check customer [Check stock,
WAIT-2,
Send bill]

[Check stock,
WAIT-2, fi-
nal]

[Check stock,
WAIT-2,
Send bill]

[Check stock,
WAIT-2, fi-
nal]

Check stock &
Check customer

[Make pro-
duction plan,
WAIT-2,
Send bill]

[Make pro-
duction plan,
WAIT-2,
final]

[WAIT-1,
WAIT-2,
Send bill]

[WAIT-1,
WAIT-2,
final]

Table 5.1 Possible next configurations for the activity hypergraph in Figure 3.6.
final denotes one final node

5.3 · Requirements-level semantics 61

Note that in this configuration, given a certain input, there is only one possible
step. The only hyperedges that might be inconsistent represent different branches
of a decision. Every decision in the example is deterministic. Hence, no two edges
that might be inconsistent are enabled at the same time. Therefore, for each bag
of input events in this configuration, the calculated step is unique.

An example of a configuration in which, given a certain input, more than one
step is possible, is configuration [WAIT-3,WAIT-4]. If the input is [after(2 weeks),
receive payment], there are two possible steps, one entering node Send reminder and
the other one entering node Handle payment. The WFS chooses arbitrarily one of
these steps and takes it.

5.3 Requirements-level semantics

In the requirements-level semantics, we use the variables C , I , and LVar as discrete
variables for the Clocked Transition System (see Section 5.1):

Disc = {C , I } ∪ LVar

where, as before, C is the configuration, I is the current bag of input events, and
LVar is the set of local variables of the activity diagram.

We now explain how we model temporal events in the semantics. In UML,
there are two kinds of temporal events, after and when events. after events are
dealt with by timers in ClockReservoir , whereas when events are dealt with by the
master clock MC . Remember that in Chapter 3, we parametrised each after(texp)
expression with the hyperedge h it belongs to: after(texp, h). For each after(texp,h)
expression, a timer is started as soon as h becomes relevant; texp time units after
the timer was started a timeout is generated.

So, given a timer t belonging to expression after(texp,h), the deadline of t is
texp. Thus, we can associate with each timer a deadline, denoted by function
deadline : ClockReservoir −→�1. In order to make sure that there is no confusion
between two hyperedges with a similar after(texp) constraint, a timer always be-
longs to at most one hyperedge. Function hedge : ClockReservoir �HyperEdges
associates with every timer its unique hyperedge.

Due to unboundedness of a node, there does not have to exist an upper bound
on the number of times a hyperedge is relevant at the same time. For example, in
Figure 5.2 node WAIT is unbounded: there is no bound on the maximum number of

A
WAIT B

after(1 minute)

Figure 5.2 Example in which an unbounded number of timers is needed

62 Chapter 5 · Two formal semantics of activity diagrams

its active instances. So, the hyperedge leaving WAIT can be relevant unboundedly
often. Therefore, infinitely many timers are needed to generate all the relevant
timeouts. Hence, we assume that for every hyperedge enough timers, i.e. possibly
unboundedly many, are available.

Temporal when events occur modulo a certain period. Thus, each when event
w specifies a set of points in time at which the event occurs. Denote this set by
deadlines(w). The set of all when events also specifies a set of points, namely the
union of all the individual sets. Denote this set by deadlines(WhenEvents).

We now specify the transition relation −→ for the CTS in the requirements-
level semantics. The transition relation consists of seven transition relations. We
first give a brief explanation of each relation; then we will formalise each relation.

• relation −→ time represents the passage of time: timers are increased;

• relation −→ event represents the occurrence of some events;

• relation −→ retrieve lvar represents the retrieval of the current values of the
local variables. Retrieval is needed for evaluating guard conditions;

• relation −→ unstable tests whether the current valuation is unstable. A valu-
ation is unstable if there are some enabled hyperedges or the bag of input
events is filled with some events;

• relation −→ stable tests whether the current valuation is stable. If the valua-
tion is stable, some new events can occur;

• relation −→ step represents that a step is computed and taken according to
the step semantics outlined in Section 5.2. The configuration and the bag of
input events are updated;

• relation −→ end represents the termination of the case.

In a requirements-level run, transitions must occur in a certain order. Fig-
ure 5.3 specifies the order of the transition relations in the requirements-level
semantics. In the figure, a node represents a valuation. The initial valuation of
an activity diagram is unstable by definition: a step is taken in order to leave this
initial state and enter a stable state.

There is a loop of transitions −→ step and −→ unstable in Figure 5.3. So, more
than one step can be taken in response to some event occurrences. To be precise, if
some event occurs, the system state becomes unstable. The system then reacts by
taking a step and entering a new state. If this state is unstable, then another step
is taken. A maximal sequence of steps is called a superstep. The superstep begins
and ends in a stable state and all the intermediary states of the superstep are
unstable. As explained on page 50, the superstep can diverge; then the superstep
never ends in a stable state but keeps on taking steps and entering unstable states.
There may be more than one step possible in an unstable state; then one of these
possible steps is chosen and taken.

5.3 · Requirements-level semantics 63

time event retrieve_lvar

unstable

step

stable

end

unstable

end

Figure 5.3 Execution cycle in requirements-level semantics

Ideally, each workflow should terminate, i.e., reach the state in which the only
possible transition is −→ end . But there are some workflows which fail to do so,
either because they diverge, or because they deadlock. The verification approach
presented in Chapter 10 allows, among others, to detect such failures.

We now formally define each of these seven relations.
Relation −→ time defines the passage of time. Timers are increased by some

real number ∆. They cannot be increased beyond their deadline, because timeout
events must be generated on time.

σ −→ timeσ
′ df

⇔ ∃∆ ∈ R • ∆ > 0

∧ σ′ = σ[&t∈RT t/σ(t)+∆,MC/σ(MC)+∆]

∧ ∀ l ∈ deadlines(WhenEvents) •

σ(MC) < l ⇒ σ(MC)+∆ ≤ l

∧ ∀ t ∈ σ(RT) •

σ(t) < deadline(hedge(t)) ⇒

σ(t)+∆ ≤ deadline(hedge(t))

Valuation σ[x/val] assigns to variable x value val and to every other variable y,
y
= x , the value σ(y). Symbol & denotes a bulk update:

σ[&x∈X x/valx]
df

= σ[x1/val1, . ., xn/valn]

where n = #X .
The defined constraints upon clocks use a guard condition, modelled with the

implication (⇒), for the following reason. If a clock reaches its deadline, time can
no longer pass, because a timeout must be generated. But afterwards, in a later
time transition, if the clock has reached its deadline and has not been switched
off, it should be able to increase beyond any bound. The consequent of the guard
condition does not allow such an increase. That is why an implication is used.

64 Chapter 5 · Two formal semantics of activity diagrams

WAIT−1 WAIT−2
after(1 minute)[false]

Figure 5.4 Example in which timer cannot be switched off after timeout

Consider for example the activity diagram in Figure 5.4. Suppose the system
enters configuration [WAIT-1]. After 1 minute, time can no longer progress for
the corresponding timer and a timeout is generated (by relation −→ event specified
below). In the example, the edge leaving WAIT-1 can never be taken, because its
guard condition is false. Thus, node WAIT-1 cannot be left. The defined constraint
on clocks, including MC , in −→ time allows the timer to keep on running even after
it has reached its deadline. Thus, the constraint prevents that time stands still in
case some timers have reached their deadlines but are not switched off.

Relation −→ event defines that events occur. The only component that changes
is I , the bag of input events. The non-occurrence of events is excluded: no change
is not a change. The occurrence of events must satisfy some additional constraints,
that we will discuss below. Line by line, the definition says that a bag E of event
occurrences is allowed if and only if:

• the bag is not empty;

• a broadcast event can only occur once;

• only activity nodes that are in the current configuration can terminate;

• if the master clock MC has reached the deadline of a when event, the when
event is generated;

• if n after timers are the same, i.e. reach their deadline simultaneously, then
n after events should be raised. Two timers are the same if and only if they
belong to the same hyperedge h and have the same value, so they are started
at the same time. Note that by definition, timers that belong to the same
hyperedge have the same deadline.

σ −→ eventσ
′ df

⇔ ∃E : bag Events • σ′ = σ[I /E]

∧ E
= []

∧ ∀ e ∈ Events • sendtype(e) = bc ⇒ E ♯e ≤ 1

∧ ∀ t ∈ TerminationEvents • σ′(I)♯t ≤ σ(C)♯term(t)

∧ ∀we ∈ WhenEvents • σ(MC)∈deadlines(we) ⇔ we�E

∧ ∀ t ∈ σ(RT) • σ(t) = deadline(t) ⇒

E ♯ event(hedge(t)) = #same(t , σ)

where same(t , σ) = { t ′ ∈ σ(RT) | hedge(t) = hedge(t ′)

∧ σ(t) = σ(t ′) }

5.3 · Requirements-level semantics 65

Before the step can be computed, the valuation of the local variables in the
database must be known. The valuation of these variables may have changed, be-
cause some activities have terminated (recorded in I), or because the environment
has updated some variables. Relation −→ retrieve lvar specifies that the new values
of the local variables are retrieved. The valuation of variables that are observed
or updated in some running activity does not change.

σ −→ retrieve lvarσ
′ df

⇔ σ(C) = σ′(C)

∧ σ(I) = σ′(I)

∧ σ(MC) = σ′(MC)

∧ ∀ t ∈ RT • σ(t) = σ′(t)

∧ ∀ a∈AN • a�σ(C)�terminated(σ(C), σ(I)) ⇒

∀ v∈LVar • v∈Obs(a)∪Upd(a) ⇒ σ(v)= σ′(v)

where, given a configuration C and input I , the function terminated returns the
bag of terminated activity nodes of C .

terminated(C , I) = { a �→ n ∈ AN × �1 | ∃ e ∈ TerminationEvents •

a � C ∧ e � I ∧ a = term(e) ∧ n = I ♯ e }

where as before b � B is true iff b is member of bag B .
A valuation σ is stable iff there are no enabled hyperedges and the bag of input

events is empty:

σ |= stable
df

⇔ enabledσ(σ(C), σ(I)) = � ∧ σ(I) = []

Transitions −→ unstable and −→ stable test whether a valuation is unstable or stable.
Both transitions have lower priority than transition −→ end , defined below.

σ −→ unstableσ
′ df

⇔ σ = σ′ ∧ σ
|= stable ∧ σ−−→/ endσ′

σ −→ stableσ
′ df

⇔ σ = σ′ ∧ σ |= stable ∧ σ−−→/ endσ′

Predicate −→ end tests whether an activity diagram has ended.

σ −→ endσ′ df

⇔ σ = σ′

∧ σ(I) = []

∧ ∀n ∈ Nodes • n � σ(C) ⇒ n ∈ FN

Note that if σ−→ endσ′ then σ |= stable, because final nodes have no outgoing
hyperedges.

We next define the step transition relation −→ step . A step is computed as
described in Section 5.2. Line by line, the −→ step definition says that a step is
done between σ and σ′ iff:

• there is a step S (using the predicate isStep defined in Section 5.2);

66 Chapter 5 · Two formal semantics of activity diagrams

• the variables that are contained in the guards of the hyperedges in S are not
being updated in some non-terminated activity (otherwise an inconsistent
value could be read);

• there is a set T of timers that can be turned on;

• σ is then updated into σ′ by computing the next configuration if step S
is taken (using the function nextconfig defined in Section 5.2), putting the
generated events in I , initialising the new timers T , and updating RT by
removing the timers that have become irrelevant (set OffTimers) and adding
the new timers T .

σ −→ stepσ′ df

⇔ ∃S : bag HyperEdges • isStepσ(σ(C), σ(I),S)

∧ ∀ a ∈ AN • a � C � terminated(σ(C), σ(I)) ⇒

Upd(a) ∩ (
⋃

h�S

var(guard(h))) = �

∧ ∃T ⊆ ClockReservoir • NewTimers(σ(C),S , σ(RT),T)

∧ σ′ = σ[C/nextconfig(σ(C),S),

I /settobag(generated(S)),

&t∈T t/0,

RT/(σ(RT) \ OffTimers(σ(C),S , σ(RT)) ∪T)]

where var(g) denotes the variables guard g tests, given a bag of hyperedges, func-
tion generated returns the set of generated events. The function is defined recur-
sively.

generated([])
df

= �

generated([h] ∪ H)
df

= sendactions(h) ∪ generated(H)

We next define function OffTimers and predicate NewTimers . Function Off-
Timers returns all timers in RT that can be switched off because their corre-
sponding hyperedges are irrelevant in the next configuration, even though these
were relevant in the current configuration. Predicate NewTimers is true iff all
timers in T are off but can be turned on, i.e. they are not in RT , and moreover for
every instance of an hyperedge that becomes relevant there is a timer in T . The
definition of NewTimers requires that for every hyperedge there are always enough
new timers, i.e. non-running so not in RT , available. That is why we require that
for every hyperedge h there are unboundedly many timers belonging to h available
in ClockReservoir .

OffTimers(C ,S ,RT)
df

= { t ∈ RT | hedge(t) � oldrel }

where oldrel = relevant(C) � relevant(nextconfig(C ,S))

5.4 · Implementation-level semantics 67

NewTimers(C ,S ,RT ,T)
df

⇔

T ⊆ { t ∈ ClockReservoir | t
∈ RT ∧ hedge(t) � newrel }

∧ ∀ h � newrel • newrel ♯ h = #{ t ∈ T | hedge(t) = h }

where newrel = relevant(nextconfig(C ,S)) � relevant(C)

Initial valuation. In the initial valuation σ0, the configuration only contains
one copy of initial and the input is empty. There are no timers running, so set
RT is empty. The other variables, including master clock MC , must be initialised
with an appropriate value.

σ0 |= C = [initial]

∧ I = []

∧ RT = �

Execution algorithm. Figure 5.5 shows an informal execution algorithm for
UML activity diagrams. The execution algorithm models the same behaviour as
the formal requirements-level semantics defined above, but in a less formal way.
The algorithm may however be more intuitive and easier to understand than the
formal definitions above.

5.4 Implementation-level semantics

In the implementation-level semantics, the system reacts by taking an event from
the queue and processing it. To take a hyperedge with no trigger event, a spe-
cial event is needed in this semantics. A completion event is defined in the
implementation-level semantics of UML [150] as the event that is generated when
a wait state is entered1. Completion events should not be confused with termi-
nation events: the latter are defined by us and refer to activity nodes. There is
an ambiguity in the UML standard [150] concerning the triggering of completion
hyperedges, i.e. hyperedges that do not have an explicit trigger event. Can a com-
pletion event of node n only trigger hyperedges leaving n, or can a completion
event also trigger say a completion hyperedge that does not have n in its sources?
We assume here that a completion event can trigger arbitrarily many other com-
pletion hyperedges. This assumption can easily be adapted to the more strict case
where a completion event only triggers outgoing hyperedges of some specific node.

Let set CompletionEvents represent the set of completion events. The bijective
function comp gives for each completion event the wait state upon whose entry
the completion event is generated.

comp : CompletionEvents �WN

1According to UML 1.4, a completion event occurs when all entry actions and do-activities
in the current state have completed. In this thesis, however, wait states have no entry actions.
On page 26 we explain why we do not use do-activities.

68 Chapter 5 · Two formal semantics of activity diagrams

• Initialise;

• While (C
= final configuration) do

– Repeat until I
= []; // wait for input events

– Retrieve the valuation of the local variables;

– Take a superstep:

• Repeat

1. Compute a step;

2. Compute the internal events generated in the step;

3. Compute the next configuration;

4. Update C with the next configuration;

5. Empty the input I and fill it with the generated inter-
nal events;

6. Switch new relevant timers on and irrelevant timers off;

• Until I is empty and there are no enabled hyperedges;

• od ;

Figure 5.5 Execution algorithm for activity diagrams in requirements-level se-
mantics

We now turn to the variables used in the implementation-level semantics. There
are two differences with the variables used in the requirements-level semantics.
First, in the implementation-level semantics, we no longer have the bag I of input
events. Instead of I we have two new variables: a queue Q in which events that
occur are stored, and a variable re in which the router event, i.e. the single event
that the Router is currently processing, is stored.

The queue Q is filled by the environment. As in the requirements-level seman-
tics, at each moment in time a bag of events can occur (and as in the requirements-
level semantics one broadcast event cannot occur more than once at the same time).
According to the UML [150], events in Q are ordered, but the precise ordering used
is left open. The only ordering rule that is given is that that completion events
have priority over non-completion events. We will assume a FIFO order here but
any other order compatible with the UML ordering rule can be chosen. We there-
fore model a queue as a sequence of a bag of events, Q : seq bag Events . Events
occurring simultaneously are unordered: they belong to the same bag.

In order to give a simple formalisation of priority of completion events, we as-
sume that the completion events are kept in a separate queue Qcomp : seqComple-
tionEvents . This does not imply that an implementation of this semantics should

5.4 · Implementation-level semantics 69

store completion events in a separate queue!

Router event re either contains an event or is empty, re ∈ Events ∪{⊥}. Upon
the start of a reaction, the Router picks an event from Q and puts it in re. When
the Router finishes its reaction, the event is removed from re. So, if re = ⊥, the
router is not busy processing, otherwise it is.

A second difference is that the Router uses a variable S to store the current step
that is being taken. This variable is not used in the requirements-level semantics.

Summarising, we use the following variables for the Clocked Transition System
in the implementation-level semantics.

Disc = {C ,Q ,Qcomp, re,S } ∪ LVar

As before, C is the configuration and LVar is the set of local variables.

In the implementation-level semantics, the transition relation consists of twelve
transition relations that we describe next:

• relation −→ time represents the passage of time: timers are increased;

• relation −→ event represents the occurrence of some events;

• relation −→ pick event represents the Router picking an event from the queue
and putting it in re;

• relation −→ retrieve lvar represents the retrieval of the current values of the
local variables. Their current values are needed to evaluate guard conditions;

• relation −→ compute step represents the computation of a step. The computed
step is put in S ;

• next, a step is taken:

– relation −→ leave config represents the first part of taking a step by leav-
ing some state nodes;

– relation −→ remove offtimers represents that some timers are turned off
because they have become irrelevant;

– relation −→ generate comp represents the generation of completion events;

– relation −→ generate internal represents the generation of named internal
events in hyperedges;

– relation −→ add newtimers represents that some timers are turned on be-
cause they have become relevant;

– relation −→ enter config represents the entering of some state nodes;

• relation −→ end represents the termination of the case.

70 Chapter 5 · Two formal semantics of activity diagrams

pick_event retrieve_lvar compute_step

leave_config

remove_offtimers

generate_compgenerate_internal

add_newtimers

enter_configtimeevent

compute_step leave_config remove_off_timers

generate_comp

generate_internaladd_newtimers

end

enter_config

end

Figure 5.6 Execution cycle in implementation-level semantics

The order of these transition relations in the implementation-level semantics is
shown in Figure 5.6. As in the requirements-level semantics, the initial state of
the activity diagram is unstable by definition. It is left by computing and taking
a step.

The relation of the cycle in the implementation-level semantics (Figure 5.6)
with the cycle in the requirements-level semantics (Figure 5.3) is as follows. Tran-
sitions −→ compute step , −→ leave config through −→ enter config correspond to transi-
tion −→ step in the requirements-level semantics. Transition −→ pick event is not
present in the requirements-level semantics, as there is no Router in that latter
semantics. Requirements-level transitions −→ stable and −→ unstable are not present
at the implementation-level, as the queue is polled for events in that semantics.

Note there are two hyperedges in the figure (one with label enter config and one
with label end). The hyperedge labelled enter config creates two parallel branches.
The hyperedge labelled end joins the two parallel branches. In terms of the abstract
WFS architecture depicted in Figure 2.3 on page 17, the left branch is behaviour
of the environment and the Clock Manager, whereas the right branch is behaviour
of the Router. The queue is the buffer that connects these parallel components.

5.4 · Implementation-level semantics 71

Transition −→ time can never happen concurrently with a parallel transition.
Transition −→ event can happen concurrently with parallel transitions; for example,
−→ event and −→ pick event can happen simultaneously. This parallelism is not
reflected in the formal definition below, but can be easily added by introducing
some new relations that define these concurrent transitions, using the definitions
for the atomic transitions that we will specify below. For example, the concurrent
transition for the example above could be defined as:

−→ event/pick event
df

= −→ event � −→ pick event

which is equivalent to the following definition:

−→ event/pick event
df

= −→ pick event � −→ event

where � denotes relational composition, i.e. the intermediary state does not exist.
We do not define these concurrent transitions, in order to avoid a blow up of
definitions and notation. Nevertheless, the proofs in the next chapter, in which
we show the correspondence between both semantics, carry easily over to this
concurrent setting (due to the definition of relational composition �).

We now proceed to formally define the transition relations. Relation −→ time de-
fines the passage of time. This definition is the same as in the previous section
and therefore not shown here.

The −→ event is almost the same as the definition in the previous section. The
only differences with the previous definition are the first line, which specifies that
events are put at the end of the queue (� denotes concatenation on sequences),
and the fourth line, which deals with termination events. The behaviour specified
in the last line, that temporal events are input to the WFS, is behaviour of the
clock manager (cf. Figure 2.3).

σ −→ eventσ
′ df

⇔ ∃E : bag Events • σ′ = σ[Q/σ(Q) � E]

∧ E
= []

∧ ∀ e ∈ Events • sendtype(e) = bc ⇒ E ♯e ≤ 1

∧ ∀ t ∈ TerminationEvents •

(σ′(Q) ⊎ [σ′(re)])♯t ≤ σ(C)♯term(t)

∧ ∀we ∈ WhenEvents • σ(MC)∈deadlines(we) ⇒ we�E

∧ ∀ t ∈ σ(RT) • σ(t) = deadline(hedge(t)) ⇒

E ♯ event(hedge(t)) = #same(t , σ)

where same(t , σ) = { t ′ ∈ σ(RT) | hedge(t) = hedge(t ′)

∧ σ(t) = σ(t ′) }

Next, we model the behaviour of the Router. The Router first picks an event
from the queue and puts it in re. Completion events have priority over non-
completion events. As explained on page 68, completion events are stored in a

72 Chapter 5 · Two formal semantics of activity diagrams

separate queue Qcomp.

σ −→ pick eventσ
′ df

⇔ ∃ ec ∈Qcomp • σ′ = σ[Qcomp/σ(Qcomp) � [ec], re/ec]

∨ Qcomp = 〈〉 ∧ ∃ e ∈Q • σ′ = σ[Q/σ(Q) � [e], re/e]

Next, the Router retrieves the current valuation of the local variables from
the database system. As terminated activities do not update variables anymore,
new valuations of local variables can be retrieved when the corresponding activity
termination events are in the queue or processed by the router.

σ −→ retrieve lvarσ
′ df

⇔ σ(C) = σ′(C)

∧ σ(Q) = σ′(Q)

∧ σ(Qcomp) = σ′(Qcomp)

∧ σ(re) = σ′(re)

∧ σ(S) = σ′(S)

∧ σ(MC) = σ′(MC)

∧ ∀ t ∈ RT • σ(t) = σ′(t)

∧ ∀ a ∈AN •

a �C � terminated(σ(C), σ(Q) ⊎ [σ(re)]) ⇒

∀ v ∈LVar • v ∈Upd(a)∪Obs(a) ⇒ σ(v)= σ′(v)

Next, the Router computes a step and stores it in S . As in the requirements-
level semantics, the variables that are contained in the guards of the hyperedges
in S should not be updated in some non-terminated activity.

σ −→ compute stepσ′ df

⇔ ∃S ′ : bag HyperEdges • isStepσ(σ(C), [σ(re)],S ′)

∧ σ′ = σ[S/S ′]

∧ ∀ a ∈ AN •

a � C � terminated(σ(C), σ(Q) ⊎ [σ(re)]) ⇒

Upd(a) ∩ (
⋃

h�S ′

var(guard(h))) = �

Then, the Router starts taking S by first leaving the current configuration.

σ −→ leave configσ′ df

⇔ σ′ = σ[C/σ(C) � left(σ(S))]

Next, some timers are switched off, because their hyperedges have become
irrelevant.

σ −→ remove offtimersσ
′ df

⇔ σ′ =σ[RT/σ(RT)\OffTimers(σ(C), σ(S), σ(RT))]

The queue is updated with completion events.

σ −→ generate compσ′ df

⇔ σ′ = σ[Qcomp/σ(Qcomp) � comp event(σ(S))]

5.4 · Implementation-level semantics 73

where � denotes concatenation of sequences and function comp event returns the
bag of completion events that are generated if step H is taken:

comp event(H)
df

= { c �→ n ∈ CompletionEvents × �1 | ∃w ∈ WN •

w � entered(H) ∧ comp(c)= w ∧ n = entered(H)♯w }

Then the queue is updated with generated events.

σ −→ generate internalσ
′ df

⇔ σ′ = σ[Q/σ(Q) � generated(σ(S))]

Then, some new timers are switched on, because their hyperedges have become
relevant.

σ −→ add newtimersσ
′ df

⇔ ∃T ⊆ ClockReservoir •

NewTimers(σ(C), σ(S), σ(RT),T)

∧ σ′ = σ[RT/σ(RT) ∪ T ,

&t∈T t/0]

Finally, the Router enters the new configuration. Processing of the event in re
has completed, so the event is removed from re.

σ −→ enter configσ′ df

⇔ σ′ = σ[C/σ(C) ⊎ entered(σ(S)), re/⊥]

The systems ends iff the configuration only contains final nodes and the queue
is empty.

σ −→ endσ′ df

⇔ σ = σ′

∧ σ(Q) = []

∧ σ(Qcomp) = []

∧ σ(re) = ⊥

∧ ∀n ∈ Nodes • n �σ(C) ⇒ n ∈FN

Initial valuation. In the initial valuation σ0, the configuration only contains
one copy of initial and the input is empty. There are no timers running, so set
RT is empty. The other variables, including master clock MC , must be initialised
with an appropriate value.

σ0 |= C = [initial]

∧ Q = []

∧ Qcomp = []

∧ re = ⊥

∧ S = []

∧ RT = �

74 Chapter 5 · Two formal semantics of activity diagrams

Execution algorithm. Figure 5.7 shows an informal execution algorithm for
activity diagrams under the formal implementation-level semantics. As the previ-
ous algorithm, this algorithm is less precise than the formal semantics, but may
be more intuitive and easier to understand.

Run to completion. The OMG semantics [150] of UML statecharts (and thus
the OMG semantics of activity diagrams; see Chapter 9) satisfies run-to-completion,
meaning that an event can only be processed if processing of the previous event

• Initialise;

• While (true) do
// wait for input

events

receive input events;

• od;

• While (C
= final configuration) do

- If (Q
= []) then

1. Pick an event from Q and put it
in re;

2. Retrieve the valuation of the rele-
vant variables;

3. Compute a step and store it in S ;

// start taking S

4. Update C by removing the source
nodes of the hyperedges in S ;

5. Remove the timers that have be-
come irrelevant;

6. Generate completion events and
update Q with them;

7. Generate send actions and put
them in Q ;

8. Add some new timers because
their sources become relevant in a
moment;

9. Update C by adding the target
nodes of the hyperedges in S ;

// finish taking S

• od; // workflow terminated

• abort;

Figure 5.7 Execution algorithm for activity diagrams in implementation-level
semantics

5.4 · Implementation-level semantics 75

has fully completed. Since we do not have call events, this property is trivially sat-
isfied by our implementation-level semantics (and even by our requirements-level
semantics).

Appendix: Token-game semantics

In order to give an impression what a Petri net-like token-game semantics for
activity hypergraphs would look like, and how it differs from our two semantics,
we define a token-game semantics for activity hypergraphs in this section.

Under the token-game semantics, the only variable that is used is the configu-
ration.

Disc = {C}

The transition relation −→ is defined as follows.

σ −→σ′ df

⇔ ∃ h ∈ relevant(σ(C)) • σ′ = σ[C/nextconfig(σ(C), [h])]

Under the token game semantics, every relevant hyperedge h can be taken. It
is left undetermined when exactly h is taken: under this semantics, the system
itself, i.e., the WFS, decides when h is taken and does not look at its environment.
We think this does not accurately reflect WFS behaviour: as a WFS is reactive,
h should be taken when it is triggered by some change in the environment (see
Section 4.2).

In the initial valuation, the configuration only contains the initial node.

σ0 |= C = [initial]

Every configuration reachable under the requirements-level or implementation-
level semantics, is also reachable under the token-game semantics. A step under
either the requirements-level or implementation-level semantics can be simulated
under the token-game semantics by taking the hyperedges in the step one by
one (remember the hyperedges in a step are consistent, i.e., taking one of the
hyperedges in the step does not disable any of the other hyperedges in the step).
The reverse, however, does not hold. For example, in Figure 1.1 (Figure 3.6)
configuration [final, Send bill] is reachable under the token-game semantics, because
guard customer ok is not interpreted in this semantics. But configuration [final,
Send bill] is unreachable under both the requirements-level and implementation-
level semantics, since in both these semantics guard labels are interpreted.

In Chapter 8 we focus more in general on the differences between Petri nets
and our two semantics.

76 Chapter 5 · Two formal semantics of activity diagrams

Chapter 6

Relation between the two

formal semantics

In the previous chapter we have defined two execution semantics for activity di-
agrams. In this chapter we look at differences and similarities between these two
semantics. The goal is to identify a class of activity diagrams that behave similarly
under both semantics. Based on this study, we will identify in Chapter 10 a class
of functional requirements that are insensitive to the particular semantics that
is used, requirements-level or implementation-level. An insensitive requirement
holds under the requirements-level semantics iff the requirement holds under the
implementation-level semantics. To verify an insensitive requirement, we will use
the requirements-level semantics. The obtained verification result carries over to
the implementation-level semantics, even though the requirements-level semantics
is considerably more easy to verify than the implementation-level semantics.

We begin by observing that, at a certain level of abstraction, the requirements-
level semantics (RLS) and implementation-level semantics (ILS) behave similarly.
Consider for example the workflow of the production company (see Figure 1.1).

If the system is in configuration [Receive order] and activity node Receive order
terminates, under both the RLS and ILS the next configuration will be [Check
stock, Check customer]. But the moment in time at which this next configuration
is reached differs in both semantics: under the RLS the next configuration is
entered immediately whereas under the ILS the next configuration is entered after
a finite, non-zero amount of time. In other words, the RLS and ILS have similar
behaviour to the extent that the result of a reaction to some input events is the
same. But each of the semantics may reach this result in its own way.

Unfortunately, there are activity diagrams1 that have different observable be-
haviour under the RLS and ILS. In the first part of this chapter, we will list several

1We use the term ‘activity diagram’ even though we actually mean an activity hypergraph.
This is not harmful, however, as each activity diagram maps into a unique activity hypergraph.

78 Chapter 6 · Relation between the two formal semantics

issues in which an activity diagram under the RLS has different behaviour than
the same activity diagram under the ILS. Since our aim is to find common be-
haviour for both semantics, we must resolve these issues. There are three possible
solutions.

• Put some extra constraints on the environment, so that activity diagrams
behave the same according to both semantics. We label such a solution ‘env’.

• Put some extra constraints on activity diagrams, so that activity diagrams
not satisfying the constraints, are ruled out. We prefer constraints on the
syntax of activity diagrams, but the constraints can also refer to the seman-
tics of activity diagrams. We label such a solution ‘act’.

• Put some extra constraints on the defined semantics, so that activity dia-
grams behave the same according to both semantics. So the semantics is
changed. We label such a solution ‘sem’.

We prefer the second solution. The first and third solution would require additional
constraints on environment and semantics, whereas the focus is just to look at
similar requirements in both semantics, not to redefine the semantics or put extra
constraints upon the environment! Nevertheless, in some cases it is impossible to
define extra constraints on activity diagrams; then we have to resort to defining
an extra constraint on the environment or semantics.

To clarify the presentation, we introduce an intermediate level between the
requirements-level and the implementation-level semantics, namely a restricted
version of the implementation-level semantics. In this restricted version of the
ILS, external events only occur when the current state is stable: the queue is
empty and the Router is not busy processing an event. We call this restricted
version the stable implementation-level semantics (stable ILS for short).

The structure of this chapter is as follows. Section 6.1 discusses the differences
between the RLS and stable ILS on the one hand, and between the stable ILS and
ILS on the other hand. We list several issues in which the behaviour of activity
diagrams under the RLS semantics is different from the behaviour under the ILS.
For each issue, we will number the solution we choose for resolving the difference in
behaviour. The preferred solution is to formulate a constraint to rule out activity
diagrams in which these differences occur, but sometimes this is impossible and
we have to put a constraint on the environment or semantics. In Section 6.2 we
prove that activity diagrams satisfying these constraints indeed behave similarly
in both the RLS and ILS. Section 6.3 winds up with conclusions.

6.1 Differences between the two semantics

6.1.1 RLS and stable ILS

Updating of variables by environment. Because in the RLS events are pro-
cessed immediately, the valuation of a guard at the time the event occurs and

6.1 · Differences between the two semantics 79

A

WAIT−1

WAIT−2
[else]

[ok]

A updates ok

WAIT−3 WAIT−4
e

Figure 6.1 Example for issue “Updating of variables by environment”

at the time the event is processed is the same. In the ILS and stable ILS, after
an event has occurred and before the event is processed, the environment may
change the valuation of a guard. The same activity diagram can therefore behave
differently in the requirements-level and implementation-level semantics.

For example, suppose that in Figure 6.1 the system is in configuration [A,WAIT-
3] and activity node A terminates and e occurs at the same time. Moreover, A
has set ok to true. Then under the RLS, the only possible next configuration is
[WAIT-1,WAIT-4]. In the ILS, one event at a time is processed. Suppose e is
processed before the activity termination event. While e is being processed, the
environment may set ok to false. Since A has terminated, the variable ok is no
longer locked in the database system. So in that case, under the ILS configuration
[WAIT-2,WAIT-4] is entered. This configuration cannot be reached under the RLS
in this particular example.

We solve this difference in behaviour between RLS and stable ILS by forbidding
the environment to update case attributes (control data). Note that this difference
occurs in every activity diagram in which activities update variables that occur
in some guard conditions of the activity diagram. It is therefore not feasible to
define constraints on activity diagrams: those would rule out almost every activity
diagram.

C1 The environment does not update case attributes (control data). (env)

Locking of variables. Before a relevant hyperedge can be taken, its guard needs
to be evaluated. A guard cannot be evaluated if it refers to some variable v that
is currently being updated in some activity. In that case, we say v is locked . If
the guard refers to a variable that is locked, the activity diagram may behave
differently under RLS and ILS.

For example, in Figure 6.2, variable ok is tested in edge e1 that is in a thread
parallel with activities A and B that both update ok. Since A and B both update
ok, they are interfering. Edge e1 can only be taken if variable ok is not locked, in
other words, if A and B are not active.

Suppose the current configuration is [A,WAIT-2,WAIT-4] and node A terminates

80 Chapter 6 · Relation between the two formal semantics

A

A updates ok

WAIT−2 WAIT−3
e1:e[ok]

B

B updates ok

WAIT−4
f

WAIT−1

Figure 6.2 Example for issue “Locking of variables”

and e and f occur. Under the RLS, the only possible next configuration is [WAIT-
1,WAIT-3,B]. Since activity A is not running anymore, edge e1 is always taken in
this particular case. Under the ILS, suppose f is processed before e. Then node B
is entered and activity B becomes active before e1 is taken. If B is active, however,
variable ok becomes locked. Thus, edge e1 cannot be taken anymore. So, then the
next configuration under the ILS is [WAIT-1,WAIT-2,B]; this configuration is not
reachable under the RLS for this particular input.

The difference between RLS and ILS in this particular example is due to the
parallel event processing in the RLS and the single-event processing in the ILS.
Due to single-event processing, in the ILS a variable can become locked after
one (external) event has been responded to, whereas under the RLS the variable
becomes locked after all (external) events have been responded to.

We avoid this difference by putting the following constraint on activity dia-
grams.

C2 If the guard of some hyperedge h refers to a variable that is up-
dated in some activity A and node A is not source of h, then
hyperedge h is not in parallel with node A, i.e., there does not
exist a configuration C such that settobag(source(h) ∪ {A}) ⊑ C.

(act)

This constraint cannot be checked on the syntax of activity diagrams. Instead,
it presupposes a semantics of activity diagrams. So we would have to check the
constraint in both the RLS and ILS. But the purpose of this whole exercise is to
avoid using both semantics, in particular the ILS semantics!

Fortunately, we can use the Petri net token-game semantics on hypergraphs,
defined on page 75, to compute all the configurations that are possible in theory.

6.1 · Differences between the two semantics 81

(Then the labels of the hyperedges are not interpreted.) Some of these configu-
rations may not exist under the RLS or ILS. But every configuration existing in
both RLS and ILS can be computed using the Petri net token-game semantics. If
the check using the token-game semantics fails, the constraint may still hold un-
der both RLS and ILS, because the violating configuration perhaps does not exist
under these semantics. Thus, verification of the constraint using the token-game
semantics is sufficient but not necessary.

Sometimes, by visual inspection of the syntax one can analyse whether or not
the activity diagram satisfies the constraint. For example, in Figure 1.1 (Fig-
ure 3.6) it is immediately clear that the hyperedges leaving node WAIT-1 and
WAIT-2 are only enabled once both activities Check stock and Check customer
have completed. So, this activity diagram satisfies above constraint.

Finally, note that if the activity diagram satisfies this constraint, the guard of
a relevant hyperedge can always be evaluated, because the variables it refers to
are never locked.

Internal events. Since events are processed in parallel in the RLS, events gen-
erated by the system (internal events) may have a different effect under the RLS,
compared to the ILS.

For example, consider the activity diagram in Figure 6.3. Suppose the current
configuration is [WAIT-1,WAIT-3,WAIT-5] and events e and g happen simultane-
ously. Under the RLS, the reaction ends in configuration [WAIT-2,WAIT-4,WAIT-
6]. Edge e1 is taken, because f is generated in the previous step, whereas edge e2 is
not taken, because its trigger event h is already removed from the input when the
system reaches [WAIT-6]. Under the ILS, however, it is possible that the reaction
ends in configuration [WAIT-2,WAIT-4,WAIT-7], namely if e is processed before g
and g before f. Then both edge e1 and edge e2 are taken.

We circumvent this difference in behaviour by putting the following constraint
on the syntax, which says that events generated in some thread are expected in
some other parallel thread. First some terminology: a hyperedge h makes another
hyperedge h′ (directly) relevant if h’s targets and h′’s sources overlap. A hyperedge
h makes another hyperedge h′ indirectly relevant, if h makes another hyperedge

WAIT−1 WAIT−2
e/f

WAIT−5 WAIT−6 WAIT−7
e1:f

WAIT−3 WAIT−4
g/h

e2:h

Figure 6.3 Example for issue “Internal events”

82 Chapter 6 · Relation between the two formal semantics

h′′ directly relevant, and h′′ either makes h′ directly relevant or indirectly relevant.

C3 A hyperedge triggered by an internal event i is only made (directly)
relevant by another hyperedge that also makes the hyperedge that
generates i (in)directly relevant.

(act)

The constraint is sufficient to rule out activity diagrams with different be-
haviour w.r.t. internal events. The constraint rules out the activity diagram in
Figure 6.3: edge e2 violates the rule. It is made relevant by e1, but e1 does not
make (in)directly relevant an edge that generates h.

The in predicate. If the in predicate is used, an activity diagram may behave
differently under the RLS and stable ILS. For example, consider the activity dia-
gram in Figure 6.4. Suppose that the current configuration is [A,WAIT-2] and A
terminates and e occurs simultaneously. Then under the RLS the next configu-
ration is always [WAIT-1,WAIT-3]. When e occurs, the current configuration still
contains A, so predicate in(A) is true. But under the stable ILS, it is possible that
node A’s termination event is processed before e. Then predicate in(A) is false
when e is processed. Consequently, configuration [WAIT-1,WAIT-4] is reached.
Thus, the RLS and stable ILS behave differently in this example.

We can rule out such activity diagrams by forbidding to use the in constraint.

C4(a) The in predicate is not used. (act)

We also formulate a weaker constraint, however, that will turn out to be useful
for showing that it is possible in the stable ILS to mimic the behaviour of the RLS.
The observation we make is that by choosing the right order of event processing,
the stable ILS can behave similarly to the RLS even when the in predicate is
used. For example in Figure 6.4 as described above, if e is processed before A’s
termination event, the RLS and ILS behave similarly. For simplicity, we assume
that the in predicate is only used in guards of hyperedges triggered by an external
event, i.e., not by a completion or internal event. If either h or h′’s trigger event is

A
e1:

WAIT−2 WAIT−3
e2:e[in(A)]

WAIT−1

WAIT−4
e3:e[!in(A)]

Figure 6.4 Example for issue “The in predicate”

6.1 · Differences between the two semantics 83

a completion or internal event, the ILS can no longer influence the order of event
processing, because these events have priority of external events (see page 88).

We now formulate a constraint that guarantees that the right order can be
chosen. A hyperedge h must be taken before another hyperedge h′, written h ≺ h′,
iff there is a hyperedge triggered by event(h) and with guard containing in(n), and
there is a hyperedge triggered by event(h′) that either leaves n or enters n. If
h ≺ h′, taking h′ may change the truth value of the guard of h. For example in
Figure 6.4, taking e1 the truth values of the guards of e2 and e3 change. So e2 ≺ e1

and e3 ≺ e1.
Now, if there is no cycle in the relation ≺, it is always possible to choose an

appropriate order of event-processing in the stable ILS, namely by taking into ac-
count the relation ≺: if h ≺ h′ then event(h) should be processed before event(h′).

C4(b) The in predicate is only used in guards of hyperedges triggered by
an external event. There is no cycle in the relation ≺.

(act)

Conflicting hyperedges. We say that a hyperedge h conflicts with another hy-
peredge h′ iff h and h′ have some sources in common, i.e., source(h)∩source(h′)
=
�. Activity diagrams with conflicting hyperedges may have different behaviour
under the RLS and stable ILS. We rule out such activity diagrams by defining
constraints on conflicting hyperedges that every activity diagram must satisfy.

First, we define some terminology for hyperedges (cf. Table 3.1 on page 33).

• a completion hyperedge is a hyperedge that has no trigger event. A comple-
tion hyperedge is implicitly triggered by completion event under the ILS.

completion(h)
df

⇔ event(h) = ⊥

• an internal hyperedge is a hyperedge that is triggered by an internally gen-
erated named event.

internal(h)
df

⇔ event(h) ∈ NamedInternalEvents

• an external hyperedge is a hyperedge that is triggered by an external event
in the environment of the WFS. Every hyperedge that is not internal and
not completion is external (see Table 3.1).

external(h)
df

⇔ ¬ completion(h) ∧ ¬ internal(h)

Table 6.1 defines the constraints on conflicting hyperedges and Table 6.2 shows
what constraints apply to what hyperedges. We motivate each constraint by a
small activity diagram that does not satisfy the constraint, shown in Figure 6.5.

Constraint C5 rules out the activity diagram in Figure 6.5(a). In the corre-
sponding activity hypergraph, from node WAIT-2 two conflicting hyperedges leave

84 Chapter 6 · Relation between the two formal semantics

C5 If two completion hyperedges are conflicting, they have the same
sources.

(act)

C6 A completion hyperedge is not conflicting with an internal hyper-
edge.

(act)

C7 A completion hyperedge is not conflicting with an external hyper-
edge.

(act)

C8 An internal hyperedge is not conflicting with another internal hy-
peredge.

(act)

C9 An internal hyperedge is not conflicting with an external hyper-
edge.

(act)

Table 6.1 Definition of constraints on conflicting hyperedges

completion internal external

completion C5 C6 C7
internal C6 C8 C9
external C7 C9

Table 6.2 Relation between constraints and hyperedges

and also from node WAIT-4 two conflicting hyperedges leave. In Figure 6.5(a), if
in configuration [WAIT-1,WAIT-3] events e and f occur simultaneously, then under
the RLS it is possible that activity B is started. Whereas under the stable ILS
activity B is never started and activity A is always started. Under the stable
ILS, if e is processed before f, then first node WAIT-1 is left and node WAIT-2 is
entered. A completion event for WAIT-2 is generated. Since completion events
have priority over non-completion events, the enabled edge leaving WAIT-2 and
entering WAIT-5 is taken and node WAIT-5 is entered. After event f has been pro-
cessed and all completion events, finally configuration [A] is reached. By similar
reasoning, it can be shown that if event f is processed before e, also configuration
[A] is reached.

Constraint C6 rules out the activity diagram in Figure 6.5(b). In Figure 6.5(b),
suppose the current configuration is [A,WAIT-2] and that activity node A termi-
nates. Under both the RLS and ILS, a step is taken and the next configuration
is [WAIT-1,WAIT-2], and internal event done has been generated. Then under the
RLS two steps are possible, one in which the next configuration is [WAIT-4], and
another one in which the next configuration is [WAIT-1,WAIT-3]. Whereas under
the ILS, only one step is possible, namely the one in which configuration [WAIT-4]
is reached, because completion events have priority over non-completion events.

Constraint C7 rules out the activity diagram in Figure 6.5(c). In Figure 6.5(c),
suppose the current configuration is [WAIT-1,WAIT-4] and event e and f occur at
the same time. Then under the RLS, the next configuration is [WAIT-2,WAIT-5].
The corresponding state is unstable, and next configuration [WAIT-3] is reached.

6.1 · Differences between the two semantics 85

WAIT−1 WAIT−2
e

WAIT−3 WAIT−4
f

WAIT−6

WAIT−1 WAIT−2
e

WAIT−5

WAIT−1
/done

WAIT−2

WAIT−3

done

A

WAIT−2 WAIT−3
e

WAIT−4

f

A B

C

/e

D
/f

B

WAIT−5
A

WAIT−1

WAIT−1
/done

WAIT−2 WAIT−3
done

WAIT−4

e

A

WAIT−4
f

WAIT−6

WAIT−3

WAIT−4

WAIT−5

(a)

(b)

(c)

(d)

(e)

Figure 6.5 Motivating examples for the constraints in Table 6.1

86 Chapter 6 · Relation between the two formal semantics

Under the stable ILS, either e or f is processed first. If f is processed before e,
configuration [WAIT-1,WAIT-5] is reached. Then a completion event is generated
and configuration [WAIT-6] is reached. So, the behaviour of the activity diagram
under the ILS is different from its behaviour under the RLS.

Constraint C8 rules out the activity diagram in Figure 6.5(d). In Figure 6.5(d),
suppose the current configuration is [A,C,WAIT-2] and activity nodes A and C
terminate at the same time. Then under the RLS, internal event f is generated
before e is generated. So node WAIT-4 is entered under the RLS. Under the stable
ILS, if the termination event of A is processed before the termination event of C,
then internal event e is processed before f, since completion events (in this case the
completion event of WAIT-1) have priority over non-completion events. So under
the stable ILS, it is possible that node WAIT-3 is entered, rather than WAIT-4.

Constraint C9 rules out the activity diagram in Figure 6.5(e). In Figure 6.5(e),
suppose the current configuration is [A,WAIT-2] and activity node A terminates
at the same time as e occurs. Under the RLS, the next configuration is always
[WAIT-1,WAIT-4]. Under the stable ILS, suppose activity node A’s termination
event is processed before e. On page 88 we explain that internal events must have
priority over external events in the (stable) ILS. So, under the stable ILS the next
configuration can be [WAIT-1,WAIT-3]. This configuration is unreachable under
the RLS in this case.

Duplicate conflicts. In an activity diagram, the same conflict between some
hyperedges may have be to be resolved twice at the same moment. Then there are
two groups of inconsistent, i.e. conflicting, hyperedges and the hyperedges in each
group have similar trigger events. Figure 6.6 shows an example. Formulated more
precisely, an activity diagram has a duplicate conflict , if there are two different
groups G1,G2 of hyperedges such that:

• all the hyperedges in the two groups can be enabled at the same time;

• hyperedges within a group are inconsistent (conflicting);

• hyperedges between the groups are consistent (non-conflicting);

• the enabling trigger events and guard conditions of the hyperedges in G1

also enable the hyperedges in G2.

For example, the activity diagram in Figure 6.6 has duplicate conflicts, since
nodes WAIT-1 and WAIT-4 are in parallel and the two hyperedges with trigger e
(f) belong to different groups (group {e1,e2} and group {e3,e4}).

The behaviour of activity diagrams that have duplicate conflicts is different
under the RLS and ILS due to difference between parallel (RLS) and single-event
processing (ILS). For example, in Figure 6.6, suppose in configuration [WAIT-
1,WAIT-4] events e and f occur at the same time. Under the RLS, a possible step

6.1 · Differences between the two semantics 87

WAIT−1

WAIT−2

WAIT−3

WAIT−5

WAIT−6

WAIT−4

e1:e

e2:f

e3:e

e4:f

Figure 6.6 An example of a duplicate conflict

is [e1,e4]. This step is impossible under the ILS, due to the single-event processing.
If e is processed first, the only possible step is [e1,e3]. If f is processed first, the
only possible step is [e2,e4]. Note however that both these steps are also possible
under the RLS.

Assuming absence of duplicate conflicts in an activity diagram, we prove that
single-event processing does not impact the computation of steps: the union of
the steps that are computed for each event separately (ILS), equals a step that is
computed when all events are considered at the same time in parallel (RLS).

Theorem 6.1 Assume an activity diagram does not have duplicate conflicts.
Take an arbitrary configuration C and input I = [e1, . ., en].

Let S be a step such that isStep(C , I ,S). For each input event e � I , step Se

is defined as Se = S ∩ Enabled(C , [e]).

Then S =
⋃

e�I Se , and for all e � I , isStep(C , [e],Se) holds.

Proof. Straightforward checking of definition of step. �

If an activity diagram did have duplicate conflicts, we would not be able to
prove such a theorem. We gave a counterexample above that we explain now in
more detail. In Figure 6.6 if C = [WAIT-1, WAIT-4] and I = [e, f] then a possible
step S = [e1, e4]. Denote by Se = S ∩ Enabled(C , [e]) = [e1]. But step Se does
not satisfy isStep([h1],C ,Se), because e3 is not part of Se.

C10 The activity diagram does not have duplicate conflicts. (act)

Events have extra effects. Due to single-event processing, in the (stable) ILS
events can have unexpected extra effects. Consider for example the activity dia-
gram in Figure 6.7. Suppose in configuration [A] that activity node A terminates
and event e occurs simultaneously. Then under the ILS, it is possible that config-
uration [WAIT-2] is reached, namely if A’s termination event is processed before e.

88 Chapter 6 · Relation between the two formal semantics

A WAIT−1 WAIT−2
e

Figure 6.7 Event e has extra effect

But under the RLS, node WAIT-2 is never reached in this particular case. So
under the ILS event e has an extra effect. We conclude that although under the
ILS the same hyperedges as under the RLS are taken in response to some event
occurrences, under the ILS sometimes some extra hyperedges are taken.

To take these extra hyperedges under the RLS, some events must be regen-
erated. This puts a constraint upon the environment: it should be cooperative,
i.e., regenerate some external events if needed. Note that an activity termination
event does not have this problem, as such an event always triggers an edge that is
already relevant when the event occurs.

C11 The environment is cooperative. (env)

Extra effects of an event cannot be avoided by imposing constraints upon
activity diagrams. Such constraints would rule out almost every activity diagram
that has a named event in it; for example the one in Figure 6.7.

Constraint C11 shows the inequivalence of RLS and ILS. We will only use it
to prove one theorem (Theorem 6.2(ii)), and then drop it. Then we will prove a
weaker theorem (Theorem 6.7) for which we do not need to use this constraint.

6.1.2 Stable ILS and ILS

Atomic reaction. In the RLS, a reaction is atomic: the complete reaction to
an event, i.e., the chain of steps, is immediately computed and executed. In
particular, next event occurrences cannot interfere with the current reaction. This
is simulated under the stable ILS by the constraint that the next events occur
only when the current reaction has completed. By contrast, in the ILS, a reaction
does not have to be atomic: next event occurrences can interfere with the current
reaction.

Consider for example the activity diagram in Figure 6.8. Suppose the system
is in configuration [A,WAIT-4,WAIT-7] and activity node A terminates and subse-
quently event g occurs. Under the RLS and stable ILS, the first reaction ends in
stable configuration [WAIT-2,WAIT-5,WAIT-7]. (Under the stable ILS, we know
that g can only occur once the previous reaction is finished.) If subsequently g
occurs, configuration [WAIT-3,WAIT-6,WAIT-8] is entered. Under the ILS, how-
ever, g may occur while the system is busy reacting to A’s termination event. For
example, g may occur before f has been generated. Then, assuming a FIFO order
on events, g is processed before f, and consequently after all events, including f,

6.1 · Differences between the two semantics 89

WAIT−1
/f

WAIT−4 WAIT−5
f

WAIT−7 WAIT−8
g

WAIT−6
g

WAIT−2 WAIT−3
g

A

Figure 6.8 Example for issue “Atomic reaction”

have been processed, configuration [WAIT-2,WAIT-5,WAIT-8] is entered. So then
nodes WAIT-3 and WAIT-6 are not entered under the ILS, whereas they are entered
under the stable ILS. Note that even though the completion event of WAIT-4 may
be generated after event g occurs, the completion event is always processed before
g, due to the priority of completion events over non-completion events.

We conclude that the example activity diagram behaves differently under the
RLS and stable ILS. The difference occurs because under the ILS g is processed
before the reaction to A’s termination event has been completed.

The easiest way to solve the problem sketched above is to assume that internal
events have priority over external events, just like completion events have priority
over non-completion events. Then the reaction to an external event, which includes
generating internal events and reacting to these events, is completed before the
next external event is processed. A constraint on activity diagrams would rule out
almost every activity diagram. A constraint on the environment would also solve
the problem, but would unnecessarily restrict the environment in its behaviour.

C12 In the ILS, internal events have priority over external events. (sem)

Our implementation-level semantics, given in Chapter 5, can be easily changed
to satisfy this property, but we will not do this here.

Locking of variables. On page 79 we showed that locking of variables may lead
to different behaviour under RLS and stable ILS. Now we show that it also may
lead to a different behaviour under stable ILS and ILS.

Under the RLS and stable ILS, if the trigger event of a hyperedge h occurs, h is
not taken if one of the variables that h’s guard refers to is locked. Then h’s guard
cannot be evaluated. In the ILS, however, h’s trigger event may be processed at
a later time, when the activity that prevented h’s guard from being evaluated has
already terminated. Then h’s guard can be evaluated and h can be taken, even
though at the time the trigger event occurs, h’s guard could not be evaluated.
This is impossible under the stable ILS, because in that semantics the assumption

90 Chapter 6 · Relation between the two formal semantics

A

WAIT−1

WAIT−2
[else]

[ok]

A updates ok

WAIT−3 WAIT−4
e[ok]

WAIT−5 WAIT−6
f

Figure 6.9 Example for issue “Locking of variables”

is made that events, including termination events, only occur when the system has
completed its previous reaction.

For example, in Figure 6.9, suppose e and f happen at the same time while
the system is in configuration [A,WAIT-3,WAIT-5]. Then under the stable ILS,
the system reaches configuration [A,WAIT-3,WAIT-6]. Node WAIT-4 is not entered
because variable ok is updated in activity A. Under the ILS, suppose f is processed
before e. While f is processed, activity A can terminate and ok can become true.
If next e is processed, node WAIT-4 is entered. So for this activity diagram its
behaviour under the RLS is different from its behaviour under the stable ILS and
RLS.

On page 80 we already defined a constraint on activity diagrams that rules out
activity diagrams exhibiting this difference in behaviour in RLS and stable ILS.

Overflowing of ILS queue. So far, we have not put any constraints upon the
queue. In theory, it is possible that in the ILS the queue gets overflowed, either
because of its limited capacity or because the Router is too slow to keep in pace
with changes in the environment. We here assume that the queue does not get
overflowed.

C13 The queue in the ILS does not get overflowed. (env)

This is on the one hand a constraint on the environment: no infinitely many
events occur in a finite time interval. On the other hand, it is also a constraint
upon the WFS itself: the Router must not be too slow with respect to the pace
of change of the environment. Thus, together the environment and WFS must be
able to cooperate such that the environment is not too fast for the WFS and the
WFS is not too slow for the environment. This resembles the issue of flow control
in computer networks [149].

6.1 · Differences between the two semantics 91

FIFO queue. To ensure that an activity diagram behaves the same under the
ILS and stable ILS (and RLS), the queue in the ILS needs to have a FIFO ordering.
If no FIFO ordering is used, under the ILS an event that happens after some other
event e, can be processed before e. Such behaviour is impossible under the RLS
and stable ILS.

C14 The queue in the ILS uses a FIFO (First-In-First-Out) ordering. (env)

Summary of constraints. Table 6.3 summarises the constraints defined in this
section. Constraints C15, C16 and C17 are treated in Sections 6.2.3 and 6.2.4.

C1 The environment does not update case attributes (control data). (env)
C2 If the guard of some hyperedge h refers to a variable that is

updated in some activity A and node A is not source of h, then
hyperedge h is not in parallel with node A, i.e., there does not
exist a configuration C such that settobag(source(h)∪ {A}) ⊑ C.

(act)

C3 A hyperedge triggered by an internal event i is only made (di-
rectly) relevant by another hyperedge that also makes the hyper-
edge that generates i (in)directly relevant.

(act)

C4(a) The in predicate is not used. (act)
C4(b) The in predicate is only used in guards of hyperedges triggered

by an external event. There is no cycle in the relation ≺.
(act)

C5 If two completion hyperedges are conflicting, they have the same
sources.

(act)

C6 A completion hyperedge is not conflicting with an internal hyper-
edge.

(act)

C7 A completion hyperedge is not conflicting with an external hyper-
edge.

(act)

C8 An internal hyperedge is not conflicting with another internal hy-
peredge.

(act)

C9 An internal hyperedge is not conflicting with an external hyper-
edge.

(act)

C10 The activity diagram does not have duplicate conflicts. (act)
C11 The environment is cooperative. (env)
C12 In the ILS, internal events have priority over external events. (sem)
C13 The queue in the ILS does not get overflowed. (env)
C14 The queue in the ILS uses a FIFO (First-In-First-Out) ordering. (sem)
C15 An external broadcast event triggers at most one hyperedge. (act)
C16 A wait hyperedge does not have overlapping sources and targets. (act)
C17 An external event does not imply another external event. (act)

Table 6.3 Summary of constraints

92 Chapter 6 · Relation between the two formal semantics

6.2 Similarities between the two semantics

6.2.1 RLS and stable ILS

The following theorem relates the requirements-level and stable implementation-
level semantics. The theorem states that the outcome of the system reaction, i.e.
the hyperedges taken in response to some events, is the same under both semantics.
The used constraints have been identified and motivated in Section 6.1.1.

Theorem 6.2 Given Constraints C1–C3 and C5–C10 (Table 6.3).

Given a certain stable state with configuration C . Suppose a bag E of input
events occurs.

(i) Under Constraint C4(b), if under the RLS the system takes a superstep
in response to E , then under the stable ILS, the system can take every
hyperedge in the superstep in response to E , but not necessarily in the same
order.

(ii) Under Constraint C4(a) and Constraint C11, if under the stable ILS the
system takes a sequence of steps in response to E , then under the RLS the
system can take every hyperedge that is part of one these steps in response
to E , but not necessarily in the same order.

Proof. We prove both claims by induction on the sequence of steps taken under
the RLS and stable ILS. Let the sequence of steps in the superstep of the RLS be
S1,S2, . .,Sn , . .. The stable ILS takes a sequence of steps in response to E . Each
step is taken when processing some event e in the queue, which can be external,
internal, or completion. Denote this sequence by Se1

,Se2
, . .,Sem

, . ., where Sem
is

a step that is taken in response to event em .

We first make some general observations. Bag E only contains external events.
When taking steps, internal events (RLS and ILS) and completion events (only in
ILS) are generated. (Remember the RLS does not have completion events.)

(i) We prove the claim by induction on the sequence of steps taken under the
RLS.

Basic case: We prove that every hyperedge h in S1 can also be taken in
some step Sej

under the stable ILS.

By definition of a superstep in the RLS, S1 only contains external hyperedges.
So h must be external.

Let e1 be the first event in E that is processed under the ILS. Denote by Se1

the step that is taken under the ILS in response to e1. By Constraint C10 and
Theorem 6.1, we have that step Se1

= S1 ∩ Enabled(C , [e1]) is a step. If h is in
Se1

we are done. If h is not in Se1
, h can be taken in a later step under the ILS.

We show this in two parts: h can stay relevant, and h can become enabled.

6.2 · Similarities between the two semantics 93

• h can stay relevant.

h can only be made irrelevant by a conflicting hyperedge hc that is enabled
and taken. By C7 and C9, hc cannot be a completion or internal hyperedge.
So hc is external. Then hc cannot be part of S1, because S1 consists of non-
conflicting hyperedges (by definition of step). If hc is enabled in the first
state and not in S1, the triggers of h and hc are both in E and thus have
equal priority. Thus h can stay relevant.

• h can become enabled.

Following the definition of enabled, we show that h’s guard can become true,
and that h can become triggered.

– h’s guard can be true.

Since h is taken in S1, h’s guard must be true under the RLS just be-
fore h is taken. h’s guard was either true in the begin state or became
true because some variables changed value. Suppose that the guard
does not contain an in predicate (we deal with in predicates below). By
Constraint C1, such a guard only changes valuation when an activity
terminates. So, termination events in E can cause a change in valuation
of h’s guard condition but the environment cannot. The current con-
figuration C is non-interfering, so every variable is updated by at most
one activity at a time. Under both RLS and ILS, the new valuation
of the local variables is immediately retrieved once the activities ter-
minate (see definition of transition −→ retrieve lvar in both semantics).
Thus, variables contained in h’s guard have the same value under RLS
and (stable) ILS. The only difficulty is if some variables in h’s guard
become locked under the stable ILS by some newly started activity a,
i.e., a is started in response to E . Then h can no longer be taken un-
der the stable ILS. By Constraint C2 we know that such an activity
a cannot be in parallel with h’s source nodes. So a is not active. So
variables in h’s guard cannot become locked under the stable ILS.

If h’s guard contains an in predicate, the valuation of that predicate
does not change for the following reason. By Constraint C4(b), there
is no cycle in relation ≺. If there is no cycle, events can be processed
under the stable ILS in an order that is consistent with ≺. Therefore,
the valuation of the in predicate in the guard of hyperedge h does not
change to false or true before h is taken.

– h can become triggered.

The trigger event of h is processed at a later time than e1. By definition,
under the stable ILS new external events only occur after the current
reaction to E has completed. Thus a hyperedge that conflicts with h
and whose trigger event is not in E , cannot be triggered before h.

94 Chapter 6 · Relation between the two formal semantics

induction case: Step Sn .

We prove that every hyperedge h in step Sn , taken under the RLS, can also
be taken in some step Sej

under the stable ILS. By the induction hypothesis all
hyperedges in previous steps S1, . .,Sn−1 can be taken under the stable ILS as well
(but not necessarily in the same order). Since the current state is unstable (by
definition of superstep), step Sn can only contain completion or internal hyperedges
(or both).

• h is a completion hyperedge. We show that every completion hyperedge h
that is taken in Sn can be taken in some step Sej

of the stable ILS.

– h can become relevant.

By the induction hypothesis all hyperedges in previous steps S1, . .,Sn−1

can be taken (but not necessarily in the same order). So by the induc-
tion hypothesis h’s source nodes become active, but not necessarily all
at the same time. Constraints C5, C6, and C7 rule out that one of h’s
source nodes is left while h is irrelevant. By Constraints C6 and C7,
we know that if a hyperedge hc conflicts with h, then hc must be a
completion hyperedge. So h’s source nodes can be left by taking h or
hc . By Constraint C5, we know that h and hc have the same sources.
So h’s sources can only be left when h has become relevant. Thus, h
can become relevant under the stable ILS.

– h can become enabled.

∗ h’s guard can be true.
Since h is taken under the RLS, h’s guard is true under the RLS
just before h is taken. By definition, in the RLS h’s guard only
changes value in the beginning of the superstep. Some terminated
activities might have changed some variables in h’s guard. In both
RLS and ILS, the new valuation of the variables is immediately
retrieved once these activities terminate (see definition of transition
−→ retrieve lvar in both semantics). So h’s guard can also be true in
the begin state of the stable ILS, once the new valuations of local
variables have been retrieved. We now show that if h’s guard is
true, it stay true. Since no activity is updating variables contained
in h’s guard condition (because the current configuration C is non-
interfering), h’s guard cannot change value by some activity. By
Constraint C1 the environment cannot change h’s guard. Moreover,
taking hyperedges under the stable ILS does not impact the truth
value of h’s guard, since by Constraint C4(b) h’s guard does not
contain an in predicate. So h’s guard stays true under the stable
ILS.
The only difficulty is if some variables in h’s guard become locked
in one of the steps of the stable ILS by some newly started activity

6.2 · Similarities between the two semantics 95

a, i.e., a is started in response to E . If variables contained in h’s
guard are locked, h cannot be taken. By Constraint C2 we know
that such an activity a cannot be in parallel with h’s source nodes.
So variables in h’s guard cannot become locked under the stable
ILS.

∗ h can become triggered.
Every time a source node of h is entered, a completion event is gen-
erated under the stable ILS. When the last source node is entered,
the generated completion event can trigger h.

• internal hyperedge. Every internal hyperedge h in Sn , taken under the RLS,
can be taken in some step Sej

of the stable ILS.

– h can become relevant.

By similar reasoning as in the previous item [completion hyperedge]. By
the induction hypothesis, all hyperedges in previous steps are taken. By
Constraints C6, C8, and C9, h does not have any conflicting hyperedges.

– h can become enabled.

∗ h’s guard can be true.
By similar reasoning as in the previous item [completion hyper-
edge], it can be shown that h’s guard is true in both RLS and
stable ILS.

∗ h can become triggered.
By definition of the RLS, some hyperedge in step Sn−1 triggers h.
By the induction hypothesis, under the stable ILS this hyperedge
can be taken as well and therefore h’s trigger event is generated
and put in the queue. By Constraint C3 the hyperedge is already
relevant when the trigger event is generated. So the trigger event
cannot be generated too early.

(ii) We prove the claim by induction on the sequence of steps taken under the
stable ILS.

Basic case: Step Se1
. Using similar reasoning as in (i), but Constraint C10 is

not needed now.

induction case: Step Sem
. We prove that every hyperedge h in step Sem

,
taken under the stable ILS, can also be taken in some step Si of the RLS. By the
induction hypothesis all hyperedges in previous steps Se1

, . .,Sem−1
are taken in

some step Sx of the RLS (but possibly x > i).

• h is a completion hyperedge. Using similar reasoning as in (i)(induction
case).

• h is an internal hyperedge.

96 Chapter 6 · Relation between the two formal semantics

– h can become relevant.

By similar reasoning as in (i)(induction case).

– h can become enabled.

∗ h’s guard can be true.
By similar reasoning as in (i)(induction case).

∗ h can become triggered.
h’s trigger event is generated by some hyperedge in a previous step
Sel

, where 0 < l < m. By the induction hypothesis, that other
hyperedge can be taken under the RLS as well. Moreover, by Con-
straint C3 the trigger event is only generated when h is already
relevant. So the trigger event cannot be generated too early.

• external hyperedge. Every external hyperedge that is taken in Sem
can be

taken in some step of the RLS.

There are two cases. (1) h is relevant in the first state, or (2) h is made
relevant later on because some hyperedges have been taken in previous steps
(see page 87).

– h can become relevant.

Case (1): since RLS and stable ILS have the same initial state, h is
also relevant in the first state of the stable ILS. Case (2) follows from
the induction hypothesis: the hyperedges making h relevant can also
be taken under the RLS, and Constraints C7 and C9.

– h can become enabled.

∗ h’s guard can be true.
Similar reasoning as in (i)(basic case), using Constraints C1, C2
and C4(b) (so h’s guard does not contain an in predicate).

∗ h can be triggered.
Case (1): h’s trigger is already in the start queue of the RLS. If h
is relevant in C , the event can be picked from the queue.
Case (2): If h becomes relevant later on, then by Constraint C11,
the environment can regenerate the trigger event of h, and h can
be taken under the RLS.

�

The following corollary states that an activity diagram can diverge under the
RLS iff it can diverge under the ILS. The corollary follows immediately from above
theorem.

Corollary 6.3 The system can diverge under the RLS iff the system can diverge
under the ILS.

6.2 · Similarities between the two semantics 97

6.2.2 Stable ILS and ILS

The following theorem relates the behaviour of an activity diagram under the sta-
ble implementation-level semantics with its behaviour under the implementation-
level semantics. The used constraints have been identified and motivated in Sec-
tion 6.1.2.

Theorem 6.4 Given Constraints C2 and C12–C14 in Table 6.3.

Given a stable ILS state in which some bag of events E1 occur. By definition,
a stable ILS state is also an ILS state.

No matter whether a subsequent bag of events E2 happens after or during the
system reaction to the events in E1 under the ILS, under both semantics, ILS
and stable ILS, the same steps can be taken and thus the same end state can be
reached.

Proof. By Constraint C14, events in E1 are processed before events in E2. More-
over, in both semantics completion events have priority over other events (by defi-
nition) and internal events have priority over external events (by Constraint C12).
Thus, events in E2 cannot interfere with the processing of events in E1 even if they
occur while the system is busy responding to events E1. So, the stable ILS and
ILS can process all events in E1 and E2, including internal and completion events,
in the same order, regardless of whether in the ILS external events happen while
the system is busy reacting to events in E1 or after the system has completed its
reaction to E1. By Constraint C13 every event in E2 is eventually responded to.

By Constraint C2, while h is relevant, there are no activities running in parallel
that update some variables h’s guard refers to. In other words, h’s guard does not
become locked. So newly started activities cannot prevent h from being taken. �

From this theorem, it follows that for analysis purposes we can restrict ourselves
to the stable ILS rather than to the ILS.

6.2.3 A stronger result

Above, we have shown that every hyperedge taken under the RLS in a reaction to
some bag E of event occurrences, can also be taken under the ILS in a reaction
to E . Unfortunately, because external events can have extra effects as discussed
on page 87, this does not mean that the same end configuration is reached in RLS
and stable ILS. Nevertheless, we now proceed to strengthen Theorem 6.2(i) by
stating that, in addition to taking the same hyperedges, the stable ILS should
reach the same end configuration. We enforce this by defining an extra constraint
on activity diagrams.

First, we look again at the example in Figure 6.7 on page 88 that we discussed
earlier. In this example, it is possible under the ILS to reach a similar configuration

98 Chapter 6 · Relation between the two formal semantics

WAIT−1 WAIT−2
e

WAIT−4 WAIT−5
f

WAIT−6
e

WAIT−1 WAIT−2
e/f

WAIT−3 WAIT−4
g

WAIT−6 WAIT−7
f

WAIT−5
e

WAIT−8
g

WAIT−3
f

(a)

(b)

Figure 6.10 Two examples in which events have unavoidable extra effects

as under the RLS: If e is processed before the termination event of A under the
ILS, then the same configuration as under the RLS, [WAIT-1], is reached.

Unfortunately, there exist activity diagrams whose behaviour under the RLS
cannot be simulated under the ILS, because no matter what order of event pro-
cessing is chosen, events will have an extra effect under the ILS that they do not
have under the RLS. Figure 6.10 shows two examples. In Figure 6.10(a), suppose
the system is in configuration [WAIT-1,WAIT-4] and events e and f occur simul-
taneously. Then under the RLS configuration [WAIT-2,WAIT-5] is reached. This
configuration is unreachable under the ILS, because under the ILS one event is
processed at a time. For example, if e is processed before f, first configuration
[WAIT-2,WAIT-4] is reached and then configuration [WAIT-3,WAIT-5].

Figure 6.10(b) shows a more complex example. Suppose the system is in con-
figuration [WAIT-1,WAIT-3,WAIT-6] and events e and g occur simultaneously. Un-
der the RLS, the system reaction stops in configuration [WAIT-2,WAIT-4,WAIT-7].
Under the ILS, the system reaction stops either in configuration [WAIT-2,WAIT-
5,WAIT-7] or in configuration [WAIT-2,WAIT-4,WAIT-8]. Under the ILS, configu-
ration [WAIT-2,WAIT-4,WAIT-7] is unreachable as end configuration of the system
reaction.

We observe from the examples in Figure 6.10 that the problem of unavoid-
able extra effects is only due to external broadcast events that trigger more than
one hyperedge. Therefore, a sufficient (but not necessary) constraint to rule out
such activity diagrams is by forbidding that two or more different hyperedges are
triggered by the same external broadcast event.

C15 An external broadcast event triggers at most one hyperedge. (act)

6.2 · Similarities between the two semantics 99

WAIT−1 WAIT−2
e2:g

e1:f

Figure 6.11 Another example in which an event has an unavoidable extra effect

This constraint rules out the two activity diagrams in Figure 6.10. It may,
however, also rule out activity diagrams in which external broadcast events do
not have extra effects. Thus, the constraint is sufficient but not necessary. Above
constraint was not too restrictive for our case studies. A less restrictive constraint
would have been considerably more complex to formulate.

Another constraint is needed to rule out the activity diagram shown in Fig-
ure 6.11. In the example, if the current configuration is [WAIT-1] and events f and g
occur at the same time, then under the RLS there are two possible next configura-
tions: [WAIT-1] (by taking e1) and [WAIT-2] (by taking e2). Under the stable ILS,
configuration [WAIT-1] cannot be reached; instead, always configuration [WAIT-2]
is reached. Thus, under the stable ILS event g has an unavoidable extra effect.
To rule out such activity diagrams, we require that every wait hyperedge that is
triggered by an external broadcast event does not make itself relevant.

C16 A wait hyperedge does not have overlapping sources and targets. (act)

Using these two constraints, Theorem 6.2(i) can be strengthened as follows:
given a configuration C and I , it is possible under the stable ILS to take the same
hyperedges and reach a similar end configuration as under the RLS.

Theorem 6.5 Given Constraints C1–C3, C4(b), C5–C10, C15 and C16 (Ta-
ble 6.3).

If under the RLS the system in configuration C takes a superstep in response
to input events E and reaches configuration C ′, then under the stable ILS the
system can reach C ′ from C as well in response to E by taking every hyperedge
in the superstep.

Proof. By Theorem 6.2(i) we have that every hyperedge that is taken in the su-
perstep under the RLS, can also be taken under the stable ILS. We now show
that by choosing an appropriate order of event processing under the stable ILS, it
can be avoided that external broadcast events have extra effects. Thus, if under
the stable ILS events are processed under this order, then every hyperedge that
is taken under the stable ILS is also taken under the RLS. We define the order
as follows. Denote the bag of events that trigger relevant hyperedges in C by E ′.
An appropriate processing order is to first process events that are in E but not

100 Chapter 6 · Relation between the two formal semantics

in E ′, and then process events that are in E ′. Events in E but not in E ′ do not
trigger any hyperedges. By processing an event in E ′, a hyperedge is taken and
some hyperedge h may become relevant. By Constraint C16, h was not relevant
in C . By Constraint C15, h is not triggered by any of the events in E ′. Hence, h
is not taken under the stable ILS in response to E . �

The following corollary, which states that every configuration in a stable state
under the RLS is also a reachable configuration in a stable state under the stable
ILS, now follows immediately.

Corollary 6.6 Given Constraints C1–C3, C4(b), C5–C10, C15 and C16 (Ta-
ble 6.3).

Each configuration that is reachable in some stable state under the RLS is
reachable in some stable state under the stable ILS.

6.2.4 Stable simulation relations

We now define a simulation relation between the CTSs induced by the RLS and
ILS. We will use this relation in Chapter 10 to identify the functional requirements
that are shared by both semantics.

We will require that both RLS and ILS reach the same stable configurations.
Thus we will use Theorem 6.5, which is a strengthened version of Theorem 6.2(i).
Theorem 6.5 says that the stable ILS can simulate the complete reaction of the
RLS to some events E , i.e., under the stable ILS the same end configuration can
be reached as under the RLS. Theorem 6.2(ii) does not show that the RLS can
simulate the stable ILS, because under the stable ILS events can have extra effects,
requiring a constraint (C11) upon the environment to regenerate some events.

However, below we will prove a weakened version of Theorem 6.2(ii) by not
referring to some specific bag E of input events anymore. We will prove that if
the ILS can reach from the current stable state another stable state, the RLS can
reach that other stable state too. This implies that the RLS can reach the same
end configuration as the ILS. In the weakened theorem, we do not use Constraint
C11 on the environment anymore.

In our proof of the weakened theorem, each external event processed by the
Router in the ILS corresponds to an external event occurrence in the RLS. This
correspondence only holds if no two external events occur by definition at the same
time. So an external event should not imply another external event. One event e
implies another event e ′ iff the occurrence of e implies the occurrence of e ′. For
example, event when(April 1) implies when(0:00h), because when the current date
becomes April 1, it is also 0:00 hours. So if when(April 1) occurs, when(0:00h) also
occurs.

We rule out activity diagrams that have events that occur by definition simul-
taneously, by defining the following constraint on the syntax of activity diagrams.

6.2 · Similarities between the two semantics 101

C17 An external event does not imply another external event. (act)

Note that by definition named events cannot imply other events.

Before we give our theorem, let us define some terminology and auxiliary defi-
nitions. Given some activity hypergraph AH , let CTSRLS denote the CTS induced
by AH under the RLS, and let CTS ILS denote the CTS induced by AH under the
ILS.

We define a relation R ⊆ Σ(VarRLS) × Σ(Var ILS) on the (stable) valuations of
these two CTSs as follows.

R
df

= { (σRLS, σILS) | σRLS |= stable

∧ σILS |= stable

∧ σRLS(C) = σILS(C)

∧ ∀ v ∈ LVar • σRLS(v) = σILS(v)

∧ σRLS(MC) = σILS(MC)

∧ ∀ t ∈ RT • σRLS(t) = σILS(t)

}

Predicate stable is defined for a valuation σ of a ILS system as follows:2

σ |= stable
df

⇔ σ(Q) = 〈〉 ∧ σ(Qcomp) = 〈〉 ∧ σ(Qint) = 〈〉 ∧ σ(re) = ⊥

Note the similarity with the definition of stable in the RLS semantics (page 65).

We call R an stable simulation relation. With simulation we mean that each
CTS can mimic (sequences of) transitions of the other. We now proceed to define
this more formally.

First we define an abbreviation for a sequence of transitions between stable val-
uations. All intermediary valuations in the sequence are unstable. Given two stable
valuations σ, σ′, that is σ |= stable and σ′ |= stable. If σ −→σ1 −→ . . . −→σn = σ′

where every intermediary state is unstable: σi
|= stable for 0 < i < n, we write
σ−։ σ′.

We are now able to formulate the following theorem, which states that if a
stable valuation σ is followed by a stable valuation σ′, then any stable valuation
related to σ by R can be followed by a stable valuation that is related to σ′ by R.
Thus, the theorem is a weakened version of Theorem 6.2.

Theorem 6.7 Let R be a stable simulation relation as defined above. Given
Constraints C1–C3, C4(b), C5–C10, C15, C16, and C17 (Table 6.3).

If σRLS R σILS, the following holds (as illustrated in Figure 6.12):

(i) for any σ′RLS, if σRLS −։ σ′RLS then there exists a σ′ILS such that σILS −։ σ′ILS

and σ′RLS R σ′ILS; and

2We assume internal events are put in a separate queue Qint in order to implement Con-
straint C12.

102 Chapter 6 · Relation between the two formal semantics

RLS

ILS

Theorem 6.7(ii)

RLS

ILS

Theorem 6.7(i)

. . .

R R

RR

Figure 6.12 Illustration of Theorem 6.7. R is a stable simulation relation. Black
dots denote stable states. −։ abbreviates a sequence of transitions
−→ . . . −→ in which all intermediary states are unstable

(ii) for any σ′ILS, if σILS −։ σ′ILS, then there exists a sequence σRLS
1 , . . . , σRLS

n of
stable valuations under the RLS such that σRLS −։ σRLS

1 −։ . . . −։ σRLS
n and

σ′RLS
n R σILS.

Proof. The first claim follows immediately from Theorem 6.5: the reaction under
the RLS to an arbitrary bag E of event occurrences can be completely simulated
in the stable ILS.

The second claim we prove as follows. Suppose a bag E of events occur under
the ILS. These events are processed one by one in a certain order under the ILS.
We can relate this to behaviour under the RLS by letting the event processed
under the ILS correspond to an occurrence of the same event under the RLS. So,
if an event e in E is processed by the Router, i.e., e is contained in re, then e
occurs under the RLS, i.e., I is filled with e. After under the RLS e has been
processed, a stable state is reached. Both RLS and ILS can take the same step in
response to e and reach the same next configuration. For example, if E = [e1, e2],
and the order of event processing under the ILS is e2 before e1, we can simulate
this under the RLS by a stable state in which e2 occurs followed by a stable state
in which e1 occurs.

By taking a step some internal (RLS and ILS) and completion events (ILS
only) can be generated. Under the RLS, completion hyperedges are not triggered
by completion events, as they are taken immediately by definition of the superstep.
Generated events are all responded to at the same time in parallel. Under the
ILS, events are processed one by one. Completion events are processed before

6.3 · Conclusion 103

other events. By definition, one completion event can trigger arbitrarily many
hyperedges.

We now show that this difference in event processing, parallel event versus
single event, does not have any impact upon which hyperedges are taken: under
the RLS the same internal and completion hyperedges can be taken as under the
ILS. By Constraint C6, completion and internal hyperedges do not conflict. Thus,
taking an internal hyperedge under the RLS does not disable an enabled comple-
tion hyperedge. By Constraint C8, taking an internal hyperedge does not disable
another enabled internal hyperedge. By Constraint C5, conflicting completion
hyperedges have the same sources. So under the RLS the same completion and
internal hyperedges can be taken as under the ILS and the same configuration can
be reached as under the ILS.

�

Note that this theorem does not require Constraint C11, so under the RLS the
environment does not need to regenerate events.

6.3 Conclusion

We have shown that for some activity diagrams the requirements-level and imple-
mentation-level semantics behave similarly. The major difference between the
two semantics is that under the implementation-level semantics an external (non-
termination) event can have unexpected extra effects. Therefore, the two semantics
only induce similar behaviour if events are not observed. Even though this may
seem weak, the theorems are sufficiently powerful to guarantee that the CTSs
of both semantics satisfy the same functional requirements, as we will show in
Chapter 10. Of course, such common functional requirements do neither refer
to events. Since the requirements-level semantics induces a much smaller state
space than the implementation-level semantics, such functional requirements can
be more efficiently verified under the requirements-level semantics than under the
implementation-level semantics. Yet the outcome of verification under the require-
ments-level semantics is equivalent to the outcome under the implementation-level
semantics.

In this chapter, we have justified a semantics that assumes perfect synchrony
by relating it to a semantics that does not make that assumption. In every other
approach we know from literature, a semantics that assumes perfect synchrony is
justified by putting an assumption upon both the environment and the system:
The system should be fast enough in its reaction to current events to be ready
before the next events occur. Our justification is more realistic and also more
general (allowing more implementations): we allow the environment to be faster
than the system. Drawback of our approach is that it is more involved and that
it requires some additional constraints on activity diagrams, the implementation-

104 Chapter 6 · Relation between the two formal semantics

level semantics, and the environment. It is possible to relax some of the constraints,
but this will complicate the proofs.

The identified constraints on activity diagrams may serve as guidelines for
workflow modellers. If an activity diagram violates the constraints, then likely
some construct in the activity diagram might lead to misinterpretation, at least
by different WFSs and perhaps also by different persons.

Chapter 7

Advanced activity diagram

constructs

In this chapter we discuss several advanced constructs for activity diagrams that
we did not consider in the previous chapters. We will sketch how these constructs
can be formalised in our two semantics, but do not provide the formalisations
themselves. In the case of object flows and object nodes, we do not sketch a
formalisation as this is premature. Instead we provide a list of issues that need to
be resolved in formalising object flows.

Section 7.1 sketches how dynamic concurrency can be formalised. Section 7.2
discusses several issues regarding object nodes and object flows. Section 7.3 dis-
cusses deferred events. Section 7.4 sketches how an interrupt construct can be
formalised.

7.1 Dynamic concurrency

In the UML, an atomic activity node or a compound activity node can have “dy-
namic concurrency”. The activity (or activities) of a node with dynamic concur-
rency is instantiated multiple times in parallel, denoted by marking the activity
node (or compound activity node) with ‘*’. The word ‘dynamic’ indicates that
the number of instantiations is determined at run-time. The word ‘concurrency’
indicates that the instantiations execute in parallel. In Figure 7.1 an example of
dynamic concurrency within an activity node is given (adapted from Fowler [71]).
First, an order is received. Next, the order is filled with each line item on the
order. Finally, the order is delivered. The number of instantiations of Fill line item
is dynamic (i.e. determined at run-time), since this number depends on the order
that is being processed.

106 Chapter 7 · Advanced activity diagram constructs

We now sketch how dynamic concurrency can be formalised for activity nodes
and compound activity nodes.

Activity nodes. We assume a set DN ⊆ AN of atomic activity nodes whose
activities are dynamically instantiated. Every activity node a in DN is annotated
with a dynamic concurrency expression ∗[expr]. We assume ∗[expr] evaluates to
a list of elements, so ∗[expr] is of type list. If a is entered, for every element e
in list [expr] an activity act(a)e is started. If all started activities are completed,
a terminates. So activity node a now represents the execution of a dynamically
determined number of activities, rather than the execution of one single activity.

We do not have to change our definition of configuration and steps, since for
both an activity node with dynamic concurrency and an ordinary activity node,
the node is part of the configuration and the node terminates. Only the function
act needs to be redefined: it is not static anymore, but dynamic: the activities
assigned to an activity node that has dynamic concurrency are defined when the
dynamic concurrency expression is evaluated, i.e. when the node is entered.

Compound activity nodes. In Section 3.3 we explained how compound activ-
ity nodes can be eliminated from an activity diagram by substituting the activity
diagram specification of the compound activity node. If the compound activity
node contains a dynamic concurrency expression ∗[expr], we treat the activity dia-
gram specification as a parametrised specification. Assuming ∗[expr] evaluates to
a list of elements, for each element in the list an instance of the activity diagram
specification is executed.

We can model this by adapting the elimination procedure of a compound activ-
ity node as follows. We create a copy of the activity diagram specification for each
possible element of the list. For every copy, each node of the copy is subscripted
with the name of the corresponding element; so, different copies of activity dia-
grams have different nodes. We create a new activity diagram specification n, in
which all these copies are put in parallel (so they are started at the same time).
Only copies present in the list need to be executed: therefore before each copy is
started it is decided in n to either start the copy or skip the copy. The decision
depends upon the evaluation of ∗[expr]. The decision is a simple test whether an
element belongs to the list ∗[expr] or not: if so, the copy is executed, otherwise it
is skipped.

We illustrate the adapted elimination procedure by a simple example. Let
compound activity node B in Figure 7.2 have a dynamic concurrency expression
dce that evaluates into a list of integers. Let this dynamic concurrency expression
depend on some local variable x , where x has type integer, set by activity A. If B is
specified as in Figure 7.3, then the activity diagram after elimination of compound
node B becomes as depicted in Figure 7.4. Note that there are infinitely many
copies made of the activity diagram specifying B, since there are infinitely many
integers.

7.1 · Dynamic concurrency 107

Receive

order

Fill line

item

Deliver

order

*

Figure 7.1 Example: multitask

B A C
*

x: Integer

Figure 7.2 Dynamic concurrency example

D E

Figure 7.3 Specification of node B in Figure 7.2

A

D_0 E_0

D_1 E_1

D_n E_n

[0 in [[dce]]]

[1 in [[dce]]]

[n in [[dce]]]

WAIT

[else]

WAIT

WAIT

C

[else]

[else]

.

.

.

.

.

.

.

.

.

.

.

.

Figure 7.4 The activity diagram underlying the activity diagrams in Figures 7.2
and 7.3

108 Chapter 7 · Advanced activity diagram constructs

7.2 Object nodes and object flows

UML activity diagrams offer a notation for modelling data flows, namely object
flows and object nodes. An object node denotes an object that is in a certain state.
The name of the object is underlined. (UML uses underlining to distinguish objects
from classes, whose names are not underlined.) The name of the state is put in
brackets. So O[s] denotes object O in state s. The name of the state is optional.
An object node can be connected to an activity state by a directed edge, called
an object flow, meaning that the activity either produces the object as output
(edge from activity to object node) or that the activity needs the object as input
(edge from object node to activity). Like UML 1.4, we represent object flows with
dashed lines in order to distinguish them from control flows.

In UML 1.4 [150] object flows are interpreted as control flows. Each object flow
also specifies a control flow. This definition is however counterintuitive, which was
pointed out by Bock [21]. Consider for example the partial activity diagram in
Figure 7.5(a), which was taken from Booch [24]. As Bock [21] pointed out, this
diagram is not in accordance with its intended meaning, which is presumably that
after Restock item terminates, both an Item object in state [available] is output and
the activity node Credit account is entered. But if we apply the UML rule that
every object flow implies a control flow, the diagram in Figure 7.5(a) says that
after Receive item terminates, either an Item object in state [available] is output
or the activity node Credit account is entered, but not both. Presumably, what
Booch intended is shown in Figure 7.5(b). If we drop the UML 1.4 rule that an
object flow specifies a control flow, then Figure 7.5(a) makes sense.

Most authors that use object flows (e.g. [59, 138]) seem to assume the meaning
used by Booch. It is therefore not surprising that in one of the key proposals [11] for
the UML 2.0 definition (of which the part on activity diagrams is edited by Bock),
the control flow and data flow of activity diagrams are indeed separated from each
other, like depicted above. We also assume that meaning in the remainder of
this Section. To make things confusing, the UML 2.0 proposal not only allows
Figure 7.5(a) but also 7.5(b); these two activity diagrams presumably have the
same meaning.

Since the definition of object flows is still under development, formalisation is
currently premature. The current proposal for UML 2.0 [11] contains some gaps
and inconsistencies that we discuss here. So we merely identify some issues and
discuss possible resolutions. We take the afore mentioned UML 2.0 proposal as
starting point, even though it may change in the future.

Before we discuss the issues, we explain the basic execution semantics of object
flow nodes as defined in the UML 2.0 proposal [11]. The questions to be answered
by any execution semantics are the following. If an activity has more than one
input node, do all inputs need to be present in order for the activity to start, or
can some inputs arrive later? Likewise, can an activity output an object before
the activity actually terminates, or are all objects output upon termination of the

7.2 · Object nodes and object flows 109

Item

[returned]

Restock item

Item

[available]

....Credit account

Item

[returned]

Restock item

Item

[available]

.... Credit account ...

(a) Incorrect according to UML 1.4, but correct according to UML 2.0

(b) Correct according to UML 1.4 and UML 2.0

Figure 7.5 Two example activity diagrams with object flows

activity? The UML 2.0 proposal allows all four possibilities. It divides the set of
input and output object nodes of an activity in two, synchronous and asynchronous
ones. The following rules apply:

• All synchronous input objects must be present for the activity to start. If
there are only asynchronous input object, at least one must be present.

• All inputs must be present for the activity to terminate.

• When the activity terminates, all synchronous output objects are posted,
i.e., the synchronous output object nodes are filled.

Asynchronous output object nodes can be filled before the activity terminates.

Next, we discuss several assumptions we make in interpreting activity diagrams
with object flows. All assumptions are motivated by the domain of workflow
modelling.

• Objects modelled in activity diagram are software objects, not hardware
objects, since a WFS can only coordinate software objects, not hardware
objects.

So a text processor file can be an object modelled in an activity diagram,
but a paper file cannot be.

• Objects are subject to transactional constraints like atomicity and isolation
(cf. Sections 2.2 and 3.4).

110 Chapter 7 · Advanced activity diagram constructs

• The dependency between an activity and its input objects is enforced by a
WFS.

For example, in Figure 7.5(a), a WFS will ensure that activity Restock item
is only enabled once object Item is present and moreover is in state returned.

• The dependency between an activity and its output objects is the responsi-
bility of the actor doing the activity. The actor must ensure that the right
objects are output.

Using these assumptions, we interpret input and output object flows in the
following way (see Figure 7.6). If an activity outputs an object, but does not use
it as input, that activity creates the object. If an activity observes an input object
node and fills an output object node of the same object, it updates that object.
This usually means that the state of the object is changed. If an activity only
observes an input object node, but does not fill an output object node, then the
activity reads the object, but does not change it. Note that we have not fixed a
notation for deleting an object. We consider deletion to be a special activity that
does not occur in an activity diagram, i.e. in a workflow.

A
O

[s]
A

O

[s]
A

O

[s2]

O

[s1]

A creates O A updates O A observes O

Figure 7.6 Specifying creation, updating and observation of an object

Both the current UML definition [150] and the the UML 2.0 proposal [11] do
not address what the intended meaning of connecting an object O with an activity
A is, apart from being input or output. Above interpretation seems reasonable for
workflow modelling.

We now list several issues in the semantics of object flows and object flow
nodes.

Multiple occurrences of an object name. Do multiple occurrences of an
object name O denote the same object or different objects? The most straightfor-
ward interpretation of O is to see it as an object identifier. Object identifiers are
unique, i.e., each identifier denotes the same, unique object throughout the sys-
tem life-cycle (this principle is called referential transparency). So multiple object
nodes with the same label O denote the same object.

This interpretation may give rise to problems, however, if an object flow node
is active more than once at the same time. For example, Figure 7.7 shows an
activity diagram in which two objects Partial order are created, even though there
is only one identifier.

7.2 · Object nodes and object flows 111

Produce

partial order

Take partial order

 from stock

Send partial

shipment

Partial order

[unsent]

Partial order

[sent]

Figure 7.7 Activity diagram with two objects Partial order

A

O

[s2]

A

O

[s1]

O

[s3]

Figure 7.8 Multiple activity instances

Multiple occurrences of an activity. Can an activity A change the state of
an object O twice at different times? In that case, the input/output behaviour of
A depends upon the context of A. Figure 7.8 shows a simple example, in which the
input/output behaviour of A depends upon whether or not A has been executed
before. Drawback of such activities is that they are harder to reuse, as their
behaviour depends upon the context in which they are used.

Multiple occurrences of O[s]: partial and complete states. If an object
flow node is labelled with a state [s], there are several possible interpretations.
Either [s] is a complete specification of the state of the object, or a partial one.
In the latter case, O’s lifecycle will be modelled using a statechart with AND
nodes. This distinction is very important, since partial object nodes can be active
simultaneously, whereas complete object nodes cannot! So, if [s] is a complete
specification and O[s] is active, all other object nodes of O should be inactive.

Which interpretation should be used, complete or partial, depends upon the
specification under consideration. For example, in Figure 7.9 each of the three
states [s1], [s2] and [s3] must be complete specifications of the state of O. If
they would be partial, O would not be in a complete state. The corresponding
statechart will have three sequential states.

On the other hand, in Figure 7.10 the states [s2] and [s4] cannot both be
complete state specifications. If they would be complete, then [s2] = [s4] whereas
they do not have the same name. Hence, [s2] and [s4] must be partial states. In
the corresponding statecharts, nodes s2 and s4 are in parallel. And (s2, s4) is a
complete state specification. Similar remarks apply for s3 and s5.

Note that modelling partial object nodes can be dangerous. If multiple activi-

112 Chapter 7 · Advanced activity diagram constructs

A

O

[s2]

B

O

[s1]

O

[s3]

Figure 7.9 Complete state specification

A

O

[s4]

C

O

[s1]

O

[s5]

O

[s2]

B

O

[s3]

Figure 7.10 Partial state specification

ties act upon the same object at the same time, the data integrity of the object can
be violated, as well as the isolation property of activities (cf. Section 2.2 and 3.4).

Finally, there is the problem of matching states in the object flow specification
with states in the statechart modelling the life cycle of the object. If an object
node O[s] occurs more than once in the same object flow specification, then in the
corresponding statechart there can either be a single node labelled s or multiple
nodes labelled s. Thus, more than one statechart can match an activity diagram
with object flows.

Multiple activities updating the same object. Objects are subject to in-
tegrity rules, in order to prevent them from being inconsistent. For example, the
activity diagram in Figure 7.11 shows an object that is updated by two activi-

A

O

[s2]

B

O

[s1]

Figure 7.11 Object O is updated by two activities at the same time

7.2 · Object nodes and object flows 113

ties at the same time and therefore might become inconsistent, even though both
activities have the same output. This should be prevented from happening, for
example by ruling out such an activity diagram or putting some extra constraint
on the semantics, in this case for instance interleaving activities A and B .

The UML 2.0 proposal only partially addresses this issue. The proposal for
the UML action semantics [12] requires that a data flow state is filled only once
during one execution (called the single assignment rule). Applying this rule to
activity diagrams, the requirement would be that an object node is filled at most
once during a run. Unfortunately, this rule is both too weak and too strong for
our purposes.

It is too strong in the sense that it rules out object nodes that are part of an
iteration. Figure 7.12 gives an example (adapted from an example in Grefen et
al. [82]). The activity diagram in Figure 7.12 would be incorrect according to this
rule, since object node Trip[proposed] can be filled more than once during a run.
We would allow it, however, because the activities filling Trip[proposed] are never
active at the same time. So the isolation property is not violated.

The rule is too weak in the sense that it still allows multiple updates to the same
object at the same time. This happens if object nodes are a partial specification
of the state of the object, like in Figure 7.10. Then two object nodes referring to
the same object can be active at the same time in parallel. With a complete state
specification, object nodes cannot be active in parallel, so then the rule is not too
weak.

A more useful rule in this respect is the isolation rule: an object cannot be
updated and either read or updated at the same time (isolation property from
database theory). We have adopted a similar rule in Section 3.4. The rule is
defined for runs; it cannot be translated straightforwardly into a rule on the syntax
of activity diagrams.

Merging. One can interpret the activity diagram in Figure 7.11 as specifying a
merge. However, we think it is better to represent merging by an explicit Merge
activity, as shown in Figure 7.13. This reflects that merging is done explicitly by an
actor (person or application), not implicitly by the WFS. Note that in Figure 7.13,
we divided state s2 in two parallel states s2a and s2b. Allowing merging might
allow for a relaxation of the isolation constraint, because the merging activity can
solve the inconsistency.

Multiple activities observing the same object. If multiple activities observe
the same object at the same time, does this mean that only one activity at a time
can read the object (i.e. the object is read-locked), or that more than one activity
at a time can observe the object? For example, in Figure 7.14 two activities A and
B observe the same object O at the same time. If only one activity at a time can
observe O, the two activities must execute in interleaving order, otherwise not.

114 Chapter 7 · Advanced activity diagram constructs

Cancel trip

Book trip

Send acknow−

ledgement

Make do−

cuments

Handle

invoice

Handle

 payment

Send do−

cuments

Select

 trip
[change]

[cancel]

[else]

Receive

 order

Trip

[proposed]

Trip

[booked]

Trip

[confirmed]

WAIT−1 WAIT−2

Figure 7.12 Activity diagram with iteration

A

O

[s2a]

B

Merge

O

[s2b]

O

[s3]

WAIT−1

WAIT−2

O

[s1]

Figure 7.13 Merging object flows

7.2 · Object nodes and object flows 115

A

B

O

[s1]

Figure 7.14 Object O is observed by two activities at the same time

A

O

B

Figure 7.15 Example inconsistency between control flow and object flow

Inconsistency between control flow and data flow. The control flow and
object flow in an activity diagram might be inconsistent, which is undesirable. For
example, in Figure 7.15 activity A requires that object O is present. Object O is
output by activity B . Activity B can only start once A has completed. Clearly,
the control flow and object flow are inconsistent in this example: Executing this
diagram leads to a deadlock. A possible way to check whether activity diagrams
are inconsistent or not is to use the verification approach using model checking
that we develop in Chapter 10.

Object nodes and pseudo nodes. Can pseudo nodes connect object nodes
by object flows? The UML proposal answers this question positively; it allows for
instance the two activity diagrams in Figure 7.16.

We make the following observation. In the two diagrams pseudo nodes cause

O

[s1]

O

[s2]

O

[s3]

[g]

[else]
O

[s1]

O

[s2]

O

[s3]

(a) (b)

Figure 7.16 Object nodes connected with pseudo nodes

116 Chapter 7 · Advanced activity diagram constructs

a state change with object O. Since compound edges are executed by the WFS,
this means that the WFS changes the state of O. This does not seem to make
much sense, as activities change objects, not the WFS. So pseudo nodes should
not connect object nodes.

7.3 Deferred events

It is possible to specify for each node n a list of deferred events. If an event e is
deferred in n, it is not processed if the current configuration contains n. Processing
of e is postponed until a configuration is reached in which no node defers e. It
is unclear from the UML standard whether or not an event that was deferred in
the previous state but becomes undeferred in the current state, has priority over
events in the queue that were not deferred in the previous state.

Incorporating deferred events in both our semantics will require an additional
event queue for storing deferred events.

Deferring events may easily lead to deadlock, because a configuration in which
the event is no longer deferred may not be reachable. For example, if in Figure 7.17
the current configuration is [WAIT-1,WAIT-3] and event e occurs, this event is
deferred. If next event f occurs, configuration [WAIT-1,WAIT-6] is reached. Event
e is still deferred in this configuration. Now the system deadlocks: event e can
never be processed, even though e can trigger a relevant edge. Such deadlocks can
be detected using the verification approach described in Chapter 10.

7.4 Interrupt regions

The afore mentioned UML 2.0 proposal contains the novel concept of an interrupt
region and an interrupt edge. An interrupt region is a set of nodes that are left if
one of the interrupt edges of the region is triggered. Figure 7.18 shows an example,
a simplified version of an example in the UML 2.0 proposal [11]. According to the
informal semantics given in the UML 2.0 proposal, if event cancel order request
occurs while nodes Receive order, Fill order, Ship order, or WAIT-1 are active, the
nodes in the interrupt region are left and node Cancel order is entered.

Figure 7.19 shows an activity diagram that is obtained from Figure 7.18 by
eliminating the interrupt region. This shows that an interrupt region is actually
a shorthand to abbreviate many edges. Statecharts use hierarchy in a similar
way [88]. Note that the interrupt edge cannot be eliminated.

From Figure 7.19, it becomes clear that there are some difficulties with in-
terrupt regions. First, Figure 7.19 suggests that activities can be interrupted. In
Section 2.1 we explained that activities are atomic, i.e., they cannot be interrupted.
Thus, an interrupt occurring while an activity is busy executing can only be han-
dled once the activity has finished. Incorporating this in our two semantics will
lead to a considerably more complicated and intricated version of both semantics.

7.4 · Interrupt regions 117

WAIT−4

WAIT−1

WAIT−3

WAIT−2

WAIT−5

WAIT−6

g

f

e

e

defer e

Figure 7.17 Activity diagram with a deferred event

Receive

order

Fill

order

Ship

order

Cancel

order

Send

invoice

Handle

payment

Close

order
WAIT−2

WAIT−3

WAIT−1
cancel order request

Figure 7.18 Activity diagram with interrupt region (adapted from [11])

Receive

order

Fill

order

Ship

order

Cancel

order

Send

invoice

Handle

payment

Close

order
WAIT−2

WAIT−3

WAIT−1 cancel order request

Figure 7.19 Activity diagram without interrupt region that is similar to the one
in Figure 7.18

118 Chapter 7 · Advanced activity diagram constructs

Second, an interrupt may cause a deadlock, because some parallel threads are
interrupted while others are not. For example, a deadlock occurs if event cancel
order request occurs while node Send payment or Handle payment is active. Such
an interrupt should not be allowed.

Third, the notion of interrupt suggests a sense of priority: an interrupt event
has higher priority than a non-interrupt event. In the requirements-level semantics,
an interrupt event and non-interrupt event can be processed simultaneously, and
thus can enable conflicting hyperedges. In that case, the hyperedge enabled by
the interrupt event should be taken, rather than the other hyperedge. This can
be formalised by introducing a priority ordering on hyperedges, like is done in the
Statemate semantics of statecharts [90]. In the implementation-level semantics,
a priority ordering on hyperedge is not really useful, because interrupt events and
non-interrupt events are not processed at the same time. Instead, the priority rule
on events must be extended by stating that interrupt events should be processed
before before other events. Then it is unclear whether interrupt events should have
higher priority than completion events. Of course, extending the two semantics
with interrupts means that the theorems in Chapter 6 have to be extended as well.

The UML 2.0 proposal [11] suggests a Petri net based token-game semantics
for activity diagrams. The standard Petri net token-game semantics does not have
the notion of interrupt. Stochastic Petri nets do have a notion of priority between
transitions: a transition can only fire if no enabled transition with higher priority
can fire. This notion can be used in the UML 2.0 proposal.

Chapter 8

Comparison with Petri nets

In this chapter we compare our two execution semantics for activity diagrams with
existing Petri net semantics. We do this by focusing on how several – what we
think are – important aspects of workflow models are modelled in Petri nets and
in our semantics. In order to make a fair comparison we assume that a Petri net
models a WFS too.

We use the design choices made in Chapter 4 as a yard stick for our comparison.
This approach may seem subjective, since other persons might make other design
choices, and consequently they might draw other conclusions about the suitability
of Petri nets for workflow modelling. However, we think that the choices we have
made in our semantics are reasonable, because they are motivated by the domain
of workflows.

To recapitulate from Chapter 4, our most important design choice is that the se-
mantics for activity diagrams must be reactive. The token-game semantics, which
is characteristic for Petri nets, does not represent reactivity, which is characteristic
of workflow systems (see Section 4.2). A Petri net transition (hyperedge) can fire if
all its input places are in the current marking [129, 136]. But in a reactive system
a transition (hyperedge) can be taken (fired) if all its source nodes (input places)
are in the current configuration (marking) and its trigger event occurs [90, 150].
This trigger event is an event in the environment of the system, that the system
will react to by taking the transition. Moreover, an enabled Petri net transition
may fire, whereas an enabled transition in a reactive system must fire. Although
the token-game semantics of Petri nets is not reactive, we will study different ways
of simulating reactive behaviour in different Petri net variants.

In the sequel, we presuppose some basic knowledge of Petri nets and high-level
Petri nets (see e.g. [105, 129, 136, 141, 142]). We have looked at Petri net variants
that are traditionally used to specify and analyse workflows, namely Workflow
Nets [2, 3], Information Control Nets [55], INCOME/WF [132], FunSoft nets [49,
58], Milano WFMS [10]. Next, we have looked at Petri net variants that are not

120 Chapter 8 · Comparison with Petri nets

specifically tailored towards workflow modelling but nevertheless can be useful:
Open Nets [16], Petri nets with synchronous communication [37], Signal-Event
Nets [87, 70], Contextual Nets [128, 72], Zero-Safe nets [27], and several variants
of Object-Oriented Petri Nets [9, 121]. More information about some of these
references can be found in recent overviews and collections about the use of Petri
nets for workflow modelling [1, 144]. A comparison of our semantics with other
(formal) modelling techniques can be found in Chapter 9.

Note on terminology. In this chapter we will use the standard Petri net ter-
minology of ‘place’ (corresponds to node), ‘transition’ (corresponds to hyperedge),
and ‘marking’ (corresponds to configuration). By ‘step’ we mean a statechart step,
unless stated otherwise.

The remainder of this chapter is structured as follows. The first four sections
focus on the requirements-level semantics, since it most resembles the Petri net
semantics. The implementation-level semantics is considered at the end of the
chapter. Section 8.1 discusses how events can be modelled in Petri nets. Section 8.2
studies whether and how the statechart step semantics can be modelled in Petri
nets. Section 8.3 studies how data can be modelled in Petri nets. Section 8.4
discusses how activities can be modelled in Petri nets. Section 8.5 discusses how
the implementation-level semantics can be modelled in Petri nets. Section 8.6
looks at several Petri net variants for workflow modelling. Section 8.7 highlights
some aspects of the question what actually a Petri net is. We end with discussion
and conclusions.

8.1 Modelling events

Several researchers that use Petri nets for workflow modelling have recognised the
importance of input events for workflow modelling ([2, 106]), even though they use
a different name: ‘trigger’. Figure 8.1, taken from Van der Aalst [2], presents a
typical example of the use of input events in a Petri net. The activity diagram in
Figure 8.2 models the same workflow. The envelope and the clock denote external
and temporal trigger events respectively.

Unfortunately, although the importance of input events is recognised, hardly
ever a semantics is given for them. Van der Aalst [3] gives an interesting motivation
for abstracting from events for analysis purposes, that we will discuss below. But
first we study two approaches to specify events in ordinary Petri nets and compare
both approaches with our semantics of input events.

Event as token. For each input event a place is defined. The place represents
a kind of interface with the environment. If the interface place is filled with a
token, the input event occurs, otherwise it does not occur. The interface place is
connected with all transitions that are triggered by the input event.

8.1 · Modelling events 121

processing

time out

questionnaire

send quest−

check
complaint
process

register

processing ok

archive

ionnaire

process

no processing

processing nok

required
processing

evaluate

i

o

Figure 8.1 Petri net for “Processing complaints” workflow [2]

Register

Send

questionnaire

Evaluate

WAIT−1

Process

questionnaire

Archive

WAIT−4
[else]

Process

complaint

Check

Processing

[ok]

[else]

[questionnaire

received]

 WAIT−2
after(2 weeks)

WAIT−3

[in(WAIT−2)]

[processing required]

Figure 8.2 Activity diagram for “Processing complaints” workflow

122 Chapter 8 · Comparison with Petri nets

This is the approach taken in Trigger Modelling [106]; it is also suggested as an
appropriate semantics for trigger events in Workflow Nets [2]. In these approaches,
the environment is not specified. The suggestion is made that the environment fills
the interface places spontaneously, but no formal semantics is presented. Open
nets [16] gives a formal semantics for nets with interface places, which could be
used for Trigger Modelling and Workflow Nets.

One important difference of the event-as-token approach with our semantics
of events is that in the event-as-token approach one event occurrence triggers at
most one transition whereas in our semantics one event can trigger more than one
transition (edge). This is because we also allow event broadcasting in our seman-
tics, in addition to point-to-point communication. For example, in Figure 4.2 on
page 47 one occurrence of event e can trigger the two edges e1 and e2 simultane-
ously. Since in the standard Petri net token-game semantics, firing a transition
implies that its input tokens are consumed, in the token-game semantics only one
transition can fire because of one event occurrence.

One might wonder whether event broadcasting is desirable. In other words,
isn’t the standard Petri net interpretation of consuming events, so having an event
trigger at most one transition, better? We think event broadcasting is desirable
for the following reasons. First, if an event would trigger a single transition only,
the event would not have all the effect that is specified in the workflow model. For
example, a cancel event that stops a workflow would be awkward to model. In
the event-as-token approach, a cancel event could only stop one parallel branch,
whereas in our semantics an event is global for the whole workflow and there a
cancel event can stop the whole workflow. To cancel a workflow in the event-
as-token approach, for every parallel branch a separate cancel event needs to be
generated.

Second, the broadcast mechanism is used quite extensively in the field of work-
flow systems. Several non-Petri net based WFMS prototypes [30, 77, 85, 158])
also use a broadcast semantics in their workflow models. The industry standard
for workflow interoperability [133], defined by OMG and WFMC, uses a publish-
subscribe notification mechanism, which is similar to our broadcast semantics. An
exception are XML and EDI based workflow specifications, which currently only
use point-to-point communication between business partners. However, some of
these approaches [153] will adopt publish-subscribe notification in the near future.
Also, these approaches only consider inter-organisational communication. They
do not specify what communication mechanisms are used within an organisation,
since it falls outside the scope of these frameworks. So even in these approaches,
a broadcast mechanism can be used for intra-organisational communication.

Third, we observe that our broadcast semantics is equivalent to a point-to-
point semantics if all the used event names in the activity diagram are unique.
But it is not possible to fully capture the broadcast semantics with point-to-point
communication, since the exact addressee is not always known at design time and
may depend upon the current state of the case. We explain this point in more

8.1 · Modelling events 123

WAIT−1

WAIT−2

A

B

WAIT−3

WAIT−3
t2:e

t1:e

Figure 8.3 Event broadcasting

detail by trying to simulate broadcasting in Petri nets.

There are several ways to simulate the effect of event broadcasting in Petri
nets. The most obvious one is to use transition fusion and glue the (hyper)edges
with the same event label together. Although this would work for the example
in Figure 4.2, this is only a partial solution, for two reasons. The first one is
that it depends upon the current configuration (marking) of the activity diagram
whether or not two edges are taken simultaneously. For example, in Figure 8.3
the two edges are only taken simultaneously if the current configuration is [WAIT-
1,WAIT-2]. Otherwise, if for example the configuration is [WAIT-1,B] and e occurs,
then only t1 is taken and configuration [WAIT-3,B] is reached. So, only at run-
time it is known which (hyper)edges need to be fused together, whereas transition
fusing is applied at design time. Second, applying transition fusion at design time
does not solve this problem, since the original (hyper)edges cannot be left out.
For example, if in Figure 8.3 edges t1 and t2 are fused together into t12, then
edges t1 and t2 must remain in the model, since it possible that either one of them
is taken separately from the other. Consequently, if the current configuration is
[WAIT-1,WAIT-2] and event e occurs, it still might be possible that only say t1 is
taken, and not the fused edge t12.

Another possible way to simulate event broadcasting is to fill the interface place
with as many tokens as needed to prevent that a transition cannot fire because
of a lack of tokens. But the exact number of tokens that is needed is not known
beforehand, since the number of transitions to be fired depends upon the current
WFS state. Consequently, a lot of spare tokens would have to be introduced. This
blurs the difference between two occurrences of the same event at different times
and two copies of the same event occurrence. Although this could be resolved by
time stamping tokens, the resulting semantics would be overly complex and more
involved than the statechart step semantics.

A better alternative is to specify the control flow between an interface place and
a transition that it triggers as a read arc [128], also known as context relation. A
read arc from a place to a transition means that although a token must be present
in the place to let the transition fire, this token is not consumed. (A read arc from
a transition to a place is impossible.) Technically, a flow relation specifying the
read arcs is added to the standard syntax of a Petri net [128].

A final drawback of the event-as-token approach is that the resulting Petri net

124 Chapter 8 · Comparison with Petri nets

looks like ravioli, since the place where the input token i resides must be connected
to all transitions that are triggered by i .

Event as transition. In Petri nets, one can simulate an event by labelling a
transition with the event name and interpreting the firing of the transition as the
event occurrence. By specifying synchronisation constraints [37, 70] between the
event transition and the system transitions, it can be specified that an event oc-
currence triggers a system transition. Note, however, that then the environment
is being modelled explicitly, rather than implicitly as in the event-as-token ap-
proach. In other words, the whole Petri net is now a model (specification) of both
the environment and the WFS, rather than of the WFS only.

One advantage of this semantics is that it is very easy to specify that one event
occurrence can trigger more than one system transition, since the synchronisation
constraint is specified as just a relation between transitions.

We now discuss the motivation Van der Aalst provides for abstracting from events.
Although Van der Aalst recognises the need for modelling input events, he ab-
stracts from them for analysis purposes for two reasons [3]. His first argument is
that the environment cannot be modelled completely; from the point of view of the
WFS it behaves nondeterministically. This is best modelled, he says, by leaving
the events out. His second argument is that if an abstracted workflow is correct,
the concrete one will also be. But ideally, however, it should also be the other way
around. Moreover, as we showed above, both arguments fail to hold if one event
can trigger more than one transition. In that case, abstracting from events will
lead to different behaviour in the abstract model, when compared to the concrete
model. Consequently, the verification results obtained for the abstract net might
not be reliable anymore.

Conclusion. We conclude that events are not first-class citizens in Petri nets.
Events can be simulated by using either tokens (open nets with read arcs) or
transitions (nets with synchronisation constraints between transitions). In the
next subsection, we will study how well the statechart step semantics that we use
can be modelled using these two approaches.

8.2 Modelling steps

In the previous subsection we identified the two ways, open nets with read arcs,
and nets with synchronisation constraints between transitions, that come closest
to our event semantics. We now study whether and how well the statechart step
semantics can be modelled in these approaches.

8.2 · Modelling steps 125

Event as token. If we take the Petri net step semantics, it is no problem in
the event-as-token approach to model that events can occur simultaneously. But
it is difficult to specify in open nets with read arcs that events live for the dura-
tion of one step only (see Section 4.3), without changing the semantics of open
nets at this point. The removal of an event occurrence has to be modelled by a
separate transition that removes the token from the interface place. But the se-
quence ‘event occurrence-system reaction-event removal’ which is key part of the
basic statechart step semantics, is not part of the standard Petri net token-game
semantics. It seems to us that it is impossible to model this sequence using a
token-game semantics, since in this latter semantics any sequence of transitions,
obeying the firing rules, is allowed. So, it could be possible that under the stan-
dard Petri semantics an event lives longer than a step, i.e., is not removed after it
has been responded to.

Recently, a new Petri net variant, called zero safe nets [27], has been proposed
that seems a good starting point for modelling the statechart step semantics.
In zero safe nets, some places, called zero places, represent unobservable system
states. A marking in which one or more zero places are filled is unstable, otherwise
it is stable. During execution, the system moves from one stable marking (in which
zero places are not filled) to another stable marking via a sequence of unstable
markings. By modelling event places as zero places, the statechart step semantics
can be simulated to some extent. Still there is a difference: zero safe nets have
a constraint that all stable tokens present at the begin stable marking must be
consumed during the sequence. For the statechart step semantics, this would mean
that relevant transitions must fire, which is of course not true, since some may not
be triggered at the moment.

Finally, the constraint that steps are maximal is not present in standard Petri
net semantics. Rather, a step in the Petri net semantics can be an arbitrary consis-
tent subset of the bag of enabled transitions. Of course, the maximality constraint
could be added without a problem (like incidentally done by some authors, e.g.
Foremniak and Starke [70]), but it does not seem very intuitive for the standard
Petri net semantics. In fact, Foremniak and Starke [70] have considerably changed
the standard Petri net token-game semantics. We discuss their approach in more
detail below.

Event as transition. There are several Petri net variants that have incorpo-
rated synchronisation between transitions in their models [37, 9, 70]. The work
of Christensen and Hansen [37] introduces the concept of synchronous transitions.
They focus on symmetric synchronisation. Object-oriented Petri nets [9, 121]
use both symmetric and asymmetric synchronisation between transitions, i.e., one
transition has the initiative, the other one follows. All these references stick to
the standard interleaving semantics, which differs considerably from the statechart
step semantics, among others because the maximality constraint is not required.

Finally, in signal-event nets [87, 70] the standard Petri net step semantics is

126 Chapter 8 · Comparison with Petri nets

abandonded in favour of a semantics in which also a maximality constraint is
adopted. Signal-event nets are introduced by Hanisch and Lüder [87] in order
to model discrete event systems. To model a discrete event system, both the
behaviour of an uncontrolled plant and of a controller that guides the behaviour of
the plant is modelled. Hanisch and Lüder argue that discrete event systems cannot
be faithfully modelled using ordinary Petri nets. Discrete event systems are an
excellent example of reactive systems: the controller must react to the behaviour
of the plant and it does this in order to maintain the plant in a desired state.
It is therefore interesting to note the similarities (and differences) between the
execution semantics of signal-event nets and that of statecharts. Foremniak and
Starke [70] introduce an execution semantics for signal-event nets. The key part
of the execution of a signal-event net is a step. Before we discuss their definition
of a step in more detail, we fix some terminology [70]. A transition is forced it is
triggered by another transition; otherwise it is spontaneous. (So in standard Petri
nets, every transition is spontaneous.) A transition t can be forced by more than
one transition. There are two options in that case: either all trigger transitions
must occur simultaneously to trigger t (AND), or only one trigger transition has
to occur in order to trigger t (XOR). We only consider the XOR interpretation
here.

A set s of transitions is signal complete iff

(i) If s only contains spontaneous transitions, it is signal complete.

(ii) If s is signal complete, t
∈ s is forced and t is triggered by a transition t ′ ∈ s ,
then s ∪ {t} is signal complete.

A step s must satisfy the following constraints:

1. s contains transitions that are fired spontaneously, i.e., without being trig-
gered by another transition,

2. the input places and input conditions (for read arcs) contain sufficient tokens
for all transitions in the step to fire,

3. s is signal-complete,

4. for every non-spontaneous transition t ′ that is not in s , set s ∪ {t ′} does not
satisfy 1-3.

We can easily see the correspondence with our semantics: spontaneous transitions
are transitions in the environment, representing events, whereas forced transitions
are transitions done by the WFS. Constraint 1 states that every step must be
triggered by at least one event. Constraint 2 states that all the transitions in the
step must be enabled and consistent. Constraint 3 says that a transition that is
triggered by an input event e can only be part of the step if e occurs. Constraint
4 states that the step be maximal. It is not difficult to see, that these constraints

8.2 · Modelling steps 127

WAIT−1

WAIT−2

WAIT−3

WAIT−4

WAIT−5

t1:e/f

t2:e

t3:f

WAIT−1

WAIT−2
WAIT−4

WAIT−3

e

environment

WFS

WAIT−5

t3

t1

t2

f

(a) (b)

Figure 8.4 Event generation modelled in signal-event nets

are indeed equivalent to the constraints we discussed in Sections 4.3 and 5.2 for
the basic statechart step semantics without event generation.

But, this definition differs with our semantics w.r.t. the generation of events
during a step, since it assumes that events generated by the system are sensed im-
mediately in the same step (as in the statechart fixpoint semantics [140]), whereas
we assume that they are sensed after the current step has been taken (as in State-

mate [90] and UML [150]). To illustrate this, we translate the activity diagram in
Figure 4.2, shown in Figure 8.4(a), into a signal-event net, shown in Figure 8.4(b).
The interrupt arcs represent triggering; the triggered (forced) transition is pointed
at. Suppose the current marking of the signal-event net is [WAIT-1,WAIT-2] and
transition e fires. Then both [e,t1,t2] and [e,t1,t3] are valid steps, according to the
constraints listed above. This is similar to the behaviour of the corresponding ac-
tivity diagram (statechart) under the statechart fixpoint semantics of Pnueli and
Shalev [140], which we explained in Section 4.3. But in our semantics, only [t1,t2]
would be possible. As explained in Section 4.3, we regard the fixpoint semantics
(and thus the signal-event step semantics) as counterintuitive here, since it seems
that e is ignored in node WAIT-2 if step [t1,t3] is taken.

It is easy to show that the signal-event net execution semantics is a strict
subset of the fixpoint statechart semantics (strict because in the statechart variant
on which the fixpoint semantics is defined, a hyperedge can be labelled with a
negative event (¬ e), which is true iff the event does not occur. Negative events
cannot be defined in signal-event nets).

A more intricate example is presented in Figure 8.5. Figure 8.5(a) shows an
activity diagram and Figure 8.5(b) a corresponding signal-event net. The predicate
in(x) that is used in the activity diagram, evaluates to true iff node x is contained
in the current configuration. It can be translated into a Petri net construct using

128 Chapter 8 · Comparison with Petri nets

WAIT−2

A
/done

B
done

A

WAIT−1

B

B terminates
A terminates

environment

environment

WFS

done

WAIT−1
e[in(A)]

WAIT−2

e

e[not in(A)]

(a)

(b)

Figure 8.5 Activity diagram and a similar signal-event net

read arcs and inhibitor arcs. Inhibitor arcs are necessary to model guard expression
not in(x). In Figure 8.5(b), read arcs are lines, so do not have an arrow; inhibitor
arcs are lines with a circle at the transition end. If the current configuration is
[A,WAIT-1] and at the same time activity A terminates and event e occurs, then in
our semantics a sequence of steps is taken such that finally configuration [final,B]
is reached. But in the corresponding signal-event net, configuration [final,WAIT-2]
is reached and event done is not responded to and is lost! Consequently, the final
configuration will never be reached in that case. This is clearly undesirable. We
therefore prefer our semantics of event generation.

Of course, now the question arises whether our semantics of event generation
can be simulated in signal-event nets. We think that this is impossible, since in
both our semantics the bag of input events acts as a kind of registry in which the
events that are generated during a step are stored. This can only be simulated by
treating events as tokens; if events are treated as transitions, events get lost after
the step in which the events are generated completes. But above, we discussed
the inadequacy of the event-as-token approach to model our step semantics. We
come back to this issue in the conclusion of this subsection below.

Other differences between activity diagrams and signal-event nets are that (1)

8.3 · Modelling data 129

steps in signal-event nets are sets of transitions, rather than bags (but we could
not find a compelling reason in Foremniak and Starke [70] why this is the case;
probably the extension to bags is easily made), and (2) the environment must be
modelled explicitly in signal-event nets, but not in activity diagrams.

Conclusion. Both in the event-as-token approach as in the event-as-transition
approach, the statechart step semantics we have adopted cannot be modelled.
However, in the event-as-transition approach, the signal-event net semantics re-
sembles the statechart step semantics we use closely. The major difference is that
the signal-event semantics has a fixpoint semantics of generated events, whereas
we have not. Our semantics of event-generation can only be modelled using the
event-as-token approach. It might therefore be worthwhile to try to incorporate
the concepts used in signal-event nets into the event-as-token approach. Espe-
cially the concept of a forced transition seems promising. This concept seems to
be present in zero safe nets as well.

8.3 Modelling data

The standard way to incorporate data in Petri nets is to use coloured tokens [105].
Coloured tokens are tokens that have attribute values. These attribute values are
modified in/by transitions. Another way is to interpret places as predicates [74].
But then instances of the predicates can be seen as tokens that can change value
when a transition consumes them. So, in both approaches tokens carry data.

Therefore, the straightforward way to model case attributes in Petri nets is to
attach these attributes to tokens. But attaching case attributes to tokens suffers
from the following problems.

Who updates case attributes? If case attributes are updated in some transi-
tion, then this transition cannot be part of the workflow model, because the WFS
who executes the workflow specification does not update case attributes, it only
routes the case (see Section 4.1). In other words, if case attributes are modelled in
Petri nets, the environment (the actor) must be specified explicitly by a transition
in order to let the case attributes change value.

Data integrity. Several tokens may represent the same case attributes. Ide-
ally, this situation should be prohibited, since an attribute may then have several
different values (i.e., the different tokens may assign different values to the same
attribute): then the attribute is inconsistent. In terms of transaction theory, the
isolation property fails to hold, since activities that update the tokens are not
isolated from other executing activities.

One possible solution is to represent each case attribute by a single coloured
token. Then each transition that reads or writes the attributes must have this

130 Chapter 8 · Comparison with Petri nets

start A and B

A terminates

A is active

write x

x
read x read x

B terminates

B is active

A finished B finished

Figure 8.6 Example of concurrent access to shared data. Activities A and B
both access data item x

token as input and outputs the token when it finishes. Although the isolation
property is then ensured, in standard Petri nets two read activities cannot be
simultaneously active, since both consume the same token. In other words, a
token is scarce. That is not what we want, because the concurrency of the WFS is
then reduced. In both our semantics, read data is not scarce: many activities can
read the same attribute at the same time. Thus, our semantics allows for more
concurrency than the Petri net semantics. Another drawback of Petri nets is that
the resulting net would look like ravioli if there are many case attributes.

To circumvent this, read arcs [128] can be used for read access. Interestingly,
apparently read arcs have been proposed just to solve this problem of simultane-
ously access to shared data [72]. But unfortunately, read arcs do not solve the
problem satisfactorily. To illustrate this, consider the Petri net with read arcs in
Figure 8.6. Data item x is updated and read by activity A and read only by B.
In this net, although x cannot be updated and read simultaneously, it is possible
that B reads a value of x that is subsequently changed by A. So, activities A and
B are not isolated from each other (viewing both activities A and B as separate
transactions.) Therefore, this solution does not satisfy our needs. (De Francesco et
al. [72] do not address this issue; they only consider the question when two Petri
net executions are view equivalent.)

In fact, in our semantics we have ensured that if two activities are conflicting,
that is, one of them writes a case attribute that the other one reads or writes, then
they cannot be active simultaneously (see Sections 3.4 and 5.2). In the definition
of a step, we have put the constraint that by taking the step a configuration is
reached in which there are no conflicting activities. This conflict relation can of
course be specified in the control flow as well, using for example a mutex place for
each pair of conflicting activities. The mutex place acts as a kind of semaphore: the
activity that can consume the token in the mutex place may be active and change
the data item it likes and when it terminates it puts a token in the mutex place.
A solution using mutex places would, however, clutter the workflow specification

8.4 · Modelling activities 131

with a lot of arrows, and again, we have a ravioli model, that is more unreadable
and incomprehensible than the workflow specification presented in Figure 8.6.

Conclusion. We conclude that data can be modelled in Petri nets using read
arcs, mutex places, and an explicit representation of the environment to model
updates of case attributes. But, the resulting net is overly complex, unreadable
and uncomprehensible. We think that a solution using local variables (used in
Petri nets modelling flowcharts [75]) is more simple and elegant, and therefore
preferable.

8.4 Modelling activities

In a Petri net, there are two options to model an activity: as a transition or as a
place. Almost every Petri net workflow specification seems to take the first option,
whereas if an activity diagram is viewed as a Petri net, the second option is taken.
We discuss the advantages and disadvantages of each option.

Activity is transition. In almost every Petri net workflow specification that we
know of, this interpretation is adopted, probably because of the intuition that an
activity is something which changes the state of the case (the state is assumed to
be modelled by the input tokens). There are, however, some mismatches between
the properties of an activity and the properties of a transition. First, a transition
takes no time to execute, whereas an activity does. There are two ways to solve this
problem. The first solution is to decompose the transition into a “begin activity”
transition and “end activity” transition that are connected by a place representing
“activity busy executing”. This solution results in a Petri net that is quite similar
to an activity diagram. Then the execution of an activity is actually represented
by a place. This approach is taken by for example Van der Aalst, Van Hee and
Houben [6] and Desel and Erwin [50]. See the next item below for a discussion of
this approach.

The second solution is to use timed or stochastic Petri nets, in which a tran-
sition can have a duration. In most timed and stochastic Petri net variants a
transition still fires instantaneously, but it takes time before a transition is en-
abled. The transition in that case actually represents the starting or ending of an
activity rather than the complete execution of the activity. This is not harmful for
analysis purposes, but it gives a slightly awkward model of WFS reality. Analysis
of timed and stochastic Petri nets is far more complex and involved than analysis
of simple low-level nets.

However, our main objection against modelling an activity as a transition is
the following. In Petri nets, a transition is executed by the system that the Petri
net models. Hence, if a transition models an activity, this implies that the WFS
does the activity. This approach violates the WFS characteristic that an activity

132 Chapter 8 · Comparison with Petri nets

is performed by an actor in the environment of the WFS, not by the WFS itself.
And it is this characteristic that creates the need for reactivity in a WFS. By
contrast, in our semantics the WFS does not do activities; it merely routes cases.
In Petri nets that model activities as transitions, the routing is not modelled at
all. Therefore, such Petri nets do not model a WFS.

As an aside, note that in some variant of Workflow Nets [5], some transitions
can be labelled with a silent action that is not observable for the environment. The
semantics of these nets is defined in process algebra. Van der Aalst [4] suggests
to use the silent step to model routing transitions [5]. Transitions labelled with
an observable action then represent workflow tasks. However, in that process-
algebraic semantics, the silent action can be abstracted from sometimes. For
example, a sequential workflow specification with two tasks a and b and a routing
transition from a to b is equal to a model in which a is directly followed by b. It
is unclear how this abstraction can be related to the execution of real workflow
models: a WFS always routes a case after an activity terminates. In our view,
routing cannot be abstracted from.

Of course, one could model the environment also in the Petri net workflow
model, and let the activity be performed by the environment part of the Petri net
model. But then the relationship with the corresponding part of the workflow is
unclear, i.e., what should the WFS do while the environment is busy performing
some activity?

Activity is place. To the best of our knowledge, this interpretation is never
chosen in Petri nets. Most people modelling a workflow in Petri nets probably
would find this interpretation counter-intuitive since (as they argue) during an
activity the case is changed, whereas a place is static (the local part of the case
is not changed). We disagree, however, with this argument, since for a WFS an
activity state does represent something static, namely the WFS waits for an actor
to complete the activity. The only dynamic behaviour of the WFS is when events
occur, e.g. some activity terminates, and the case must be routed to a new state.

Nevertheless, the Petri net people who find this interpretation counter-intuitive
are right to some degree. Whether we represent activities as places or as transi-
tions, in Petri nets case attributes can only be changed in transitions, not in
places. This corresponds to the fact that Petri nets model closed, active systems,
in which the environment, i.e., that which is outside the Petri net, does not play
any role. Any model of an open, reactive system, on the other hand, does allow for
a change of case attributes during a state (place), namely if the change is initiated
by the environment! (These changes are implicitly modelled and not explicitly
represented by edges in the diagram.) And this is exactly what happens during
an activity: the environment (i.e., an actor using an application) updates case
attributes, whereas the WFS waits for the activity to terminate. Consequently, to
model change of case attributes in a Petri net, we must model the environment
explicitly in the Petri net as well.

8.5 · Modelling the implementation-level semantics 133

Conclusion. Most Petri net workflow modelling approaches model activities
as transitions. The only motivation that is given for this choice is that this is
“straightforward” and “intuitive”. We think that the real, underlying motivation
is based upon the following properties of Petri nets: (1) a transition represents
some change by the system, whereas a place represents a static condition on the
system modelled by the Petri net, and (2) a Petri net can only change state by
firing transitions. The two properties imply that all changes are caused by be-
haviour of the system itself. In other words, changes cannot occur due to the
environment of the system. Consequently, any modelling language having these
properties cannot faithfully model open, reactive systems; instead, such a language
is more suitable for modelling closed, active systems. Thus, Petri nets are useful
for example to represent (scarce) resource usage, e.g. the allocation of actors to
activities, but not for modelling open, reactive systems.

8.5 Modelling the implementation-level semantics

In the implementation-level semantics, only a single event can be processed at at
a time. Therefore, a queue is needed to store events that occur while the Router is
busy processing some event. We now discuss whether this can be simulated using
the event-as-token and event-as-transition approaches.

In the event-as-token approach, a queue can be modelled straightforwardly
by switching to Petri nets with integers (counters) as is done in the FunSoft ap-
proach [58]. And a special place can be introduced to store the event that is
currently being processed by the Router. But still, since the event-as-token ap-
proach cannot simulate very well the statechart step semantics that we use, it
cannot simulate the implementation-level semantics very well either.

In the event-as-transition approach (signal-event nets), queues cannot be mod-
elled, since the effect of an event is lost after the step in which the event occurs
is completed. So, if in the environment an event occurs (a spontaneous transition
fires), the WFS must react immediately, since otherwise the event will be lost. So,
in the event-as-transition approach, the implementation-level semantics cannot be
simulated at all.

We conclude that the implementation-level semantics cannot be modelled sat-
isfactorily using Petri net semantics.

8.6 Petri nets for workflow modelling

We now discuss the Petri net models we found in literature that are used to specify
and analyse workflows.

Van der Aalst, Van Hee and Houben [6] use high-level nets to model and analyse
Petri net based workflow models that also model resources. Van der Aalst [3] uses

134 Chapter 8 · Comparison with Petri nets

Workflow Nets, low-level Petri nets with a single start and a single end place, to
verify proper termination of a workflow model.

FunSoft nets [49] are high-level nets for software process modelling, but they
can also be used for workflow modelling. Their semantics is defined in terms
of Predicate/Transition nets [74]. FunSoft nets focus on the flow of resources
(objects), like business documents, through an organisation and do not focus on
modelling events. Some shorthands are defined to model for example FIFO queues.
Several analysis techniques, including verification, have been developed for FunSoft
nets [49].

INCOME/WF [132] is a a workflow management system based on high-level
Petri nets where the tokens are nested relations. Nested relations are introduced
to increase the concurrency of the net: the actual transitions are defined on the
basic elements of the relation, not on the relation itself. This implies, however,
that for the basic elements, no concurrency exists, since the standard Petri net
firing rule is employed, in which a transition consumes all tokens it reads.

Information/Control Nets [55] are a high-level Petri net variant for workflow
modelling. The focus is on the modelling of resources, like documents, not on the
modelling of events.

Milano [10] is a research prototype to investigate flexible workflow models.
Only low-level Petri nets are considered. The Petri nets cannot contain loops and
must be safe.

It is interesting to notice, from this brief overview, that most Petri net workflow
models provide little support for modelling events. And if a notation for events
is suggested, no formal semantics for them is given. Most approaches interpret
tokens as resources that are being used by activities in transitions to deliver a
requested service for a customer. However, the assumption seems to be implicitly
made that resources are scarce, since no two transitions can consume the same
token simultaneously. This assumption is questionable: certainly, some resources
are scarce, but also a wide variety of resources, read-only information carriers like
catalogues, are not. (None of these Petri net variants uses read arcs.)

8.7 What is a Petri net?

Even if one does not agree with the choices we made, our discussion gives – we hope
– more insight in possible answers to the question: “What is a Petri net?” [51].

Most people will answer this question by saying that a Petri net is bipartite
graph, whose nodes are places and transitions, that are connected by directed arcs.
This is characteristic of a certain syntactic definition of a Petri net. However,
an equivalent definition says that a Petri net is a hypergraph: a set of nodes
(places) connected by directed hyperedges [134]. The relation between these two
definitions is as follows: Each hyperedge corresponds to a transition; if a place
is in the source (target) of a hyperedge, then there is an arc from (to) the place

8.7 · What is a Petri net? 135

Hypergraph

(Petri net,

 activity diagram)

Hierarchical

 hypergraph

(statechart)

Token game

semantics
Step semantics

we Statemate,

UML
Petri net theory

Figure 8.7 Possible semantics for (hierarchical) hypergraphs

to (from) the corresponding transition. Since the underlying syntactic structure
of an activity diagram is also a hypergraph (see Chapter 3), the question arises
whether an activity diagram is a Petri net. In this chapter, we have shown that an
activity diagram as we view it is not a Petri net, because the semantics attached
to a Petri net (in fact, to any Petri net variant we found in literature), differs from
the semantics we defined for activity diagrams in Chapter 5. The major difference
is that our activity diagram semantics is reactive whereas the Petri net token-game
semantics is not.

Moreover, we have shown that a statechart-like semantics can be given to a
notation with a Petri net-like syntax (see Figure 8.7). For some obscure reason,
this seems hard to swallow for some people. We quote one of the UML 2.0 propos-
als [11], which suggests a Petri net-like semantics for activity diagrams (in UML
1.4 activity diagrams are given a semantics by translating them into statecharts):

Activities are redesigned to use a Petri-like semantics instead of state ma-
chines. Among other benefits, this widens the number of flows that can be
modeled, especially those that have parallel flows.

This citation reveals that the reason why the UML 2.0 proposal has chosen a Petri
net semantics, is that statecharts were considered to be too strict for modelling
concurrency in workflows. This limitation of statecharts is due to the hierarchy
rules of statecharts, which rules out some forms of concurrency (see Section 9.1).
The hierarchy rules, however, are part of the statechart syntax, not of the state-
chart semantics.

The UML 2.0 proposal seems to reason as follows: remove the hierarchy con-
straints from statecharts (activity diagrams), and the result is something that looks
like Petri nets. So the UML 2.0 proposal seems to make the following equation:

statechart − hierarchy = Petri net

But this equation is false. The equation only says something about the differences
and similarities in syntax of statecharts and Petri nets: a statechart is a hierarchi-

136 Chapter 8 · Comparison with Petri nets

cal hypergraph and a Petri net is a hypergraph. We actually have the following
equation.

statechart syntax − hierarchy ≈ Petri net syntax

Our semantics shows that Petri net-like diagrams (like activity diagrams) can
be given a statechart-like step semantics (cf. Figure 8.7), which differs radically
from a token-game semantics. The UML 2.0 proposal does not consider these
differences in semantics. The real issue is whether a step-based or token-game se-
mantics reflects WFS behaviour more accurately. We think a step-based semantics
is more accurate than a token-game semantics.

8.8 Discussion and conclusion

From our comparison of our semantics with Petri net semantics, we draw the
following conclusions. First, Petri nets model closed systems. All changes in
Petri nets occur because of the firing of some transitions in the net that represent
activity of some part of the system itself, rather than some activity in the system’s
environment. Our semantics models an open system.

Second, the standard Petri net token-game semantics models active systems,
rather than reactive ones. A transition is enabled if its input places are filled. Also,
an enabled transition does not have to fire immediately. Our semantics is reactive.
An edge in an activity diagram is enabled if its source nodes are in the current
configuration and its trigger event occurs in the environment. And an enabled edge
must fire immediately. That is why we impose a maximality constraint on steps
in our semantics. This constraint is lacking in the standard Petri net token-game
semantics.

In Petri nets, reactivity can be simulated to some extent by modelling the
environment in the Petri net as well. This is done, for example, in a recently
proposed variant of Petri nets, called signal-event nets. Like activity diagrams,
signal-event nets are motivated by the domain of reactive systems. Signal-event
nets have a complex semantics that differs considerably from the standard Petri
net token-game semantics (among others, a maximality constraint is imposed on
steps). Since their semantics is so different from the token-game semantics, it is
questionable whether these are Petri nets at all. We showed that signal-event nets
have similar behaviour as statecharts under the fixpoint step semantics, defined
ten years earlier by Pnueli and Shalev [140]. We are convinced that it is impossible
to simulate in Petri nets our semantics of event generation, that is used in both
UML and Statemate. However, it might be worthwhile to try to incorporate the
concepts of signal-event nets into Petri net variants that model events as tokens,
for example open nets. The resulting Petri net variants would likely be closer to the
UML and Statemate interpretation of event generation than any of the currently
existing Petri net variants, but we expect such variants will still be different.

8.8 · Discussion and conclusion 137

Third, Petri nets in general model scarce resources, rather than unscarce ones.
A transition can only fire if there are enough input tokens present, i.e., enough
scarce resources are available. Using read arcs this can be circumvented, because
with a read arc a token can be tested without being consumed. Thus, read arcs
allow for elegant specification of concurrent access to shared data. However, if an
activity is seen as a transaction, as is usually done in workflow modelling, read
arcs must be combined with mutex places to enforce isolation between activities.
We prefer our own approach using local variables, since it is more simple.

Fourth, the Petri nets that came closest to the requirements-level semantics
we gave to activity diagrams contained inhibitor arcs, read arcs, synchronisation
between transitions, and coloured tokens with timestamps. These nets had to
contain both a description of the workflow and of the environment. Roughly
speaking, the net had twice as many nodes compared to the corresponding activity
diagram. Such Petri nets are truly gargantuan and difficult to analyse, both for a
workflow modeller and a verification tool. (For example, a lot of the analysis results
for standard Petri nets do not carry over to signal-event nets [70].) Moreover, these
Petri nets still stay far away from our implementation-level semantics. They do
not resemble it at all.

Also, one of the acclaimed advantages of Petri nets, that there is an abundance
of analysis techniques available for them [2], is only true for low-level nets; its
applies to a lesser extent to high-level nets. As we showed, not every desirable
construct can be modelled in low-level and high-level nets; read arcs, inhibitor
arcs and synchronisation constraints are needed as well. But for these latter net
variants, there are only but few analysis techniques available. In Chapter 10 we
show how activity diagrams with similar constructs can be efficiently verified using
model checking.

Some WFMSs, for example Cosa [147], use Petri net variants as workflow mod-
elling language. But even though these WFMSs use the Petri net syntax, this does
not necessarily mean that they use the Petri net token-game semantics! For exam-
ple, in Cosa activities are modelled as transitions. In the token-game semantics of
Petri nets, a transition fires instantaneously whereas in real life an activity will not
be performed instantaneously. So, although the Petri net syntax is used by this
WFMS, it is doubtful whether the Petri net token-game semantics is used. More-
over, the semantics that WFMSs in general attach to input workflow specification
is unknown, as vendors do not publish the semantics they implement. But for
analysis purposes, the semantics a WFMS uses should be known, since analysing
a Petri net-based workflow specification, using, for example, the Petri net token-
game semantics, presupposes that this semantics gives an accurate description of
the real workflow behaviour.

Of course, above conclusions are based upon our assumption that a work-
flow specification describes the behaviour of a WFS. One could argue whether
this assumption is valid. In fact, does not a Petri net workflow specification de-
scribe an organisation, rather than a computerised system? But even then, the

138 Chapter 8 · Comparison with Petri nets

interaction between the organisation and its environment must be modelled (cus-
tomers, government, suppliers,...), since the organisation is a reactive system as
well. Consequently, Petri net models of organisational behaviour suffer from the
same problems as Petri net models of WFS behaviour: they cannot model reac-
tivity.

From the above, it follows that if the standard Petri net token-game semantics
is used in modelling a reactive system, the reactivity of that system is abstracted
from. But we consider reactivity to be one of the most important aspects of
workflow modelling. If reactivity is abstracted from, then at least some justification
should be given that assures that the analysis results on the Petri net model will
also carry over to a reactive setting. We do not think such justification has been
given yet (at least we have not found one in literature). If no justification is given,
it is unclear what the relationship is between execution of a workflow specification
according to the Petri net token-game semantics and the actual execution of a
similar workflow specification by a WFS.

Chapter 9

Related work

In the previous chapter we have compared our two semantics of activity diagrams
with various Petri net semantics. In this chapter we will compare our two semantics
with other related work, including statechart semantics, and other formal workflow
modelling languages that are not based on Petri nets.

Section 9.1 compares our approach with statecharts, in particular the Statem-

ate and UML variants. Section 9.2 looks at the informal OMG semantics of UML
activity diagrams. Other formalisations of UML activity diagrams are discussed
in Section 9.3. Section 9.4 looks at the state of the art WFMSs to see in what
respect they can implement our semantics. Section 9.5 considers other formal
workflow modelling languages. The last two sections focus on active databases
and transactional workflows. We end with conclusions.

9.1 Statecharts

In order to keep the presentation simple, we only discuss the major differences
between our two semantics of activity diagrams and the two existing statechart
semantics, Statemate and UML, that inspired both semantics. More details can
be found elsewhere [63].

Statechart syntax. The most striking difference between the syntax of activity
diagrams and Petri nets on the one hand and the syntax of statecharts on the
other hand is the different representation of parallelism (concurrency). In state-
charts, parallelism is represented through a hierarchy of nodes, whereas in activity
diagrams and Petri nets it is not.

The hierarchy relation in statecharts must be a tree: a node can have at most
one parent (but a parent can have more than one child). Leaf nodes of the tree
correspond to the nodes of an activity diagram (and to the places of a Petri net).

140 Chapter 9 · Related work

Leaf nodes are called BASIC nodes. There are two kinds of non-leaf nodes, AND
nodes and OR nodes. OR nodes are used to group sequential states, whereas AND
nodes are used to put different groups of sequential states in parallel.

The state of a statechart must satisfy the following constraints on AND nodes
and OR nodes:

• If the system is in an AND node, then it is in every child of the AND node.

• If the system is in an OR node, then it is in exactly one child of the OR
node.

These constraints ensure that every node, including BASIC nodes, is active at
most once at the same time.

Due to these syntactic constraints, the concurrency that can be expressed in
statechart syntax is limited. We show this by three examples. First, the activ-
ity diagram in Figure 9.1(a) would translate into the statechart in Figure 9.1(b).
The AND node in Figure 9.1(b) is needed since nodes Produce partial order and
Take partial order from stock are in parallel. But in the activity diagram in Fig-
ure 9.1(a), node Send partial shipment can be active more than once at the same
time, since activities Produce partial order and Take partial order from stock both
start their own separate instance of activity Send partial shipment . When the
workflow stops, always two instances of activity Send partial shipment have been

Produce

partial order

Take partial order

 from stock

Send partial

shipment

Produce

partial order

Take partial order

 from stock

Send partial

shipment
(a)

(b)

Produce

partial order

Take partial order

 from stock

Send partial

shipment

(c)

Send partial

shipment

Figure 9.1 Activity diagram and two statecharts with different behaviour

9.1 · Statecharts 141

A
B

Figure 9.2 Activity diagram that cannot be translated into a statechart

performed. Whereas in the statechart of Figure 9.1(b), if for example activity
Produce partial order terminates and Take partial order from stock is still running,
the AND node and all its subchildren, including Take partial order from stock, are
left. So node Take partial order from stock is left, even though the corresponding ac-
tivity is still running! And when the workflow stops, activity Send partial shipment
has been performed only once, instead of twice.

The reason for this difference in behaviour between statecharts and activity
diagrams is due to the syntactic constraints on AND and OR nodes in statecharts.
These constraints enforce that a statechart node is not active more than once
at the same time. This does not mean, however, that no statechart can express
similar behaviour as the activity diagram in Figure 9.1(a). By replicating node
Send partial shipment, the behaviour of the activity diagram in Figure 9.1(a) can
be simulated in a statechart, as shown in Figure 9.1(c).

Our second example, the activity diagram in Figure 9.2, shows that not every
activity diagram can be mimiced with a statechart by replicating some nodes.
Each time node A terminates, a new instance of B is enabled, even though some
instances of B are already active. In fact, node B can be active unboundedly often
at the same time, i.e. there is no bound on the maximum number of simultaneous
instantiations of B (the notion of unboundedness comes from Petri net theory).
Since in a statechart a node cannot be active more than once at the same time,
this activity diagram cannot be translated directly into a statechart.

The activity diagram cannot even be simulated by a statechart using node
replication. To represent unboundedness of some node n in a statechart using
node replication, we need unboundedly many copies of node n. Since the copies
can be in parallel, they should have some AND node a as common ancestor. Every
AND node has a fixed number of child nodes (for example, each of the AND nodes
in the statecharts in Figure 9.1 has two children, OR nodes). All the children
of an AND node are in parallel, not just some children. Thus, all copies of n
are active in parallel at the same time. But unboundedness of n implies that the
number of simultaneous instantiations of n, i.e., the number of copies in parallel,
can change over time, so is not fixed. So it is impossible to model unboundedness
in statecharts using node replication.

142 Chapter 9 · Related work

A

B

C

WAIT−2

WAIT−1

D

E

WAIT−3

WAIT−4

WAIT−5

Figure 9.3 Another activity diagram that cannot be translated into a statechart

This discussion might give the impression that every activity diagram in which
the bounds are at most one can be translated directly into a statechart without
having to resort to replicating nodes. But that is not true, as is shown by our
third example in Figure 9.3. Let us try to translate this in a statechart. Since
nodes A and B are in parallel, they must in a statechart be a subchild of two
different parallel OR nodes, say Aor and Bor . Because B and C can be active at
the same time, C must be a subchild of Aor . By similar reasoning, node E must
be a subchild of Bor . The AND/OR hierarchy constraints enforce that node D
belongs to exactly one OR node. Since D is successor of A, node D must belong
to Aor . Since D is successor of B, node D must belong to Bor . But Aor and Bor

are in parallel, so not hierarchically related. So D can never be a subchild of both
Aor and Bor .

Note that not even node replication would help to translate the activity dia-
gram in Figure 9.3 into a statechart. A possible solution is to remove the synchro-
nisation between A and D by removing node WAIT-1 and its ingoing and outgoing
edges. The precedence relation between A and D can be enforced by labelling the
edge from WAIT-2 to D with guard [in(C) ∨ in(WAIT-3)]. Then D can be subchild
of Bor .

The OMG semantics of UML 1.4 activity diagrams translates an activity di-
agram into a statechart and uses the statechart semantics. To ensure that every
activity diagram can be translated into a statechart, UML 1.4 only allows activity
diagrams in which each fork is eventually followed by a join and in which multiple
layers of forks and joins are well nested. This constraint rules out the activity
diagrams in Figures 9.1, 9.2 and 9.3. The constraint is sufficient but not necessary
to translate an activity diagram into a statechart. Figure 9.4(a) shows an activ-
ity diagram that violates the constraint, because the fork and joins are not well
nested. Figure 9.4(b) shows the statechart that the activity diagram translates
into.

We conclude that the hierarchy constraints in statecharts rule out certain forms
of concurrency, that are allowed in activity diagrams and Petri nets. That is why
we do not give a semantics to activity diagrams by defining a translation of an
activity diagram into a statechart. Instead we have defined our semantics directly

9.1 · Statecharts 143

A

B

C

WAIT−2

WAIT−1

D

WAIT−3

WAIT−4

A

B

C

WAIT−2

WAIT−1

D

WAIT−3

WAIT−4

(b)

(a)

Figure 9.4 Activity diagram that can be translated into a statechart

in terms of activity hypergraphs. We allow all the activity diagrams shown in this
section. To allow multiple simultaneous instantiations of the same nodes, we have
extended the statechart definition of configuration and step from sets of nodes and
sets of hyperedges to bags of nodes and bags of hyperedges.

Statemate and UML statechart semantics. Harel [88] introduced state-
charts as part of Statemate [92], a structured analysis approach for modelling
reactive systems. The two most important specification techniques in Statemate

are statecharts and activity charts. Activity charts describe the functional view
of the system. An activity chart consists of activities and the dataflows between
them. The behaviour of every activity is modelled with a statechart. A statechart
can start and stop activities. Atomic (non-compound) activities themselves are
specified imperatively, not declaratively.

The Statemate semantics of statecharts assumes that reactions do not take
time (perfect technology). There are two variants of the semantics. One variant
is event-driven (called asynchronous in Statemate), the other one is clock-driven
(called synchronous in Statemate). The event-driven variant satisfies the perfect
synchrony hypothesis.

The semantics of UML statecharts does not resemble the Statemate semantics
at all, since the perfect technology assumption is dropped and events are processed

144 Chapter 9 · Related work

one by one. The UML semantics does not make the perfect synchrony hypothesis.
Instead, the UML semantics is based on the ROOM statechart semantics [146]. We
have given elsewhere a detailed comparison of UML statecharts with Statemate

statecharts [61, 62]. A UML statechart can model the behaviour of any software
item, but it is mostly used to model the behaviour of a software object.

Although our two semantics are based on elements from the Statemate and
UML statechart semantics, there are some differences:

• In our semantics, activities fall outside the scope of the system that is being
developed, whereas in both Statemate and UML activities fall inside that
scope. Activities in Statemate and UML are always software activities,
whereas in our semantics activities might be manual.

• Consequently, we specify activities declaratively and incompletely with pre
and postconditions, whereas in Statemate and UML they are specified
imperatively with a software procedure or another statechart.

• We have defined data integrity constraints between activities. Such con-
straints do not exist in Statemate or UML.

Thus, the major difference with both the Statemate and UML statechart se-
mantics is that in our semantics activities are executed in and by the environment,
whereas in Statemate and UML they are executed in and by the system being
specified.

9.2 OMG semantics of UML activity diagrams

UML 1.4. In version 1.4 of UML [150], current at the time of writing (2002),
the semantics of an activity diagram is specified in terms of a UML statechart,
by translating a UML activity diagram into a UML statechart. (In UML 2.0, the
semantics will be defined independently from statecharts.) Apart from the fact
that not every activity diagram can be translated into a statechart (see the previous
section), the UML 1.4 semantics of activity diagrams is not entirely suitable for
workflow modelling. For example, in UML 1.4 an activity is defined as an entry
action of a state. An entry action is executed to completion when its state is
entered [150]. But in Figure 1.1 this means that the two activities Check stock and
Check customer are executed simultaneously in the same run-to-completion step!
This is not what we would like the activity diagram of Figure 1.1 to say. What we
would like to express by Figure 1.1 is that Check stock and Check customer start
simultaneously, not that they should stop at the same time.

The underlying problem is that in UML 1.4, and also in the UML 2.0 pro-
posal [11], an activity diagram is viewed as model of a software system that exe-
cutes the activities itself. We want to use activity diagrams for workflow modelling
and therefore see an activity diagram as a model of a workflow system (WFS). In

9.2 · OMG semantics of UML activity diagrams 145

workflows, the activities are performed by actors (people or applications) external
to the WFS, not by the WFS itself. It is the task of the WFS to monitor these
activities, to manage the flow of data between them, and to route work items
through a collection of actors, but it is not the task of the WFS to execute the
activities. So in Figure 1.1, the WFS executes the state transitions, i.e. the ar-
rows in the diagram. The activities (nodes in the diagram) are executed by actors
external to the WFS.

So, in our semantics, activity states are states in which the WFS waits for
an actor to finish work. Transitions are steps in which the WFS records the
completion of activities and the arrival of events, and computes what activities
should be done next.

UML 2.0. Currently (2002) the UML 2.0 is under development. Several pro-
posal have been sent in. The most comprehensive one, the one by the UML
Revision Task Force (RTF) itself [11], presents a semantics to activity diagrams
that is completely different from the UML 1.4 semantics.

The proposal talks about tokens flowing along edges. Clearly, this suggests a
Petri net-like semantics. Unfortunately, some constructs are introduced that can-
not be expressed in Petri net token-game semantics, even though this is suggested
by the informal semantics of the UML RTF proposal [11].

For example, the notion of an interrupt region is introduced (see also Sec-
tion 7.4). An interrupt region is a group of nodes that can be interrupted by one
or more special edges, called interrupting edges. If one of these edges is taken, all
other tokens flowing in the region are aborted. The semantics of of the interrupt
region is given by the following two lines [11]:

The region is interrupted when a token traverses an interrupting edge. At
this point the interrupting token has left the region and is not terminated.

An interrupt has two important features that are missing from above descrip-
tion:

• All other tokens in the region should be removed (aborted).

• The interrupt edge must have higher priority than a non-interrupt edge, i.e.,
it must be taken first.

Both features cannot be modelled with the standard token-game semantics of
Petri nets. The first feature can be modelled by interpreting an interrupt region
as a shorthand to abbreviate many edges (see Section 7.4), whereas the second
feature could in principle be modelled by using priority transitions from the theory
of stochastic Petri nets.

More in general, the token-game semantics is not suitable to represent reactive
behaviour, as we showed in Chapter 8. Thus, a token-game semantics for activity
diagrams would make activity diagrams unsuitable for modelling reactive systems.

146 Chapter 9 · Related work

Are activity diagrams OO? Some members of the UML Revision Task Force
(RTF) do not seem to be comfortable with activity diagrams, since, as they argue,
these do not fit the paradigm of object orientation. As an illustration, we quote
from a recent report by Kleppe and Warmer [111] (Warmer is member of the UML
RTF):

The way the activity diagram in the Unified Modeling Language is currently
defined is not object-oriented. This is a bold statement, but it is backed
up by experts in the field. In a recent presentation for the OMG, Conrad
Bock mentioned: an “application is completely OO when all action states
invoke operations, and all activity diagrams are methods for operations.”
[...] In other words, using an activity diagram one can model a system in a
completely non object-oriented way. In such an activity diagram the object-
oriented principle of responsibility is not applied.

In fact, the current activity diagrams look in suspiciously many ways like
the results of structured analysis and design, which uses functional decom-
position to develop a software system. It is well known to object-oriented
experts that structured analysis and design is a modeling paradigm that does
not fit to the object-oriented paradigm. In the presentation for the OMG
mentioned earlier [...] it is stated that activity diagrams specify data/object
flow. At the same time the UML 1.3 standard [...] includes the following
quote [...]: “Why does not UML support data-flow diagrams? Simply put,
data-flow and other diagram types that were not included in the UML do
not fit as cleanly into a consistent object-oriented paradigm.”

Consequently, Warmer and other advocates of this viewpoint argue that activ-
ity diagrams should be thrown out of the UML, as they are not OO. Others take a
more pragmatic viewpoint. We quote Bock in one of his papers [21] (Bock is also
member of the UML RTF and leader of the group responsible for the syntax and
semantics of activity diagrams):

Another problem with UML [...] is that [...] the user is forced to assign the
business function to an object [...] This may be gospel to object-orientation
practitioners, but business modelers are aware that the responsibility for
an activity may change over time, and consequently prefer to focus their
models initially on the result that is expected from a function rather than
who performs it [...]. This is related to the concept of interfaces adopted
in the object orientation community, but more powerful. Business modelers
are well in advance of object-oriented modelers in this respect.

The inevitable conclusion is that OO is not really suitable for business mod-
elling. Inspection of some works on applying UML to business modelling conforms
this conclusion [59]. Software objects are used passively in order to store informa-
tion, not actively to process information. This explains why activity diagrams are
useful for workflow modelling but also why they are not OO. Dropping activity
diagrams from the UML implies dropping business modelling from the UML.

9.3 · Other work on UML activity diagrams 147

9.3 Other work on UML activity diagrams

Dumas and Hofstede [53] evaluate the suitability of UML activity diagrams for
workflow modelling by trying to capture some workflow patterns [7] in activity di-
agrams. They only consider activity diagrams that are translated into statecharts
according to OMG semantics of UML 1.4 [150].

There are several other formalisations of the UML 1.4 (and of earlier versions)
of activity diagrams [13, 23, 25, 73, 137]. Gehrke et al. [73] propose to give a
semantics to activity diagrams by translating them into Petri nets, but do not
provide a formal semantics. They do not relate the proposed Petri net semantics
to the OMG semantics of activity diagrams. See Chapter 8 for a comparison of
both our semantics with Petri nets.

The other formalisations [13, 23, 25, 137] follow the OMG semantics closely.
The discussion in Section 9.2 listing the difference of our semantics with the OMG
semantics also applies to these other formalisations. Like the OMG semantics,
these formalisations map activities into actions that are done in transitions of
the system under development. Consequently, they too have problems modelling
parallelism (see Section 9.2). The formalisations are not as complete as ours; for
example none of them deals with events, none of them deals with the in predicate,
none of them deals with wait nodes.

It is quite interesting to see the approach taken by these other formalisations.
All of them give a semantics by defining a mapping from an activity diagram into
the syntax of another formal technique, for example LOTOS [22] in the case of
Apvrille et al. [13] and Pinheiro da Silva [137], or CSP [97] in the case of Bolton
and Davies [23].

Implicitly, in these approaches the assumption is made that the semantic
choices made in these formal techniques are valid for UML activity diagrams as
well. Although this might be true, we think that choices made in the semantics
should be made explicit, so that they can be validated for the intended domain
of modelling, in this case workflow modelling. Unfortunately, none of the authors
mentioned above seems to be aware of this problem. In none of these references the
semantic choices are stated explicitly. Even if one thinks these semantic choices
are valid for the domain being modelled, this should be brought out in the open
and motivated. This is not done by the authors just mentioned.

To show the impact of these hidden assumptions, we give three examples of
hidden assumptions that are implicitly made in the approaches above, and we vali-
date these hidden assumption against the domain of workflow modelling. The first
example concerns the semantics of activities. In the process algebraic formalisa-
tions of UML activity diagrams [13, 23, 137], activities are modelled as actions. In
every process algebra, including CSP and LOTOS, an action does not take time.
Also, actions are done in transitions of the system being modelled, not in states.
Actions, including parallel ones, are interleaved: only one action is done at a time.
This is justified in process algebras by the fact that an action is instantaneous.

148 Chapter 9 · Related work

Applying the process-algebraic formalisation to our running example (Fig-
ure 1.1), we thus have that activities like Check stock and Check customer do
not take time. Moreover, activities Check stock and Check customer that are
specified to be in parallel according to the specification, are done sequentially, i.e.
one by one, in the semantics! Of course, a more fine grained mapping could be
defined, in which an activity is mapped into a begin and an end action, but this
is not done in these formalisations.

As a second example, one of the key features of process algebras like LOTOS
and CSP is the definition of an equality relation on processes. Figure 9.5 shows two
activity diagrams that are the same according to the formal semantics of Apvrille
et al. [13], Pinheiro da Silva [137], and Bolton and Davies [23]. (We do not use
wait nodes as these are not formalised by these references.) But the two activity
diagrams are different according to our two semantics, because they have different
runs. We think most workflow designers (and most UML designers) would consider
them different as well.

The third example concerns the semantics of communication. In process alge-
bra, communication between two parties is blocking in the sense that both parties
cannot proceed unless they cooperate with each other. In other words, commu-
nication is synchronous. Translating this to workflow specifications, this would
mean that the environment of a WFS must run in the same pace as the WFS
itself. The environment might even get blocked by the WFS, if the WFS is too
slow. It is very doubtful whether this is appropriate for WFSs. We do not want
to put such a constraint upon the environment of the WFS. We therefore have
adopted a non-blocking semantics (see Section 4.3 on page 47).

We conclude that in these other formalisations of UML activity diagrams,
some of the semantic choices that are implicitly made do not match the domain
of workflow modelling. Thus, these semantics are not fit to be used for workflow
modelling.

A

B

A

B

B

A

(a) (b)

Figure 9.5 Two activity diagrams that are the same according to [13, 23, 137],
but not according to our two semantics

9.4 · The state of the practice 149

9.4 The state of the practice

By defining a semantics for activity diagrams and linking it with WFSs, we have
implicitly defined how a WFS behaves. We now discuss the current state of the
art w.r.t. the semantics outlined above. So, is our semantics realistic?

We emphasise that it is not our aim to define a semantics that is implementable
by any state of the art WFMS (see page 8). As WFMS product vendors do
not publish the semantics their WFMSs attach to a workflow specification, it is
impossible to validate whether the semantics is implementable by their WFMSs.
Instead, our aim is to define a good approximation of how a WFMS in general
behaves.

We do not know of any commercial WFMS that allows for the specification of
workflow models using UML activity diagrams. But few of the current commercial
workflow systems offer some support for modelling events [30, 84]. We therefore
expect that the constructs of our semantics related to events will be hard to ex-
press in workflow models of existing commercial WFMSs. On the other hand,
our event broadcast semantics, in which one event can trigger more one edge, is
similar to the publish-subscribe notification mechanism used in middleware ap-
plications, and also used in a recently adopted industry standard for workflow
interoperability [133], defined by OMG and WFMC.

Recently, UML activity diagrams have been proposed to model e-business ser-
vices in e-business standards like ebXML [153]. We expect that process man-
agement tools that support e-business services will use UML activity diagrams
as specification language. In for example ebXML, the event features of activity
diagrams are used quite extensively: events are the standard means of commu-
nication between different business partners. Events are also used quite exten-
sively in business modelling, especially in UML-based approaches, for example [59].
In academia, several WFMS research prototypes use event-based workflow mod-
els (e.g. [30, 45, 77, 84, 85, 130]), often inspired by active databases [156] (see
Section 9.6).

9.5 Other workflow modelling languages

There are several languages for modelling workflows, mostly informal ones. We
here focus on languages that have some kind of execution semantics.

Event-driven process chains (EPCs) are part of the ARIS (Architecture of In-
tegrated Information Systems) method [145]. EPCs are inspired by Petri nets, but
they do not have a formal semantics. Nüttgens et al. [131] give a brief comparison
of EPCs and UML activity diagrams.

Leymann and Roller [118] define a language that is close to the language used
in IBM’s workflow product [100]. The syntax does not resemble UML activity
diagrams, as workflow specifications in their approach must be acyclic. The lan-
guage does not have decision or merge nodes. The semantics of that language has

150 Chapter 9 · Related work

single-event processing. Each activity has its own copy of data it needs, whereas
in our approach data is global.

Jackson and Twaddle [103] define a language for modelling workflows. The
main difference with activity diagrams is that in their language an edge between
two activities, say from A to B , denotes “begin on start”, so B can begin when
A has begun. Whereas in activity diagrams an edge means “begin on end”, so A
should have terminated when B begins. Their language does not allow for multiple
simultaneous instantiations of the same task.

Ould [135] uses a variant of Petri nets with some additional notation to model
and animate business processes. The focus is on organisational roles that do
activities and on how these roles cooperate. The semantics of the used language
is not formally defined.

Amber [54, 104] is a language for modelling businesses processes. Amber

stands for Architectural Modelling Box for Enterprise Redesign. Janssen et al. [104]
define the semantics of Amber in terms of the input language of the Spin model
checker. Like statecharts, Amber models activities as actions that are executed
by the system under development, not by the environment. Models in Amber are
by definition safe. Amber offers some support for modelling data.

Finally, in the Mentor project [130, 158] the Statemate toolset is used for
workflow modelling, even though the Statemate toolset is intended for modelling
embedded real-time systems. Wodtke and Weikum [158] use the clock-driven se-
mantics, in which the system takes a step at every tick of the clock. They say
that the event-driven semantics, with its supersteps, is too complex for workflow
modelling, but they do not motivate this any further. Interpreting their approach
in terms of our model, they seem to have a hybrid of our requirements-level and
implementation-level semantics: an implementation-level like semantics with par-
allel event-processing triggered by ticks of the clock.

9.6 Active databases

In active database systems [156] an execution semantics for active rules is adopted
that resembles the semantics for edges that we use. The major difference, however,
is that active rules are typically executed in transactions. Whereas an edge in
an activity diagram is typically taken when some activity terminates and the
corresponding database transaction has finished as well. Also, the notion of state
(node) is absent in active rules. These differences make it hard to compare active
rules with our execution semantics.

Nevertheless, there are some striking similarities with the statechart semantics.
For example, like in statecharts, in active databases a generated event has an
effect in the next step, not in the current step. The possibility of nontermination
of the rule processing algorithm due to rules that trigger each other, is a well
known feature of active databases [156]. Nontermination resembles divergence

9.7 · Transactional workflows 151

in statecharts (see page 50). Furthermore, Ceri and Fraternali [33] combine the
syntax of statecharts with active rules: they use statecharts as a graphical front
end for an active rule language, Chimera. Unfortunately, they do not relate the
active rule language to the statechart semantics. We do not know of any work
comparing active rules to statechart semantics.

9.7 Transactional workflows

Transactional workflow modelling focuses on the specification of transactional
properties for workflows or parts of workflows [76]. Transactional workflow mod-
els can be at a higher or lower level of abstraction than the workflow models we
use [79], but usually they are at a lower level. For example, usually in a transac-
tional workflows, an activity (task) can have several substates, including several
end states, such as aborted and committed. These substates correspond to the
states of a transaction. If an activity is aborted, it has no effect on the case
attributes, that is, it seems as if it was never executed. If an activity is com-
mitted, it does have an effect on the case attributes. Between activities (tasks),
several dependencies can be modelled, for example, activity B should begin ex-
ecuting if activity A has aborted (begin-on-abort) [8, 15]. Figure 9.6 shows the
state-transition diagrams of A and B and the begin-on-abort dependency between
them. Labels on edges denote events.

By contrast, in our semantics, an activity state has just one state, in which the
WFS waits for the activity to terminate. Once the activity terminates, the WFS
leaves the activity state, thus finishing the activity. Moreover, the only kind of
dependency between activities we have is that if one activity finishes, the next one
starts.

Despite these differences, some of the constructs that are used in transactional
workflows, for example the different end states, can be modelled in activity dia-
grams by encoding the end state of the activity as a separate variable. By testing
this variable once the activity has completed, several of the dependencies used in
transactional workflows can be modelled. For example, Figure 9.7 shows how the
begin-on-abort dependency in Figure 9.6 can be modelled in activity diagrams.

9.8 Conclusion

We have discussed several other semantics for activity diagrams. These other se-
mantics, including the informal OMG semantics, are not motivated by a particular
application domain. We showed that they are not suitable for modelling workflows.

A merit of our approach compared to other approaches is that the design
choices that we made in both our semantics are stated explicitly. In other ap-
proaches, design choices are not explicitly listed; rather, these approaches use an
existing formal notation and do not mention the design choices that are made

152 Chapter 9 · Related work

Not executing

Executing

start

AbortedCommitted

abort
commit

Not executing

Executing

start

AbortedCommitted

abort

Activity A Activity B

commit

Figure 9.6 Transactional workflow specification with begin-on-abort depen-
dency

A B
[stateA=aborted]

[else]

Figure 9.7 Activity diagram with begin-on-abort dependency

in the semantics of these notations. Our semantics can be applied to any other
application domain by just validating the choices against that domain. UML ac-
tivity diagrams are also used for modelling the flow of control within a software
procedure. We do not think that our semantics is suitable for this domain. In this
domain, activities are done inside the scope of the system being modelled, whereas
in workflow modelling they are outside the scope of the WFS.

Finally, we have shown with our semantics that a statechart-like semantics can
be given to a notation with a Petri net-like syntax. As explained in Section 8.7, for
UML 2.0 a Petri net-like semantics for activity diagrams seems to have been chosen
because the statechart syntax was considered to be too restrictive for modelling
concurrency. Our approach does not have this restriction, because we have defined
a semantics directly in terms of activity diagrams. Unlike the UML 2.0 proposal,
we still use a statechart-like reactive semantics.

Chapter 10

Verification of functional

requirements

In this chapter we explain how functional requirements of activity diagrams can
be verified using model checking [42]. Model checking is a technique for automat-
ically verifying whether a finite transition system (Kripke structure) K satisfies a
temporal logic formula ϕ, i.e., whether K |= ϕ. The language we use for specifying
functional requirements on workflows is therefore based on temporal logic [57]. In
the next chapter we will discuss some case studies that we did, in which we model
checked functional requirements of activity diagrams.

We have developed the following tool support for model checking. We have
implemented the requirements-level semantics in the Toolkit for Conceptual Mod-
eling (TCM) [48], a set of diagram editing tools, one of which is a tool for drawing
activity diagrams. We have interfaced TCM with a model checker. Figure 10.1
shows the architecture of the tool that we have developed. The mapping of the
activity diagram into the transition system implements the requirements-level ex-
ecution semantics of Chapter 5.

The intended way of working with the verification tool is as follows. The work-
flow modeller specifies an activity diagram with TCM. This activity diagram is a
workflow specification. Using a formal property language, the workflow modeller
defines requirements that the intended workflow specification must satisfy. Note
that both the activity diagram and the requirements must be formal, since they
are interpreted by a software tool according to a formal semantics.

TCM generates a transition system from the activity diagram and translates
the requirement into a temporal logic formula. Currently, the requirements lan-
guage is a syntactic sugarring of the temporal logic language. In future work we
intend to specify a more abstract requirements language that is closer to the busi-
ness level. The most commonly used temporal logics are Linear Temporal Logic
(LTL) [122] and Computation Tree Logic (CTL) [42]. These logics are explained

154 Chapter 10 · Verification of functional requirements

TCM

Transition

system

Temporal Logic

 Formula

Formal

activity diagram

TCM

Formal

requirement

Model

checker

Path in

 activity diagram

Run

TCM

Workflow modeller

Figure 10.1 Tool architecture

and defined in Section 10.1.

Both the transition system and the temporal logic formula are input for a model
checker that checks whether the transition system satisfies the temporal logic for-
mula. If the temporal logic formula fails to hold, the model checker generates an
example run (also known as scenario or trace) which shows the sequence of states
that lead to violation of the requirement. TCM then highlights the corresponding
path in the activity diagram. The workflow modeller can then either change the
requirement or the activity diagram and do the verification again.

Initially, we included support for as many model checkers as possible and have
used for example NuSMV [38], Spin [99] and Kronos [163]. However, not every
model checker turned out to be useful. As we will argue in Section 10.3, only model
checkers supporting strong fairness constraints are useful for workflow specifica-
tions. Since strong fairness is an LTL property and most model checkers support
CTL properties only, only a few model checkers are useful for our purpose. Even
worse, most LTL model checkers do not use a special model checking algorithm
for strong fairness, i.e., they do not support verification of strong fairness at the
algorithmic level. Consequently, their performance is so bad that they cannot be
used either. We therefore decided to implement in the NuSMV [38] model checker
an existing LTL model checking algorithm of Kesten et al. [110] that deals with
strong fairness constraints at the algorithmic level. Section 10.3 gives more details.

10.1 · Temporal logic 155

Note. In this chapter we restrict ourselves to the class of activity diagrams that
have similar behaviour in RLS and ILS, as defined in Chapter 6. So the considered
activity diagrams satisfy the constraints mentioned in Theorem 6.7 on page 101.
This restriction can easily be relaxed. We will focus on requirements that are
insensitive to the semantics being used, RLS or ILS.

The structure of this chapter is as follows. Section 10.1 defines the logic CTL∗.
Both CTL and LTL are restricted logics of CTL∗. We also define CTL∗

r , a re-
stricted version of CTL∗. Formulas in CTL∗

r are insensitive to the semantics being
used, RLS or ILS. Model checking requires the state space to be finite. Section 10.2
explains how a Clocked Transition System with an infinite state space is trans-
formed into a finite transition system without clocks. Section 10.3 discusses what
strong fairness is and why it is needed. Section 10.4 sketches the structure of our
implementation in TCM. Section 10.5 gives some example verifications of require-
ments. Section 10.6 first analyses how parallelism, events, data, and real-time
impact the size of the state space. Then it shows how the state space can be
reduced while preserving the requirement to be verified. Section 10.7 discusses
related work. We end with conclusions.

10.1 Temporal logic

CTL∗. The presentation in this paragraph is based on [36, 41]. CTL∗ can ex-
press both linear-time and branching-time properties. The following linear-time
operators are used:

X – neXt U –Until F – sometimes (Future) G – always (Global)

Linear-time operators are evaluated on infinite paths. A path is a sequence of
states. In an infinite path, each state has a single successor. Operator X is the
next-time operator: Xϕ is true iff in the next state ϕ is true. Operator U is the
until operator: ϕ1 U ϕ2 is true iff from now on, in the current state, ϕ1 holds until
in a certain state in the future ϕ2 holds. Operator F specifies that sometime in
the future a formula will hold: Fϕ abbreviates true U ϕ. Operator G specifies that
always from now on, so globally, a formula holds: Gϕ abbreviates ¬ F¬ ϕ which
is equal to ¬ (true U¬ ϕ).

In CTL∗, a formula composed of linear-time operators can be prefixed by path
quantifiers. Path quantifiers are branching-time operators. The following path
quantifiers are used.

A – for All paths E – for some paths (Exists)

Let AP denote the set of atomic propositions. We define AP below. There are
two types of formulas in CTL∗: state formulas (which are true in a specific state)
and path formulas (which are true along a specific path). We inductively define
the class of state formulas and path formulas:

156 Chapter 10 · Verification of functional requirements

• An atomic proposition ap ∈ AP is a state formula.

• If p, q are state formulas then so are p ∧ q, ¬ p.

• If p is a path formula then E p, A p are state formulas.

The path formulas are specified by the following inductive definition

• If p is a state formula, it is also a path formula.

• If p, q are path formulas then so are p ∧ q, ¬ p, X p and p U q.

CTL∗ is the set of state formulas defined by above formulas.

Both state formulas and path formulas are evaluated with respect to a Clocked
Transition System (CTS) as defined in Chapter 5. State formulas are evaluated
in states (valuations) of the CTS, whereas path formulas are evaluated in paths
of the CTS. Let σ denote an arbitrary state (valuation) and π = σ0, σ1, . . . a path
(recall from Section 5.1 that a path is an infinite sequence of states (valuations)
such that for every i ≥ 0, σi −→σi+1). We denote by πi the suffix of π starting at
σi .

The satisfaction relation |= is defined inductively as follows, where s denotes
a state formula and p a path formula. We assume given the definition of the
satisfaction relation for atomic propositions in valuations.

σ |= ¬ s ⇔ σ
|= s

σ |= s1 ∧ s2 ⇔ σ |= s1 and σ |= s2

σ |= A p ⇔ for all paths π starting with σ, π |= p

σ |= E p ⇔ there exists a path π starting with σ such that π |= p

π |= ¬ p ⇔ π
|= p

π |= p1 ∧ p2 ⇔ π |= p1 and π |= p2

π |= X p ⇔ π1 |= p

π |= p1 U p2 ⇔ for some k ≥ 0, πk |= p2,

and for every 0 ≤ i < k , πi |= p1

The abbreviations true, false, ∨, ⇒, etc. are defined as usual. Note that A s is
equivalent to ¬ E¬ s .

Atomic propositions. We focus on propositions that are defined in both the
RLS and ILS. An atomic proposition ap ∈ AP is either:

• a test on the configuration, b ⊑ C , where b is some bag of nodes, or

• some boolean expression on local variables, or

• predicate stable (defined for the RLS on page 65 and for the ILS on page 101).

10.1 · Temporal logic 157

We use predicate in(n) as an abbreviation of [n] ⊆ C . Events cannot be referred
to because of Theorem 6.2(ii): in the RLS sometimes some extra events are needed
to get the same effect as in the ILS. Atomic propositions can only be evaluated in
stable states, i.e., we assume every atomic proposition is implicitly conjoined with
predicate stable. This ensures that no inconsistent values of a variable are read,
for example of a configuration in the ILS during the taking of a step.

Since no two stable states follow each other in both the RLS and ILS, it does
not make sense to use the next time X operator. From now on, we will not use
the X anymore.

� The next time X operator is not used.

CTL and LTL. Computation Tree Logic (CTL) and Linear Temporal Logic
(LTL) are restricted subsets of CTL∗.

The logic CTL is obtained by replacing the above definition of path formulas
by the following definition:

• If p, q are state formulas then X p and p U q are path formulas.

This definition enforces linear-time operators to be immediately preceded by a
path quantifiers. There are eight basic CTL operators: AX, EX, AG, EG, AF, EF,
AU, and EU.

Linear Temporal Logic (LTL) consists of the class of formulas of the form A p
where p is path formula in which the only state formulas are atomic propositions.
The syntax of path formulas in LTL is defined as follows:

• Every atomic proposition is a path formula.

• If p, q are path formulas then ¬ p, p ∧ q, X p, and p U q are path formulas.

In writing LTL formulas, we use the standard convention that the A quantifier
is omitted. So formula FG p abbreviates AFG p.

Expressiveness. Finally, we compare the expressiveness of CTL and LTL [39,
154]. It is obvious that CTL formulas that do not start with a for all paths A
quantifier, for example EG p (“there is path along which p is always true”), are
not expressible in LTL. Moreover, in LTL existential path quantifiers cannot be
used at all. For example, AG (p ⇒ EF q) is not expressible in LTL. So possibility
properties, which involve using the E quantifier, cannot be specified in LTL.

It might therefore seem as if every CTL formula that only contains A quantifiers
is expressible in LTL. But this is not true. For example, CTL formula AF AG p and
LTL formula FG p are not equivalent [39]. To illustrate this, consider the Kripke
structure K in the left hand side of Figure 10.2. K satisfies LTL formula FG p,
so K |= FG p but K does not satisfy CTL formula AFAG p, so K
|= AFAG p. To

158 Chapter 10 · Verification of functional requirements

s0 s1 s2

p p

p

!p

p !p

p p

p

.

.

.

!p

p

.

.

.

!p

.

.

.

p

K

AG p

AG p

Figure 10.2 Kripke structure and corresponding computation tree.
‘!’ denotes ¬

see this, consider the paths of K , shown in the right hand side of Figure 10.2.
Formula FG p is true because in every path, eventually p will stay true forever.
Formula AFAG p is not true, because there is a path, namely s0, s0, . . in which it is
possible that in a future state p becomes false, namely if s1 is entered. Clarke and
Draghicescu proved that property FG p cannot expressed in CTL [39]. So CTL
and LTL are incomparable w.r.t. expressiveness.

A restricted temporal logic: CTL∗
r . We define a restricted version of CTL∗,

called CTL∗
r . The reason for defining this restriction is that in Chapter 6 we

have seen that the CTSs induced by the RLS and ILS do have stable valuations
in common, but differ in how they reach these stable valuations. If we allowed
unrestricted CTL∗ formulas violating above rules, the formulas could detect these
differences. The restricted formulas cannot detect these differences. Thus, formu-
las in CTL∗

r are insensitive to the semantics being used, RLS or ILS.

We replace the inductive definition of CTL∗ path formulas by the following
definition.

• If p is a state formula, it is also a path formula.

• If p, q are path formulas then so are p ∧ q, ¬ p, and true U p.

• If p is a path formula, such that either p is not a state formula or p is
equivalent to true, then false U p is also a path formula.

The X operator was already ruled out above, because atomic propositions
are only evaluated in stable states and no two stable states follow each other
immediately. The use of the until operator U is restricted for the same reason.
The second and third rule forbid certain occurrences of U that require a continuous

10.1 · Temporal logic 159

evaluation of some atomic proposition. Thus, if p is a state formula not equivalent
to true, for example G p and p Uϕ are forbidden, where ϕ is an arbitrary CTL∗

r

formula.

We now are able to prove the following theorem for CTL∗
r formulas. Let R be

a stable simulation relation as defined in Section 6.2.4.

Theorem 10.1 Given two valuations σ, σ′ such that σ R σ′. Let ϕ be an arbitrary
CTL∗

r formula. Then σ |= ϕ ⇔ σ′ |= ϕ.

Proof. By induction on the structure of CTL∗
r formulas, we prove that valuations

σ, σ′ related by R satisfy the same CTL∗
r formulas.

Most cases follow immediately from the definition of R, Theorem 6.7, and the
induction hypothesis. We only treat the basic U case here. Consider path formula
true U p where p is an arbitrary state formula, possibly equivalent to true.

Consider an arbitrary path π starting at σ such that π |= true U p. We show
that there is a path π′ starting at σ′ such that π′ |= true U p.

Since π |= true U p, there is some future state σk where k ≥ 0 such that
π = σ−→σ1 . . . −→σk −→ . . . and σk |= p. By definition of atomic propositions, we
know that σk |= stable. By definition of R, there is a σ′

l such that σ′ −→σ′
1 . . . −→σ′

l

where l ≥ 0 such that σk R σ′
l and σ′

l |= p. Let π′ be an arbitrary path with prefix
σ′ −→σ′

1 . . . −→σ′
l . Clearly, π′ |= true U p.

By similar reasoning, it can be shown that for every path π′ starting at σ′ such
that π′ |= true U p, there is a path π starting at σ such that π |= true U p.

Other induction cases can be proven by similar reasoning.

�

We now prove our main result, that formulas in CTL∗
r are insensitive to the

semantics being used, RLS or ILS.

Theorem 10.2 Given an activity hypergraph AH . Denote by CTSRLS the CTS
induced by AH under the RLS. Denote by CTS ILS the CTS induced by AH under
the ILS. Let ϕ be an arbitrary CTL∗

r formula.

Then

σRLS
init |= ϕ ⇔ σILS

init |= ϕ

Proof. Both initial states lead to stable states that are related via R. Now apply
Theorem 10.1 on these states. �

From now on, we will restrict ourselves to formulas in CTL∗
r .

160 Chapter 10 · Verification of functional requirements

Some final remarks. The attentive reader may be surprised that events cannot
be referred to in our property language, even though we did a hard job defining
a reactive semantics which involves event-driven behaviour. Is it not a serious
restriction that events cannot be referred to?

The main observation is that the semantics of events is different in both seman-
tics. We give two examples. First, Theorem 6.2 shows that in the ILS, external
non-termination events can trigger some extra hyperedges that are not triggered
in the RLS; this was discussed already in Section 6.1.1. Therefore, events should
not be referred to in CTL∗

r . Of course, event expressions could be added to the
property language, but then the model checking results no longer carry over to
the ILS.

Second, in the RLS, due to the perfect synchrony hypothesis, an event is pro-
cessed at the same time as it occurs, whereas in the ILS it is processed at some
later time. Therefore, if in the RLS an event e occurs in a certain configuration
C , then the effect of e follows immediately. In the ILS, if e occurs in C then all
events still in the queue must be processed before the effect of e becomes clear.
This difference in semantics can be easily detected by writing a property that
refers to events.

Similarly, we do not have an operator Xstable that, given a certain stable state,
refers to the next stable state. As shown by Theorem 6.7(ii), although the RLS
and the ILS reach the same end configuration and same end stable state, they
reach this state differently: in the RLS some additional intermediate stable states
are reached, that are not reached in the ILS.

Finally, a useful extension of the property language can be made by including
past-time temporal operators for LTL [119] and CTL∗ [112]. Allowing past-time
temporal operators may make the specification of some requirements easier. Past
temporal operators do not increase expressivity of LTL and some past versions of
CTL∗. They can be model checked.

10.2 From infinite to finite state space

The requirements-level semantics defined in Chapter 5 is not yet suitable for model
checking, since the transition system of the activity diagram can have an infinite
state space whereas model checking requires that the state space be finite. In this
section we describe how our implementation deals with infinite state spaces. The
described approaches are not new, but taken from literature.

10.2.1 Unbounded nodes

Combining fork and merge nodes, we can specify workflow specifications and pat-
terns in which multiple instances of the same node are active at the same time.
Figure 10.3 shows two example activity diagrams in which a node can occur more

10.2 · From infinite to finite state space 161

A B

A

B

C

(a)

(b)

Figure 10.3 Examples of multiple node instances

than once in the same configuration. In the top activity diagram, arbitrarily many
instances of B can be active at the same time. In the lower activity diagram, C is
executed twice; two instances of C can be active at the same time.

Such activity diagrams might have an infinite state space. For example, the
activity diagram in Figure 10.3(a) has an infinite state space, because unboundedly
many instances of B can be active at the same time. But the activity diagram in
Figure 10.3(b) has a finite state space: there are no unbounded nodes. Formally,
a node is unbounded if there is no bound on the maximum number of its active
instances (this definition comes from Petri net theory [129]).

Model checking is decidable for bounded models [42], but for unbounded models
it can easily become undecidable [68]. We therefore restrict ourselves to bounded
models. In our implementation, the computation of the transition system is
stopped if one of the nodes becomes unbounded. A node n is unbounded iff there
is a state s that has n in its configuration Cs and s has a predecessor state s ′

such that its configuration Cs′ is strictly contained in Cs and Cs′ does not contain
n. For example, in the top activity diagram in Figure 10.3, node B is unbounded
since a state with configuration [A,B] is reachable from a state with configuration
[A]. (This criterion is derived from the Karp-Miller algorithm that computes the
coverability graph of a possibly infinite vector addition system [108]. A vector
addition system is similar to a Petri net.)

10.2.2 Abstracting from data

Since an activity hypergraph can have integer and string variables, the state space
of the transition system can be infinite. We reduce this infinite transition system
to a finite one as follows.

The key observation is that the only data that influences the execution of the
activity hypergraph are the event and guard labels. The only relevant data, there-
fore, is the boolean valuation of the event and guard expressions. For example,
suppose a guard tests whether variable s=“red”. Then we only need to know the
truth value of the guard, if we want to know whether the associated hyperedge is

162 Chapter 10 · Verification of functional requirements

enabled.

A naive model checking strategy would therefore be to drop all data and to
introduce for every guard expression a boolean representative. The guard is true
iff its boolean representative is true. This strategy is naive in the sense that it
ignores that guard expressions can be dependent upon each other. For example,
if guard expression [p ∧ q] is true then [p] must also be true. And if [s=“red”] is
true then [s
=“red”] must be false, and vice versa. But in the naive model checking
strategy, [p ∧ q] and [p] might be assigned conflicting truth values, for example
[p ∧ q] = true and [p] = false. Such valuations are infeasible, and therefore should
not occur in the model.

We therefore consider basic guard expressions: those parts of the guard expres-
sions not containing ∧,∨ and ¬ . This partly solves the problem sketched above
(for example [p ∧ q] and [q] are dependent now). But not fully, since basic guard
expressions too can be dependent upon each other. For example, basic guard ex-
pressions s=“red” and s=“blue” are not independent, since s cannot be both red
and blue. We have solved this problem in our implementation by enforcing that if
two basic guard expressions refer to the same variable, then at most one of them
can be true at the same time. To avoid that say x < 10 and x > 12 are true at
the same time, the only boolean expressions referring to integers that we allow are
equality tests, for example [x = 10].

The approach above is based on existing approaches from modal logic theory,
e.g. filtration [78]. Similar techniques are also applied in model checking under
the name partition refinement [47]. Partition refinement can only be applied to
a finite state space. Therefore, as far as we know, partition refinement is never
applied to data abstraction, since data may induce an infinite state space.

10.2.3 Real time

Activity diagrams can contain simple real-time constructs of the form when and af-
ter (see Chapter 3). In our prototype, we have only implemented after constraints;
when constraints can be dealt with similarly. In computing a transition system,
we need to interpret after constraints in order to generate timeouts.

The problem is that our semantics uses a dense time model: between two points
in time, there always exists another point in time. In a dense time model, clocks
can have infinitely many values in a finite interval of time. For example, the clock
used to generate the timeout in the activity diagram in Figure 10.4 has a limit of
1, but still there are infinitely many values the clock can have. Clearly, we cannot
compute all these different values.

One obvious solution is to use discrete clocks. The problem then is to find the
right discretisation such that at least the qualitative behaviour of the dense-time
model is preserved. For example, discretising the example in Figure 10.4 with clock
ticks of 2 makes configuration [WAIT-1,WAIT-4,WAIT-5] unreachable, whereas this
configuration is reachable in the dense time model. In our case, we can use the

10.3 · Strong fairness 163

WAIT−1 WAIT−2
e

WAIT−3 WAIT−4
after(1)

WAIT−5 WAIT−6
after(2)

Figure 10.4 Example to illustrate discretisation of clocks

result of Asarin et al. [14], based on results of Henzinger et al. [96], that dense
time models in which all timing intervals are closed, can be discretised using clock
ticks of 1. The dense time model that is used in our semantics falls in this class.

The discretisation preserves the untimed (reachability) properties of the orig-
inal dense time model, but it may introduce some different timing behaviour [14,
96]. So it is not possible to use a real-time logic as property language. But since
there is no real-time model checker supporting strong fairness constraints, we are
subject to this limitation anyway.

10.3 Strong fairness

The need for strong fairness. Workflow specifications can contain loops. Con-
sider for example the activity diagram in Figure 1.1 on page 3. There is a loop
Send bill,WAIT-3,Handle payment,Notify customer,Send Bill,. . .. It is possible that
this loop is never exited, that is, the payment may never be ok. This is not what
is intended. Ideally, a workflow will eventually exit a loop, because the workflow
will eventually terminate. So in Figure 1.1, ideally the payment will eventually be
ok.

At first sight, it may seem as if loops are only introduced directly in the control
flow, as in Figure 1.1. But even a workflow specification that has no loops in the
control flow may have loops in its underlying transition system. This is due to
event occurrences that can occur in a certain state but that are irrelevant and
therefore ignored. For example, in Figure 10.5 event e can occur while node A is
active, but then it is simply ignored. Nothing in our semantics prevents e from
happening over and over again while A is active. The run in Figure 10.5 would
therefore be a valid run. But we want to exclude such a run, because in it, activity
A never terminates while e occurs infinitely often. (This behaviour resembles Zeno
behaviour in timed systems.)

To exclude these infinite loops, we have to find a way to specify that the loops
will be exited eventually. A useful way to specify this is to use strong fairness
(also known as compassion) constraints. A strong fairness constraint (p, q), where

164 Chapter 10 · Verification of functional requirements

A WAIT
e

initial

state {A}

e occurs
e occurs

e occurs
e occurs

{A} {A} {A}
...

Figure 10.5 Example of hidden loops

s1 s2 s3

p,!q !p, q !p, !q

Figure 10.6 Kripke structure to illustrate strong fairness. ‘!’ denotes ¬

p and q are properties, states that if p is true infinitely often in a run, then q
must be true infinitely often in the run as well [122]. Intuitively, a property p can
only be true infinitely often if there is a loop in the transition system in which p is
made true. So the strong fairness constraint (p, q) says that if there is some loop
which makes p true infinitely often, then q must be made true infinitely often by
the loop as well. If this is not the case, the loop is not strongly fair and the loop
must be exited after a finite number of iterations. For example, specifying strong
fairness constraint (p, q) for the Kripke structure in Figure 10.6, implies that run
s1, s1, . . is not strongly fair, since q never becomes true. Strong fairness constraint
(p, q) only becomes true when we exit the loop around s1. Using a strong fairness
constraint, therefore, we can specify that some loop must be exited eventually.
Note that run s1, s1, . ., s1, s2, s3, s3, . . does satisfy strong fairness constraint (p, q).
Even though q is false infinitely often in this run, the strong fairness constraint is
satisfied, since p is false infinitely often as well.

Encoding strong fairness. We now address the question how strong fairness
constraints can be encoded in workflow specifications. We have chosen to specify
for every hyperedge h that is triggered by an external event a strong fairness
constraint that states that if h is relevant infinitely often, it must be taken infinitely
often. The strong fairness condition for the complete activity hypergraph is the
conjunction of all individual strong fairness constraints1:

sf
df

=
∧

h∈HyperEdges|¬ internal(h)

(stable ∧ source(h)⊑C , stable ∧ target(h)⊑C)

1Strictly speaking, the formalisation does not express this since it does not state that h should
be taken. But for models in which no source and target of a hyperedge is contained in the source
and target of another one, the formalisation is correct.

10.3 · Strong fairness 165

Predicate internal has been defined in Chapter 6 on page 83. This strong fairness
constraint states that the environment must behave in a fair way: if a hyperedge
is infinitely often relevant in a stable state, the environment must generate the
trigger event of this hyperedge some time and must make the guard true some
time. We assume that the guard is satisfiable. For the example activity diagram in
Figure 10.5, strong fairness constraint ([A] ⊑ C , [WAIT] ⊑ C) states that activity
node A must terminate some time. So the run in Figure 10.5 is not strongly fair,
because node A is infinitely often contained in the configuration, but node WAIT is
not. In this run, the environment does not behave in a fair way; consequently, we
cannot give any guarantee about the correct functioning of the workflow system,
for example termination of the workflow.

We do not put a strong fairness constraint for hyperedges that are triggered
by the system itself, so by some internal event. The enabling of these hyperedges
does not depend upon the environment, but solely upon the system itself. Since
we are specifying the system, it does not make sense to put any assumptions upon
it. Therefore, hyperedges triggered by an internal event do not have to be strongly
fair.

An alternative way to encode strong fairness constraints is to specify a strong
fairness constraint for each cycle in the generated Kripke structure. But this results
in a far greater number of strong fairness constraints, since a workflow specification
with external events will have cycles in almost every state (cf. Figure 10.5). In
addition, we would have to take into account that for some cycles, namely those
caused by internal hyperedges, no strong fairness constraints must be specified.
Detection of such cycles is hard and cumbersome.

Verifying strong fairness. Each strong fairness constraint (p, q) is equivalent
to LTL constraint G F p ⇒ GF q, where (as explained before) Gϕ means that ϕ is
globally true in every state of the run and Fϕ means that ϕ is true in some future
state of the run. At first, we tried to encode the strong fairness constraints as
antecedent of the LTL property that has to be verified and then use an ordinary
LTL model checker like NuSMV or Spin. Since we have a lot of strong fairness
constraints, however, verification of these models was undoable in practice. To
illustrate this, our example has 21 hyperedges, so 21 strong fairness constraints.
This already is too much for both NuSMV and Spin: we were not able to verify
the simple property sf ⇒ false (true iff the model has no run), where sf is the
conjunction of the strong fairness constraints for every hyperedge, as explained
and defined above.

We therefore decided to use an existing special algorithm for model check-
ing LTL formulas with strong fairness constraints. The algorithm was defined by
Kesten, Pnueli and Raviv [110]. With this algorithm, the strong fairness con-
straints are not encoded in the LTL formula that has to be verified, but the strong
fairness constraints are added to the Kripke structure. The resulting Kripke struc-
ture with the strong fairness constraints is called a Fair Kripke Structure [110].

166 Chapter 10 · Verification of functional requirements

The algorithm restricts the evaluation of an LTL formula to strongly fair runs
only. The algorithm has been implemented in a tool called Temporal Logic Veri-
fier (TLV) [139]. TLV performed significantly better than NuSMV and Spin: TLV
only took 20 seconds to verify false under the strong fairness constraints. But un-
fortunately, TLV does not support batch processing, so we could not integrate it
into TCM. We therefore implemented the algorithm of Kesten et al. [110] in the
open source model checker NuSMV, which does support batch processing. The
resulting strong fairness model checker is called NuSMVfair . It is now part of the
NuSMV 2.1 model checker, which can be downloaded from the NuSMV homepage
at http://nusmv.irst.itc.it.

10.4 Implementation

We first discuss some simplifying assumptions we made in our implementation.
Next, the implementation itself is discussed. We only discuss the implementation
made w.r.t. NuSMV. Although we have implemented support for other model
checkers as well, these other model checkers, like for example Spin [99], do not
have a special model checking algorithm for strong fairness, and are therefore not
really useful for our purposes.

10.4.1 Assumptions

First, our semantics requires that for every activity A the variables that A reads
and updates be specified. To deal with this, we have adopted the following as-
sumptions:

1. If an activity reads a variable, we assume that it updates that variable too.

2. We assume that a variable is updated by an activity A iff there exists an
hyperedge h such that one of h′s sources is labelled A and the variable is
tested in h’s guard expression. So in Figure 1.1 we assume that Check stock
updates boolean variable insufficient stock.

These two assumptions make it possible to deduce for every activity auto-
matically what variables it updates. So the user does not have to provide this
information.

Next, we use the following data abstraction rule:

3. The effect of an activity is the possible change in valuation of the variables
that the activity updates. Since the only relevant changes are changes in
truth value of a guard, the effect of an activity is expressed in terms of the
basic guards that are made true or false by that activity.

10.4 · Implementation 167

We use this assumption as follows. An activity updates those basic guard
expressions that contain a variable that is updated by that activity. As explained
in the previous section, we do not allow basic guard expressions that contain more
than one variable.

4. The data that is updated in an activity is not updated by the environment.

The assumption is already introduced before as Constraint C1 on page 79. Not
making this assumption would make some workflow specifications counterintuitive.
For example, in Figure 1.1 the two choices based upon insufficient stock should have
the same outcome. If above assumption is not made, the two choices might have
different outcomes, which is undesirable. A nice effect of the assumption is that it
reduces the state explosion.

The constraints mentioned in Chapter 6 have not been implemented, apart
from afore mentioned Constraint C1.

10.4.2 Two implementations

We now proceed to sketch two different implementations. The first implementation
is an extension of TCM, written in C++, with an execution algorithm that maps
an activity hypergraph into a Kripke structure. Figure 10.7 shows a meta model in
UML notation of our implementation. The model does not show how an activity
diagram is translated into an activity hypergraph; see Section 3.3 and a technical
report [60] for that.

The main part of our implementation consists of an iterative algorithm that
processes states (valuations) of the Kripke structure. A state is processed in one
of the following two ways.

• If a processed state is stable, timers can tick and/or some events can occur.
If events occur, the next state becomes unstable. The algorithm computes all
possible states that can occur next. If the next state is unstable, then some
named events occur, or some basic guards change value, or some activity
nodes terminate, or some timeouts occur.

• If a processed state is unstable, the algorithm computes all possible steps and
all the resulting next states that are reached when those steps are taken. A
resulting next state is stable if there are no events in the queue and no
enabled hyperedges in this state; it is unstable otherwise.

The new states that are generated while a state is processed, are processed
later. The algorithm stops if all states have been processed. The resulting tran-
sition system can be straightforwardly encoded as input for a model checker by
enumerating every state of the structure. Section 10.6 analyses the structure and
size of the state space and analyses different ways of reducing it.

168 Chapter 10 · Verification of functional requirements

K
ri
p
k
e
 S

tr
u
c
tu

re
A

c
ti
v
it
y
H

y
p
e
rg

ra
p
h

N
o
d
e

H
y
p
e
rE

d
g
e

1
1

11

m
a
p
s
 i
n
to

A
c
ti
v
it
y
N

o
d
e

W
a
it
N

o
d
e

In
it
ia

lN
o
d
e

F
in

a
lN

o
d
e

1
..
*

is
 i
n
 c

o
n
fi
g
u
ra

ti
o
n
 o

f

is
 i
n
 t
e
rm

in
a
te

d
 a

c
ti
v
it
y
 n

o
d
e
s
 o

f

E
v
e
n
t

0
..
1

1

1to

1
..
*

s
o
u
rc

e

1
..
*

ta
rg

e
t

B
a
s
ic

G
u
a
rd

0
..
1

S
y
n

ta
x

S
e
m

a
n

ti
c
s

V
a
r0

..
1

1

fr
o
m

V
a
lu

a
ti
o
n

s
ta

tu
s
:{

s
ta

b
le

,

u
n
s
ta

b
le

}

T
ra

n
s
it
io

n

A
c
ti
v
it
y

u
p
d
a
te

s

1

E
v
e
n
tV

a
l

v
a
l:
{t

ru
e
,
fa

ls
e
}

B
a
s
ic

G
u
a
rd

V
a
l

v
a
l:
{t

ru
e
,
fa

ls
e
}

is
 i
n
 s

te
p
 t
a
k
e
n
 i
n

Figure 10.7 Meta model of implementation

10.5 · Example verifications 169

We have also experimented with a second implementation that is based on
existing approaches [34, 126] to verify statecharts with symbolic model checkers
like for example NuSMV. In the second implementation, the syntax of an ac-
tivity hypergraph is encoded directly as input for a symbolic model checker; the
semantics that the symbolic model checker attaches to the input coincides with
the requirements-level semantics. The second implementation cannot deal with
every possible activity diagram. It can only deal with safe activity diagrams, i.e.,
activity diagrams in which a node cannot be active more than once at the same
time. Moreover, if some hyperedges share sources and targets, the implementation
does not work any more, because then some constraints in the input will conflict
with each other. Nevertheless, if the second implementation can be applied, it is
more efficient than the first implementation.

Both implementations are available from the TCM homepage at http://www.
cs.utwente.nl/~tcm.

10.5 Example verifications

We discuss some example verifications of requirements for the workflow specifica-
tion of Figure 1.1. We distinguish general and ad-hoc requirements. A general
requirement must hold for every possible activity diagram, while an ad-hoc re-
quirement is specified for a specific activity diagram. Performance statistics are
given at the end of this section.

Note. Throughout the thesis, each requirement is only defined for strongly fair
runs, but this is not shown explicitly in the definitions in order to avoid cluttering.
TCM automatically generates the appropriate strong fairness constraint for each
workflow specification.

Moreover, each atomic proposition is implicitly conjoined with predicate stable,
so for example in(WAIT) should be read as stable ∧ in(WAIT).

10.5.1 Ad-hoc requirements

Since every workflow specification might have its own ad-hoc requirements, we
just give an example for the workflow specification shown in Figure 1.1.

Ad-hoc requirement R1 states that for each possible strongly fair run, either
both Make production plan and Produce occur sometime in the future or both of
them do not occur. We begin with formalising this property as:

(R1): F in(Make production plan) ⇔ F in(Produce)

where in(x) is true in a valuation σ iff node x is contained in the configuration of
σ. (TCM translates in into an equivalent predicate on nodes.) This property fails

170 Chapter 10 · Verification of functional requirements

Receive

order

Check stock

Check

customer

Make pro−

duction plan

[insufficient stock]

[else]WAIT−2

WAIT−1

[else]

Figure 10.8 Path illustrating counterexample for R1

to hold: The path that TCM highlights is shown in Figure 10.8. We see that if the
customer check fails, the workflow stops while Make production plan may already
have been executed.

There are two ways to repair this error: either change the requirement or the
activity diagram. We decide to adapt the requirement. Apparently, only if the
customer check does not fail, the requirement holds:

(R1’): (F customer ok) ⇒ (F in(Make production plan) ⇔ F in(Produce))

NuSMVfair reports that this property is true. This property is true, because
of our Assumption 4 in Section 10.4 which implies for this workflow specification
that only Check stock can change variable insufficient stock. If we had allowed the
environment to change insufficient stock, the property would not have been true.
But that would have been counterintuitive.

Finally, we verify that in each strongly fair run, a bill is sent if and only if
either something is produced or taken from stock:

(R2): F (in(Produce) ∨ in(Fill order)) ⇔ F in(Send bill)

NuSMVfair reports that this property is true.

10.5.2 General requirements

We list four general requirements. Other general requirements are possible. The
first general requirement is that for every strongly fair run, from the initial state
a final state should be reachable. We formulate this requirement as the following
LTL formula:

10.5 · Example verifications 171

(R3): FGfinal

where final is true in a state iff the configuration only contains final nodes (bull’s
eyes). TCM translates final into an equivalent predicate on nodes:

final
df

⇔ ∀n ∈ Nodes • n � C ⇒ n ∈ FN

NuSMVfair reports that the property is true.

Note that this formula is not in CTL∗
r . Fortunately, for activity diagrams

FGfinal is equivalent to GFfinal , because final nodes have no outgoing hyperedges.
And GFfinal is a CTL∗

r formula.

Another useful general requirement is that there are no dead nodes, i.e., for
every node there is a strongly fair run in which that node becomes active.

(R4): for all n ∈ Nodes , EF in(n))

Note that this formula is neither an LTL nor a CTL formula, but a CTL∗ formula.
It is not an LTL formula due to the existential path quantifier E . It is not a CTL
formula because it is defined for strongly fair runs only. Below we will address
how this general requirement can be verified.

Yet another general requirement is that there are no dead hyperedges, i.e.,
every hyperedge should be taken in some strongly fair run. Strictly speaking,
checking this requires a logic that can refer to hyperedges. But an equivalent
check is that for every hyperedge h there exists a strongly fair run in which the
sources of h are active in one state and the targets of h in the next state (under
the assumption that for every two hyperedges, the sources and targets of one are
not contained in the sources and targets of the other).

(R5): for every hyperedge h, E (sf ∧ F (in(source(h)) ∧ X in(target(h))))

where in(N) abbreviates
∧

n∈N in(n). Note that this formula is neither an LTL
nor a CTL formula, but a CTL∗ formula. Moreover, it is not a CTL∗

r formula,
since the next time X operator is used. For the ILS, a similar requirement could
be formulated by referring to component S (the variable in which the current step
is stored). Below we will address how this general requirement can be verified.

The last general requirements states that the activity diagram does not diverge,
that is, there is always a future in which the activity diagram is stable:

(R6): G F stable

NuSMVfair reports that this requirement is true.

Checking possibility requirements. Unfortunately, requirements R4 and R5
are CTL∗ constraints that are neither CTL formulas, due to the implicit strong
fairness constraint, nor LTL constraints, due to the existential path quantifier E .

172 Chapter 10 · Verification of functional requirements

Currently, NuSMVfair only supports LTL constraints with strong fairness. Luck-
ily, as we will proceed to show, checking these two constraints does not require
strong fairness: we can drop the strong fairness constraint and check the resulting
CTL formula using a standard CTL model checker.

The following theorem asserts that for activity diagrams a non-strongly fair
path can always be extended into a strongly fair path.

Theorem 10.3 Assume a path π does not satisfy the strong fairness constraint
(stable ∧ source(h) ⊑ C , stable ∧ target(h) ⊑ C) for some non-internal hyperedge
h. Then π can always be extended into a path π′ which does satisfy that strong
fairness constraint.

Proof. According to Kesten et al. [110], a path π always has the following structure:

π =

prefix
︷ ︸︸ ︷
σ0, . ., σk ,

period
︷ ︸︸ ︷
σk+1 . . σk ,

period
︷ ︸︸ ︷
σk+1, . ., σk ,

period
︷ ︸︸ ︷
σk+1, . ., σk ,

period
︷ ︸︸ ︷
σk+1, . ., σk , . . .

If path π does not satisfy (stable ∧ source(h) ⊑ C , stable ∧ target(h) ⊑
C), then in the period part there must be some state σm , m > k , such that
σm |= stable ∧ source(h) ⊑ C , and no state in the period part satisfies stable ∧
target(h) ⊑ C .

Since h is relevant and the event can be generated and the guard can become
true, it is clear that there does exist a state σn such that σn |= stable ∧ target(h) ⊑
C . Moreover, σn is reachable from σm .

We construct a new path π′ by extending π: the prefix of π consists of the
prefix and period of π followed by the part of the period leading to σm . Next we
construct a path π′′ from σm to σn . If σm is reachable from σn by path π′′′, the
period part of π′ is π′′ followed by π′′′. If σm is not reachable from σn , path π′′

also belongs to the prefix of π′ and the period part of π′ can be anything. (Because
the transition relation is total, there always exists a period.) �

Using this theorem, the following can be easily proven. As before, sf denotes
the strong fairness condition.

Corollary 10.4 Given a valuation σ under the RLS. Then

(i) σ |= E (sf ∧ F p) ⇔ σ |= EF p

(ii) σ |= A (sf ⇒ G (p ⇒ E (sf ∧ F q))) ⇔ σ |= AG (p ⇒ EF q)

where p, q are simple state formulas, not containing any temporal operator.

10.6 · State explosion 173

Requirement Result Time
(sec)

BDD nodes
(nr)

Memory
(kB)

R1 False 20.21 138280 10107
R1’ True 19.99 146188 10227
R2 True 20.01 131619 9991
R3 True 20.82 132525 10015
R6 True 20.34 130877 9979

Table 10.1 Resources used by NuSMVfair for running example

Performance statistics. General requirements R3 and R6 are simple LTL for-
mulas that can be checked using NuSMVfair . General requirements R4 and R5
are equivalent to CTL formulas by Corollary 10.4. But they can be checked im-
mediately in TCM during generation of the transition system, and therefore do
not need to be checked by NuSMVfair .

The resources used by NuSMVfair during this analysis are shown in Table 10.1.
The analysis was performed on a PC with a Pentium III 450 MHz processor with
128Mb of RAM under Red Hat Linux 6.0. We verified the same properties by hand
with TLV; the outcomes were the same. NuSMVfair is slightly faster, probably
since a more efficient BDD library is used. Most time during analysis was spent
by the execution algorithm in TCM that computes the input transition system for
the model checker; this time is not shown. TCM can be optimised by applying
BTrees or hash lists.

10.6 State explosion

We first analyse the state explosion problem for activity diagrams. Based on this
analysis, we define four reduction rules on activity diagrams that alleviate this
problem.

10.6.1 Analysing state explosion

The greatest problem of verification with model checking is the state explosion.
Realistic models tend to get very large; in fact so large, that verification is no
longer possible. For example, even the small example in Figure 1.1 has already over
350 states (see Table 10.2 below), although the number of nodes in the workflow
specification is only 19. There are several causes for state explosion.

• Parallel threads. These are started by hyperedges that have more than
one target, and stopped by hyperedges having more than one source. The
product of two parallel threads that have x and y states respectively, will

174 Chapter 10 · Verification of functional requirements

have x×y states. In the example of Figure 1.1, due to parallelism there are 47
different configurations, although there are only 19 nodes in the underlying
hypergraph.

• Events. There are named external and activity termination events in the
running example. Named external events can occur in any stable state,
whereas activity termination events can only occur if the corresponding ac-
tivity node is in the current configuration. Hence, activity termination events
do not cause state explosion, since their occurrence is limited, but named
external events do cause state explosion.

Combining this, if there are k external events and in a given stable state the
current configuration contains l activity nodes, then there are 2k+l − 1 (the
non-occurrence of events is excluded) possible combinations of events. This
means that from the stable state, 2k+l − 1 unstable states can be reached.
This explains why the example in Figure 1.1 has over 350 different states,
even though it has only 47 configurations and 1 named external event.

Temporal events (timeouts) can only occur if some timers have reached their
limits, see below. Their occurrence is therefore limited. Nevertheless, we
show in the next item that due to the discretisation some state explosion
may occur.

• Real time. Due to clock ticks, some extra states are introduced. For example,
if a timeout is m, then m ticks are needed before the timeout is generated.
This means that m extra states are introduced in the corresponding branch.
For example, the timer for after(2 weeks) in Figure 1.1 introduces two extra
states in the branch of the Financial department. In combination with parallel
branches and events, mentioned above, this can cause a state explosion.

• Data (basic guard conditions). Due to Assumption 4 in Section 10.4, a local
variable is not updated by the environment. So a local variable only changes
value after termination of some activity that updates the variable. Moreover,
because every data is tested in a choice after an activity terminates, there
are specific combinations of data and nodes. For example, in Figure 1.1 if
node Notify customer is active then payment ok has to be false. Hence, basic
guard conditions that are updated by activities do not blow up the state
space with respect to stable states.

But basic guard conditions do blow up the number of unstable states. If
after an activity node terminates a choice is made out of n alternatives,
then there are n different terminations. So n different unstable states are
possible. In Figure 1.1, for example, Notify customer can terminate in 2
possible ways. In combination with named external event occurrences and
activity termination events in parallel branches (see the previous item), this
can result in a blowup in the number of unstable states that are possible.

10.6 · State explosion 175

receive payment/
after(2 weeks)

1 1 1 1 1 1 1 1

customer ok 1 1 1 1 0 0 0 0
insufficient stock 1 1 0 0 1 1 0 0
payment ok 1 0 1 0 1 0 1 0

nr of states 369 347 290 272 419 393 316 296

receive payment/
after(2 weeks)

0 0 0 0 0 0 0 0

customer ok 1 1 1 1 0 0 0 0
insufficient stock 1 1 0 0 1 1 0 0
payment ok 1 0 1 0 1 0 1 0

nr of states 167 156 128 119 188 175 139 129

Table 10.2 Effects of presence of events and data upon size of the model. Entry
‘1’ denotes the presence of an item, ‘0’ denotes its absence

For example, Table 10.2 shows that including payment ok leads to around 20
additional states.

To illustrate the effect of events and data upon the size of a model, we have
computed several variants of the activity diagram in Figure 1.1. Table 10.2 shows
the results of removing event and guard conditions upon the number of states of
the activity diagram. Event labels receive payment and after(2 weeks) must be
removed at the same time; otherwise, if only one of these events is removed, the
unlabelled hyperedge (a completion hyperedge) will have priority over the labelled
hyperedge and some parts of the activity diagram will become unreachable. In the
next subsection we define several reduction rules.

There are several things worth noticing. First, in this case, including one event
doubles the state space. As a test, we included another dummy event in the
activity diagram of Figure 1.1 on a new edge between WAIT and Handle payment;
the resulting model had 715 states. We also computed a variant of Figure 1.1 in
which an event only occurs when it is relevant, i.e., when it triggers some relevant
hyperedge. The resulting model has 229 states.

Second, abstracting from data that is used in one choice only, for example
payment ok, does not have a big impact on the state space: the model is reduced
by around 20 states. This effect we already explained above in the third item.

Third, perhaps a bit surprisingly, the table shows that removing guards may
increase the state space, rather than decreasing it: if guard customer ok is removed,
the state space becomes larger. The reason for this is that some choices in parallel
branches can be dependent upon each other (in this case the two choices based
upon customer ok). This dependency is lost if these choices are made nondeter-
ministic (in this case if customer ok is abstracted from). Then, some configurations

176 Chapter 10 · Verification of functional requirements

that do not exist when the guard is included, do exist if the guard is not included
(in this case, when customer ok is not modelled, the branch starting with node
Send bill can be active whereas the other parallel branch immediately stops and
does not do Produce or Fill order). In the example, removing guard customer ok
introduces 9 extra configurations. By the way, removing guard customer ok does
have the effect as described under the last item (Data), but this effect apparently
does not compensate for the extra configurations and states that are introduced.

10.6.2 Fighting state explosion

We now define four rules to reduce the state space of an activity hypergraph, given
a CTL∗

r formula ϕ. The first two rules are defined on the semantics of activity
hypergraphs. The last two rules are defined on the syntax of activity hypergraphs.
For each of the rules, we discuss when they can be applied. Every reduction rule
r is sound and complete for ϕ, that is, ϕ holds for the CTS of the original activity
hypergraph AH iff ϕ holds for the CTS of AH if r is applied. Unless stated
otherwise, the reduction rules are also valid for activity hypergraphs not satisfying
the constraints mentioned in Theorem 6.7 on page 101.

Rule 1: No irrelevant event occurrences. A named external event is irrele-
vant in a certain state iff it does not trigger any relevant hyperedge. By disallowing
irrelevant named external event occurrences, in other words only allowing an event
e to occur if it triggers a relevant hyperedge, we can reduce the state space. The
rule rules out hidden loops in an activity diagram: for example the run of the
activity diagram in Figure 10.5 would not be computed if this reduction rule was
used.

This reduction rule is allowed for every activity hypergraph and every CTL∗
r

formula under the condition of strong fairness.

Rule 2: Interleaved named external event occurrences. Only allow inter-
leaved named external event occurrences; that is, no two named external events
can occur at the same time. Note that this rule does not apply to temporal events
and condition change events.

This reduction rule is allowed for every activity hypergraph satisfying con-
straints C2, C4(b), C10, C15, C17 (see Table 6.3 on page 91) and for every CTL∗

r

formula. For these constraints, motivating examples have been presented in Chap-
ter 6.

Rule 3: Remove local variables. Remove local variable v from the activity
hypergraph and remove every basic guard condition that refers to v .

This reduction rule is allowed if:

• v is not updated by two concurrent activities;

10.6 · State explosion 177

• the requirement ϕ does not refer to v ;

• the only hyperedges referring to v are the ones leaving the activity node A
in which v is updated, v ∈ Upd(act(A));

• in a decision, the disjunction of basic guard expressions referring to v is true.
This can be easily ensured by including an else branch in every decision.

The first constraint is needed because otherwise two interfering activity nodes
can become active at the same time in the reduced activity hypergraph, which
is impossible in the original activity hypergraph due to our step semantics. The
second constraint ensures that the requirement ϕ can still be evaluated on the
reduced activity hypergraph. The third constraint ensures that the reduced activ-
ity hypergraph does not have more configurations than the original one. In our
running example (Figure 1.1), variables insufficient stock and customer ok cannot
be removed because they are contained in the guards of the hyperedges leaving
nodes WAIT-1 and WAIT-2. We already saw above that if they are removed, some
extra configurations, and thus states, are introduced. Then the truth value of the
requirement for the reduced activity hypergraph may differ from the truth value
for the original activity hypergraph. If for example customer ok is removed, re-
quirement FGfinal is no longer true, even though it is true in the original activity
hypergraph. The fourth constraint ensures that if the original activity hypergraph
contains a deadlock, the reduced one contains a deadlock as well.

Applying this reduction rule to our running example (Figure 1.1), if the re-
quirement to be verified is FGfinal , then variable payment ok can be removed and
the corresponding guard conditions can be removed as well.

Rule 4: Remove nodes. If there is an activity or wait node n with only one
outgoing external hyperedge h such that source(h) = {n}, so h does not conflict
with any other hyperedge, then both n and h can be removed from the activity
diagram, by replacing every occurrence of n in the target of some hyperedge with
the targets of h. If h was the last hyperedge referring to some trigger event and/or
local variable, these can be removed from the set of events and local variables
respectively.

This reduction rule is allowed if:

• the requirement ϕ does neither refer to n, nor to the label of h, nor to the
target nodes of h;

• neither n nor the target nodes of h are referred to by some in predicate in
the activity diagram;

• the trigger event of h is a named external event or a termination event;

• the trigger event e of h can only occur in this state, either because (i) n is
an activity node and e denotes termination of n, or because (ii) n is a wait

178 Chapter 10 · Verification of functional requirements

Check stock

Ship order
Check

customer

[else]
[insufficient stock]

[else]

WAIT−3
Handle

payment

receive

payment

[customer ok]

[else]

WAIT−2

WAIT−1

WAIT−4

WAIT−5

[payment ok][customer ok]

[else]

[else]

Send

reminder

after(2 weeks)

[insufficient stock]

Figure 10.9 Reduced activity diagram of Figure 1.1. The used requirement is
F Gfinal

node, e is a named external event, Constraint C15 is satisfied, and reduction
rule 1 (no irrelevant events) is used.

If we want to apply Theorem 6.7, we must furthermore ensure that the reduced
activity diagram satisfies Constraint C16, i.e. there is no hyperedge with some
wait node both as source and target.

The first constraint ensures that the requirement can still be evaluated on the
reduced activity hypergraph. The second constraint prevents that an in predicate
has an undefined value. The third and fourth constraint ensure that the trigger
event of h only triggers h and moreover can only occur in n. Thus, removal of
both n and h will not affect other parts of the activity hypergraph.

Figure 10.9 shows a reduced activity diagram of Figure 1.1, where the require-
ment to be verified is FGfinal .

The following theorem states that the reduction rules are sound and complete

10.6 · State explosion 179

rule 1 0 1 0 1 0 1 0 1
rule 2 0 0 1 1 0 0 1 1
rule 3 0 0 0 0 1 1 1 1
rule 4 0 0 0 0 0 0 0 0

nr of states 369 229 209 172 347 218 203 166

rule 1 0 1 0 1 0 1 0 1
rule 2 0 0 1 1 0 0 1 1
rule 3 0 0 0 0 1 1 1 1
rule 4 1 1 1 1 1 1 1 1

nr of states 149 99 91 78 139 94 88 75

Table 10.3 Effects of applying reduction rules upon size of the model of the
running example. Entry ‘1’ denotes that the rule is applied, ‘0’ is
otherwise. If rule 3 is applied, variable payment ok is removed. Rule
4 is applied with requirement FGfinal ; the activity diagram of Fig-
ure 10.9 is obtained

for a CTL∗
r formula ϕ.

Theorem 10.5 Let ϕ be the CTL∗
r formula to be verified and let AH be the

activity hypergraph. If ϕ satisfies the constraints of reduction rule r , then ϕ holds
for CTS (AH) if and only if ϕ holds if r is applied, written CTS (AH)r :

CTS (AH) |= ϕ ⇔ CTS (AH)r |= ϕ

Proof. For every reduction rule, the claim can be proven by induction on the struc-
ture of CTL∗

r formulas. Rule 1, 2 and 3 are straightforward, because the reduced
CTS has the same reachable configurations as the original CTS. The reduced CTS
has less transitions than the original one, but this cannot be sensed by CTL∗

r

formulas. Rule 4 follows from the fact that any state with n in its configuration
has the same successors, apart from target(h), as any state with target(h) in its
configuration. By the constraints of rule 4, ϕ does not refer to nodes in target(h).
So the reachable states that are relevant for the truth value of ϕ are not removed
from CTS (AH) when rule 4 is applied. �

All four reduction rules have been implemented in TCM. The reduction rules
are applied recursively to an activity hypergraph until no rule can be applied
anymore.

Table 10.3 shows the effect of applying the reduction rules on the size of the
state space of our running example. Especially the fourth rule has a spectacular
effect on the size of the state space. The third rule has the least effect. In the
next chapter, in which we discuss some real-life case studies, we will see how these
reduction rules can be used to deal with large state spaces.

180 Chapter 10 · Verification of functional requirements

Requirement Result Reachable
states (nr)

Time
(sec)

BDD nodes
(nr)

Memory
(kB)

R1 False 107 1.76 40454 3715
R1’ True 107 1.75 41055 3767
R2 True 133 2.81 47729 4367
R3 True 75 1.03 26221 3067
R6 True 71 0.84 22252 2875

Table 10.4 Resources used by NuSMVfair for running example using all four
reduction rules. The original model has 369 states

Table 10.4 shows the performance results for model checking our running ex-
ample with NuSMVfair when all four reduction rules are applied. Comparing this
to the original model, in which no reduction is applied, shown in Table 10.1, it is
clear that even for this small example applying the reduction rules improves the
performance of the verification considerably.

Ad-hoc reduction. Above we saw that abstracting from local variables that
are tested twice in two different choices, like customer ok in our running example,
may introduce new reachable states, including some new configurations. It may
seem, therefore, that abstracting from such guard conditions makes the resulting
Kripke structure useless for analysis. For example, FGfinal is no longer true if
guard customer ok is removed from our example. But if the dependency between
the different choices can be stated as an antecedent to the property to be verified,
such abstract models can still be useful. Then, however, the dependencies must be
defined by hand. For example, in the following property, the antecedent states that
only those runs should be checked in which a bill is sent if and only if something
is produced or an order is filled.

(F in(Send bill) ⇔ F (in(Produce) ∨ in(Fill order))) ⇒ F Gfinal

Even if guard customer ok is removed from the activity diagram, this property will
hold. This shows that reduction is also possible on an ad hoc basis, depending
upon the model, the requirement to be verified, and especially the insight of the
modeller. Of course, verification of such properties only works if the property does
not refer to an item that is abstracted from.

10.7 Related work

Restricted temporal logic. In a seminal paper, Lamport [113] argues not to
use the next time X operator in temporal logic specifications, because this operator
makes it possible to distinguish between a high-level specification and a lower

10.7 · Related work 181

level implementation. Lamport does not, however, restrict usage of the until U
operator, because in his formalism variables referred to by a property must change
instantaneously. By contrast, in our implementation-level semantics, variables
that a property refers to do not have to change instantaneously. Consequently, it
is possible to observe an inconsistent state. For example, in the ILS it is possible
to observe a configuration in which some nodes have been left but still some nodes
have to be entered. That is why the only states we allow to observe are stable
ones. That is also why we need to restrict usage of the until U operator, whereas
Lamport does not need to do so.

General requirements. The conjunction of the first three general requirements
resembles the soundness criterion that Van der Aalst [3] uses for Petri nets that
model workflows. There is however a subtle difference. The proper termination
property in the soundness criterion amounts to the CTL formula AG EFfinal , which
states that the workflow can terminate properly. This formula is weaker than the
property we use, FGfinal , which states that the workflow will terminate properly.
The difference between the two formulations pops up in the case of divergence: a
diverging workflow specification would pass the soundness criterion but not our
proper termination requirement.

Hofstede and Orlowska [98] also discuss some general requirements for work-
flow models that are formalised in process algebra. They focus on the computa-
tional complexity of verifying these requirements. They do not consider divergence.
Sadiq and Orlowska [143] also focus on verifying general requirements like absence
of deadlock by applying graph reductions. They do not consider divergence.

Verification tools. There are several workflow verification tools. Woflan [155]
is a tool for verification of textual workflow specifications without data and real-
time. Feedback is also textual. The workflow specifications are based on low-level
Petri nets. In Woflan the properties that are verified, like soundness, are fixed and
cannot be changed by the user. The issue of strong fairness is not addressed.

FlowMake [143] is a tool for verification of workflows that are notated in a
subset of the WFMC workflow notation. Data and real-time are not modelled.
FlowMake verifies some fixed properties of a workflow by applying graph reduction
techniques; if the reduction does not lead to an empty graph, apparently the graph
contains an error and it should be possible for the user to find this error using the
reduced graph. The issue of strong fairness is not addressed.

The tool developed in the Mentor project [130] uses a CTL model checker for
statecharts [101]. The tool is not integrated with the model checker. The authors
do not use strong fairness. They do not provide any details on how the feedback
is presented to the user.

The Testbed Studio tool [104] supports model checking of business process
models with Spin [99]. The process modelling language neither has external events
nor temporal events. Models can have loops, but the analysis results on such

182 Chapter 10 · Verification of functional requirements

models may be counterintuitive, since it cannot be specified that loops are exited.
The authors do not use strong fairness.

Karamanolis et al. [107] use the existing LTSA toolkit for model checking
workflow specifications. Workflow specifications are translated manually into input
for LTSA; the output of verification is shown graphically in the LTSA input, not
in the original workflow specification. LTSA is based on process algebra; data and
real-time cannot be explicitly modelled. Strong fairness constraints can also be
specified in LTSA, but Karamanolis et al. [107] do not focus on loops in workflow
schemas.

Our work is also closely related to the work done on model checking State-

mate and UML statecharts. Chan et al. [34] and Mikk [126] have defined model
checking for Statemate statecharts or variants thereof, using SMV [125] and
Spin [99]. Latella et al. [116] present a translation for a subset of UML statecharts
to Spin [99]. None of the implementations discussed in these papers provide a
graphical representation of the feedback of the model checker. All these papers
encode the syntax of the statechart explicitly in the input language and let the
model checking tool derive the step semantics implicitly. We, on the other hand,
have programmed our execution algorithm [65] in TCM, so TCM generates the se-
mantic structure directly. These syntactic encodings only work for simple models
with a restricted syntax. Amongst others, every node can be active at most once
at the same time: it must have a bound of one (i.e., the activity diagram must be
safe). This is true for a statechart but not for an activity diagram. Also, syntactic
encodings are error prone (see for example a discussion by Mikk on errors he found
in such translations [126]).

We have also implemented a syntactic encoding for activity diagrams in TCM in
order to compare it with our own encoding. We found that if the syntactic encoding
can be applied, it is more efficient than the enumerative encoding we use. But in
order to decide whether the syntactic encoding can be applied, still the semantics
of the activity diagram needs to be computed using our first implementation in
order to check that the activity diagram is safe.

Lilius and Paltor [120] present vUML, a tool for model checking a commu-
nicating set of objects whose behaviour is modelled by UML statecharts. They
use Spin [99] as their underlying model checker. No details are given on how the
statechart is encoded. The feedback of the tool is graphically represented by a
UML sequence diagram. They neither address strong fairness nor real-time.

It is difficult to compare our work with this work on statecharts, since our se-
mantics differs somewhat from the statechart semantics, both UML and Statem-

ate, in particular since we have atomic activity states whose effect is declaratively
specified (these are not present in statecharts). Next, we have configurations and
steps that are bags rather than sets, since nodes in our models can have a bound of
more than one. None of the references above use strong fairness constraints, since
these are apparently not required in the domain they model (usually embedded
real-time systems). Neither do they analyse the state space nor discuss possible

10.8 · Conclusion and future work 183

reductions.

Reduction rules. Our reduction rules are similar to slicing rules in program
analysis (see Tip [151] for a survey). In program analysis, slicing is used to increase
program understanding and to make program debugging and program testing more
easy. We use reduction rules to decrease the state space of the models we check.
The reduction rules may however also be beneficial for a workflow modeller to
increase understanding of the workflow models.

Recently, slicing has been used in combination with model checking by Chan
et al. [35], Clarke et al. [40], and Hatcliff et al. [93]. Chan et al. [35] slice a RSML
statechart with respect to a given property ϕ by removing parallel nodes in the
statechart that are not (in)directly referred to by ϕ. In particular, if a certain
node is relevant, all its predecessors are relevant as well; these are not removed.
Difference with our approach is that we sometimes cut away predecessor nodes
(rule 4). We do not remove parallel nodes. Clarke et al. [40] apply slicing to
VHDL programs. Hatcliff et al. [93] slice Java-like programs for model checking.
Difference of our approach with both these references is that their programming
languages are at a lower level of abstraction than activity diagrams, and that the
sliced programs are not concurrent, whereas activity diagrams are. Heimdahl and
Whalen [95] also apply slicing to RSML statecharts, but their purpose is to facil-
itate manual review of requirements on RSML statecharts, not formal automatic
verification of these requirements.

10.8 Conclusion and future work

We presented a prototype implementation that supports workflow modellers in
verifying workflows specified in UML activity diagrams. The tool translates an
activity diagram into an input for a model checker according to the requirements-
level semantics defined in Chapter 5. Our tool supports the specification of event-
driven behaviour, data, real-time and loops in workflow specifications. Also, the
properties that are checked can be specified by the user himself and are not fixed.
The appropriate strong fairness constraints are generated automatically by the
tool. The used model checker is under the hood of our tool; the user merely has
to know an LTL based input language. If the model checker returns a counterex-
ample, the tool translates this counterexample back into the activity diagram by
highlighting a corresponding path. The tool can automatically reduce the input
activity diagram by applying the reduction rules defined in Section 10.6. These
features makes our tool different from other workflow verification tools and also
from existing verification tools for the related UML statecharts. As far as we know,
our tool is the first verification tool for UML activity diagrams.

The most interesting result is that workflow specifications require strong fair-
ness constraints. Although there are some model checkers that support verification

184 Chapter 10 · Verification of functional requirements

of models that have strong fairness constraints, only model checkers that use a spe-
cial model checking algorithm for strong fairness perform well enough to be useful.
Since no existing model checker was suitable for our purposes, we have extended
NuSMV with an existing model checking algorithm for strong fairness.

Future work is to implement the stable implementation-level semantics in the
tool. Moreover, a more abstract requirement specification language is required,
since temporal logic is difficult to understand for users that do not have a mathe-
matical background. It is also interesting to see whether verification of statecharts
would benefit from our approach, i.e., the restricted logic and the reduction rules.

Chapter 11

Case studies

In the previous chapter we have explained how the requirements-level semantics
of UML activity diagrams can be used to verify workflow models. To see whether
the verification also works for non-toy examples, we do two case studies in this
chapter. Both case studies are based on existing workflow models that are being
used in organisations. Our main concern will be scalability: what is the size of the
models that still can be verified in reasonable time? And is this size reasonable,
or is only verification of toy examples possible?

In Section 11.1 we verify a workflow for the seizure of goods at the Dutch
Public Prosecution Service. In Section 11.2 we verify the order procedure within
an IT department of a large company. Section 11.3 discusses the lessons that we
learned. We end with conclusions.

11.1 Seizure of goods under criminal law

This section describes a workflow at the Dutch Public Prosecution Service (PPS).
The Public Prosecution Service’s main tasks, as laid down by law, are investigating
criminal offences, prosecuting offenders, and ensuring that sentences are carried
out properly.

Part of these responsibilities is the seizure of goods. The PPS can seize goods
for example because it is necessary for discovering the truth, or because the goods
have been unlawfully obtained.

Workflow description. The now following workflow description is based on a
Petri net based workflow description [94] and my own interpretation of the Dutch
criminal law [44]. (I do not claim that it is an accurate description of Dutch law.)
Figure 11.1 shows the activity diagram of this workflow. Note that the diagram
contains an OR node (diamond) with more than one incoming and outgoing edge,

186 Chapter 11 · Case studies

even though in Chapter 3 we stated that an OR node must have either one incom-
ing or one outgoing edge. Using two OR nodes, the same construct be modelled,
but introducing more nodes would make the diagram harder to understand.

The workflow starts when the registration desk of the PPS receives an offi-
cial report and a corresponding report of seizure of some goods from the police.
Among others, the registration desk checks whether all the necessary documents
are present. Next, the public prosecutor must make a decision what to do which
each of the seized goods. To keep the presentation simple, in Figure 11.1 we assume
that only one good has been seized. Seizure of multiple goods can be modelled
using the dynamic concurrency construct; we have not done this because such a
construct does not introduce potential new errors, as the different subworkflows
for the different goods are isolated from each other. If the public prosecutor does
not make a decision within one week, a reminder is sent to him.

The public prosecutor can make the following decisions. If the person that
has been seized has not parted with the good, the public prosecutor can decide
to confiscate the good (if the good is illegal), or, if the good is stolen, to give it
back to the person entitled to the good, the rightful claimant, (if the good is not
needed anymore for the lawsuit) or to let it be kept by the rightful claimant (if
the good is needed), or to keep the good in custody. The public prosecutor sends
his decision to the person whose goods have been seized. If that person does not
lodge a complaint within two weeks, the decision is carried out in some activity
whose name corresponds to the made decision. If the good is kept by the rightful
claimant, then as soon as the good is not needed anymore, the good is officially
given back to that person, modelled by event give back good.

If the person whose goods have been seized does lodge a complaint, the court
sitting in chambers judges the claim. Then the decision is not yet carried out. If
the person does not agree with the judgement of the court sitting in chambers he
may appeal to the court of cassation. If he does not appeal within two weeks, the
judgement becomes final and the decision is carried out. The decision of the court
of cassation is always final; that decision is subsequently carried out.

If the person whose goods have been seized has parted with the good, the
following decisions are possible. If the good has been stolen, then the public
prosecutor can either decide to give the good back to the rightful claimant, or, if
the rightful claimant is unknown, to keep the good in custody until that person
becomes known.

If the good has not been stolen, then the public prosecutor can confiscate
the good and withdraw it from social and economic life. If the confiscated good
is illegal, it is destroyed. Otherwise, it is kept in custody: a deposit order is
given. Since it may be expensive to keep confiscated goods in custody, under some
circumstances the public prosecutor may decide to sell or destroy the good. The
decision is carried out by the custodian.

The custodian may also decide himself not to keep a good in custody any
longer. But then he must ask the public prosecutor for authorisation to carry out

11.1 · Seizure of goods under criminal law 187

Receive offical report

and report of seizure

Decide upon

follow−up action

remind public

prosecutor

WAIT−1
after(1)

Send decision of

public prosecutor

Complaint

procedure

WAIT−2

complaint arrives

after(2)

Send chamber

judgement

WAIT−3

Cassation

procedure

cassation

request arrives

after(2)

[else]

Return to

rightful claimant

Keep in custody

by rightful claimant

Confiscate good

[person renounces good]

[action="confiscate"]

Give deposit

 order

WAIT−6

(good is in

custody)

Hand over list

of seized goods

at court session

WAIT−5

(court is respon−

sible for good)

Give order

to custodian

judgement becomes final

WAIT−7

give back good

[action="deposit"]

WAIT−8

Custodian carries

 out decision

Receive request

 for authorisation

[action="return"]

Custodian receives

deposit order

Decide whether

 or not to keep good

[keep] Send request

for authorisation

[else]

rightful claimant

 becomes known

Public prosecutor

 makes a decision

[else]

[destroy]

Public prosecutor

gives authorisation

after(2)[!in(WAIT−9)]

WAIT−4

lawsuit begins

[!in(WAIT−8)]

WAIT−9

after(26)

Custodian carries

 out decision

[else]

[in(Decide upon

follow−up action)][else]

Figure 11.1 Workflow seizure of goods

188 Chapter 11 · Case studies

the decision, for example to destroy or sell a good that he keeps in custody. If
the public prosecutor does not respond within two weeks, the custodian may carry
out the decision. If a good has been in custody for over two years, the custodian
can decide to sell or destroy the good without having to ask for authorisation. In
Figure 11.1 we have modelled this as half a year.

As soon as the lawsuit begins that deals with the offence for which the goods
were seized, the court becomes responsible for the goods. The public prosecutor
then must ask the court for authorisation if he wishes to make a decision about
the seized goods. This cannot be modelled well in activity diagrams; we simply
assume that this happens.

Most of the constructs used in Figure 11.1 are standard, except the race construct
after node Receive request for authorisation1. The race is between two events that
can occur in parallel. The first event is the termination event of the authorisation
activity of the public prosecutor. The second event is a timeout that is generated
two weeks after the authorisation activity has become enabled. The event that
occurs first wins the race and triggers activity Custodian carries out decision. The
event that occurs later is ignored; it does not trigger Custodian carries out decision.
So activity Custodian carries out decision is only executed once. The race con-
struct should not lead to a deadlock, i.e., the workflow should terminate properly.

To fully grasp the meaning of the construct, let us consider the three possible
orders of event occurrences:

• If the authorisation activity terminates before the timeout occurs, node
WAIT-9 is entered while node WAIT-8 is already active. Then the only en-
abled hyperedge is the one leaving both WAIT-8 and WAIT-9 and entering
node Custodian carries out decision. (The hyperedge with the after label is
not enabled due to its guard condition.) If that enabled hyperedge is taken,
node WAIT-8 is left, disabling generation of the timeout.

• If the timeout occurs before the authorisation activity terminates, then the
hyperedge with label after is taken and node Custodian carries out decision is
entered. If the authorisation activity subsequently terminates, node WAIT-9
is entered and then the final node.

• If the authorisation activity terminates simultaneously with the occurrence
of the timeout, the hyperedge with label after is taken and the hyperedge
entering WAIT-9 is taken. The sequel is similar to the previous item.

The race construct is probably the most complex construct used in workflow
modelling. To illustrate why the race construct is so difficult, in Figure 11.2 we
show some flawed variants of the race construct. The construct in Figure 11.2(a)

1The race construct is similar to the discriminator workflow pattern that Van der Aalst et
al. [7] have found in existing workflow specifications.

11.1 · Seizure of goods under criminal law 189

WAIT−8

Custodian carries

 out decision

Receive request

 for authorisation

Public prosecutor

gives authorisation

after(2)[!in(WAIT−9)]

[else]

[!in(WAIT−8)]

WAIT−9

WAIT−8

Custodian carries

 out decision

Receive request

 for authorisation

Public prosecutor

gives authorisation

after(2)[in(Public prosecutor gives authorisation)]

(a)

(b)

[in(WAIT−8)]

Figure 11.2 Two flawed race constructs

is flawed because it ignores that the authorisation activity can terminate simul-
taneously with the timeout. According to the activity diagram in Figure 11.2(a),
in that case node Custodian carries out decision is entered twice, meaning that ac-
tivity Custodian carries out decision is executed twice. This is not the intended
meaning of the race construct.

The construct in Figure 11.2(b) is flawed because it too ignores that the au-
thorisation activity can terminate simultaneously with the timeout. If the autho-
risation activity terminates simultaneously with the timeout, both node Custodian
carries out decision and WAIT-9 are entered. Next, WAIT-9 cannot be left, so the
workflow does not terminate properly.

Both flaws were found by model checking property FGfinal .

Requirements.2 We check two general and three ad-hoc requirements. We first
observe that the activity diagram fails to satisfy the constraints mentioned in

2As in the previous chapter, strong fairness conditions and the conjunction of predicate stable

with atomic propositions is not shown explicitly.

190 Chapter 11 · Case studies

Theorem 6.5. Constraint C4(b) on page 91 is not fulfilled, because there is a com-
pletion hyperedge, leaving WAIT-9, whose guard contains predicate in. Moreover,
there is a cycle in the ≺ relation due to the completion hyperedge leaving WAIT-9
and the external hyperedge leaving WAIT-8. Thus, we cannot apply Theorem 6.5.

However, we now show that for this particular example the requirements-level
semantics and implementation-level semantics have similar behaviour, i.e., we can
prove for this particular example a similar theorem as Theorem 6.5, even though
Constraint C4(b) is not fulfilled. First, we observe that every RLS superstep
in which the completion hyperedge leaving WAIT-9 is taken, starts if activity
node Public prosecutor gives authorisation terminates. If the current configuration
does not contain WAIT-8, or if the after event in WAIT-8 does not occur, the two
semantics have similar behaviour. If the current configuration does contain WAIT-
8 and the after event occurs, under the requirements-level semantics configuration
[Custodian carries out decision,final] is reached. Under the implementation-level
semantics, this configuration can be reached by first processing the after event.

So for this particular example the requirements-level semantics and implemen-
tation-level semantics have similar behaviour, i.e., for this particular example we
can prove a theorem similar to Theorem 6.5 without using Constraint C4(b). Thus,
by Theorem 10.1, we can use CTL∗

r formulas and obtain results valid for both the
RLS and ILS. We apply all of the four reduction rules defined in Section 10.6.2
using TCM. TCM cannot abstract from variable action, so rule 3 cannot be applied,
because some of the edges whose guards refer to action, leave non-activity node
WAIT-2. However, for this particular example action can be safely abstracted
from, i.e., by abstracting no new configurations are introduced. We therefore
remove variable action by hand from the activity diagram. Figure 11.3 shows the
reduced activity diagram for the first requirement; the reductions for the other
requirements are similar.

First we check two general requirements. The first requirement is that the
activity diagram does not deadlock.

(R1): FGfinal

This requirement is true.

The second requirement is that the activity diagram does not diverge.

(R2): G F stable

This requirement is true. The other general requirements mentioned in Chapter 10
we verified to be true as well.

Next, we verify as third requirement whether in WAIT-6 it is possible to reach
Custodian carries out decision. This is a kind of sanity check on the model [115].

(R3): AG (in(WAIT-6) ⇒ EF in(Custodian carries out decision))

11.1 · Seizure of goods under criminal law 191

Receive offical report

and report of seizure

Decide upon

follow−up action

remind public

prosecutor

WAIT−1
after(1)

WAIT−2

complaint arrives

after(2)

WAIT−3

Cassation

procedure

cassation

request arrives

after(2)

Return to

rightful claimant

WAIT−6

(good is in

custody)

WAIT−8

Custodian carries

 out decision

Receive request

 for authorisation

Decide whether

 or not to keep good

rightful claimant

 becomes known

Public prosecutor

 makes a decision

Public prosecutor

gives authorisation

after(2)[!in(WAIT−9)]

[!in(WAIT−8)]

WAIT−9

after(26)

Custodian carries

 out decision[in(Decide upon

follow−up action)][else]

Figure 11.3 Reduced activity diagram of Figure 11.1. The requirement that is
verified is FGfinal

192 Chapter 11 · Case studies

Requi-
rement

Result Reachable
states3(nr)

Time
(sec)

BDD nodes
(nr)

Memory
(kB)

R1 True 656 66.55 185656 16547
R2 True 121 2.66 36405 4279
R3 True 502 36.56 80137 11619
R4 True 502 36.91 109992 12179
R5 False 136 3.82 65708 5271
R5’ True 305 15.43 94417 8963

Table 11.1 Resources used by NuSMVfair

This requirement is true.

We proceed with some ad-hoc requirements. The fourth requirement states
that nodes WAIT-6, WAIT-8, WAIT-9 and Custodian carries out decision are not
active simultaneously. This formalises that the race construct only starts one copy
of activity Custodian carries out decision.

(R4): ¬ F (in(WAIT-6) ∧ in(WAIT-8) ∧ in(WAIT-9)

∧ in(Custodian carries out decision))

The requirement is true.

The fifth requirement states that a confiscated good is not returned to its
owner.

(R5): F (in(Confiscate good)) ⇒ ¬ F (in(Return to rightful claimant))

The requirement is not true. Figure 11.4 shows the counterexample returned by
TCM. From node Confiscate good, via node Give deposit order, node Return to right-
ful claimant is reachable. The activity diagram can be repaired by adding guard
[!action=“confiscate”] to the label of the hyperedge leaving WAIT-6 and entering
Return to rightful claimant. For the repaired activity diagram the requirement is
true.

We conclude by giving the performance statistics for verification of these re-
quirements; see Table 11.1. The analysis was performed on a PC with a Pentium
III 450 MHz processor with 128Mb of RAM under Red Hat Linux 6.0. Note that
R5 is verified twice; the first verification is done on the original activity diagram;
the second verification is done on the repaired activity diagrams as sketched above.
For the second verification of R5, the reduced model is much larger, as variable
action cannot be abstracted from any longer!

3The original model has 554,470 states. With a timeout of two years the model has 1,093,610
states.

11.1 · Seizure of goods under criminal law 193

Receive offical report

and report of seizure

Decide upon

follow−up action

remind public

prosecutor

WAIT−1
after(1)

Return to

rightful claimant

Confiscate good

[person renounces good]

Give deposit

 order

WAIT−6

(good is in

custody)

Hand over list

of seized goods

at court session

WAIT−5

(court is respon−

sible for good)

Give order

to custodian

judgement becomes final

Custodian receives

deposit order

Decide whether

 or not to keep good

[keep]

rightful claimant

 becomes known

Public prosecutor

 makes a decision

[else]

WAIT−4

lawsuit begins

Custodian carries

 out decision

[in(Decide upon

follow−up action)]

Figure 11.4 Counterexample for requirement R5

194 Chapter 11 · Case studies

11.2 Order procedure within IT department

In this section we model the workflow of ordering a good within the IT department
of a company. It is based upon an existing procedure at Océ [32] which has been
modelled using the Logistic Model [26].

Workflow description. Figure 11.5 shows an activity diagram that describes
the workflow. The workflow starts by checking the request for a good. If the re-
quest is not ok, it is returned. Otherwise, next the request is split into subrequests.
A subrequest is either a hard or software request or a computer relocation request.
We here assume that there is at most one hard or software request and at most
one computer relocation request. (Relaxing this constraint would require dynamic
concurrency nodes; as in the previous example, these do not impact verification,
but would blow up the state space.)

A hard or software request is handled by first making a specification. If the
required hardware is already available in some left-over computer in stock, the
hardware can be installed after removing it from that computer. Otherwise, the
hardware must be ordered, i.e., a formal request must be made. Then, a form
is filled in. Next it is checked whether the request counts as investment, i.e., the
investment requires a large amount of money. If so, an additional form has to be
filled in.

Next, the head of the IT department needs to approve the request. If he
disapproves the request, the subworkflow stops. If he approves, an order is made
and sent to the supplier by the purchase department. If the supplier is not known,
some administrative information, among others a supplier number, is created.

If the order arrives, the delivered product can be installed. If the bill arrives,
it is paid.

If the request is a computer relocation request, the request is inspected and it
is checked whether a new ethernet access point is needed. If not, the computer
is relocated. Otherwise, an estimation of the costs must be made. If the costs
exceed a certain threshold, the request counts as an investment, and the head of
the IT department must approve of the request. If he disapproves the request, the
subworkflow stops.

Next, a new ethernet access point is made by a supplier. The documentation
of the building is updated with the location of the new ethernet access point.
Then the computer can be relocated. Meanwhile, the supplier sends his bill to the
organisation and the organisation pays the bill.

Requirements. We first observe that the activity diagram satisfies the con-
straints mentioned in Theorem 6.7 and Theorem 10.1. Thus we can use CTL∗

r

formulas and obtain results valid for both the RLS and ILS. We apply the four
reduction rules defined in Section 10.6.2. Figure 11.6 shows the reduced activity
diagram for the first two requirements; the other reductions are similar.

11.2 · Order procedure within IT department 195

Check

request

Return

request

[else]

Make specification

[ok]

[hard or software request]

[computer relocation request]

Determine

subrequests

Fill in form

[else]

Determine

candidate

computers

[hardware

available]

Determine

whether hw/sw

request is

investment

Fill in invest−

ment form

Make order

[invest−

ment1]

[else]

Check order

Create new

supplier info

Send order

to supplier

[new supplier]

[else]

WAIT−3

WAIT−2

Handle

bill

Receive

order

order arrives

order bill

 arrives

Install

Inspect computer

relocation request

Make

estimation

[new ethernet

access point needed]

Check hw/sw request

[ok1]

[else]

Determine

whether cr

 request is

investment

Fill in invest−

ment form

[investment2][else]

Check cr

 request

[ok2]

[else]

[else]

Update

documentation

Relocate

computer

WAIT−1

ethernet access point is made

[else]
[else]

ethernet

bill arrives

Figure 11.5 Workflow for handling order requests

196 Chapter 11 · Case studies

Check

request

Return

request

Make specification

Determine

subrequests

Determine

whether hw/sw

request is

investment

Check order

WAIT−3

Handle

bill

order bill

 arrives

Install

Inspect computer

relocation request

Check hw/sw request

Determine

whether cr

 request is

investment

Check cr

 request

Relocate

computer

ethernet

bill arrives

Figure 11.6 Reduced activity diagram of Figure 11.5

11.2 · Order procedure within IT department 197

Requi-
rement

Result Reachable
states4(nr)

Time
(sec)

BDD nodes
(nr)

Memory
(kB)

R1 True 458 34.59 230912 13863
R2 True 162 4.33 61288 5295
R3 True 324 16.02 69577 8627
R4 True 323 17.87 149256 10247

Table 11.2 Resources used by NuSMVfair

Again, we first check two general requirements. The first requirement is that
the activity diagram does not deadlock.

(R1): FGfinal

This requirement is true.

The second requirement is that the activity diagram does not diverge.

(R2): G F stable

This requirement is true.

The third requirements states that it is possible to relocate a computer if a
computer relocation request has been made. This is a sanity check on the workflow
specification.

(R3): AG (in(Inspect computer relocation request) ⇒

EF in(Relocate computer))

This requirement is true.

Finally, the fourth requirement states that executing activity Make order im-
plies that sometime in the future activity Install is executed. We formalise this
by referring to the corresponding activity nodes.

(R4): G (in(Make order) ⇒ F in(Install))

This requirement is true.

The performance statistics for verification of these requirements are shown in
Table 11.2. As before, the analysis was performed on a PC with a Pentium III
450 MHz processor with 128Mb of RAM under Red Hat Linux 6.0.

4The numbers refer to the reduced model. The original model has around 100,000 states.

198 Chapter 11 · Case studies

11.3 Lessons learned

Before we discuss the lessons learned, we make some caveats concerning the case
studies. First, I have by now gained experience in using activity diagrams to
specify workflows. Persons that are less experienced might come up with workflow
specifications that I would not even consider, because I know beforehand that they
are flawed. It would therefore be interesting to see how workflow modellers not
used to activity diagrams would model the workflows that were discussed in this
chapter.

Second, the workflows are of moderate size and do not seem overly complex.
It remains to be seen how our verification approach performs for larger and more
complex workflows. However, we observe that reduction rule 2 ensures that the
scale factor is linear in the number of events, whereas if rule 2 is not used the scale
factor is exponential in the number of events.

Third, the workflows were constructed from existing workflow descriptions in
other workflow notations. The workflows were not modelled immediately in ac-
tivity diagrams. Hence, it might be that certain aspects of the workflows would
have been modelled in a different way if activity diagrams had been used from
the outset. This means that the workflow models in this chapter might not be
completely realistic.

Taking into account these caveats, we now discuss what we have learned. First,
writing properties is difficult. If I verified a property to be false, quite frequently
the property was wrong, not the model. Writing correct properties is an art in
itself. Moreover, writing CTL properties is considerably harder than writing LTL
properties.

Second, CTL properties turned out to be rather weak for our purposes: they say
something about possibilities (“what can happen”), not about necessities (“what
will happen”). For reactive systems, including workflow systems, possibility prop-
erties are not really interesting, unless as a sanity check on the model that certain
nodes and hyperedges are indeed reachable. This agrees with the view of Lam-
port [115].

Third, temporal logic properties and activity diagrams are complementary,
not substitutes for one each other. Some constructs are more easily modelled by a
property, others more easily by an activity diagram. For example, the requirement
that some activities A and B should always be done together in the same run is
easy to express in temporal logic, but not so easy in activity diagrams, as there
is no order information provided as to which activity executes first. And the
requirement that some set of activities A, B , and C should be done in a certain
order, say A before B before C , and that the sequence should be repeated until
a certain condition holds is easy to model in activity diagrams but difficult in
temporal logic (for example, property in(A) ∧ F (in(B) ∧ F in(C)) does not model
the iteration).

11.4 · Conclusion and future work 199

Fourth, by model checking we were able to find hidden assumptions. For
example, the need for strong fairness constraints may seem obvious at first sight,
but the counterexample returned by the model checker, showing that irrelevant
events can prevent other events from occurring (see Section 10.3) came as a surprise
to me. The point is that things that seem obvious at hindsight are not so obvious
at foresight. Model checking proved to be useful for gaining insight.

Fifth, the original workflow descriptions did not list any requirements, not even
in natural language. So I had to invent myself several requirements. I conjecture
that for most workflows that are used in real-life, their requirements are not doc-
umented at all. This makes the validation of workflow specifications difficult, if
not impossible.

11.4 Conclusion and future work

We have verified two activity diagrams that specify workflows that are in use in
real organisations. The size of both workflows is moderate. All requirements could
be verified in reasonable time, after having applied the reduction rules as defined
in Chapter 10. This shows that reasonable complex workflow specifications of
moderate size can be verified efficiently using a state of the art computer.

To fully ascertain whether or not our approach scales up to larger examples,
some more and especially larger case studies need to be done. But since one of the
reduction rules (rule 2) in Section 10.6 transforms the exponential blowup of the
state space into a polynomial blowup, we expect that larger examples can also be
handled.

Future work includes applying the verification to more complex workflow spec-
ifications that do not fit on one sheet of paper. The correctness of such workflows
cannot be determined by visual inspection anymore, and it is in this case that
verification really pays off. Next, the effectiveness of our verification should be
studied in more detail. Temporal logic is hard to use for non-experts, and even
experts sometimes make mistakes in it. A high-level specification language for
properties that is easy to use for non-experts should be defined.

200 Chapter 11 · Case studies

Chapter 12

Conclusion and future work

12.1 Conclusion

In the introduction we have stated that the goal of this thesis is to define a seman-
tics of activity diagrams that is suitable for workflow modelling. The semantics
should allow verification of functional requirements using model checking. The
semantic should be accurate, yet easy to analyse by a model checker. We now
discuss whether this goal has been met.

We have proposed two formal semantics for activity diagrams. As an activity
diagram is used as workflow specification, and a workflow specification prescribes
how a workflow system should behave, both semantics are defined and motivated
in terms of workflow systems. In both semantics a workflow system is viewed
as a reactive system. Both semantics support the modelling of event-driven be-
haviour, data, real time and loops, thus supporting the specification of complex,
realistic workflows. The requirements-level semantics assumes that workflow sys-
tems are infinitely fast with respect to their environment and react immediately
to input events (perfect synchrony) whereas the implementation-level semantics
does not. Since the implementation-level semantics stays close to the way a work-
flow system actually operates, it is accurate. The requirements-level semantics,
on the other hand, is not so accurate, since it assumes perfect synchrony. But
for a model checker the requirements-level semantics is easier to analyse than the
implementation-level semantics, since the state space in the requirements-level
semantics is much smaller than the one in the implementation-level semantics.

For activity diagrams satisfying the constraints identified in Chapter 6 and
requirements in CTL∗

r (Chapter 10), the requirements-level semantics gives the
same outcome as the implementation-level semantics. Thus, for such activity
diagrams and requirements, the requirements-level semantics is as accurate as the
implementation-level semantics. In that case the requirements-level semantics is
both accurate and easy to analyse by a model checker. This class of activity

202 Chapter 12 · Conclusion and future work

diagrams and requirements is fairly broad, but of course rules out certain activity
diagrams and requirements. For example, requirements cannot refer to events.

Our approach of defining two semantics, rather than one, acknowledges that
activity diagrams are first and foremost informal, like the other UML diagrams.
Different people may interpret the same diagram in completely different ways. Our
approach recognises that UML activity diagrams can be interpreted in different
ways, and puts this difference in a more formal setting by relating two completely
different formal semantics. We do not know of any other work in which different
formal semantics for the same diagram are related with each other.

Comparing both our semantics with Petri nets, both semantics are admittedly
more difficult to analyse than a Petri net token-game semantics. But this is be-
cause the paradigm of Petri nets presupposes that systems are closed and active,
whereas the paradigm of statecharts presupposes that systems are open and reac-
tive. Clearly, open reactive systems are more difficult to understand than closed
active systems. Since workflow systems are reactive systems, we think that the
Petri net token-game semantics is not accurate enough for workflow modelling.
We therefore have taken the statechart step semantics as starting point of our two
semantics.

We have implemented the requirements-level semantics in an activity dia-
gram editing tool and interfaced it with a model checker. Thus we have shown
that the requirements-level semantics can be used for model checking. The (sta-
ble) implementation-level semantics can be used for model checking in a similar
way. The tool supports verification of workflow models that have event-driven
behaviour, data, real time and loops. Existing verification approaches do not sup-
port all these features. The feedback of the model checker is presented in terms of
the original activity diagram. Thus, the tool completely hides the model checker
from the user of the tool, allowing the model checker to be used by people that
are unfamiliar with formal methods.

We were able to verify some non-trivial real-world examples with the tool. As
usual in model checking, the state space explosion prevented that model checking
could be applied straightaway to these examples. Instead, we had to use reduction
rules to reduce the state space of the examples. To fully validate the semantics
and our verification approach, some more and some larger case studies need to be
done. The presented results merely indicate feasibility. However, the presented
results are encouraging in this respect. We do not expect problems with scalability,
as one of the reduction rules transforms the exponential blowup of the state space
into a polynomial blowup.

12.2 Summary of main contributions

This thesis has made several contributions. We list the main ones.

• Two completely different formal semantics for UML activity diagrams are

12.2 · Summary of main contributions 203

defined.

• Both semantics are motivated entirely by the domain of workflow modelling.
Other approaches that formalise UML activity diagrams or workflow models
just define or take a formal semantics without providing any motivation.
Formal semantics are rarely justified by the intended application domain.

• All the design choices that are made are listed explicitly. Thus, our semantics
can be applied to another domain by validating all design choices on that
domain.

• The two formal semantics are related by showing for which activity diagrams
and for which requirements the two semantics are similar.

• A realistic justification of the perfect synchrony hypothesis is provided by re-
lating a semantics that satisfies perfect synchrony with a semantics that does
not satisfy perfect synchrony. The existing justification puts an assumption
upon the system and environment (the system should be fast enough w.r.t.
pace of change of the environment). Our justification allows the system to
be slower than the environment.

• The thesis shows that a statechart-like step semantics can be given to a
notation with a Petri net-like syntax.

• The thesis clarifies the difference between statecharts and Petri nets by com-
paring their semantics, rather than their syntax. We have shown that the
Petri net token-game semantics cannot model reactive behaviour. Since
workflow systems are reactive systems, we think that the Petri net token-
game semantics is not accurate enough for modelling workflows.

• We have developed a powerful verification tool for realistic real-life workflow
models, written in UML activity diagrams, that have event-driven behaviour,
data, real time, and loops.

• The model checker used by the verification tool is completely hidden from
the user, thus increasing user friendliness of the tool. In particular, feedback
of the model checker is translated in terms of the activity diagram.

• Our tool is the first verification tool for UML activity diagrams.

• A restriction on CTL∗ is defined that extends the restriction proposed by
Lamport [113]. The restriction can be used in other approaches in which
at the concrete lower level variables do not change instantaneously, but can
have an inconsistent intermediate value that should not be observed.

• Several reduction rules for activity diagrams have been defined. The reduc-
tion rules ensure that the reduced activity diagram preserves the requirement
to be verified. One reduction rule transforms the exponential blowup of the

204 Chapter 12 · Conclusion and future work

state space into a polynomial blowup. Thus, this rule considerably improves
the scalability of the verification approach.

• We have applied model checking, in particular strong fairness model check-
ing, to real-life workflow specifications. Strong fairness model checking is
necessary to accurately verify requirements on workflow models that have
loops.

12.3 Future work

There are several extensions of our work possible. First, the semantics could be
extended to deal with for example object flows and interrupt regions, as sketched
in Chapter 7. Moreover, the semantics could be updated to UML 2.0, once that
has been endorsed by OMG. Also case management, in which several workflow
instances can synchronise and communicate with each other, poses an interesting
challenge. The current semantics deals with one workflow instance in isolation.

Second, our semantics, especially the implementation-level semantics, could
be used to generate code for supporting workflows at run-time. The code im-
plements workflow management functionality. This can be particular useful for
inter-organisational workflows in the setting of e-commerce [80], as e-commerce
frameworks like ebXML [153] have adopted UML activity diagrams as modelling
language. To deal with inter-organisational workflows our semantics probably has
to be extended. We then have to model parties. Each party executes its own part
of a workflow. Parties cooperate to deliver a combined service.

Third, we have identified commonalities in behaviour between two completely
different semantics. We could extend this by identifying a whole class of different
semantics that have common behaviour. The ultimate benefit of such an identifi-
cation is that the precise semantics attached to activity diagrams can be left open,
as long as the semantics used satisfies some common constraints. Then different
tools do not have to implement exactly the same semantics, but nevertheless can
cooperate with each other, even though they use different semantics. Putting this
one step further, then the UML standard can leave open the actual semantics of
activity diagrams, and instead put some constraints that a semantics must satisfy.

Fourth, the verification tool could be enhanced in several ways. Some of the
reduction rules have been implemented in the tool; the remaining reduction rules
should also be implemented. Next, a more abstract property language should be
defined that is preferably graphical and in terms of the diagram. This allows for
a more user-friendly and intuitive specification of user requirements. Finally, the
tool could be extended with a simulator that allows animation of activity diagrams.
Then the user can play the error scenarios that are returned by the model checker.
Furthermore, animation of activity diagrams allows the user to better understand
the behaviour of activity diagrams according to our semantics.

Appendix A

Notational conventions

Throughout the thesis we use a variant of the Z notation [148]. Most of the notation
is standard set theory, and therefore straightforward. In this chapter we give a
short introduction to some of the unfamiliar parts of Z that we use frequently in
this thesis, in particular bags and sequences.

The symbol • separates a declaration from an expression. For example, the
property that every natural number is nonnegative is expressed in Z as:

∀n ∈ � • n ≥ 0

Symbol� denotes a function, not an implication. An implication is denoted
by symbol ⇒. Symbol� denotes a bijective function.

Notation x/val represents substitution of the value of variable x by value val .
Valuation σ[x/val] assigns to variable x value val and to every other variable y,
y
= x , the value σ(y). Symbol & denotes a bulk update:

σ[&x∈X x/valx]
df

= σ[x1/val1, . ., xn/valn]

where n = #X . (Function # returns the size of a set.)

A bag or a multiset is a set in which an element can occur more than once. A
bag b on a set X is a function from X to natural numbers. The set of all bags on
a set X is denoted bag X , which abbreviates

bag X
df

= X ��1

where �1 is the set of all strictly positive natural numbers, i.e., excluding 0. So
b : bag X is equivalent to b ∈ X��1. The number associated with each element
x ∈ X represents how many times x is in the bag. A set is a bag in which every
element can occur at most once.

A bag on set X can be represented textually by listing between square brackets
the elements of X as many times as they are in the bag. For example, given a set

206 Chapter A · Notational conventions

{x1, x2}, bag b = {x1 �→ 2, x2 �→ 1} can be written as [x1, x1, x2], [x1, x2, x1], or
[x2, x1, x1].

Given a bag b on set X , the number of times an element x ∈ X occurs in b
is denoted b ♯ x . Union of two bags b1, b2 on set X into a new bag b, denoted
b = b1 ⊎ b2, is defined as the addition of the number of times each element x ∈ X
occurs in the individual bags. So b ♯ x = b1 ♯ x + b2 ♯ x . For example, if b1(x) = 2
and b2(x) = 4 then b(x) = 6. Bag difference, denoted by �, is defined similarly.

A bag b1 on set X is contained in bag b2 on X , denoted b1 ⊑ b2, iff for each
element x ∈ X the number of times x occurs in b1 is lower than or equal to the
number of times x occurs in b2:

b1 ⊑ b2
df

⇔ ∀ x ∈ X • b1 ♯ x ≤ b2 ♯ x

A sequence s on set X is a list of elements of X . It is denoted by a function
from natural numbers to X . The set of sequences on X is denoted seqX .

Concatenation of two sequences s and t is written s � t . The concatenation
contains the elements of s followed by the elements of t .

Bibliography

[1] W. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process
Management. Lecture Notes in Computer Science 1806. Springer, 2000.

[2] W.M.P. van der Aalst. The application of Petri nets to workflow manage-
ment. The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[3] W.M.P. van der Aalst. Workflow verification: Finding control-flow errors
using Petri-net-based techniques. In Aalst et al. [1], pages 161–183.

[4] W.M.P. van der Aalst. Personal communication, 2001.

[5] W.M.P. van der Aalst and T. Basten. Inheritance of workflows: An approach
to tackling problems related to change. Theoretical Computer Science, 270(1-
2):125–203, 2001.

[6] W.M.P. van der Aalst, K.M. van Hee, and G.J. Houben. Modelling workflow
management systems with high-level Petri nets. In G. De Michelis, C. El-
lis, and G. Memmi, editors, Proc. 2nd Workshop on Computer-Supported
Cooperative Work, Petri nets and related formalisms, pages 31–50, 1994.

[7] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Advanced workflow patterns. In O. Etzion and P. Scheuermann,
editors, Proc. CoopIS 2000, Lecture Notes in Computer Science 1901, pages
18–29. Springer, 2000. An extended version has appeared as: QUT Technical
report, FIT-TR-2002-02, Queensland University of Technology, Brisbane,
2002.

[8] N.R. Adam, V. Atluri, and W. Huang. Modeling and analysis of workflows
using Petri nets. Journal of Intelligent Information Systems, 10:131–158,
1998.

[9] G. Agha, F. Decindio, and G. Rozenberg, editors. Concurrent Object-
Oriented Programming and Petri Nets. Lecture Notes in Computer Science
2001. Springer, 2001.

208 Bibliography

[10] A. Agostini and G. de Michelis. A light workflow management system using
simple process models. Computer Supported Cooperative Work, 9(3/4):335–
363, 2000.

[11] Alcatel, Computer Associates, Enea Business Software, Ericsson, Hewlett-
Packard, I-Logix, IONA, International Business Machines, Jaczone AB, Inc.
Kabira Technologies, Motorola, Oracle, Rational Software, Softeam, Telel-
ogic AB, Unisys, and WebGain. Update to the U2 partners initial submis-
sion for UML2 superstructure, 2001. Object Management Group document
ad/01-11-01. Available at http://www.omg.org.

[12] Alcatel, I-Logix, Kennedy-Carter, Inc. Kabira Technologies, Inc.
Project Technologies, Rational Software, and Telelogic AB. Action seman-
tics for the UML, 2001. Object Management Group document ad/01-03-01.
Available at http://www.omg.org.

[13] L. Apvrille, P. de Saqui-Sannes, C. Lohr, P. Sénac, and J.-P. Courtiat. A new
UML profile for real-time system formal design and validation. In M. Gogolla
and C. Kobryn, editors, Proc. ≪UML≫ 2001, volume 2185 of Lecture Notes
in Computer Science 2185, pages 287–301. Springer, 2001.

[14] E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed au-
tomata and digital circuits. In R. de Simone and D. Sangiorgi, editors, Proc.
CONCUR ’98 – Concurrency Theory, Lecture Notes in Computer Science
1466, pages 470–484. Springer, 1998.

[15] P.C. Attie, M.P. Singh, A.P. Sheth, and M. Rusinkiewicz. Specifying and
enforcing intertask dependencies. In R. Agrawal, S. Baker, and D.A. Bell,
editors, Proc. International Conference on Very Large Data Bases (VLDB
’93), pages 134–145. Morgan Kaufmann, 1993.

[16] P. Baldan, A. Corradini, H. Ehrig, and R. Heckel. Compositional modeling
of reactive systems using open nets. In K.G. Larsen and M. Nielsen, editors,
Proc. CONCUR 2001 – Concurrency Theory, Lecture Notes in Computer
Science 2154, pages 502–518. Springer, 2001.

[17] R.N. Bateson. Introduction to Control System Technology. Prentice Hall,
6th edition, 1999.

[18] M. von der Beeck. A comparison of statecharts variants. In H. Langmaack,
W.-P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time
and Fault-Tolerant Systems, Lecture Notes in Computer Science 863, pages
128–148. Springer, 1994.

[19] G. Berry and G. Gonthier. The Esterel synchronous programming lan-
guage: design, semantics, implementation. Science of Computer Program-
ming, 19(2):87–152, 1992.

Bibliography 209

[20] B.S. Blanchard and W.J. Fabrycky. Systems Engineering and Analysis. Pren-
tice Hall, 1998.

[21] C. Bock. Unified behavior models. Journal of Object-Oriented Programming,
12(5), 1999.

[22] T. Bolognesi and E. Brinksma. Introduction to the ISO specification lan-
guage LOTOS. Computer Networks and ISDN Systems, 14(1):25–59, 1987.

[23] C. Bolton and J. Davies. Activity graphs and processes. In W. Grieskamp,
T. Santen, and B. Stoddart, editors, Proc. Integrated Formal Methods (IFM
2000), Lecture Notes in Computer Science 1945, pages 77–96. Springer, 2000.

[24] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

[25] E. Börger, A. Cavarra, and E. Riccobene. An ASM Semantics for UML
Activity Diagrams. In T. Rus, editor, Proc. International Conference on
Algebraic Methodology and Software Technology (AMAST 2000), Lecture
Notes in Computer Science 1826, pages 293–308. Springer, 2000.

[26] N.A. Brand and J.R.P. van der Kolk. Werkstroomanalyse en -ontwerp (in
Dutch). Kluwer BedrijfsInformatie, 1995.

[27] R. Bruni and U. Montanari. Zero-safe nets: Comparing the collective and
individual token approaches. Information and Computation, 156(1-2):46–89,
2000.

[28] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and Computa-
tion, 98(2):142–170, 1992.

[29] C. Bussler. Enterprise-wide workflow management. IEEE Concurrency,
7(3):32–43, 1999.

[30] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and implemen-
tation of exceptions in workflow management systems. ACM Transactions
on Database Systems, 24(3):405–451, 1999.

[31] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual modeling of
workflows. In M.P. Papazoglou, editor, Proc. International Object-Oriented
and Entity-Relationship Modelling Conference (OOER’95), Lecture Notes in
Computer Science 1021, pages 341–354. Springer, 1995.

[32] A. Caspers. Workflow management: Analyse, modellering en implementatie
(in Dutch). Master’s thesis, Vrije Universiteit Amsterdam, 1998.

[33] S. Ceri and P. Fraternali. Designing Database Applications with Objects and
Rules: The IDEA Methodology. Addison-Wesley, 1997.

210 Bibliography

[34] W. Chan, R. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and
J. Reese. Model checking large software specifications. IEEE Transactions
on Software Engineering, 24(7):498–520, 1998.

[35] W. Chan, R.J. Anderson, P. Beame, D.H. Jones, D. Notkin, and W.E.
Warner. Optimizing symbolic model checking for statecharts. IEEE Trans-
actions on Software Engineering, 27(2):170–190, 2001.

[36] E. Chang, Z. Manna, and A. Pnueli. The saftey-progress classification. In
F.L. Bauer, W. Brauer, and H. Schwichtenberg, editors, Logic and Algebra
of Specification, NATO/ASI, pages 143–202. Springer, 1993.

[37] S. Christensen and N.D. Hansen. Coloured Petri nets extended with channels
for synchronous communication. Technical Report PB-390, Aarhus Univer-
sity, 1992.

[38] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new sym-
bolic model checker. International Journal on Software Tools for Technology
Transfer, 2(4):410–425, 2000.

[39] E.M. Clarke and I.A. Draghicescu. Expressibility results for linear-time and
branching-time logics. In J.W. de Bakker, W.-P. de Roever, and G. Rozen-
berg, editors, Proc. of the School/Workshop on Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency, Lecture
Notes in Computer Science 354, pages 428–437. Springer, 1989.

[40] E.M. Clarke, M. Fujita, S.P. Rajan, T.W. Reps, S. Shankar, and T. Teitel-
baum. Program slicing of hardware description languages. In L. Pierre and
T. Kropf, editors, Proc. Correct Hardware Design and Verification Methods
(CHARME’99), Lecture Notes in Computer Science 1703, pages 298–312.
Springer, 1999.

[41] E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model
checking. Formal Methods in System Design, 10(1):47–71, 1997.

[42] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT
Press, 1999.

[43] E.M. Clarke and J.M. Wing. Formal methods: State of the art and future
directions. ACM Computing Surveys, 28(4):626–643, 1996.

[44] C.P.M. Cleiren and J.F. Nijboer, editors. Strafrecht: de tekst van het Wetboek
van Strafrecht en enkele aanverwante wetten voorzien van commentaar (in
Dutch). Kluwer, 2000.

[45] S. Dami, J. Estublier, and M. Amiour. Apel: A graphical yet executable
formalism for process modeling. Automated Software Engineering, 5(1):61–
96, 1998.

Bibliography 211

[46] W. Damm, B. Josko, H. Hungar, and A. Pnueli. A compositional real-time
semantics of STATEMATE designs. In W.-P. de Roever, H. Langmaack,
and A. Pnueli, editors, Proc. Compositionality: The Significant Difference
(COMPOS ’97), Lecture Notes in Computer Science 1536, pages 186–238.
Springer, 1998.

[47] D.R. Dams. Abstract Interpretation and Partition Refinement for Model
Checking. PhD thesis, Eindhoven University of Technology, 1996.

[48] F. Dehne, R. Wieringa, and H. van de Zandschulp. Toolkit for conceptual
modeling (TCM) — user’s guide and reference. Technical report, University
of Twente, 2000. Available at http://www.cs.utwente.nl/~tcm.

[49] W. Deiters and V. Gruhn. Process management in practice applying the
FUNSOFT net approach to large-scale processes. Automated Software En-
gineering, 5(1):7–25, 1998.

[50] J. Desel and T. Erwin. Modeling, simulation and analysis of business pro-
cesses. In Aalst et al. [1], pages 129–141.

[51] J. Desel and G. Juhás. What is a Petri net? Informal answers for the
informed reader. In H. Ehrig, G. Juhás, J. Padberg, and G. Rozenberg,
editors, Unifying Petri Nets, Lecture Notes in Computer Science 2128, pages
1–27. Springer, 2001.

[52] E.W. Dijkstra. Notes on structured programming. In O.-J. Dahl, E.W.
Dijkstra, and C.A.R. Hoare, editors, Structured Programming. Academic
Press, 1972.

[53] M. Dumas and A. ter Hofstede. UML activity diagrams as a workflow spec-
ification language. In M. Gogolla and C. Kobryn, editors, Proc. ≪UML≫
2001, Lecture Notes in Computer Science 2185, pages 76–90. Springer, 2001.

[54] H. Eertink, W. Janssen, P. Oude Luttighuis, W. Teeuw, and C. Vissers. A
business process design language. In J.M. Wing, J. Woodcock, and J. Davies,
editors, Proc. FM’99—Formal Methods, Volume I, Lecture Notes in Com-
puter Science 1708, pages 76–95. Springer, 1999.

[55] C.A. Ellis and G.J. Nutt. Modelling and enactment of workflow systems.
In M. Ajmone Marsan, editor, Application and Theory of Petri Nets 1993,
Lecture Notes in Computer Science 691, pages 1–16. Springer, 1993.

[56] R. Elmasri and S. Navathe. Fundamentals of Database Systems. Ben-
jamins/Cummings, 1994.

[57] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, pages 995–1072. North-Holland, 1990.

212 Bibliography

[58] W. Emmerich and V. Gruhn. FUNSOFT nets: A Petri-net based soft-
ware process modeling language. In Proc. of the International Workshop on
Software Specification and Design, pages 175–184. IEEE Computer Society
Press, 1991.

[59] H.-E. Eriksson and M. Penker. Business Modeling With UML: Business
Patterns at Work. Wiley Computer Publishing, 2000.

[60] R. Eshuis. Model checking activity diagrams in TCM. Technical report,
University of Twente, 2001. Available at http://www.cs.utwente.nl/~tcm.

[61] R. Eshuis, D.N. Jansen, and R. Wieringa. Requirements-level semantics and
model checking of object-oriented statecharts. Requirements Engineering
Journal, pages ??–??, 2002. To appear.

[62] R. Eshuis and R. Wieringa. Requirements-level semantics for UML state-
charts. In S.F. Smith and C.L. Talcott, editors, Formal Methods for Open
Object-Based Distributed Systems (FMOODS) IV, pages 121–140, 2000.

[63] R. Eshuis and R. Wieringa. A formal semantics for UML activity diagrams.
Technical Report TR-CTIT-01-04, University of Twente, 2001.

[64] R. Eshuis and R. Wieringa. A real-time execution semantics for UML ac-
tivity diagrams. In H. Hussmann, editor, Proc. Fundamental Approaches
to Software Engineering (FASE 2001), Lecture Notes in Computer Science
2029, pages 76–90. Springer, 2001.

[65] R. Eshuis and R. Wieringa. An execution algorithm for UML activity graphs.
In M. Gogolla and C. Kobryn, editors, Proc. ≪UML≫ 2001, Lecture Notes
in Computer Science 2185, pages 47–61. Springer, 2001.

[66] R. Eshuis and R. Wieringa. Verification support for workflow design with
UML activity graphs. In Proc. International Conference on Software Engi-
neering (ICSE 2002), pages 166–176. ACM Press, 2002.

[67] R. Eshuis and R. Wieringa. Comparing Petri net and activity diagram
variants for workflow modelling – a quest for reactive Petri nets. In H. Ehrig,
W. Reisig, G. Rozenberg, and H. Weber, editors, Petri Net Technology for
Communication Based Systems, Lecture Notes in Computer Science xxxx.
Springer, 2002. To appear.

[68] J. Esparza. Decidability of model checking for infinite-state concurrent sys-
tems. Acta Informatica, 34(2):85–107, 1997.

[69] E.S. Ferguson. Engineering and the Mind’s Eye. MIT Press, 1993.

[70] A. Foremniak and P.H. Starke. Analyzing and reducing simultaneous firing
in signal-event nets. Fundamenta Informaticae, 43:81–104, 2000.

Bibliography 213

[71] M. Fowler and K. Scott. UML Distilled: A Brief Guide to the Standard
Object Modeling Language. Addison-Wesley, 2nd edition, 1999.

[72] N. De Francesco, U. Montanari, and G. Ristori. Modelling concurrent ac-
cesses to shared data via Petri nets. In U. Montanari and E.R. Olderog,
editors, Proc. Conference on Programming Concepts, Methods and Calculi
(PROCOMET ’94), pages 489–508. North-Holland, 1994.

[73] T. Gehrke, U. Goltz, and H. Wehrheim. The dynamic models of UML:
Towards a semantics and its application in the development process.
Hildesheimer Informatik-Bericht 11/98, Institut für Informatik, Universität
Hildesheim, 1998.

[74] H.J. Genrich. Predicate/transition nets. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets: Central Models and Their Properties,
Lecture Notes in Computer Science 254, pages 207–247. Springer, 1987.

[75] H.J. Genrich and P.S. Thiagarajan. A theory of bipolar synchronization
schemes. Theoretical Computer Science, 30(3):241–318, 1984.

[76] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow
management: From process modelling to workflow automation infrastruc-
ture. Distributed and Parallel Databases, 3(2):119–153, 1995.

[77] A. Geppert, D. Tombros, and K.R. Dittrich. Defining the semantics of re-
active components in event-driven workflow execution with event histories.
Information Systems, 23(3-4):235–252, 1998.

[78] R. Goldblatt. Logics of Time and Computation. CSLI Lecture notes 7,
Stanford University, 2nd edition, 1992.

[79] P. Grefen. Transactional workflows or workflow transactions? In R. Cic-
chetti, A. Hameurlain, and R. Traunmüller, editors, Proc. 13th International
Conference on Database and Expert Systems Applications (DEXA 2002),
pages 60–69. Springer, 2002.

[80] P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. CrossFlow: Cross-
organizational workflow management in dynamic virtual enterprises. Inter-
national Journal of Computer Systems Science and Engineering, 15(5):277–
290, 2000.

[81] P. Grefen and R. Remmerts de Vries. A reference architecture for workflow
management systems. Journal of Data & Knowledge Engineering, 27(1):31–
57, 1998.

[82] P. Grefen, B. Pernici, and G. Sánchez. Database Support for Workflow Man-
agement: the WIDE Project. Kluwer Academic Publishers, 1999.

214 Bibliography

[83] P. Grefen, J. Vonk, and P. Apers. Global transaction support for workflow
management systems: from formal specification to practical implementation.
The VLDB Journal, 10(4):316–333, 2001.

[84] J.C. Grundy and J.G. Hosking. Serendipity: Integrated environment sup-
port for process modelling, enactment and work coordination. Automated
Software Engineering, 5(1):27–60, 1998.

[85] C. Hagen and G. Alonso. Beyond the black box: Event-based inter-process
communication in process support systems. In IEEE International Confer-
ence on Distributed Computing Systems (ICDCS ’99), pages 450–457. IEEE
Computer Society Press, 1999.

[86] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Aca-
demic Publishers, 1993.

[87] H.-M. Hanisch and A. Lüder. A signal extension for Petri nets and its use
in controller design. Fundamenta Informaticae, 41(4):415–431, 2000.

[88] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, 1987.

[89] D. Harel and E. Gery. Executable object modeling with statecharts. IEEE
Computer, 30(7):31–42, 1997.

[90] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts.
ACM Trans. on Software Engineering and Methodology, 5(4):293–333, 1996.

[91] D. Harel and A. Pnueli. On the development of reactive systems. In
K.R. Apt, editor, Logics and Models of Concurrent Systems, volume 13 of
NATO/ASI, pages 447–498. Springer, 1985.

[92] D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: the
STATEMATE approach. McGraw-Hill, 1998.

[93] J. Hatcliff, M.B. Dwyer, and H. Zheng. Slicing software for model construc-
tion. Higher-Order and Symbolic Computation, 13(4):315–353, 2000.

[94] F.H. Heida, R. Jobse, and M. Deterink. Model beslag (in Dutch), 1999.
Internal report Dutch Public Prosecution Service.

[95] M.P.E. Heimdahl and M.W. Whalen. Reduction and slicing of hierar-
chical state machines. In M. Jazayeri and H. Schauer, editors, Proc. of
the Sixth European Software Engineering Conference (ESEC/FSE ’97),
Lecture Notes in Computer Science 1013, pages 450–467. Springer, 1997.

[96] T.A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks?
In W. Kuich, editor, Proc. International Colloquium on Automata, Lan-
guages, and Programming (ICALP’92), Lecture Notes in Computer Science
623, pages 545–558. Springer, 1992.

Bibliography 215

[97] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[98] A.H.M. ter Hofstede and M.E. Orlowska. On the complexity of some veri-
fication problems in process control specifications. The Computer Journal,
42(5):349–359, 1999.

[99] G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997.

[100] IBM. MQ Series Workflow (Websphere). http://www.ibm.com.

[101] J. Helbig and P. Kelb. An OBDD-representation of statecharts. In Proc. of
the European Design and Test Conference, pages 142–151. IEEE Computer
Society Press, 1994.

[102] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts,
Architecture, and Implementation. International Thomson Computer Press,
1996.

[103] M. Jackson and G. Twaddle. Business Process Implementation: Building
Workflow Systems. Addison-Wesley, 1997.

[104] W. Janssen, R. Mateescu, S. Mauw, and J. Springintveld. Verifying busi-
ness processes using Spin. In E. Najm, A. Serhrouchni, and G. Holz-
mann, editors, Proc. International Spin workshop, 1998. Available at
http://netlib.bell-labs.com/netlib/spin/ws98/sjouke.ps.gz.

[105] K. Jensen. Coloured Petri Nets. Basic concepts, analysis methods and prac-
tical use. EATCS monographs on Theoretical Computer Science. Springer,
1992.

[106] S. Joosten. Trigger modelling for workflow analysis. In G. Chroust and
A. Benczur, editors, Proc. CON’94: Workflow Management, Challenges,
Paradigms and Products, pages 236–247, 1994.

[107] C. Karamanolis, D. Giannakopoulou, J. Magee, and S. Wheater. Modelling
and analysis of workflow processes. Technical Report 99/2, Department of
Computing, Imperial College, 1999.

[108] R.M. Karp and R.E. Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3:147–195, 1969.

[109] Y. Kesten, Z. Manna, and A. Pnueli. Verification of clocked and hybrid
systems. Acta Informatica, 36(11):837–912, 2000.

[110] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear tempo-
ral logic specifications. In K.G. Larsen, S. Skyum, and G. Winskel, editors,
Proc. International Colloquium on Automata, Languages and Programming
(ICALP’98), Lecture Notes in Computer Science 1443, pages 1–16. Springer,
1998.

216 Bibliography

[111] A. Kleppe and J. Warmer. Unification of static and dynamic semantics of
UML—a study in redefining the semantics of the UML using the pUML
OO meta modelling approach. Technical report, Klasse Objecten, 2000.
Available at http://www.klasse.nl.

[112] O. Kupferman and A. Pnueli. Once and for all. In Proc. IEEE Symposium
on Logic in Computer Science (LICS ’95), pages 25–35. IEEE Computer
Society Press, 1995.

[113] L. Lamport. What good is temporal logic? In R.E.A. Mason, editor, Proc.
of the IFIP Congress on Information Processing, pages 657–667. North-
Holland, 1983.

[114] L. Lamport. How to write a long formula (short communication). Formal
Aspects of Computing, 6(5):580–584, 1994.

[115] L. Lamport. Proving possibility properties. Theoretical Computer Science,
206(1–2):341–352, 1998.

[116] D. Latella, I. Majzik, and M. Massink. Automatic verification of a be-
havioural subset of UML statechart diagrams using the SPIN model-checker.
Formal Aspects of Computing, 11(6):637–664, 1999.

[117] N.L. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. Requirements
specification for process-control systems. IEEE Transactions on Software
Engineering, 20(9):684–707, 1994.

[118] F. Leymann and D. Roller. Production Workflow – Concepts and Techniques.
Prentice Hall, 2000.

[119] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In R. Parikh,
editor, Proc. 3rd Workshop on Logics of Programs, Lecture Notes in Com-
puter Science 193, pages 196–218. Springer, 1985.

[120] J. Lilius and I. Porres Paltor. vUML: A tool for verifying UML models. In
Proc. IEEE International Conference on Automated Software Engineering,
pages 255–258. IEEE Computer Society Press, 1999.

[121] M. Löwe, D. Wikarski, and Y. Han. Higher-order object nets and their appli-
cation to workflow modeling. Technical Report 95-34, Informatik, Technical
University Berlin, 1995.

[122] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer, 1992.

[123] Z. Manna and A. Pnueli. Clocked transition systems. In A. Pnueli and H. Lin,
editors, Logic and Software Engineering, pages 3–42. World Scientific, 1996.

Bibliography 217

[124] S. McMenamin and J. Palmer. Essential Systems Analysis. Yourdon Press,
1984.

[125] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[126] E. Mikk. Semantics and Verification of Statecharts. PhD thesis, University
of Kiel, 2000.

[127] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[128] U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32(6):545–
596, 1995.

[129] T. Murata. Petri nets: Properties, analysis, and applications. Proc. of the
IEEE, 77(4):541–580, 1989.

[130] P. Muth, D. Wodtke, J. Weissenfels, G. Weikum, and A. Kotz-Dittrich.
Enterprise-wide workflow management based on state and activity charts.
In A. Dogac, L. Kalinichenko, T. Özsu, and A. Sheth, editors, Workflow
Management Systems and Interoperability, NATO/ASI. Springer, 1998.

[131] M. Nüttgens, T. Feld, and V. Zimmermann. Business process modeling
with EPC and UML: Transformation or integration? In M. Schader and
A. Korthaus, editors, The Unified Modeling Language – Technical Aspects
and Applications, pages 250–261. Physica-Verlag, 1998.

[132] A. Oberweis, R. Schätzle, W. Stucky, W. Weitz, and G. Zimmermann.
INCOME/WF: A Petri net based approach to workflow management. In
H. Krallmann, editor, Wirtschaftsinformatik ’97, pages 557–580. Springer,
1997.

[133] Object Management Group. Workflow management facility specifi-
cation, 2000. OMG Document Number formal/00-05-02. Available
at http://www.omg.org.

[134] E.-R. Olderog. Nets, Terms and Formulas. Cambridge Tracts in Theoretical
Computer Science 23. Cambridge University Press, 1991.

[135] M.A. Ould. Business Processes: Modelling and Analysis for Re-engineering
and Improvement. Wiley, 1995.

[136] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,
1981.

[137] P. Pinheiro da Silva. A proposal for a LOTOS-based semantics for UML.
Technical Report UMCS-01-06-1, Department of Computer Science, Univer-
sity of Manchester, 2001.

218 Bibliography

[138] A. Pleyer and W. Jekeli. SAP response against the UML 2.0 RFI, 1999.
Object Management Group document ad/99-12-26.

[139] A. Pnueli and E. Shahar. A platform combining deductive with algorithmic
verification. In R. Alur and T.A. Henzinger, editors, Proc. International
Conference on Computer Aided Verification (CAV ’96), Lecture Notes in
Computer Science 1102, pages 184–195. Springer, 1996.

[140] A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts.
In T. Ito and A.R. Meyer, editors, Theoretical Aspects of Computer Software,
Lecture Notes in Computer Science 526, pages 244–265. Springer, 1991.

[141] W. Reisig. Petri Nets: An Introduction. Number 4 in EATCS Monographs
on Theoretical Computer Science. Springer, 1985.

[142] W. Reisig and G. Rozenberg, editors. Lectures on Petri nets I: Advances in
Petri nets, Lecture Notes in Computer Science 1491. Springer, 1998.

[143] W. Sadiq and M.E. Orlowska. Analyzing process models using graph reduc-
tion techniques. Information Systems, 25(2):117–134, 2000.

[144] K. Salimifard and M. Wright. Petri net-based modelling of workflow systems:
An overview. European Journal of Operational Research, 134(3):218–230,
2001.

[145] A.-W. Scheer. ARIS – Business Process Modeling. Springer, Berlin, 2nd
edition, 1999.

[146] B. Selic, G. Gullekson, and P. Ward. Real-Time Object Oriented Modeling.
John Wiley & Sons, 1994.

[147] Software Ley. Cosa. http://www.cosa.de.

[148] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992.

[149] A.S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[150] UML Revision Taskforce. OMG UML Specification v. 1.4. Object Man-
agement Group, 2001. OMG Document Number formal/01-09-67. Available
at http://www.omg.org.

[151] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3:121–189, 1995.

[152] J. Ullman and J. Widom. A First Course in Database Systems. Prentice
Hall, 2001.

[153] UN/CEFACT and OASIS. ebXML. http://www.ebxml.org.

Bibliography 219

[154] M.Y. Vardi. Branching vs. linear time: Final showdown. In T. Margaria
and W. Yi, editors, Proc. of the International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS ’01), Lecture
Notes in Computer Science 2031, pages 1–22. Springer, 2001.

[155] H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing work-
flow processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

[156] J. Widom and S. Ceri, editors. Active Database Systems – Triggers and
Rules For Advanced Database Processing. Morgan Kaufmann Publishers,
1996.

[157] R.J. Wieringa. Design Methods for Software Systems: Yourdon, Statemate
and the UML. Morgan Kaufmann, 2002. To be published.

[158] D. Wodtke and G. Weikum. A formal foundation for distributed workflow
execution based on state charts. In F.N. Afrati and P. Kolaitis, editors, Proc.
International Conference on Database Theory (ICDT ’97), Lecture Notes in
Computer Science 1186, pages 230–246. Springer, 1997.

[159] Workflow Management Coalition. The workflow reference model, 1995.
WFMC document WFMC-TC-1003. Available at http://www.wfmc.org.

[160] Workflow Management Coalition. Workflow management coalition inter-
face 1: Process definition interchange process model, 1999. WFMC docu-
ment WFMC-TC-1016-P. Available at http://www.wfmc.org.

[161] Workflow Management Coalition. Workflow management coalition specifica-
tion — terminology & glossary, 1999. WFMC document WFMC-TC-1011.
Available at http://www.wfmc.org.

[162] E. Yourdon. Modern Structured Analysis. Prentice Hall, 1989.

[163] S. Yovine. Kronos: A verification tool for real-time systems. International
Journal of Software Tools for Technology Transfer, 1(1/2):123–133, 1997.

Index

/ (substitution), 63
Σ (the set of all valuations), 56
−→ (transition relation), 56
� (concatenation of sequences), 71
� (bag membership), 58
♯ (count on bags), 58
� (conflict (activity)), 40
π (path), 56
σ (valuation), 56
⊑ (bag containment), 58
⊎ (bag union), 59
[] (notation for bags), 59

accurate, 5, 7, 45, 53, 75, 136
act , 32
active node, 57
active system, 18
activity, 11
activity diagrams, 3
activity hypergraph, 32
activity node, 23
activity state, 12
actor, 11
AN (set of activity nodes), 32
atomicity, 16

basic guard expression, 162
bc (broadcast), 33
broadcast event, 20
business activity, see activity
business process, 11

C (configuration), 57
case, 12
case attributes, 12

Clocked Transition System, 56
ClockReservoir , 56
comp, 67
complete state specification, 111
completion event, 67
completion hyperedge, 83
CompletionEvents , 67
compound activity node, 23
compound edge, 27, 36
condition change event, 19
configuration, 57
conflict (activity), 40
conflict (hyperedge), 83
consistent , 59
control data, 16
CTS, see Clocked Transition System

data transitions, 56
deadline, 61
deadlines , 62
decision node, 23
Disc, 56
discrete, 56
divergence, 50
duplicate conflict, 86

enabled, 58
enabled , 58
enactment, 14
env , 40
event, 19
event , 34
event-driven model, 46
external, 20
external hyperedge, 83

Index 221

final , 171
final node, 23
FN (set of final nodes), 32
fork node, 23
formal semantics, 5
functional requirement, 4

global state, 12
guard, 25
guard , 34

h (hyperedge), 58
hedge, 61
hyperedge, 28

I (bag of input events in RLS), 61
ILS, see implementation-level seman-

tics
implementation level, 49
implementation-level semantics, 9, 52
inactive node, 57
initial (initial node), 32
initial node, 23
insensitive, 77, 159
interference, 40, 59
interfering, 59
internal, 20
internal hyperedge, 83
isolation, 16
isolation rule, 113
isStep, 59

join node, 23

Kripke structure, 56

length, 59
local state, 12
local variables, 32
locked, 79
LVar , 32

maximal, 59
maximal , 59
MC (master clock), 56

merge node, 23
model checking, 6

named event, 19
NewTimers , 66
nextconfig , 60
Nodes , 32

observing local variable, 39
OffTimers, 66

p2p (point-to-point), 33
partial state specification, 111
path, 56
perfect synchrony hypothesis, 49
perfect technology assumption, 48
point-to-point event, 20
postcondition, 38
precondition, 38
process definition, see workflow spec-

ification
process dimension, 13
production data, 16
pseudo node, 27

Q (queue of input events in ILS), 68

re (router event), 69
reactive system, 17, 42
relevant, 58
relevant , 58
requirements level, 49
requirements-level semantics, 9, 49
resource dimension, 13
RLS, see requirements-level seman-

tics
role, 13
routing, 15
RT (Running Timers), 56
run, 42, 57

S (step), 59
sendactions , 34
sendtype, 33
settobag, 58

222 Index

signal, 19
single assignment rule, 113
single-event processing, 52
source, 24
source, 33
stable, 50
stable, 65, 101
stable implementation-level semantics,

78
stable simulation relation, 101
state, see valuation
step, 46, 59
superstep, 50, 62

target, 24
target , 34
temporal event, 19
term, 32
terminated , 65
termination event, 20
thread, 12
time transitions, 56
transaction, 15
transformational system, 18
trigger, 24
trigger event, 24

unbounded, 161
unstable, 50
updating local variable, 39

valuation, 56
Var , 56

wait node, 23
wait state, 12
WFMS, see Workflow Management

System
WFS, see Workflow System
WN (set of wait nodes), 32
work items, 12
workflow, 12
workflow design, see workflow speci-

fication

Workflow Management System, 13
workflow schema, see workflow spec-

ification
workflow specification, 12
Workflow System, 13

Abstract

This thesis defines a formal semantics for UML activity diagrams that is suit-
able for workflow modelling. The semantics allows verification of functional re-
quirements using model checking. Since a workflow specification prescribes how
a workflow system behaves, the semantics is defined and motivated in terms of
workflow systems. As workflow systems are reactive and coordinate activities, the
defined semantics reflects these aspects. In fact, two formal semantics are defined,
which are completely different. Both semantics are defined directly in terms of ac-
tivity diagrams and not by a mapping of activity diagrams to some existing formal
notation. The requirements-level semantics, based on the Statemate semantics
of statecharts, assumes that workflow systems are infinitely fast w.r.t. their en-
vironment and react immediately to input events (this assumption is called the
perfect synchrony hypothesis). The implementation-level semantics, based on the
UML semantics of statecharts, does not make this assumption. Due to the perfect
synchrony hypothesis, the requirements-level semantics is unrealistic, but easy to
use for verification. On the other hand, the implementation-level semantics is re-
alistic, but difficult to use for verification. A class of activity diagrams and a class
of functional requirements is identified for which the outcome of the verification
does not depend upon the particular semantics being used, i.e., both semantics
give the same result. For such activity diagrams and such functional requirements,
the requirements-level semantics is as realistic as the implementation-level seman-
tics, even though the requirements-level semantics makes the perfect synchrony
hypothesis. The requirements-level semantics has been implemented in a verifi-
cation tool. The tool interfaces with a model checker by translating an activity
diagram into an input for a model checker according to the requirements-level
semantics. The model checker checks the desired functional requirement against
the input model. If the model checker returns a counterexample, the tool trans-
lates this counterexample back into the activity diagram by highlighting a path
corresponding to the counterexample. The tool supports verification of workflow
models that have event-driven behaviour, data, real time, and loops. Only model
checkers supporting strong fairness model checking turn out to be useful. The fea-
sibility of the approach is demonstrated by using the tool to verify some real-life
workflow models.

224

Samenvatting

In dit proefschrift wordt een formele semantiek voor UML activiteitendiagram-
men gedefinieerd die geschikt is voor workflowmodellering. De semantiek maakt
verificatie van functionele eigenschappen met behulp van model checking mo-
gelijk. Aangezien een workflowspecificatie voorschrijft hoe een workflowsysteem
zich gedraagt, wordt de semantiek gedefinieerd en gemotiveerd in termen van work-
flowsystemen. Omdat workflowsystemen reactief zijn en activiteiten coördineren,
weerspiegelt de gedefinieerde semantiek deze aspecten. Eigenlijk worden er twee
semantieken gedefinieerd, die totaal verschillend zijn. Beide semantieken wor-
den direct gedefinieerd in termen van activiteitendiagrammen en niet door een
activiteitendiagram te vertalen naar een bestaande formele taal. De requirements-
level semantiek neemt aan dat workflowsystemen oneindig snel zijn ten opzichte
van hun omgeving en dat ze direct reageren op gebeurtenissen (deze aanname
wordt de ‘perfect synchrony’ aanname genoemd). De implementation-level se-
mantiek maakt deze aanname niet. De requirements-level semantiek is gebaseerd
op de Statemate semantiek van statecharts. De implementation-level semantiek
is gebaseerd op de UML semantiek van statecharts. Door de perfect synchrony
aanname is de requirements-level semantiek onrealistisch, maar makkelijk te ge-
bruiken voor verificatie. Daarentegen is de implementation-level semantiek re-
alistisch, maar moeilijk te gebruiken voor verificatie. Er wordt een klasse van
activiteitendiagrammen en een klasse van functionele eisen gedefinieerd waarvoor
geldt dat de uitkomst van de verificatie niet afhangt van de gebruikte semantiek,
dat wil zeggen, beide semantieken geven hetzelfde resultaat. Voor zulke activitei-
tendiagrammen en zulke eisen is de requirements-level semantiek even realistisch
als de implementation-level semantiek, hoewel de requirements-level semantiek de
perfect synchrony aanname maakt. De requirements-level semantiek is gëımple-
menteerd in een softwaregereedschap voor verificatie. Het softwaregereedschap
maakt als volgt gebruik van een model checker. Het softwaregereedschap ver-
taalt een activiteitendiagram naar een invoer voor een model checker volgens de
requirements-level semantiek. De model checker controleert of het invoermodel
voldoet aan de gewenste eigenschap. Als de model checker een tegenvoorbeeld
teruggeeft, vertaalt het softwaregereedschap dit tegenvoorbeeld terug in termen
van het activiteitendiagram door een pad dat correspondeert met het tegenvoor-

226

beeld te laten oplichten. Het softwaregereedschap ondersteunt verificatie van work-
flowmodellen die gebeurtenis-gedreven gedrag, data, real-time en iteraties beschrij-
ven. Alleen model checkers die strong fairness model checking ondersteunen blij-
ken nuttig te zijn. De haalbaarheid van de aanpak wordt aangetoond door het
softwaregereedschap te gebruiken om enkele workflowmodellen die op de praktijk
gebaseerd zijn, te verifiëren.

227

CTIT Ph.D.-Thesis Series

ISSN: 1381-3617

02-41 H.E. Blok, Database Optimization Aspects for Information Retrieval
02-40 R. van Zwol, Modelling and searching web-based document collections
01-39 G. Hiddink, Educational Multimedia Databases
01-38 C.R. Guareis de Farias, Architectural Design of Groupware Systems: a

Component-Based Approach
01-37 H.T.J.A. Uitermark, Ontology-Based Geographic Data Set Integration
01-36 I. Vatcheva, Computer-Supported Experiment Selection for Model Discrim-

iniation
01-35 J.T. van der Veen, Telematic Support for Group-Based Learning
01-34 T.C. Ruys, Towards Effective Model Checking
01-33 C. de Barros Barbosa, Frameworks for Protocol Implementation: A Model

Based Approach
01-32 D. Hiemstra, Using language Models for Information Retrieval
00-31 M.J.J. Garvels, The Splitting Method in Rare Event Simulation
00-30
(00-01)

P.T. de Boer, Analysis and Efficient Simulation of Queueing models of
Telecommunication Systems

00-29 D. Remondo Bueno, Performance Evaluation of Communication Systems
via Importance Sampling

99-28 D.T. van Veen, All-Optical Multiwavelength Ring Networks
99-27 E. Oltmans, A Knowledge-based Approach to Robust Parsing
99-26 A.P. de Vries, Content and Multimedia Database Management Systems
99-25 P.R. D’Argenio, Algebras and Automata for Timed and Stochastic Systems
99-24 D. Spelt, Verification support for object database design
98-23 H. de Jong, Computer-supported analysis of scientific measurements
98-22 M. Rijnders, Optical Signal Processing – a novel approach to modifying

digital information in the optical domain
98-21 L. Heerink, Ins and Outs in Refusal Testing
97-20 J. Skowronek, Distributed Optimization of Nested Queries
97-19 F. Tempelman, Structured Representations in case-based reasoning
98-18 D.A.C. Quartel, Action relations: Basic design concepts for behaviour mod-

elling and refinement
98-17 M. de Weger, Structuring of Business Processes – an architectural approach

to distributed systems development and its application to business processes
97-16 M. van Keulen, Formal Operation Definition in Object-oriented Databases
97-15 H.M. Veenhof, Processing Multi-Way Spatial Joins
97-15 A. Olah, Design and Analysis of Transport Protocols for Reliable High-Speed

Communications
97-14 W.N. Borst, Construction of Engineering Ontologies for Knowledge Sharing

and Reuse
97-13 P. Kars, Process-algebraic Transformation in Context
97-12 P. Leydekkers, Multi-media Services in Open Distributed Telecommunica-

tions Environments
97-11 M. Vermeer, Semantic Interoperability for Legacy Databases
96-10 Franken, L.J.N., Quality of Service Management: a Model-Based Approach
96-09 Katoen, J.P., Quantitative and Qualitative Extensions of Event Structures

228

96-08 Heeren, E., Technology Support for Collaborative Distance Learning
95-07 Laarhuis, J.H., Multichannel Interconnection in All-Optical Networks
95-06 Hou, X., A Network Control Architecture for Advanced B-ISDN Services
95-05 Kremer, H., Protocol Implementation – Bridging the Gap between Architec-

ture and Realization
95-04 Sinderen, M.J. van, On the Design of Application Protocols
95-03 Heijenk, G.J., Connectionless Communications using the Asynchronous

Transfer Mode
95-02 Pras, A., Network Management Architectures
94-01 Ferreira Pires, L., Architectural Notes: a Framework for Distributed Systems

Development

229

SIKS Dissertatiereeks

1998-1 Johan van den Akker (CWI), DEGAS – An Active, Temporal Database of
Autonomous Objects

1998-2 Floris Wiesman (UM), Information Retrieval by Graphically Browsing
Meta-Information

1998-3 Ans Steuten (TUD), A Contribution to the Linguistic Analysis of Business
Conversations within the Language/Action Perspective

1998-4 Dennis Breuker (UM), Memory versus Search in Games
1998-5 E.W. Oskamp (RUL), Computerondersteuning bij Straftoemeting
1999-1 Mark Sloof (VU), Physiology of Quality Change Modelling; Automated mod-

elling of Quality Change of Agricultural Products
1999-2 Rob Potharst (EUR), Classification using decision trees and neural nets
1999-3 Don Beal (UM), The Nature of Minimax Search
1999-4 Jacques Penders (UM), The practical Art of Moving Physical Objects
1999-5 Aldo de Moor (KUB), Empowering Communities: A Method for the Legit-

imate User-Driven Specification of Network Information Systems
1999-6 Niek J. E. Wijngaards (VU), Re-design of compositional systems
1999-7 David Spelt (UT), Verification support for object database design
1999-8 Jacques H. J. Lenting (UM), Informed Gambling: Conception and Analysis

of a Multi-Agent Mechanism for Discrete Reallocation
2000-1 Frank Niessink (VU), Perspectives on Improving Software Maintenance
2000-2 Koen Holtman (TUE), Prototyping of CMS Storage Management
2000-3 Carolien M. T. Metselaar (UvA), Sociaal-organisatorische gevolgen van ken-

nistechnologie; een procesbenadering en actorperspectief
2000-4 Geert de Haan (VU), ETAG, A Formal Model of Competence Knowledge

for User Interface Design
2000-5 Ruud van der Pol (UM), Knowledge-based Query Formulation in Informa-

tion Retrieval
2000-6 Rogier van Eijk (UU), Programming Languages for Agent Communication
2000-7 Niels Peek (UU), Decision-theoretic Planning of Clinical Patient Manage-

ment
2000-8 Veerle Coupé (EUR), Sensitivity Analyis of Decision-Theoretic Networks
2000-9 Florian Waas (CWI), Principles of Probabilistic Query Optimization
2000-10 Niels Nes (CWI), Image Database Management System Design Considera-

tions, Algorithms and Architecture
2000-11 Jonas Karlsson (CWI), Scalable Distributed Data Structures for Database

Management
2001-1 Silja Renooij (UU), Qualitative Approaches to Quantifying Probabilistic Net-

works
2001-2 Koen Hindriks (UU), Agent Programming Languages: Programming with

Mental Models
2001-3 Maarten van Someren (UvA), Learning as problem solving
2001-4 Evgueni Smirnov (UM), Conjunctive and Disjunctive Version Spaces with

Instance-Based Boundary Sets
2001-5 Jacco van Ossenbruggen (VU), Processing Structured Hypermedia: A Mat-

ter of Style
2001-6 Martijn van Welie (VU), Task-based User Interface Design

230

2001-7 Bastiaan Schonhage (VU), Diva: Architectural Perspectives on Information
Visualization

2001-8 Pascal van Eck (VU), A Compositional Semantic Structure for Multi-Agent
Systems Dynamics

2001-9 Pieter Jan ’t Hoen (RUL), Towards Distributed Development of Large
Object-Oriented Models, Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA), Modeling and Simulating Work Practice –
BRAHMS: a multiagent modeling and simulation language for work practice
analysis and design

2001-11 Tom M. van Engers (VUA), Knowledge Management: The Role of Mental
Models in Business Systems Design

2002-01 Nico Lassing (VU), Architecture-Level Modifiability Analysis
2002-02 Roelof van Zwol (UT), Modelling and searching web-based document collec-

tions
2002-03 Henk Ernst Blok (UT), Database Optimization Aspects for Information Re-

trieval
2002-04 Juan Roberto Castelo Valdueza (UU), The Discrete Acyclic Digraph Markov

Model in Data Mining
2002-05 Radu Serban (VU), The Private Cyberspace Modeling Electronic Environ-

ments inhabited by Privacy-concerned Agents
2002-06 Laurens Mommers (UL), Applied legal epistemology; Building a knowledge-

based ontology of the legal domain
2002-07 Peter Boncz (CWI), Monet: A Next-Generation DBMS Kernel For Query-

Intensive Applications
2002-08 Jaap Gordijn (VU), Value Based Requirements Engineering: Exploring In-

novative E-Commerce Ideas
2002-09 Willem-Jan van den Heuvel (KUB), Integrating Modern Business Applica-

tions with Objectified Legacy Systems
2002-10 Brian Sheppard (UM), Towards Perfect Play of Scrabble
2002-11 Wouter C.A. Wijngaards (VU), Agent Based Modelling of Dynamics: Bio-

logical and Organisational Applications
2002-12 Albrecht Schmidt (UvA), Processing XML in Database Systems
2002-13 Hongjing Wu (TUE), A Reference Architecture for Adaptive Hypermedia

Applications
2002-14 Wieke de Vries (UU), Agent Interaction: Abstract Approaches to Modelling,

Programming and Verifying Multi-Agent Systems

