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Semantics-Consistent Representation Learning for
Remote Sensing Image-Voice Retrieval

Hailong Ning, Bin Zhao, and Yuan Yuan, Senior Member, IEEE

Abstract—With the development of earth observation technol-
ogy, massive amounts of remote sensing (RS) images are acquired.
To find useful information from these images, cross-modal RS
image-voice retrieval provides a new insight. This paper aims to
study the task of RS image-voice retrieval so as to search effective
information from massive amounts of RS data. Existing methods
for RS image-voice retrieval rely primarily on the pairwise
relationship to narrow the heterogeneous semantic gap between
images and voices. However, apart from the pairwise relationship
included in the datasets, the intra-modality and non-paired
inter-modality relationships should also be taken into account
simultaneously, since the semantic consistency among non-paired
representations plays an important role in the RS image-voice
retrieval task. Inspired by this, a semantics-consistent repre-
sentation learning (SCRL) method is proposed for RS image-
voice retrieval. The main novelty is that the proposed method
takes the pairwise, intra-modality, and non-paired inter-modality
relationships into account simultaneously, thereby improving the
semantic consistency of the learned representations for the RS
image-voice retrieval. The proposed SCRL method consists of two
main steps: 1) semantics encoding and 2) semantics-consistent
representation learning. Firstly, an image encoding network is
adopted to extract high-level image features with a transfer
learning strategy, and a voice encoding network with dilated con-
volution is devised to obtain high-level voice features. Secondly,
a consistent representation space is conducted by modeling the
three kinds of relationships to narrow the heterogeneous semantic
gap and learn semantics-consistent representations across two
modalities. Extensive experimental results on three challenging
RS image-voice datasets, including Sydney, UCM and RSICD
image-voice datasets, show the effectiveness of the proposed
method.

Index Terms—Remote Sensing Image-Voice Retrieval, Hetero-
geneous Semantic Gap, Semantics-Consistent Representation

I. INTRODUCTION

W ITH the rapid development of remote sensing (RS)
technology, tons of remote sensing images have been

produced [1]–[3]. There is no doubt that mining useful infor-
mation from these RS images [4] is very important. However,
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Fig. 1. The schematic diagram of the RS image-voice retrieval task.
The goal of the task is to leverage the queried RS image (voice) to
retrieve the relevant voices (images).

considering that the RS data is too large, it is unpractical
to find the useful information manually due to the time-
consuming workload. Driven by the practical demand, many
researchers pay attention to the large-scale RS data retrieval
task [2], [4]–[6]. It can automatically refine precise semantic
information contained in the RS data, and has wide application
prospects in military targets detection, military audio intelli-
gence generation, and disaster monitoring scenarios [7]–[9].

Generally, the RS data retrieval methods can be roughly
divided into two categories: uni-modal retrieval and cross-
modal retrieval. Specifically, the uni-modal RS data retrieval
methods conduct the similarity search in the same modality
[7], [10].For instance, Li et al. [7] present a large-scale RS
image retrieval method to retrieve the RS images with similar
semantics. By comparison, the source and target data are from
different modalities in cross-modal RS data retrieval methods
[8], [11]. For instance, Chaudhuri et al. [8] propose a deep
neural network to learn a discriminative shared feature space
for the input RS images and the corresponding voice based
annotations. This paper focuses on the cross-modal RS data
retrieval, which is more challenging than uni-modal RS data
retrieval due to the heterogeneous semantic gap of cross-modal
data.

As shown in Fig. 1, the task of RS image-voice retrieval
is to find the relevant RS image (voice) given a queried
voice (image). Notice that the task is more convenient for
humans than the way by keyboard inputting text to retrieve
similar RS images, because it is based on human speeches
to retrieve target RS images [11], [12]. As a consequence,
the task is more practical in some scenarios that are emergent
and not convenient for keyboard input, such as military targets
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detection, military audio intelligence generation, and disaster
monitoring [9], [11].

Due to the practicability of the RS image-voice retrieval
task, several related works have been developed [8], [11]–
[14]. These works can be classified into two categories: CNN
feature based methods and hash based methods. The former
methods conduct the retrieval task by learning CNN features
and their consistency relationship [15]. As an example, Guo
et al. [11] propose a deep visual-audio network to learn the
correspondence between RS images and voices. The latter
methods encode high-dimensional data points into compact
binary code for retrieval [16]. For instance, Chen et al. [13],
[14] present to integrate the feature learning and hash code
learning into a unified framework to achieve fast retrieval
property between RS images and voices.

Practically, these works commonly narrow the distance
between representations from the paired multi-modalities di-
rectly, resulting the similar paired representations for cross-
modal retrieval. However, the obtained similar representations
by these works are difficult to effectively alleviate the per-
vasive heterogeneous semantic gap, because the cross-modal
retrieval aims to retrieve all the data with the same semantic
concept rather than only one data coming from the same pair.
As a consequence, it is necessary to fully mine the relation-
ships of both paired and non-paired data within and across
modalities. Naturally, we propose to simultaneously model
the semantic relationships, including pairwise, intra-modality,
and non-paired inter-modality relationships. Specifically, the
pairwise relationship models the consistency between the
paired image and voice. The intra-modality relationship is to
enhance the consistency between two representations from the
same modality and belonging to the same semantic concept,
thereby avoiding the adverse impact caused by the problems
of inter-class similarity and intra-class diversity. The non-
paired inter-modality relationship is to enhance the consistency
between two non-paired representations from different modal-
ities but belonging to the same semantic concept. In order to
further improve the retrieval performance, the pairwise, intra-
modality, and non-paired inter-modality relationships should
be considered comprehensively.

Inspired by the discussion above, a semantics-consistent
representation learning (SCRL) method is proposed to make
full use of these three relationships for the RS image-voice
retrieval. As depicted in Fig. 2, the proposed SCRL method
can be divided into two steps: 1) semantics encoding and
2) semantics-consistent representation learning. Firstly, the
VGG16 network [17] is adopted to automatically extract high-
level RS image features with a transfer learning strategy.
Meanwhile, the input voices are processed as Mel-Frequency
Cepstral Coefficients (MFCC) features [18] and input into
a 1-D dilated convolutional network to automatically extract
high-level voice features. Secondly, to explicitly compute
the similarity between representations from different modal-
ities, a semantics-consistent representation space is explored
by considering three kinds of relationships simultaneously.
The relationships include pairwise, intra-modality, and non-
paired inter-modality relationships. They are measured by the
consistency loss to narrow the heterogeneous semantic gap

across two modalities. In addition, to further learn significantly
discriminative and more compact semantic representations,
a classification loss is adopted for each branch. Afterwards,
the consistency loss and the classification loss are combined
jointly to learn ultimate semantics-consistent representations
for the RS image-voice retrieval.

To sum up, the main contributions can be summarized into
threefolds:
• A novel RS image-voice retrieval method, SCRL, is

proposed to fully explore the pairwise, intra-modality, and
non-paired inter-modality relationships simultaneously.
Then, semantics-consistent representations across the two
modalities can be learned to effectively alleviate the
pervasive heterogeneous semantic gap.

• An effective voice encoding network is proposed to learn
high-level voice features. The network can capture the
long range correlation of voice signal by introducing the
1-D dilated convolutional kernel.

• Experimental results on three challenging RS image-
voice datasets show that the proposed SCRL method
can significantly improve the performance of the RS
image-voice retrieval. Especially, the mAP value can be
improved by nearly 9% compared with the state-of-the-
arts.

The remainder of this paper is arranged as follows: Section
II introduces the related works about the task of RS image-
voice retrieval. Section III elaborates the proposed SCRL
method. Section IV shows and analyzes the experimental
results. Finally, Section V presents the conclusion.

II. RELATED WORKS

In this section, the related works about this paper are
primarily restricted on uni-modal and cross-modal RS data
retrieval methods.

A. Uni-Modal RS Data Retrieval Methods

Uni-modal RS data retrieval methods aim to search similar
RS data in the same modality. Some early works are based on
the hand-crafted feature [19]–[21]. For instance, Luo et al. [19]
present a method by comparing multiple-resolution wavelet
features for satellite images retrieval. Yang and Newsam
[20] leverage local invariant features for RS image retrieval.
Aptoula [21] proposes to apply global morphological texture
descriptors for RS image retrieval. However, these methods
are not suitable for large-scale RS image retrieval since they
are based on low-level hand-crafted features. With the rapid
development of artificial intelligent technology [22]–[26], a
large number of uni-modal RS data retrieval methods based
on deep learning have emerged. For instance, Tang et al. [27]
develop a two-stage re-ranking method to improve the retrieval
performance. Shao et al. [10] design a fully convolutional
network to solve the problem of poor retrieval performance
due to multiple labels for single images. Ye et al. [28] utilize
weighted distance as similarity criteria to learn determinative
representations for the RS image retrieval. To address the RS
image retrieval problem due to multiple land-cover classes,
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Fig. 2. The overall framework of the proposed SCRL method. Firstly, the image encoding network is adopted to extract high-level image
features, and the voice encoding network is devised to obtain high-level voice features. Secondly, the extracted image features and voice
features are fed into the representation step to explore the consistent representation space. By exploring the space, the heterogeneous semantic
gap is narrowed and the semantics-consistent representations across two modalities are learned by comprehensively considering the pairwise
consistency (

⊕
), intra-modality consistency (

⊙
), and non-paired inter-modality consistency (

⊗
). MFCC represents the operation to extract

the Mel-Frequency Cepstral Coefficients feature of the input voice.

Chaudhuri et al. [29] introduce a semi-supervised graph-
theoretic method with only a small number of training images
characterized by multi-labels. Kang et al. [30] propose a graph
relation network to preserve the complex semantic relations
pervading RS scenes for multi-label RS image retrieval. In
response to the scarcity of labeled images, Liu et al. [31]
present an unsupervised deep transfer learning method based
on the similarity learning for the RS image retrieval. Ye et
al. [32] propose to extract the domain-invariant feature for the
RS image retrieval using an unsupervised domain adaptation
model. To obtain the quicker response during retrieval, several
techniques consider binary features [4], [5], [33]. Song et
al. [33] develop an image retrieval and compression method
based on binary generative adversarial network. Demir and
Bruzzone [5] introduce two kernel-based nonlinear hashing
methods for the RS image retrieval to reduce the amount of
memory required. Li et al. [4] introduce a RS image retrieval
method, which integrates the feature learning network and
hashing network into a unified framework.

B. Cross-Modal RS Data Retrieval Methods

The objective of cross-modal RS data retrieval methods is
to search similar RS data across different modalities. Due to
the urgent demand for RS data analysis, cross-modal RS data

retrieval attracts increasing attention from researchers. Li et
al. [2] propose an end-to-end training method to learn source-
invariant features for the cross-source RS image retrieval.
Xiong et al. [34] present a discriminative distillation network
to eliminate the inconsistency across different modalities. To
develop an effective retrieval system in harsh environments,
Xiong et al. [35] design another deep cross-modality hashing
network for the Optical and SAR RS images retrieval. Re-
cently, a more natural cross-modal RS data retrieval method
has emerged, which is based on RS images and human
voices. As the first attempt for the task of RS image-voice
retrieval task, Guo et al. [11] devise a deep visual-audio
network to learn the correspondence between RS images and
voices. Subsequently, they develop another cross-modal RS
image-voice retrieval method to further improve the retrieval
performance [12]. Based on the works of Guo et al., Chen
and Lu [13] present to leverage the triplet similarity of deep
features to solve the insufficient utilization problem for the
relative semantic similarity relationships. In addition, Chen et
al. [14] integrate the feature learning and hash code learning
into a unified framework to achieve fast retrieval property. As
another implementation, Chaudhuri et al. [8] propose a deep
neural network to learn a common embedding of RS images
and spoken words rather than complete spoken sentences.
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Song et al. [36] adopt an inter-media hashing (IMH) model
for exploring the data correlations from heterogeneous data
sources.

This paper is dedicated to conduct the cross-modal RS
image-voice retrieval by fully considering the semantic re-
lationships among representations across different modalities.
The proposed method comprehensively improves the pairwise,
intra-modality, and non-paired inter-modality consistency so as
to narrow the heterogeneous semantic gap and learn semantics-
consistent representations for RS image-voice retrieval.

III. THE PROPOSED METHOD

The proposed SCRL method is composed of two steps: 1)
semantics encoding and 2) semantics-consistent representation
learning. In this section, the overall framework of the proposed
method is described firstly. Secondly, the semantics encod-
ing and semantics-consistent representation learning steps are
elaborated, respectively. Thirdly, the loss functions are pre-
sented. Finally, the optimizing strategy is introduced.

A. Overall Framework

As shown in Fig. 2, the proposed SCRL method consists
of four parallel branches and can be divided into two steps,
including semantics encoding and semantics-consistent rep-
resentation learning steps. Two of the branches are related
to the image modality, and the rest are related to the voice
modality. The branches, which are responsible for the same
modality, share the same parameters. As a consequence, the
features from the same modality own the same transforms.
After each iteration, four features from the two modalities are
obtained by the semantics encoding step. Then, the obtained
features are used as the input of the semantics-consistent
representation learning step to learn four representations. Dur-
ing this step, the relationships of different representations are
explored in a defined consistent representation space. The
relationships include pairwise, intra-modality and non-paired
inter-modality relationships. All the relationships are sought
by calculating the distance between two representations to
preserve the semantic consistency across different modalities.
Specifically, the pairwise relationship is built to make the
semantic information be consistent for the paired RS image-
voice. The intra-modality relationship is considered to keep
the semantic consistency within each modality. The non-paired
inter-modality relationship is developed to enforce the seman-
tic information to be consistent across different modalities for
unpaired samples. Afterwards, the three kinds of relationships
are measured by a consistency loss. Finally, we adopt a joint
loss function to simultaneously minimize the consistency loss
of the consistent representation space and the classification
loss of each branch.

The formal definitions in this paper are given as follows.
Let D =

{(
XI

m,X
V
m,ym

)}N
m=1

be the collection of N
instances of RS image-voice pairs, where XI

m is the m-th
input image sample, XV

m is the m-th input voice sample, and
ym is the m-th semantic label. The goal of the semantics
encoding step is to learn two mapping functions FI and
FV for extracting high-level image features

{
sIm
}N
m=1

and

voice features
{
sVm
}N
m=1

. Afterwards, the semantics-consistent
representation learning step aims to learn two mapping func-
tions RI and RV for obtaining the semantics-consistent
image representations

{
ϕI
m

}N
m=1

and voice representations{
ϕV
m

}N
m=1

. The obtained semantics-consistent representations
are exploited for RS image-voice retrieval.

B. Semantics Encoding

As shown in Fig. 2, the semantics encoding step consists of
four parallel networks, in which the two image encoding net-
works share the same parameters and the two voice encoding
networks share the same parameters. The details about image
encoding networks and voice encoding networks are described
as follows.

1) Image Semantics Encoding: According to the previous
works [37], [38], the high-quality feature is quite important
for the retrieval task. CNN features have been proved to be
high-efficiency for the retrieval task because of the success in
expressing the high-level semantic information. To learn high-
quality CNN features, massive amounts of data with manual
annotations, such as ImageNet, are necessary. Unfortunately,
large-scale dataset with manual annotation in RS domain is
unavailable. In order to solve this problem, a transfer learning
strategy has emerged. The transfer learning strategy applies
knowledge learned from one domain to other domains [39]. In
this paper, the transfer learning strategy is leveraged to extract
high-quality image features. To be more specific, the VGG16
network [17] pre-trained on ImageNet is adopted to acquire
the RS image features since some useful texture features may
share in natural images and RS images [40].

When using the pre-trained VGG16 network for image
semantics encoding, the fully connected layers are removed to
obtain high-level image features. Following the previous work
[41], the network is normalized by scaling weights to ensure
the mean activation of each convolutional filter over images
and positions to be one. Specifically, the mean activation sli
of each convolutional filter in the l-th layer over the whole
training image set X and all Ml spatial locations can be
calculated as follows:

sli =
1

NMl

∑
X

Ml∑
j=1

relu(wl
i ∗ xl−1j + bli), (1)

where wl
i represents the weight of i-th convolutional filter in

the l-th layer, xl−1j stands for the j-th patch in the (l − 1)-th
layer, ∗ indicates the convolutional operation, bli denotes the
bias term in the l-th layer, and N is the total number of the
training images. Then, the parameters wl

i and bli are scaled by
1
sli

as follows:

EX ,j [relu(
wi

l

sli
∗ xl−1j +

bil
sli

)] = 1. (2)

According to the above process, the normalization is con-
ducted from bottom layers to top layers sequentially. The
process of image semantics encoding can be written as:

sIm = FI(XI
m; θI), (3)
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where sIm ∈ Rh1×w1×c1 represents the extracted semantics
feature of the m-th image XI

m, FI indicates the mapping
function from image to the corresponding feature, and θI is
the parameter.

2) Voice Semantics Encoding: Voice belongs to a con-
tinuous one-dimensional signal and the word in it cannot
be distinguished easily by computer. In order to quantify
the continuous voice, Mel-Frequency Cepstral Coefficients
(MFCC) feature is first extracted to representant the voice
signal according to previous works [18], [42]. Here, the MFCC
feature is expressed as Xm = Υ(XV

m).
The obtained MFCC feature is reshaped, and then fed

into the voice encoding network to perform high-level voice
features. To capture long range correlations, 1-D dilated con-
volutional kernels are adopted to construct the voice network.
Specifically, the voice network is composed of 5 cascaded
1-D convolutional layers and pooling layers, where each
convolutional layer adopts dilated convolutional kernel. The
flattened MFCC feature is fed into the voice network and the
learned high-level voice feature can be denoted as:

sVm = FV (Xm; θV ), (4)

where sVm ∈ Rh2×w2×c2 represents the extracted high-level
feature of the m-th MFCC feature Xm, FV indicates the
mapping function from MFCC feature to the corresponding
high-level voice feature, and θV is the parameter.

C. Semantics-Consistent Representation Learning

This step aims to learn semantics-consistent representations
by comprehensively considering the pairwise, intra-modality,
and non-paired inter-modality relationships across different
modalities. As shown in Fig. 2, these three relationships are
measured by a consistency loss to model the similarity of
the learned representations. In addition, a classification loss
is adopted for each branch to enhance the semantic discrim-
ination ability of representations, resulting in more compact
representations. The consistency loss and classification loss are
combined jointly to learn semantics-consistent representations
for the RS image-voice retrieval. Hereinafter, the details about
the semantics-consistent representation learning are dwelled
on.

1) The Architecture of Semantics-Consistent Representa-
tion Learning: As shown in Fig. 2, the semantics-consistent
representation learning step contains 4 parallel branches. Sim-
ilar to the semantics encoding step, two of the branches are
related to the image modality, and the rest are related to
the voice modality. Actually, the branches responsible for
the same modality shares the same weights. Each branch is
constructed by three cascaded fully connected layers. The
specific parameters of each branch are shown in Fig. 2.
The features from the semantics encoding step are taken
as inputs for the semantics-consistent representation learning
step. Then, the representations are output from each branch in
the representation learning step.

As for the image branch, the learned image representation
can be expressed as:

ϕI
m = RI(sIm; ΘI), (5)

where ϕI
m ∈ Rd1 represents the learned semantics-consistent

representation for the m-th image, RI indicates the map-
ping function from the image feature to the corresponding
semantics-consistent representation, and ΘI is the parameter.

As for the voice branch, the learned voice representation
can be expressed as:

ϕV
m = RV (sVm; ΘV ), (6)

where ϕV
m ∈ Rd2 represents the learned semantics-consistent

representation for the m-th voice, RV indicates the map-
ping function from the voice feature to the corresponding
semantics-consistent representation, and ΘV is the parameter.

2) The Pairwise Consistency: The pairwise consistency
represents the semantic information of representations from
the paired RS image-voice should be consistent since they
describe the same semantic concept in the applied RS image-
voice datasets. To measure the similarity of representations, the
cosine distance is adopted as it is commonly used in cross-
modal retrieval [43], [44]. The cosine distance can be defined
as:

D(x,y) = 1− x · y
‖x‖ ‖y‖

, (7)

where x and y represent two vectors with the same length,
and · indicates the operation of dot product between the two
vectors.

Based on the cosine distance, the pairwise consistency can
be maintained by the pairwise consistency loss, which is
defined as:

Lpair = D(ϕI
i , ϕ

V
i ), (8)

where ϕI
i and ϕV

i denote representations of the i-th image and
voice, respectively. Minimizing the pairwise consistency loss
leads to a common space, where representations describing the
same semantic concept are clustered together and the pairwise
consistency is preserved.

3) The Intra-Modality Consistency: The intra-modality
consistency measures the relationships between two represen-
tations from the same modality and belonging to the same
semantic concept. In order to preserve the intra-modality
consistency, an intra-modality consistency loss is introduced,
which is defined as:

Lintra = ~
(
1− `ij

(
ξ −D

(
ϕI
i , ϕ

I
j

)))
+ ~

(
1− `ij

(
ξ −D

(
ϕV
i , ϕ

V
j

)))
,

(9)

where ~(x) = max(0, x) is the hinge function, ξ is the pre-
defined margin threshold. `ij denotes the label indicator. If ϕI

i

and ϕI
j , or ϕV

i and ϕV
j describe the same semantic concept,

`ij = +1; otherwise, `ij = −1. It is to noted that i 6= j.
Minimizing the intra-modality consistency loss results in a
common space, where representations describing the same
semantic concept within the same modality are enforced to
be close, while representations describing different semantic
concepts within the same modality are enforced to be far.

4) The Non-Paired Inter-Modality Consistency: The non-
paired inter-modality consistency measures the relationships
between two representations from different modalities but
belonging to the same semantic concept. Since the pairwise
loss only model the relationships of paired image-voice pairs
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with the same semantic concept in the applied RS image-voice
datasets, the relationships between other non-paired data can-
not been explored effectively, and the compact representations
for different sematic concepts are unable to be learned. To
this end, the inter-modality consistency loss is used to make
up for the lack of the pairwise loss. To maintain the non-paired
inter-modality consistency, the inter-modality consistency loss
is defined as:

Linter = ~
(
1− `ij

(
ζ −D

(
ϕV
i , ϕ

I
j

)))
+ ~

(
1− `ij

(
ζ −D

(
ϕI
i , ϕ

V
j

)))
,

(10)

where ζ is the pre-defined margin threshold. If ϕV
i and ϕI

j , or
ϕI
i and ϕV

j describe the same semantic concept, `ij = +1; oth-
erwise, `ij = −1. Minimizing the inter-modality consistency
loss leads to a common space, where representations describ-
ing the same semantic concept across the two modalities are
enforced to be close, while representations describing different
semantic concepts across the two modalities are enforced to
be far.

D. Loss Function

1) The Consistency Loss: The consistency loss is defined
in the consistent representation space to model the similarity
of the learned representations, which combines the pairwise,
intra-modality and non-paired inter-modality consistency men-
tioned above. As a consequence, the consistent representation
space possesses all the advantages which are contained in
all three common spaces obtained by pairwise, intra-modality
and inter-modality consistency loss, respectively. Considering
that the intra-modality and inter-modality loss are calculated
from the same two pairs of samples, the significance of the
intra-modality loss and the inter-modality consistency loss is
set equal. Therefore, the consistency loss in the consistent
representation space is defined as:

Lconsi = Lpair + η1(Lintra + Linter), (11)

where η1 is the trade-off coefficient controlling the contribu-
tion of the last two terms.

2) The Classification Loss: As for the representation on
the top of each branch, a classification process is added to
mine the intrinsic semantic information in each image and
voice and further to model the discrimination and compactness
of the learned representations. Specifically, a softmax layer is
adopted for each image branch as:

pIm = softmax(WIϕI
m + bI), (12)

where pIm is the probability of belonging to the corresponding
semantic concept for the m-th image. softmax represents the
softmax activation function. WI and bI are the parameters
in the softmax layer. Similarly, a softmax layer is adopted for
each voice branch as:

pVm = softmax(WV ϕV
m + bV ), (13)

where pVm is the probability of belonging to the corresponding
semantic concept for the m-th voice. WV and bV are the
parameters in the softmax layer.

Then, the classification loss can be defined as:

Lclass = −yitlog(pIit + ε)− yitlog(pVit + ε), (14)

where yit is the true semantic label of the i-th sample,
where t indexes the t-th class. pIit is the predicted probability
distribution of the i-th images. pVit is the predicted probability
distribution of the i-th voices, where t indexes the t-th class.
ε represents a regularization constant to avoid the NaN value
in the loss. By minimizing the classification loss function, the
semantic discrimination ability of the common representations
in the consistent representation space can be greatly enhanced.

Algorithm 1 The proposed SCRL method
Input:

Training collection D =
{(

XI
m,X

V
m,ym

)}N
m=1

of RS
image-voice pairs;
Learning rate lr, trade-off coefficients η1 and η2, iterative
epoch K.

Output:
The parameters θI and θV in the feature extraction step;
The parameters ΘI and ΘV in the representation learning
step.

Initialization:
The parameter θI is initialized by the pre-trained VGG16
network;
The parameters θV , ΘI and ΘV are randomly initialized
by truncated normal distribution.

Repeat:
1: Sample the input RS image-voice pairs

(
XI

i ,X
V
i ,yi

)
and(

XI
j ,X

V
j ,yj

)
;

2: Calculate the image features sIi and sIj via Eq. 3, and voice
features sVi and sVj according to Eq. 4;

3: Learn the semantics-consistent representations ϕI
i and ϕI

j

according to Eq. 5, as well as ϕV
i and ϕV

j via Eq. 6;
4: Calculate the joint loss Ljoint according to Eq. 16;
5: Update the parameters θV , ΘI and ΘV by utilizing

RMSProp.
Until: A fixed iterative epoch K or convergence.
Return: θI , θV , ΘI and ΘV

3) The Joint Loss: With the above definition, a joint loss
function is raised to simultaneously calculate the consistency
loss of the consistent representation space and the classifica-
tion loss of each branch. The joint loss function can be written
as:

Ljoint = Lconsi + η2Lclass, (15)

where η2 is the trade-off coefficient controlling the contribu-
tion of the second term. By combining Eq. 11 and Eq. 15, the
joint loss can be rewritten as:

Ljoint = Lpair + η1(Lintra + Linter) + η2Lclass. (16)

By minimizing the joint loss, the semantics-consistent repre-
sentations are learned for the RS image-voice retrieval.

E. Optimizing Strategy
Based on the joint loss, the proposed SCRL method is

optimized as follows. The parameter θI in the image encoding
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network is initialized by VGG16 network pre-trained on the
ImageNet [45]. The parameters θV in the voice encoding net-
work, ΘI and ΘV in the semantics-consistent representation
step are randomly initialized by truncated normal distribution
[46]. In each training iteration, the optimizing process can
be divided into five main steps. Firstly, we sample two pairs
of RS image-voice from the training collection of RS image-
voice pairs. Secondly, the sampled RS image-voice pairs are
input into the semantics encoding step to obtain image and
voice features according to Eq. 3 and Eq. 4, respectively.
Thirdly, the extracted image and voice features are taken
as input of the semantics-consistent representation step for
learning semantics-consistent representations via Eq. 5 and
Eq. 6. Fourthly, the joint loss is calculated according to Eq.
16. Finally, the parameters θV , ΘI and ΘV are updated by
minimizing the joint loss with the RMSprop optimization
algorithm [47]. When a fixed iterative epoch, which is set
as 50, is reached or the model is convergent, the optimizing
process is terminated. Afterwards, the parameters θI , θV , ΘI

and ΘV are leveraged to compute ultima semantics-consistent
representations for the RS image-voice retrieval. Noted that
the proposed SCRL method is trained end-to-end. The details
about the optimization process of the proposed SCRL method
are shown in Algorithm 1.

IV. EXPERIMENT AND RESULTS

In this section, experimental datasets, implementation de-
tails, evaluation metrics and parameter analysis are introduced.
In addition, the experimental results are compared with some
state-of-the-art methods and the ablation analysis is presented
to prove the effectiveness of the proposed SCRL method.

A. Datasets

In order to verify the proposed SCRL method, three chal-
lenging RS image-voice datasets are applied, including Syd-
ney, UCM and RSICD image-voice datasets [11]. A brief
introduction about the applied RS image-voice datasets is
given as follows.

1) Sydney Image-Voice Dataset [11]: The Sydney image-
voice (Sydney IV) dataset contains 613 RS images and 3065
voices of 7 classes, where each image corresponds to five
different voices. In this paper, we follow the previous works
[12]–[14], and randomly sample a voice from the five voices
for each image to construct RS image-voice pairs. As for the
data partitioning, 80% RS image-voice pairs are randomly
selected for training, and the rest 20% are selected for testing.

2) UCM Image-Voice Dataset [11]: The UCM image-voice
(UCM IV) dataset includes 2100 RS images and 10500 voices,
where each image corresponds to five different voices. Note
that the dataset can be divided into 21 classes, where each class
includes 100 images and 500 voices. In this paper, we follow
the previous works [12]–[14], and randomly sample a voice
from the five voices for each image to construct RS image-
voice pairs. As for the data partitioning, 80% RS image-voice
pairs are randomly selected as training set, and the rest 20%
are selected as testing set.

TABLE I
THE DETAILED ARCHITECTURE OF THE VOICE NETWORK.

Layer Output-Size Kernel Stride
Conv1 24000×1×1 7×1×1 1×1×1
Conv2 12000×1×6 3×1×6 1×2×1
Conv3 6000×1×12 3×1×12 1×2×1
Pool1 3000×1×12 1×2×1 1×2×1
Conv4 1500×1×24 3×1×24 1×2×1
Conv5 750×1×48 3×1×48 1×2×1
Pool2 375×1×48 1×2×1 1×2×1

3) RSICD Image-Voice Dataset [11]: The RSICD image-
voice (RSICD IV) dataset involves 10921 RS images and
54605 voices of 30 classes, where each image corresponds
to five different voices. In this paper, we follow the previous
works [12]–[14], and randomly sample a voice from the five
voices for each image to construct RS image-voice pairs.
As for the data partitioning, 80% RS image-voice pairs are
randomly selected for training, and the rest 20% are selected
for testing.

B. Implementation Details

In this work, the proposed SCRL method contains four
branches, in which two branches are responsible for the
image modality, and the others are responsible for the voice
modality. As for branches, responsible for the same modality,
the parameters are sharing. The specific architecture of the
voice encoding network is reported in TABLE I. The dilation
rate in the first convolutional layer is set as 3 and the others are
set as 2. The input images are uniformly adjusted to 224×224.
Before input into the voice network, the voices are resampled
at 22050Hz and preprocessed as MFCC features by a window
with size of 16 millisecond and shift of 5 millisecond. From
the output of the semantics encoding step, the image features
are with size of 7×7×512 (namely h1 = w1 = 7 and
c1 = 512), and the voice features are with size of 375×1×48
(namely h2 = 375, w2 = 1 and c2 = 48). Before input into the
semantics-consistent representation learning step, the image
features are adjusted as size of 512 by the operation of global
average pooling [48], and the voice features are adjusted as
size of 18000 by the operation of flattening. In the semantics-
consistent representation step, ReLU and Tanh are applied
as activation functions of image branches and voice branches,
respectively [49], [50]. The ultima semantics-consistent repre-
sentations are with size of 1024 (namely d1 = d2 = 1024).

The proposed method is optimized utilizing a RMSProp
optimizer [46], in which the weight decay is set as 0.0005 and
momentum is set to 0.9. The learning rate is set as 0.0004.
The batch size is set to 32. The trade-off coefficients η1 and
η2 are set as 1 and 0.1, respectively, which are determined by
a grid search strategy [14]. The experiment is conducted on
the PC with a TITAN X (Pascal) GPU and 64G RAM.

C. Evaluation Metrics and Comparison Methods

In this work, two protocols are adopted, including using
images as queried samples to retrieve the corresponding voices
(I→V) and using voices as queried samples to retrieve the
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Fig. 3. The retrieval performance with different values for η1 by the
I→V protocol on the Sydney IV dataset.

corresponding images (V→I). To evaluate the performance of
the proposed SCRL method, two commonly used evaluation
metrics are adopted, including mean average precision (mAP)
[51] and the precision of the top-k ranking result (P@k) [52].
The mAP score measures the mean value of average precision,
which considers the precision and the returned ranking results
at the same time. Precision is the ratio of the returened relevant
samples to the queried samples. The P@k score measures
the precision of the top-k retrieved samples. In this paper,
the P@k score is reported when k equals to 1, 5 and 10,
which is denoted as P@1, P@5 and P@10, respectively.
In addition, the precision curve is shown when the number
of retrieved samples changes to further evaluate the proposed
SCRL method.

In order to assess the effectiveness of the proposed
SCRL method, 7 comparison methods are adopted, including
SIFT+M [53], DBLP [54], CNN+SPEC [55], DVAN [11],
CMIR-NET [8], DIVR [14], and DTBH [13] methods. The
SIFT+M method [53] leverages SIFT features of images and
MFCC features of voices to perform the RS image-voice
retrieval. The DBLP method [54] adopts an unsupervised
manner to learn the coherence between audio and visual
modalities. The CNN+SPEC method [55] seamlessly unifies
the learning of different modalities in an unsupervised man-
ner. The DVAN method [11] presents a novel image-voice
learning framework to learn the cross-modal similarity. The
CMIR-NET method [8] proposes to learn the discriminative
shared feature space of the input data for RS image-voice
retrieval. The DIVR method [14] leverages multi-scale context
information guiding the low-dimensional hash code for RS
image-voice retrieval. The DTBH method [13] establishes a
deep triplet-based hashing method, which integrates the hash
code learning and the representation learning into a unified
framework. These methods are implemented in this work. It is
to note that the hash-based retrieval methods, including DTBH
and DIVR methods, use a 64-bit hash code for comparison.
The experimental results and the corresponding analysis are
given as follows.
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Fig. 4. The retrieval performance with different values for η2 by the
I→V protocol on the Sydney IV dataset.

D. Parameter Analysis

The hyperparameter η1 controls the contributions of the
intra-modality and non-paired inter-modality consistency, and
η2 controls the contribution of modeling the semantic clas-
sification. To study the performance impacts of them, we
conduct parameter experiments about the two parameters with
the I→V protocol on the Sydney IV dataset. To this end, a
grid search strategy is adopted to tune the two parameters
following the previous work [56]. Specially, the range of η1
and η2 are set as {0, 0.2, 0.4, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}
and {0, 10−4, 10−3, 10−2, 10−1, 10}, respectively. Note that
η1 = 0 represents the SCRL with Lpair and Lclass only, and
η2 = 0 represents the SCRL with Lconsi only. The parameter
experiments are conducted by changing one hyperparameter
(e.g., η1) while fixing the other (e.g., η2). The detailed imple-
mentation and analysis are as follows.

Firstly, the value of η2 is fixed at 1 empirically, η1 is
changed from 0 to 2 with increment 0.2 per step. The corre-
sponding mAP scores about the parameter η1 are recorded and
shown in Fig. 3. From the figure, it can be seen that both lower
and higher values for η1 result in lower mAP value, and the
best mAP is obtained when η1 equals to 1. Notice that when
η1 = 0, the retrieval performance of the proposed method is
significantly reduced, because the neglect of the intra-modality
consistency and non-paired inter-modality consistency leads to
the same semantic concept across the two modalities not being
matched correctly.

Secondly, the value of η1 is fixed at 1, η2 is changed from
0 to 10 with a ten times increment each step. Fig. 4 shows
the performance for different η2 values. From the figure, we
can observe the best performance is obtained when η2 = 0.1.
It is noted that when η2 equals to 0, the retrieval performance
gets worse slightly, which indicates the classification loss
contributes to enhancing the semantic discrimination ability
and compactness of the semantics-consistent representations.

As a result, the trade-off coefficients η1 and η2 in the
proposed SCRL method are set to 1 and 0.1, respectively.
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TABLE II
THE COMPARISON RESULTS BETWEEN THE PROPOSED SCRL

METHOD AND OTHER METHIDS ON THE SYDNEY IV DATASET.

Protocols Methods mAP P@1 P@5 P@10

I→V

SIFT+M [53] 31.67 11.21 35.00 37.59
DBLP [54] 44.38 56.51 52.65 49.68

CNN+SPEC [55] 46.67 58.62 55.00 51.64
DVAN [11] 71.77 75.86 73.62 72.93

CMIR-NET [8] 78.44 84.68 82.54 81.04
DIVR [14] 81.35 88.26 86.35 84.47
DTBH [13] 92.45 97.41 95.63 93.78
SCRL-Pair 75.80 80.11 75.07 71.90
SCRL-Intra 79.79 85.43 81.20 74.78
SCRL-Inter 80.19 86.24 82.50 76.57
SCRL-Class 85.38 90.87 88.11 85.99

SCRL-Dilation 92.08 93.68 93.03 91.65
SCRL 94.24 95.50 95.17 93.95

V→I

SIFT+M [53] 26.50 34.48 24.48 23.28
DBLP [54] 34.87 21.63 26.78 30.94

CNN+SPEC [55] 35.72 17.24 27.76 31.21
DVAN [11] 63.88 67.24 63.34 67.07

CMIR-NET [8] 71.28 76.69 74.52 71.60
DIVR [14] 75.97 80.44 78.05 76.27
DTBH [13] 87.49 92.18 90.36 88.82
SCRL-Pair 75.19 78.67 76.75 75.12
SCRL-Intra 79.96 85.37 84.55 83.17
SCRL-Inter 80.52 85.99 85.15 83.69
SCRL-Class 84.87 88.62 87.64 86.75

SCRL-Dilation 91.14 92.68 89.59 89.11
SCRL 93.53 94.31 91.38 90.00

E. Ablation Analysis

In this subsection, five variations of the proposed SCRL
method are conducted on three challenging RS image-voice
datasets to examine: 1) the importance of the pairwise consis-
tency loss; 2) the impact of the intra-modality consistency loss;
3) the importance of the inter-modality consistency loss; 4) the
importance of the classification loss; 5) the effect of the dilated
convolutional kernel. The details about the implementation
of different variations are elaborated as follows. Firstly, the
variation of the proposed SCRL method without the pairwise
consistency loss (SCRL-Pair) is implemented to verify the
effect of the pairwise consistency loss. Secondly, the intra-
modality consistency loss is discarded evolving into a new
variation (SCRL-Intra). Thirdly, we omit the inter-modality
consistency loss obtaining another new variation (SCRL-Inter)
to determine the importance of the non-paired inter-modality
relationship. Fourthly, the classification loss is abandoned
evolving into the variation SCRL-Class. Finally, the dilation
rate in the voice network is set as 1 generating the new
variation SCRL-Dilation. The results of these variations are
reported in TABLE II-IV. According to the results, we give
the analysis as the following aspects.

1) Pairwise Consistency: The pairwise consistency loss
aims to narrow the distance between the representations from
the RS image-voice pair. From the results in TABLE II-IV,
we can intuitively find that the retrieval performance is greatly
improved when the pairwise consistency is taken into account.
Concretely, compared with the method without the pairwise

20 30 40 50 60 70 80 90 100

#of retrieved points

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pr
ec

is
io

n

Sydney(I V)
SCRL
DTBH
DIVR
DVAN
CNN+SPEC
DBLP
SIFT+M

Fig. 5. The precision curves with different retrieved samples by the
I→V protocol on the Sydney IV dataset.

consistency loss (SCRL-Pair), the proposed SCRL method can
improve the mAP value from 75.80% to 94.24%, from 35.25%
to 67.97%, and from 15.80% to 28.84% for the I→V protocol
on Sydney, UCM and RSICD IV datasets, respectively. For
the V→I protocol, the mAP value is also improved greatly
by the proposed SCRL method compared with the SCRL-
Pair method. The improvements demonstrate that the pairwise
consistency loss is effective for learning semantics-consistent
representations.

2) Intra-Modality Consistency: The intra-modality consis-
tency loss aims to narrow the distance between two represen-
tations in the same modality to keep the semantic consistency
of the same semantic concept. From the results in TABLE II-
IV, we can intuitively find that the retrieval performance is
greatly improved when the intra-modality consistency is taken
into account. The specific comparison situation corresponds
to the results of SCRL-Intra method and the proposed SCRL
method in TABLE II-IV. The improvement is because the
intra-modality consistency loss can constrain the model to
shorten the distance between two representations from the
same semantic concept in each modality.

3) Non-paired Inter-Modality Consistency: The non-
paired inter-modality consistency aims to learn the relationship
between two representations in different modalities to keep the
semantic consistency across the two modalities. The specific
comparison situation corresponds to the results of SCRL-Inter
method and the proposed SCRL method in TABLE II-IV.
From the results, we can notice the retrieval performance is
significantly improved when the intra-modality consistency is
considered. This is because the intra-modality consistency loss
contributes to narrowing the distance between two represen-
tations from different modalities when they describe the same
semantic concept.

4) Semantic Discrimination: The classification loss aims
to enhance the semantic discrimination ability of represen-
tations so as to retrieve the relevant samples more easily.
The specific comparison situation corresponds to the results
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Fig. 6. The precision curves with different retrieved samples by the
V→I protocol on the Sydney IV dataset.

of SCRL-Class method and the proposed SCRL method in
TABLE II-IV. From the comparison results, we can see the
scores of all evaluation metrics are lifted when the clas-
sification loss is added. This proves the classification loss
contributes to enhancing the semantic discrimination ability
of representations.

5) Long Range Correlation: The dilation convolution is
adopted to capture the long range correlation of each voice
sample. The concrete comparison situation corresponds to the
results of SCRL-Dilation method and the proposed SCRL
method in TABLE II-IV. The results show the retrieval per-
formance is slightly improved, which indicates the dilation
convolution can indeed capture the long range correlation re-
lationship within each voice sample by increasing the receptive
field.

F. Results and Analysis

The experimental results and the corresponding analysis
on three challenging RS image-voice datasets are given as
follows.

1) Results on Sydney IV Dataset: TABLE II shows the
comparison results between the proposed SCRL method and
other compared methods on the Sydney IV dataset. Fig 5
and Fig 6 show the precision curves with different retrieved
samples by the I→V and V→I protocol, respectively. By
observing the results in TABLE II, Fig 5 and Fig 6, we can
find: 1) the proposed SCRL method achieves the highest value
in terms of most evaluation metrics. 2) Fig 5 and Fig 6 shows
the proposed SCRL method outperforms other comparison
methods at all returned neighbors. 3) As for the I→V protocol,
the proposed SCRL method improves the mAP value from
SIFT+M (31.67%), DBLP (44.38%), CNN+SPEC (46.67%),
DVAN (71.77%), CMIR-NET (78.44%), DIVR (81.35%),
DTBH (92.45%) to 94.24%. Meanwhile, for the V→I protocol,
the proposed SCRL method improves the mAP value from
SIFT+M (26.50%), DBLP (34.87%), CNN+SPEC (35.72%),
DVAN (63.88%), CMIR-NET (71.28%), DIVR (75.97%),

TABLE III
THE COMPARISON RESULTS BETWEEN THE PROPOSED SCRL

METHOD AND OTHER METHIDS ON THE UCM IV DATASET.

Protocols Methods mAP P@1 P@5 P@10

I→V

SIFT+M [53] 8.55 4.56 4.65 4.56
DBLP [54] 25.48 24.18 23.87 23.24

CNN+SPEC [55] 26.25 29.50 25.52 23.65
DVAN [11] 36.79 32.37 33.29 33.74

CMIR-NET [8] 45.82 52.92 49.74 43.38
DIVR [14] 50.94 59.34 54.17 50.12
DTBH [13] 64.24 73.10 69.69 65.63
SCRL-Pair 35.25 35.24 35.48 35.50
SCRL-Intra 52.64 59.90 57.10 54.19
SCRL-Inter 53.62 61.95 56.33 52.17
SCRL-Class 60.54 68.81 64.86 59.62

SCRL-Dilation 65.46 72.57 70.43 67.86
SCRL 67.97 77.38 75.29 72.26

V→I

SIFT+M [53] 6.66 3.58 4.41 4.68
DBLP [54] 19.33 17.12 17.62 16.31

CNN+SPEC [55] 21.79 19.42 19.86 19.23
DVAN [11] 32.28 32.37 33.91 34.34

CMIR-NET [8] 40.37 46.74 43.75 39.62
DIVR [14] 45.34 52.23 48.76 44.98
DTBH [13] 60.13 70.26 66.63 61.73
SCRL-Pair 34.69 39.76 37.38 36.76
SCRL-Intra 50.74 56.67 52.86 48.40
SCRL-Inter 49.31 56.86 53.86 51.90
SCRL-Class 59.82 66.90 59.05 55.76

SCRL-Dilation 66.59 72.62 68.52 64.31
SCRL 66.83 84.05 77.14 74.07

DTBH (87.49%) to 93.53%. The improvements demonstrate
that the modeling for the pairwise, intra-modality, and non-
paired inter-modality relationships contributes to learning
semantics-consistency representations across the two modal-
ities, thereby facilitating cross-modal retrieval. In addition,
the first column of Fig. 7 shows an example of the top
five retrieved results by the proposed SCRL method with the
I→V protocol. The first row of Fig. 8 shows an example of
the top five retrieved results by the proposed SCRL method
with the V→I protocol. As shown in the two figures, the
proposed SCRL method can retrieve the relevant samples
effectively, which further proves the effectiveness for modeling
the semantics-consistent relationships comprehensively.

2) Results on UCM IV Dataset: TABLE III shows the
comparison results between the proposed SCRL method and
other compared methods on the UCM IV Dataset. Fig 9 and
Fig 10 show the precision curves with different retrieved
samples by the I→V and V→I protocol, respectively. Similar
experimental results can be seen on the Sydney IV dataset. For
instance, for the I→V protocol, the proposed SCRL method
improves the mAP value from SIFT+M (31.67%), DBLP
(44.38%), CNN+SPEC (46.67%), DVAN (71.77%), CMIR-
NET (78.44%), DIVR (81.35%), DTBH (92.45%) to 67.97%.
Meanwhile, for the V→I protocol, the proposed SCRL method
improves the mAP value from SIFT+M (26.50%), DBLP
(34.87%), CNN+SPEC (35.72%), DVAN (63.88%), CMIR-
NET (71.28%), DIVR (75.97%), DTBH (87.49%) to 66.83%.
This is because the exploration for the semantics-consistent
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river.
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There is an airplane in the airport.
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playground near to a road.

Many buildings and some green trees are around a 
playground and two basketball fields separately.
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football field surrounded by four white long 
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Fig. 7. Some examples of the I→V retrieval results by the proposed SCRL method on Sydney, UCM and RSICD IV datasets. The result
examples on the three datasets correspond to the first column, second column and third column, respectively. The wrong retrieval results are
marked with red boxes.

This is a residential area with lots of houses arranged in lines.

Queried Voice
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An intersection with some houses and plants at the corners.

Queried Voice

Retrieved 

Top-5 Images

The center is a red square structure, a total of four layers.

Queried Voice
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Fig. 8. Some examples of the V→I retrieval results by the proposed
SCRL method on Sydney, UCM and RSICD IV datasets. The result
examples on the three datasets correspond to the first row, second row
and third row, respectively. The wrong retrieval results are marked
with red boxes.
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Fig. 9. The precision curves with different retrieved samples by the
I→V protocol on the UCM IV dataset.

representation space can effectively promote the model to nar-
row the heterogeneous semantic gap across the two modalities.
In addition, the second column of Fig. 7 shows an example of
the top five retrieved results by the proposed SCRL method
with the I→V protocol. The second row of Fig. 8 shows
an example of the top five retrieved results by the proposed
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Fig. 10. The precision curves with different retrieved samples by the
V→I protocol on the UCM IV dataset.

SCRL method with the V→I protocol. The results show that
the proposed SCRL method can effectively retrieve relevant
samples, which further proves the effectiveness of considering
the pairwise, intra-modality, and non-paired inter-modality
relationships comprehensively.

3) Results on RSICD IV Dataset: TABLE IV shows the
comparison results between the proposed SCRL method and
other compared methods on the most challenging RSICD
IV Dataset. Fig 11 and Fig 12 show the precision curves
with different retrieved samples by the I→V and V→I pro-
tocol, respectively. Although the RSICD IV dataset is more
challenging [14], the proposed SCRL method can improve
the retrieval performance to a great extent. For example,
the SCRL method lifts the mAP value from 23.46% to
28.84% for the I→V protocol compared with the state-of-the-
art DTBH method. Meanwhile, the SCRL method improves
the mAP value from 23.46% (DTBH) to 28.84% for the
V→I protocol. This demonstrates the high efficiency of the
proposed SCRL method for learning semantics-consistent rep-
resentations across the two modalities, because the semantics-
consistent relationships, including pairwise, intra-modality,
and non-paired inter-modality relationships, are modeled com-
prehensively. In addition, some examples of the top five
retrieved results by the proposed SCRL method are shown in
Fig. 7 (3rd column) and Fig. 8 (3rd row). It can be seen that
the proposed SCRL method can retrieve diverse but relevant
samples effectively, even on very challenging image-voice
dataset, which further verifies the effectiveness of simultane-
ously modeling various semantics-consistent relationships.

V. CONCLUSIONS

In this paper, a semantics-consistent representation learning
(SCRL) method is proposed for the task of remote sens-
ing (RS) image-voice retrieval. The main novelty is that
the proposed method takes the pairwise, intra-modality, and
non-paired inter-modality relationships into account simul-
taneously, thereby improving the semantic consistency of

TABLE IV
THE COMPARISON RESULTS BETWEEN THE PROPOSED SCRL
METHOD AND OTHER METHIDS ON THE RSICD IV DATASET

(%).

Protocols Methods mAP P@1 P@5 P@10

I→V

SIFT+M [53] 5.04 6.22 5.34 4.50
DBLP [54] 12.70 15.32 15.21 14.22

CNN+SPEC [55] 13.24 16.82 16.62 15.69
DVAN [11] 16.29 22.49 22.56 21.70

CMIR-NET [8] 17.78 24.11 23.52 22.54
DIVR [14] 19.62 25.43 24.84 24.20
DTBH [13] 23.46 27.58 26.84 25.49
SCRL-Pair 15.80 17.09 16.84 16.05
SCRL-Intra 20.06 21.78 21.34 20.75
SCRL-Inter 20.02 22.46 22.44 21.73
SCRL-Class 25.92 29.54 28.35 27.00

SCRL-Dilation 27.54 30.88 29.96 29.81
SCRL 28.84 31.10 29.81 28.34

V→I

SIFT+M [53] 4.85 3.66 3.60 3.541
DBLP [54] 8.14 6.21 6.08 6.76

CNN+SPEC [55] 9.96 7.13 7.00 7.44
DVAN [11] 15.71 16.18 15.10 14.76

CMIR-NET [8] 17.25 17.94 16.58 15.36
DIVR [14] 18.58 19.76 18.31 17.59
DTBH [13] 22.72 23.30 22.48 21.17
SCRL-Pair 15.35 18.56 17.31 16.35
SCRL-Intra 24.52 30.11 29.08 28.08
SCRL-Inter 25.21 30.60 30.72 29.64
SCRL-Class 28.33 31.73 31.57 30.83

SCRL-Dilation 29.55 32.59 31.25 30.08
SCRL 31.26 33.76 33.01 32.01
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Fig. 11. The precision curves with different retrieved samples by the
I→V protocol on the RSICD IV dataset.
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Fig. 12. The precision curves with different retrieved samples by the
V→I protocol on the RSICD IV dataset.

the learned representations for the RS image-voice retrieval.
Specifically, a consistent representation space is explored with
a joint loss function comprehensively considering the three
kinds of relationships for the extracted representations. By
exploring the consistent representation space, the heteroge-
neous semantic gap can be mitigated to a great extent and
semantics-consistent representations can be learned for the
RS image-voice retrieval. Experimental results on Sydney,
UCM and RSICD image-voice datasets demonstrate that the
proposed joint loss is effective to mine the pairwise, intra-
modality, and non-paired inter-modality relationships for better
RS image-voice retrieval. In addition, the proposed SCRL
method achieves better performance compared with other
state-of-the-art methods, manifesting its superiority. In the
future, we will explore how to extend the proposed SCRL
method to address the large-scale image-audio retrieval cases
such as embedding the hashing code learning to our work.

REFERENCES

[1] Y. Hua, L. Mou, and X. X. Zhu, “Relation network for multilabel aerial
image classification,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 58, no. 7, pp. 4558–4572, 2020.

[2] Y. Li, Y. Zhang, X. Huang, and J. Ma, “Learning source-invariant deep
hashing convolutional neural networks for cross-source remote sensing
image retrieval,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 56, no. 11, pp. 6521–6536, 2018.

[3] Y. Zhang, Y. Yuan, Y. Feng, and X. Lu, “Hierarchical and robust
convolutional neural network for very high-resolution remote sensing
object detection,” IEEE Transactions on Geoscience and Remote Sens-
ing, vol. 57, no. 8, pp. 5535–5548, 2019.

[4] Y. Li, Y. Zhang, X. Huang, H. Zhu, and J. Ma, “Large-scale remote
sensing image retrieval by deep hashing neural networks,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 56, no. 2, pp. 950–965,
2018.

[5] B. Demir and L. Bruzzone, “Hashing-based scalable remote sensing
image search and retrieval in large archives,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 54, no. 2, pp. 892–904, 2016.

[6] Y. Chen and X. Lu, “Supervised deep hashing with a joint deep
network,” Pattern Recognition, vol. 105, p. 107368, 2020.

[7] Y. Li, Y. Zhang, X. Huang, H. Zhu, and J. Ma, “Large-scale remote
sensing image retrieval by deep hashing neural networks,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 56, no. 2, pp. 950–965,
2018.

[8] U. Chaudhuri, B. Banerjee, A. Bhattacharya, and M. Datcu, “Cmir-
net : A deep learning based model for cross-modal retrieval in remote
sensing,” Pattern Recognition Letters, vol. 131, pp. 456–462, 2020.

[9] Z. Shi and Z. Zou, “Can a machine generate humanlike language descrip-
tions for a remote sensing image?” IEEE Transactions on Geoscience
and Remote Sensing, vol. 55, no. 6, pp. 3623–3634, 2017.

[10] Z. Shao, W. Zhou, X. Deng, M. Zhang, and Q. Cheng, “Multilabel
remote sensing image retrieval based on fully convolutional network,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 13, pp. 318–328, 2020.

[11] G. Mao, Y. Yuan, and L. Xiaoqiang, “Deep cross-modal retrieval for
remote sensing image and audio,” in 2018 10th IAPR Workshop on
Pattern Recognition in Remote Sensing, 2018, pp. 1–7.

[12] M. Guo, C. Zhou, and J. Liu, “Jointly learning of visual and auditory:
A new approach for rs image and audio cross-modal retrieval,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 12, no. 11, pp. 4644–4654, 2019.

[13] Y. Chen and X. Lu, “A deep hashing technique for remote sensing image-
sound retrieval,” Remote Sensing, vol. 12, no. 1, p. 84, 2019.

[14] Y. Chen, X. Lu, and S. Wang, “Deep cross-modal image-voice retrieval
in remote sensing,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 58, no. 10, pp. 7049–7061, 2020.

[15] Z. Shao, W. Zhou, X. Deng, M. Zhang, and Q. Cheng, “Multilabel
remote sensing image retrieval based on fully convolutional network,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 13, pp. 318–328, 2020.

[16] M. Lin, R. Ji, S. Chen, X. Sun, and C. Lin, “Similarity-preserving
linkage hashing for online image retrieval,” IEEE Transactions on Image
Processing, vol. 29, pp. 5289–5300, 2020.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” Computer Science, 2014.

[18] R. Hidayat, A. Bejo, S. Sumaryono, and A. Winursito, “Denoising
speech for mfcc feature extraction using wavelet transformation in
speech recognition system,” in 2018 10th International Conference on
Information Technology and Electrical Engineering, 2018, pp. 280–284.

[19] B. Luo, J. Aujol, Y. Gousseau, and S. Ladjal, “Indexing of satellite im-
ages with different resolutions by wavelet features,” IEEE Transactions
on Image Processing, vol. 17, no. 8, pp. 1465–1472, 2008.

[20] Y. Yang and S. Newsam, “Geographic image retrieval using local invari-
ant features,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 51, no. 2, pp. 818–832, 2013.

[21] E. Aptoula, “Remote sensing image retrieval with global morphological
texture descriptors,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 52, no. 5, pp. 3023–3034, 2014.

[22] H. Ning, X. Zheng, Y. Yuan, and X. Lu, “Audio description from image
by modal translation network,” Neurocomputing, 2020.

[23] B. Zhao, L. Hua, X. Li, X. Lu, and Z. Wang, “Weather recognition
via classification labels and weather-cue maps,” Pattern Recognition,
vol. 95, pp. 272–284, 2019.

[24] Y. Yuan, J. Fang, X. Lu, and Y. Feng, “Remote sensing image scene
classification using rearranged local features,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 57, no. 3, pp. 1779–1792, 2018.

[25] B. Zhao, X. Li, and X. Lu, “Cam-rnn: Co-attention model based rnn
for video captioning,” IEEE Transactions on Image Processing, vol. 28,
no. 11, pp. 5552–5565, 2019.

[26] Y. Yuan, J. Fang, X. Lu, and Y. Feng, “Spatial structure preserving
feature pyramid network for semantic image segmentation,” ACM Trans-
actions on Multimedia Computing, Communications, and Applications,
vol. 15, no. 3, pp. 73:1–73:19, 2019.

[27] X. Tang, L. Jiao, W. J. Emery, F. Liu, and D. Zhang, “Two-stage
reranking for remote sensing image retrieval,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 55, no. 10, pp. 5798–5817, 2017.

[28] F. Ye, H. Xiao, X. Zhao, M. Dong, W. Luo, and W. Min, “Remote
sensing image retrieval using convolutional neural network features
and weighted distance,” IEEE Geoscience and Remote Sensing Letters,
vol. 15, no. 10, pp. 1535–1539, 2018.

[29] B. Chaudhuri, B. Demir, S. Chaudhuri, and L. Bruzzone, “Multilabel
remote sensing image retrieval using a semisupervised graph-theoretic
method,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 56, no. 2, pp. 1144–1158, 2017.

[30] J. Kang, R. Fernandez-Beltran, D. Hong, J. Chanussot, and A. Plaza,
“Graph relation network: Modeling relations between scenes for multi-
label remote-sensing image classification and retrieval,” IEEE Transac-
tions on Geoscience and Remote Sensing, 2020.

[31] Y. Liu, L. Ding, C. Chen, and Y. Liu, “Similarity-based unsupervised
deep transfer learning for remote sensing image retrieval,” IEEE Trans-



14

actions on Geoscience and Remote Sensing, vol. 58, no. 11, pp. 7872–
7889, 2020.

[32] F. Ye, W. Luo, M. Dong, H. He, and W. Min, “Sar image retrieval based
on unsupervised domain adaptation and clustering,” IEEE Geoscience
and Remote Sensing Letters, vol. 16, no. 9, pp. 1482–1486, 2019.

[33] J. Song, T. He, L. Gao, X. Xu, A. Hanjalic, and H. T. Shen, “Unified
binary generative adversarial network for image retrieval and compres-
sion,” International Journal of Computer Vision, vol. 128, pp. 2243—-
22 646, 2020.

[34] W. Xiong, Z. Xiong, Y. Cui, and Y. Lv, “A discriminative distillation
network for cross-source remote sensing image retrieval,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 13, pp. 1234–1247, 2020.

[35] W. Xiong, Z. Xiong, Y. Zhang, Y. Cui, and X. Gu, “A deep cross-
modality hashing network for sar and optical remote sensing images
retrieval,” IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, vol. 13, pp. 5284–5296, 2020.

[36] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen, “Inter-media
hashing for large-scale retrieval from heterogeneous data sources,” in
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, 2013, pp. 785–796.

[37] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, “Large-scale image
retrieval with attentive deep local features,” in 2017 IEEE International
Conference on Computer Vision, 2017, pp. 3456–3465.

[38] X. Lu, Y. Chen, and X. Li, “Hierarchical recurrent neural hashing
for image retrieval with hierarchical convolutional features,” IEEE
Transactions on Image Processing, vol. 27, no. 1, pp. 106–120, 2018.

[39] Y. Cui, Y. Song, C. Sun, A. Howard, and S. Belongie, “Large scale fine-
grained categorization and domain-specific transfer learning,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 4109–4118.

[40] Z. Chen, T. Zhang, and C. Ouyang, “End-to-end airplane detection using
transfer learning in remote sensing images,” Remote Sensing, vol. 10,
no. 1, p. 139, 2018.

[41] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2414–2423.

[42] A. Chowdhury and A. Ross, “Fusing mfcc and lpc features using 1d
triplet cnn for speaker recognition in severely degraded audio signals,”
IEEE Transactions on Information Forensics and Security, vol. 15, pp.
1616–1629, 2020.

[43] Y. Chen and X. Lu, “Deep category-level and regularized hashing with
global semantic similarity learning,” IEEE Transactions on Cybernetics,
2020.

[44] W. Xiong, Y. Lv, X. Zhang, and Y. Cui, “Learning to translate for
cross-source remote sensing image retrieval,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 58, no. 7, pp. 4860–4874, 2020.

[45] Y. Chen and X. Lu, “Deep discrete hashing with pairwise correlation
learning,” Neurocomputing, vol. 385, pp. 111–121, 2020.

[46] Y. Yuan, H. Ning, and X. Lu, “Bio-inspired representation learning for
visual attention prediction,” IEEE Transactions on Cybernetics, pp. 1–
14, 2019.

[47] A. Yuan, X. Li, and X. Lu, “3g structure for image caption generation,”
Neurocomputing, vol. 330, pp. 17–28, 2019.

[48] T. Zhi, L. Duan, Y. Wang, and T. Huang, “Two-stage pooling of deep
convolutional features for image retrieval,” in 2016 IEEE International
Conference on Image Processing, 2016, pp. 2465–2469.

[49] D. Hu, F. Nie, and X. Li, “Deep binary reconstruction for cross-modal
hashing,” IEEE Transactions on Multimedia, vol. 21, no. 4, pp. 973–985,
2019.

[50] Z. Shao, Y. Pan, C. Diao, and J. Cai, “Cloud detection in remote sensing
images based on multiscale features-convolutional neural network,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 6,
pp. 4062–4076, 2019.

[51] N. Khurshid, M. Tharani, M. Taj, and F. Z. Qureshi, “A residual-dyad
encoder discriminator network for remote sensing image matching,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 3,
pp. 2001–2014, 2020.

[52] P. Li and P. Ren, “Partial randomness hashing for large-scale remote
sensing image retrieval,” IEEE Geoscience and Remote Sensing Letters,
vol. 14, no. 3, pp. 464–468, 2017.

[53] X. Zhao, Z. Li, and J. Yi, “Sift feature-based second-order image hash
retrieval approach,” Journal of Software, vol. 13, no. 1, pp. 103–116,
2018.

[54] D. F. Harwath, A. Torralba, and J. R. Glass, “Unsupervised learning of
spoken language with visual context,” in Advances in Neural Information
Processing Systems, 2016, pp. 1858–1866.

[55] R. Arandjelovic and A. Zisserman, “Look, listen and learn,” in 2017
IEEE International Conference on Computer Vision, 2017, pp. 609–617.

[56] B. Wang, Y. Yang, X. Xu, A. Hanjalic, and H. T. Shen, “Adversarial
cross-modal retrieval,” in Proceedings of the 25th ACM International
Conference on Multimedia, 2017, pp. 154–162.


	I Introduction
	II Related Works
	II-A Uni-Modal RS Data Retrieval Methods
	II-B Cross-Modal RS Data Retrieval Methods

	III The Proposed method
	III-A Overall Framework
	III-B Semantics Encoding
	III-B1 Image Semantics Encoding
	III-B2 Voice Semantics Encoding

	III-C Semantics-Consistent Representation Learning
	III-C1 The Architecture of Semantics-Consistent Representation Learning
	III-C2 The Pairwise Consistency
	III-C3 The Intra-Modality Consistency
	III-C4 The Non-Paired Inter-Modality Consistency

	III-D Loss Function
	III-D1 The Consistency Loss
	III-D2 The Classification Loss
	III-D3 The Joint Loss

	III-E Optimizing Strategy

	IV Experiment and Results
	IV-A Datasets
	IV-A1 Sydney Image-Voice Dataset 8486338
	IV-A2 UCM Image-Voice Dataset 8486338
	IV-A3 RSICD Image-Voice Dataset 8486338

	IV-B Implementation Details
	IV-C Evaluation Metrics and Comparison Methods
	IV-D Parameter Analysis
	IV-E Ablation Analysis
	IV-E1 Pairwise Consistency
	IV-E2 Intra-Modality Consistency
	IV-E3 Non-paired Inter-Modality Consistency
	IV-E4 Semantic Discrimination
	IV-E5 Long Range Correlation

	IV-F Results and Analysis
	IV-F1 Results on Sydney IV Dataset
	IV-F2 Results on UCM IV Dataset
	IV-F3 Results on RSICD IV Dataset


	V Conclusions
	References

