
Semant ics of a Veri f icat ion-Oriented Subse t of
V H D L

David D~harbe and Dominique Borrione

ARTEMIS-IMAG
BP 53

F-38041 Grenoble Cedex 9, France

Abstract. This paper gives operational semantics for a subset of VHDL
in terms of abstract machines. Restrictions to the VHDL source code are
the finiteness of data types, and the absence of quantitative timing infor-
mations. The abstract machine of a design unit is built by composition
of the abstract machines for its embedded processes and blocks. The ker-
nel process in our model is distributed among the composed machines.
One transition of the final abstract machine models a VHDL delta cycle.
This model can be used for symbolic model checking and equivalence
verification.

1 I n t r o d u c t i o n

Giving a formal definition of the semantics of VHDL [7] is of highest importance
for synthesis and formal verification. Many different approaches have been pro-
posed to fulfill this need, see eg [1, 3, 4, 5, 8, 9, 10, 11]. A first conclusion can be
drawn from a study of these works: one has to trade off the number of VHDL
features modeled, and the practical usefulness of the semantics. VHDL is a very
complex language and the models that capture all the features are almost inher-
ently not applicable to produce design automation tools. On the other hand, if
some aspects of the language are deliberately discarded, it becomes possible to
deal with it efficiently, on a formal basis.

In the approach we present, we restrict ourselves to a subset of VHDL such
that design descriptions can be mapped to finite state representations: objects
must be of a finite type (no access nor file types, no unconstrained arrays,
no generics) and quantitative timing informations are not accepted (no 'after'
clauses in assignment statements, no 'for' clauses in wait statements). Under
these restrictions, the elaboration of VHDL design entities in terms of our se-
mantics produces abstract machines that are suitable for verification by symbolic
methods (equivalence proof, model checking). By means of symbolic simulation
techniques, a single execution of the generated abstract machines represents all
possible executions of the corresponding VHDL script.

The research efforts that are closest to our work are the semantics presented
by Damm et al. [2], that serve as a formal basis to feed VHDL designs to a
model checker. Our approach mainly differs in the fact that a state in our model
represents a point in the simulation where the current statement of all processes

294

is a wait s ta tement , whereas in [2] a state represents a point where the current
s ta tement of each process is any statement. Using p rogramming terminology, a
program counter in our case goes from a wait s ta tement to the next wait state-
ment, whereas in [2] it goes f rom a sequential s ta tement to the next sequential
s tatement. Thus, the main advantage of our approach is that a single transition
represents a whole simulation cycle, which is not the case in [2], where several
transitions are needed.

Overview of the Article : Section 2 presents the target model towards which
we shall map VHDL design entities. Section 3 gives the general principles that
drive the different aspects of the semantics: the elaboration of models and their
composition. These two aspects are presented in detail respectively in Sections 4
and 5. Section 6 gives a short conclusion and presents future developments of
this work.

2 Abstract Machines

The VHDL semantics presented in this paper are expressed in terms of a class
of models called abstract machines. These abstract machines are composed of a
finite state machine and a boolean condition on the state space of this machine.

D e f i n i t i o n l A b s t r a c t M a c h i n e . An abstract machine ,t4 is defined as a 7-
tuple
(I, S, O, So, N S , NO, sc>, where:

- I is a set of input variables of ,~4 : I = { i t , . - . , i n i } . Each input variable
ik has its value domain denoted Zk. The input domain Z is the Cartesian
.product Z1 x . . . x Zni ;

- S is a set of state variables of ,.~4 : S = { s l , . . . , s,~,}. Each state variable
sk has its value domain denoted Sk. The state domain S is the Cartesian
product St x . . . x S,~, ;

- O is a set of output variables of , t4 : O = { o l , . . . , ono}. Each output variable
ok has its value domain denoted (S~. The output domain is the Cartesian
product O1 x . . . x (9~o ;

- So E S is the initial state of ..k,t : So is a valuation of the state variables S of
M ;

- N S is the state transition function o f . ~ : N S = [NS1 , N S ~] , and N S k
is the transition function of the state variable sk : :VSk : Z x S -+ Sk ;

- NO is the output function of .,Vt : NO = [NO~, . . . , NOn~ and NOk is the
output function Of oh : ,VOk : Z x $ --*, Ok.

- sc is a stability condition on the state space of ,k4 t : sc : Z x S x 0 -+ lB.

Informally, a s ta te of the abstract machine represents a state of she VHDL design
where all processes are suspended on one of their wait s ta tements . Computal;ions
within the process statements that lead from one wait s ta tement to another wait

I ~ denotes ~he boolean domain

295

statement are collapsed into a single transition, and intermediate computations
are invisible in the abstract machine. The stability condition sc is true on the
states of jk4, that represent VHDL states where no process statement is ac-
tive, hence all clauses of the respective current wait statement of the different
processes are not satisfied.

3 General Principles

Given a VHDL design D, an abstract machine ,4 is elaborated. The requirement
put on ,4 is that it has the same observable behavior as D. By observable behavior,
we mean that the response of outputs of A to stimuli on its inputs should be
the same as the response of the out ports of D to its assignments to its in ports.
Both the behavior at the level of the delta cycle and the behavior at the level of
stable states are considered.

3.1 P r i n c i p l e s o f C o m p o s i t i o n

The semantic rules give a formal definition to the translation of any VHD L design
unit to the class of abstract machines. Since process statements are the atomic
components of a design entity, an abstract machine is associated to each process
of the considered design unit. T h e resulting machines are composed to obtain
the semantics of the design unit, as illustrated in Fig. 1. These compositions
also take into account the kernel activity: update of effective values, elaboration
of implicit signals, etc.

Hence, one can identify three main parts to define these semantics:

- the semantic rules for elaboration, that associate an abstract machine to a
VHDL process statement within some declaration environment,

- the semantic rules associated to the concurrent .composition of concurrent
statements, that corresponds to the parallel composition of abstract ma-
chines,

- the semantic rules associated to the declaration encapsulation mechanism
that occurs in 'block' statements and 'architecture bodies', that corresponds
to the hiding operator (or declaration encapsulation) on abstract machines.

As any VHDL concurrent statement that is not a block statement has a corre-
sponding equivalent process statement, this discussion focuses on the semantics
of process and block statements.

3.2 P r i n c i p l e s o f E l a b o r a t i o n

The process statement is the smallest piece of VHDL that can be simulated:
consider an architecture body with a single process statement, and whose entity
declaration in ports (resp. out ports) are the signals read (resp. assigned) within
this process statement.

296

VHDL Abstract Machines

Design units

Process statements

[Architecture body S'emaniics ~ ']

Syntactic Abstract
decomposition machines

corn position

Process semantics
P I P 2 . . . P ~ ~ m l m 2 . , i n k

Fig. I. Composition schema

It is quite clear that the input, output, and state variables of the abstract
machine that corresponds to a process statement should be elaborated from
the signals read, the signals assigned, and the variables declared in the process
statement. State transition and output functions should be elaborated from the
assignments to variables and signals. The initial state should correspond to the
initial values of the process variables. And the stability condition should be true
whenever the different clauses of the current wait statement are not satisfied.

However, there are practical problems to do this:

- In a process statement, assignment statements are executed sequentially, and
thus are dependent of each other; the source expression of an assignment,
as well as the condition of a conditional statement, depends on the previ-
ous variable assignments. But in the abstract machine, state transition and
output functions occur simultaneously (in parallel), and are independent.

- A process statement may have severalwait statements, and the elaboration
of the stability condition has to be carefully performed to handle this.

The following section 4 provides a method to resolve these problems.

4 E l a b o r a t i o n

Throughout this section, the elaboration principles will be illustrated on a run-
ning example, shown in Fig, 2, where F, N. l~ are boolean signals. The elaboration
is based on the analysis and the modification of the execution flow in the process
statement. Thus, for sake of clarity, we base the discussion on a flow graph repre-
sentation of the statement part of the process, as briefly depicted in section 4.1.
In section 4.2, we present a method to merge wait statements as well as the sub-
sequent modifications on the flow graph representation, such that the process
behavior and reactivity to changes on signals' values are not modified. Follow-
ing, section 4.3 relates to the problem of making the evaluation of expressions
independent of the assignments that occured previously in the same simulation

297

cycle. A solution to this problem is given in section 4.4, where the flow graph
is t ransformed into a tree and simplified. The obtained simplified execution tree
is used to derive a decision diagram for each object, signal or variable, assigned
within the process, as explained in section 4.5. Finally section 4.6 deals with the
elaboration of the abstract machine. The method presented herein can be applied

~: prOCess

variable V : NATURAL := O;

begin
if N ~hen

i f (V < 8) ~hen;
Y := V + 1;

end i f ;

e l s e

V : : ~l - 1;
wai~ u n t i l (no~ N);

end if;

F <= (V = S) ;

sai~ until (N or M);
end p r o c e s s ;

Fig. 2. P : A VHDL process statement example

to any process whose statement part is (or could be rewritten into) any com-
bination of if statements, wait s tatements and signal and variable assignment
statements.

4.1 R e p r e s e n t a t i o n o f t h e P r o c e s s S t a t e m e n t P a r t

The representation of the statement part of a process statement P is the flow-
graph ~(P) of the syntactic structure of the sequence of statements. Let P be a
process statement, Q(P) = (1/, A) is a directed graph such that:

- V is the set of vertices, each vertex corresponds to either an assignment
statement, a wait s tatement or an if statement.

- A C V • V is the set of arcs, arcs are labeled with VHDL conditions.

For instance, the s tatement part of the process of Fig. 2 is represented by the
graph of Fig. 3.

Non-accepted Process Statements: Let P be a process statement. If, in the graph
~(p), there is a cycle such that there is no vertex carrying a wait s tatement,
and such that the conjunction of the conditions that label the arcs is not equal
to f a l s e , then we do not know how to elaborate an abstract machine. This
characteristic arises in a s tatement part that contains an execution path without
wait s tatement (also in a loop whose body does not contain a wait s tatement) .
These situations can lead to a non-terminating simulation cycle, and therefore
cannot be handled in a finite state model.

298

V : : V + 1;
~ T a u ~

J/TRUE

if V : : V - l ;

V >: 8 wai~ until (not M);

(V = S);

~ TI~UE

�9 a ig u n t i l (N or M};

TRUE

Fig. 3. Flow graph of the process statement P

4.2 M e r g i n g W a i t S t a t e m e n t s

Given the set of wait statements of a process, we replace all of them by a single
wait s ta tement that resumes if and only if the initial process resumes its activity
from the current wait statement. From now on, we refer to this resulting wait
s tatement as the merged wait statement.

P r o p o s a l 4.1 (W a i t c o u n t e r) in order to transform a process statement P
into a process statement R with a single wait statement, it is necessary to intro-
duce a variable, named CI4 (for Current Wait), of type natural, that ranges from
0 to the number n of wait statements in P, and to label each wait statement o/P
with a different natural number between i and n. The value of Crd is equal to 0
when P is at the beginning of a simulation, and to i (1 < i < n) ifP is suspended
at the i th wait statement.

Suppose that the process has n wait statements, with (possibly implicit)
sensitivity list si and condition clause ei. The process resumes its activity on
the i th wait s ta tement if there is an event on one of the signals of si, and the
condition ci is valid. Hence, the condition under which the process resumes its
execution is:

i : I i

This general expression is used to derive the condition clause of the merged wait
statement, where an explicit sensitivity clause is no longer useful, since all the
signals the different waits are sensitive to appear as primary in the condition
clause. The condition CW = 0 ex]aibits the fact that the process is active at the
beginning o f the simulation.

In the example, the different wait statements are:

wait on M until (not M); - - here, CW : I

waiZ on N, M until (N or M); - - and there, CW = 2

299

Thus, the corresponding merged wait statement is:

wai~ un%il ((CW = O) or

((CW = i) and (no~ M) and M'even~) or

((CW = 2) and (N or H) (and N'even% or M'event)));

The flow-graph representation has to be modified to replace the original wait
statements by the merged wait statement, and to update the variable CW. An as-
signment to variable CW is inserted before each wait statement, the assigned value
is the label of this wait statement. An if statement is added at the beginning of
the process statement part and directs the execution flow to the appropriate set
of statements, according to the current resumption condition. The graph repre-
sentation of these sets of statements are the connected elements of the original
flow graph, where the vertices carrying wait statements have been removed. Each
one of these sets of connected elements is called a z o n e ; all zones are inserted as
the different branches of the added if statement. The i th zone, 1 < i < n (resp.
0), is the zone executed after the i th wait statement (resp. when the simulation
starts).

The resulting if statement is followed by the merged wait statement that ends
the process statement part. The new flow graph of the example, after performing
these transformations, is depicted in Fig. 4, where:

<condO> stands for (CW = 0),
<condl> stands for (CW = I) and M'even'c and (no% M),
<cond2> stands for (CW = 0) and (N'even~; or N'even%) and (N or M)

<condl>

V :-- V + l ;

<condO> or <cond2>
f

N~ "'"~'-~2~ (N)

V > = 8 ~/TRUE
CW := 1;

g <-- (V -- a);

~ TRUE
CW :-- 2 ;

~ TRUE
wai~ on ~ ,H

until ((CW = 1) and (not M) and ~'*von~) or ,,. /
((CW --2) and (N or ~)

a n d (N'even~ o r ~ ' e v e n C)) ;

Fig. 4. Graph after merging wait statements

300

Finally, this transformation leads to a form of process statement that has the
following features:

- the first s tatement is a conditional s tatement (on the current value of CW)
and its branches do not hold wait s~tatements, this statement is referred as
the transition statement,

- the second and last statement is the unique wait statement of the process.

4.3 R e s o l v i n g D e p e n d e n c i e s

During simulation, an object that occurs in an expression is evaluated, and in
the case of a variable, it evaluates to its current value. Thus, if this variable has
been previously assigned in the same simulation cycle, its current value depends
on this assignment. This dependency has to be eliminated in order to elaborate
an abstract machine, where the atomic transitions must be independent of each
other.

Thus, we need to distinguish the occurrences of variables in expressions that
depend on some previous assignment executed in the same simulation cycle
(these are called reducible occurrences) from the occurrences of variables whose
current value has been assigned at a previous simulation cycle (these are called
irreducible occurrences).

P r o p o s a l 4.2 (R e d u c i b l e o c c u r r e n c e s) In a zone of statements, i f a vari-
able Y is assigned an expression E, all following occurrences of 7 within expres-
sions in the same zone can be replaced by ~.. Such variable occurrences within
expressions are named reducible occurrences.

The occurrence of a variable in a vertex statement (resp. in an arc condition)
is reducible, if there is a path from the merged wait statement to this vertex (resp.
arc), that passes through a vertex that carries an assignment to this variable.
As a side effect, if all occurrences of a variable in a process are reducible, the
variable is not necessary to compute the value of the other objects. It is therefore
not useful to generate a state variable in the abstract machine to represent it.

P r o p o s a l 4.3 (I r r e d u c i b l e o c c u r r e n c e s) An occurrence of a variable Y is
said to be irreducible in a zone if there is an execution of the current zone
such that there is no assignment to this variable.

The occurrence of a variable in a vertex statement (resp. in an arc condition)
is irreducible, if there is a path from the merged wait statement to this vertex
(resp. arc), that does not pass through a vertex carrying an assignment to this
variable.

The problem is that some occurrences happen to be both reducible and irre-
ducible, as there might be several paths that go from the merged wait s ta tement
to a given vertex or arc (eg, in the assignment F <= (V = 8) ; of the example).

301

4.4 D e r i v a t i o n o f t h e E x e c u t i o n T r e e

In order to correctly process variable assignment statements and identify irre-
ducible variables, we need a representation in which variable occurrences are
either reducible or irreducible but never both at the same time for a particular
execution path. Thus, we transform the graph of the process transition state-
ment into an execution tree. The root of the execution tree is the initial vertex.
Each vertex on a path is either an assignment or an if statement, and each
path in this tree represents one possible execution of the statements in one zone.
The execution tree is obtained by a simple unwinding of the graph of the tran-

i f

if ~ ' ' / F<=(V=8); " ~ if

if V:=V-l; CW:=2; if V:=V-I;

V:=V§ FI=(V=8); CW:=I; V:~V+I; F<~(V=8); CW:=I;

1 1
F<=(~=8); ~:=2; F<=(V=8); CW:=2;

CW:=2: ~:=2;

Fig. 5. Execution tree of the transition statement

sition statement. The leaves of the tree are implicitly followed by the merged
wait statement. Figure 5 shows the execution tree that represents the transition
s tatement of the example of Fig .2.

On any path of the execution tree a variable occurrence is either reducible,
or irreducible, but never both. This is a direct consequence of the fact that, in
a tree, for every vertex and arc, there is a unique path that goes from the root
to this vertex or arc. If a variable occurs in a vertex or in an arc label, and [f
there is an assignment s ta tement to the variable on the path that leads to this
expression, this occurrence is reducible, otherwise it is irreducible.

S i m p l i f i c a t i o n o f a n E x e c u t i o n T r e e : The execution tree is simplified with
two operations:

302

- reduction of reducible variable occurrences, by a simple traversal of the
graph;

- pushing the 'if ' vertices toward the root, and assignment statements towards
the leafs of the execution tree. The Mgorithm is a rewrite system on the tree
representation, schematically defined as:

V1

us.~t= rewrites to: if

i:~ ass.s~m �9 �9 �9 a s s - s t =

�9 "" V~ Vt " �9 V~

This rewriting scheme pushes assignment statements towards the leaf of the
execution tree, but preserves the relative order between assignment state-
ments

if

�9 if ~ F<=(V=8); ~ if

if V:=V-I; CW:=2; if

V:=V+I; F<=(V§ CW:=2; V:=V§ F<=(V=8)

F<=(V+I=SI; CW:=2; F~=(V§ CW:=2;

ITRUE ~TRUE
CW:=2; CW:=2;

V:=V-I;

I TRUE
7

CW:=I;

Fig. 6. Reduced execution tree of the transition statement

Fig. 6 presents the result of applying these reductions to the example. One can
nosice that, since reducible occurrences of variables have been replaced, there is
no more dependency of expressions with respect to assignment statements. Now.
when a variable occurs in an expression, it is evaluated to the value it had as the
start of the zone, i.e. a~ the end of the previous simulasion cycle, as it happens
in the abstract machine.

4 . 5 D e c i s i o n D i a g r a m s fo r A s s i g n m e n t s t o O b j e c t s

In the simplified execution tree, assignments co objects (signals or variables)
are independent of each other. Thus, in order to determine their characteristic

303

function, it is sufficient to create, for each assigned object O, a copy of this tree
and to remove all vertices that contain assignments to other objects to get a
simple decision diagram that gives the value assigned to 0.

Fig. 7 shows the result of this operation on the example.

Assignments to signal F

<condO> <cond2>

i f g <: (V = 8) ; if

/ V >=, 8 V >= 8

g <= (V+". :, S) ; P' <= (V = 8) ; g <= (V+I :, 8) ; F <= (V = 8,);

Assignments to variable V:

<condO>

if V := V + 1;

~ V < S

V : = Y + I ;

if
<cond2>

if V := V- i:

~ V < 8

V := V - I;

Assignments to variable CW

<c ondO> <toad2>

if CW :s I; CW :-- 2; if CW := i;

CW := 2; CW := 2; CW := 2; CW := 2;

Fig. 7. Result decision diagrams.

4.6 Generat ion of the Abstract Machine

In order to elaborate the abstract machine, we suppose the existence of a mor-
phism �9 (see e.g. [6]), from the VHDL value domains to the value domains of
the abstract machine. To simplify this presentation, we use �9 on type names as

304

well as on expressions. In the following, types, operators and objects of VHDL
are written using the ~;ypeuril;er s~:yle. For instance:

4(BOOLEAN) -- ~ ,
4(A and not A) = 4(A) A -~,t(A) = t~'~e,
4(NAT~AL) = {~ ~ ~ l 0 < ~ < 4(~AT~AL'HIGH)},
4(4 - 2) = 4 - 2 = 2

Given a process statement, we elaborate an abstract machine according the
following general guidelines:

1. every signal S that appears in an expression within the process statement
part elaborates an input variable 4 (e l f (S)) that carries its effective value,
a signal that appears in a sensitivity list elaborates a boolean input variable
4 (ev(S)) , true whenever an event occurs on this signal,

2. every variable V of the process statement part, that has not been eliminated,
elaborates a state variable 4(V) that carries its current value,

3. every signal S that appears as a target of a signal assignment statement
within the process statement part elaborates 4 (d r_va l (P , S)), an output
variable that carries the current value of its driver,

4. initial values of the elaborated variables (point 2) elaborate the initial state,
5. decision diagrams associated to the elaborated variables (point 2) elaborate

the transition function,
6. decision diagrams associated to the elaborated outputs (point 3) elaborate

the output function,
7. the condition clause of the unique wait statement elaborates the stability

condition.

The elaboration of the transition functions is based on an interpretation ~ of the
decision diagrams of the assigned objects using the morphism 4. ~ takes into
account the fact that when an object is not assigned, it keeps its previous value.

interprets decision diagrams in terms of case-based function definitions. It is
inductively defined in terms of the structure of the decision diagrams:

- the base case is the assignment statement vertex, its interpretation is defined

by: 0 := E; ---+ 4(E)
- the general case is an if vertex, its interpretation is defined by:

!. if the object is a variable:

i f

/
V1 "'" V~

2. if the object is a signal:

i f

/
VI -. . V~

[Vi , l < i < n, if4(Ci) then "~(Vi)
~. if (-~ V~=~ 4(Ci)) then 4(0)

Vi, l < i < n, if q~(C~) then :3(Yi)
if (-, V~= 1 4(C~)) then 4 (e l f (0))

305

The stability condition sc is elaborated from the wait statement. The wait state-
ment being ~ail; un~;il cond, the stability condition is sc = -~4~(cond)

5 Principles of Composition

We have presented the principles that guide the elaboration of abstract machines
from a process statement. In this section, we give an informal presentation of
the composition mechanism that applies to such elaborated abstract machines,
and correspond to the following compositions of concurrent statements:

- parallel composition of abstract machines, corresponding to VHDL concur-
rent composition,

- declaration encapsulation mechanism that occurs in 'block' statements and
'architecture bodies',

- hierarchy with component instantiation statements.

These compositions are not associative: when elaborating a block statement or
an architecture bodyl the whole instruction part must be elaborated (by means of
parallel compositions) before the declaration encapsulation is done. We conclude
this section by giving an evaluation of the complexity of the generated model.

5.1 Para l le l Composition

Concurrent statement composition occurs in architecture and block statement
parts. 2dl = <I1 ,S l ,Ol , so i , lVS1 ,NOl , scl) and ./%42 = <I~.,S~,02, so2, NS,.,
NO2, sc~.) being two abstract machines, the parallel composition of j~ 1 and .,9t2
is the abstract machine ,,bt = (I, S, O, so, NS, NO, sc}, such that:

1. I = /1 U I2, corresponds .to the union of the variables that carry effective
values of signals read in the composed concurrent statements.

2. S = S1 U S"-, is the union of the variables that carry current values of VHDL
variables. Since variables are objects local to a concurrent statement, S1 N S.~
must be the empty set 2.

3. O = O1 UO,., is the union of the variables that carry current values of signals
driven in the composed statements. The drivers being distinct, O1 N 02 must
be the empty set.

4. so = s01 o s01, is the concatenation of the initial states of the composed
abstract machines.

5. N S = NS1 • NS2, the transition function of the composition is the product
of the transition functions of the composed abstract machines.

6. NO = NO1 • NO., the output function of the composition is the product of
the output functions of the composed abstract machines.

7. sc = s c l A sc2, states of the product machine are stable if the states of both
machines are stable.

2 To ensure that variables declared in different process statements are elaborated to
distinct objects, the elaboration is done from a unique context-based VHDL name
and not the local name of the variable.

306

5.2 Declaration Encapsulation

Declaration encapsulation of signals occurs in block statements and architecture
bodies.

Block S t a t e m e n t : Let J~4 = (I, S, O, so, NS, NO, so) be the abstract machine
elaborated from the statement part of the block statement, Sa the set of signal
declarations of its declarative part. The abstract machine elaborated from the
block statement is j ~ , = (Ie, S,, 0--, so--, NS. , NO--, sc,). The variables in ,%4
that correspond to elements of Sa should not belong to the interface but to the
internal variables of the result abstract machine Me. Furthermore, the kernel
activity that corresponds to the update of the effective values of these local
signals is modeled at the level of the block statement, by their transition function.
We say that the kernel activity is distributed along the hierarchy in the design
entities.

j~-- is such that:

i. I, = I - ({~(e~f(s)) E I [s 6 Sd} U {~(ev(s)) e I [s E Sa}): inputs
variables of J%4, are variables that represent the effective values and the
events on signals that are not in Sa,

2. S, = Su{~(e~(s)) ~ f I .~ ~ &}U{r I s ~ S~A~(ev(s)) ~ I}:
state variables are added to the result abstract machine to represent the
effective values of all the signals declared locally and the previous effective
values for the local signals which events affect the behavior of the local
statements,

3. Oe = O - { r E O] s E Sd}: the outputs of the result abstract
machine are variables that represent the current values of the drivers of
signals that are not declared in the local declarative part,

4. the initial state so, is equal to So augmented with the initial values of the
new variables introduced in 2,

5. the transition function NS.. is the product of NS with the atomic transi-
tion functions for the new state variables. The atomic transition function
associated to a variable ~(p_eff (S)), for some local signal S, is defined by:
Nb~(p_,r = 4~(ef~(S)). The atomic transition function associated to
a variable r for some local unresolved signal S, which appeared
as output Oi in .~ and whose associated output function was NOi, is:
NSr = NOr The atomic transition function associated to a variable
~5(eff(S)), for some local resolved signal S, states that the next effective
value is equal to the resolution function ~ of S applied to the values of the
n corresponding 4~(dr_val (P, S)) output variables of ~4:

~vs+(.~cs)) (~ , So) = ~(~vo~ ([, S), . . . N0~ (~', S))

6. the output function NO. is the function equal to N0 where all the atomic
output functions of the encapsulated output variables are removed.

Furthermore, the formula ~(e:f:f(S)) ~ 4~(p_eff(S))) replaces each occur-
rence of a variable that represents 4)(ev(S)) for some local signal S in the output
and transition functions.

307

A r c h i t e c t u r e B o d y : In the case of an architecture body, the ports and signals
of the corresponding entity declaration have also to be considered. The signal
declarations of the entity declaration and the architecture body are encapsulated
like the signal declarations that occur in a block declarative part (see above).
Once these signal declarations have been encapsulated, the result abstract ma-
chine should have as remaining input and output variables those that correspond
to the ports of the entity.

Let J~ = ([, S, O, so, NS, NO, sc) be the abstract machine elaborated from
the architecture statement part. Let Pin, Pou~, Pi,~o,,t be the set of ports of the
entity declaration, according to their direction, and Sa the set of signals declared
locally to the architecture and the entity. The encapsulation of all the above
signals produces an abstract machine ~%'te = (I~, Se, Or, s0e, N Se, NO.., sc~), such
that:

1. s = 1 - { ~ (e ~ (s)) ~ I I s E &} U {r ~ I [s e &}),
C: {r t s s P~ U P~o~} U {s 1 s e P~. U V~.o.t}

input variables of Me represent the effective values and the events on the
entity ports of mode in and inou% which are read in the architecture (ports
which never appear in the architecture statement part are left out),

2. & = Su {r E / l s e Sd}u{~(p-eZf(s)) t s E Sd Ar e [}
state variables are added to the result abstract machine to represent the
effective values of all the signals declared locally and the previous effective
values for the local signals whose events affect the behavior of the local
statements,

3. O_~ = {4)(dr_val(A,s)) [s ~ PoutUPinout} the outputs of the result abstract
machine are variables that represent the current values of the drivers of the
entity ports of mode ou~; and inoul;,

4. the initial state s0~ is defined as for a block statement,
5. the transition function NS~ is defined as for a block statement,
6. the output function NOr is the vector of the atomic output functions of the

abstract machine outputs.
For a port P, for which no output variable has been elaborated in machine
.,%4 (the port is neither assigned nor the output of an internal component),
the output function is NOv(dr_.,,l(A,p))(I~, S..) = 4~(E), where E is the inkial
value of P.
For an unresolved port P, for which a single output variable has been elab-
orated in machine ..k4 and whose associated output function was NOi, the
output function in .k4~ is equal to NOi.
For a resolved port ?, for which one or more output variables have been elab-
orated in machine ,~ and whose associated output functions were NOt,...
,NOp, the output function in . , ~ is:

�9 (~._..~(,.~,)(I~, S~) = ~(,.VOt (Z, S)VO,, (I, S)).

As for block statements, the formula ~5(eff(SIG)) 7~ 4)(p_eff(SIG))) re-
places each occurrence of a variable that represents ev(S) for some local signal
S in the output and transition functions.

308

C o m p o n e n t I n s t a n t i a t i o n S t a t e m e n t s : The elaboration of a component
instantiation s ta tement directly derives from the previous section. The compo-
nent is configured to an architecture A and an entity E. A copy of the abstract
machine elaborated from design unit E(A) is brought to the statement part of
the block or architecture in which the component is instantiated. All the local
objects of the component instance are renamed by prefixing them with the label
of the component instantiation statement.

Formal po r t s which are associated to an actual signal in the port map aspect
are renamed with the name of the actual signal. Formal ports which are open
in the port map aspect are renamed by prefixing the component formal name
with the label of the component instantiation statement. For a formal port P of
mode in which is associated to an expression E, all occurrences of the variable
~ (e f f (p)) are replaced by the value r of this expression, all occurrences of
the variable r are replaced by the value fa lse , and these variables are
removed from the inputs of the abstract machine.

C o m p l e x i t y o f t h e G e n e r a t e d A b s t r a c t M a c h i n e : The kind of elaborated
abstract machines is very likely to serve as a basis for BDD-based verification
techniques. Therefore, a good measure to evaluate the complexity of the model
is the number of boolean propositions needed to encode the different variables
of the abstract machine.

A VHDL design unit with n in ports i_l,. . , i_a, p ou~; ports o_1,.., o_p, q
internal signals s_l s_q, r process p_l,.., p_.v, each with vi variable declarations
p_i_v_l,.., p~_v.L and wi wait statements, (1 < i < r), elaborates a binary-
encoded abstract machine such that3:

- The number of input variables is: ~ = l Flog li.k'TYPEH +[{i--k [t r ig(i .k)}[.
The first term of this sum represents the number of variables needed to
encode the VHDL in ports, the second term is the number of variables
needed to encode events on the in ports the processes of the design are
sensitive to.

- the number of output variables is: ~-~=1 [l~ I~ "
- the number of state variables is:

E%=~ [l~]s_k'TYPEI] + Etrig(s..k) Flog I-~• 'TYPEI]
+ E ~ = I Flog Iw~ + 11] § E~,=~ E ~ : I Flog ip..k_v_j 'TYPEI] �9

The first term of this sum represents the number of variables needed to
encode the VHDL local signals, the second term is the number of variables
needed to encode the previous effective values of the signals to which the
processes of the design are sensitive, the third term is the number of variables
needed to encode wait counters, and the last term is the number of variables
needed to encode the variables declared within process statements.

3 We use the predicate trig(O) to say that a process statement is sensitive to an object
�9 0, the notation ISI to represent the cardinality of the set S.

309

These are worst case figures. For instance, a process statement with a single
final wait statement need not have a wait counter variable. This situation occurs
quite frequently, since it corresponds to processes with sensitivity list and to
concurrent signal assignments.

6 Conclusion

In this article, we have presented the semantics of a core VHDL that has the
following theoretical restrictions with respect to the full language: types and
executions must be finite, and no quantitative timing informations are allowed.
Other restrictions in this paper (such as the non-inclusion of composite types)
are not fundamental in nature and were made only to focus on the fundamental
aspects of our approach. These semantics show how VHDL design units can be
used to elaborate an abstract machine that can be considered as a symbolic
model. This model is composed of a finite state machine where each transition
captures one VHDL simulation cycle, and a stability condition that represents
the states of the model that correspond to quiet states of the VHDL model.
Under this form, the abstract machine behaves like a zero-delay reactive system.
Hence, it is possible to verify strictly qualitative temporal properties (by means of
symbolic model checking) or observational equivalence, at the level of delta cycles
or at the level of quiet states. Under the current form, the model is applicable
to synchronous as well as asynchronous circuits where propagation delays are
abstracted to evaluation cycles.

In addition to an on-going realization Of a symbolic model checker based on
these semantics, it is our intention to investigate how this model can be used
to study the reachability of stability conditions based on the stability of inputs
in order to verify sequential circuits synchronized by one or more clocks. We
have the intuition that a previous finite state machine model [4] which assumed
strict restrictions on signals assigned under the condition of a clock pulse could
be derived as a special case of the abstract machine model presented here. This
could lead to a hierarchy of models where this model could serve as a validation
of the simplifying assumptions made in the other one. More work is needed to
bring formal justifications to the above statements.

Acknowledgements: This work has been partially supported by the CEC ES-
PRIT CHARME project N~ and the CHARME2 Working Group N~
The authors are grateful to their partners of CHAP~ME for many enlightening
discussions and fruitful co-operation over several years. They would also like to
thank Prof. Ed Clarke and Marius Minea for useful comments on a previous
presentation of this work.

R e f e r e n c e s

I. C. BAYOL, B. SOULAS, F. COP.NO, P. PP~INETTO, and D. BORKIONE. A process al-
gebra interpretation of a verification oriented overlanguage of VHDL. In Euro-DA C

310

with Euro-VHDL'9$; pages 506-511, Grenoble, France, Sep. 1994. ACM/IEEE,
IEEE Computer Society Press.

2. W. DAMM, B. JOSKO, and R. SCHLSR.. Specification and Validation methods for
Programming Languages and Systems, chapter Specificatior~ and Verification of
VHDL-based System-Level Hardware Designs, pages 331-410. 0 ~o rd University
Press, 1995. E. BSrger, editor.

3. K. DAVIS. A Denotational Definition of the VHDL Simulation Kernel. In I1 th
International Symposium on Computer Hardware Description Languages and their
Applications, pages 509-521, Ottawa, Canada, 1993.

4. A. D~zrtEm and D. :IAmLET. Synchronous description in VHDL for formal proof
and resulting guidelines proposed by BULL. Advanced report, BULL Pro-
duits SystSmes DSpartement Drveloppement AssistS, rue Jean Jaures~B.P. 68-Les
Clayes-sous-Bois-France, July 1992. BULL/92.0001 rev.A.

5. C. DELGADO KLOOS and P. Bl~uErti editors. Formal Semantics for VHDL, vol-
ume 307 of Series in Engineering and Computer Science. Kluwer Academic Pub-
lishers, Boston, March 1995.

6. R. HERR,MANN and H. PARGMANN. Computing binary decision diagrams for VHDL
data types. In Euro-DAC with Euro-VHDL '9~, Grenoble, France, Sep. 1994.

7. IEEE. IEEE Standard VHDL Language Reference Manual, 1993. Std 1076-1993.
8. B. Lv, vy, I. FmrePENKO, L. MARKUS, and T. MENAS. Using the State Delta Ver-

ification System for Hardware Description. In V. Stravidou. T. Melham, and
R. Boute, editors, Theorem Provers in Circuit Design, pages 337-360, Nijmegen,
Netherlands, June 1992. IFIP A-10, North Holland.

9. S. OLCOZ and J. COLON. A Pegri net approach for the analysis of VHDL descrip-
tions. [n G. Milne and L. Pierre, editors, Correct Hardware Design and Verification
Methods, volume 683 of Lecture Notes in Computer Science, pages 15-26, Aries,
France, May 1993. ESPRIT WG 6018 and IFIP WG 10:2, Springer Verlag.

10. A. SALEM and D. BOP~IONE, VHDL for simulation, synthesis, and formal proofs
of hardware, chapter Formal semantics for VHDL timing constructs. Kluwer inter-
national series in engineering and computer science. Kluwer Academic Publishers,
1992. I. Mermet editor.

11. I. VAN T.~.SSEL. A formalisation of the VHDL simulation cycle. Technical Report
249, University of Cambridge, Cambridge, March 1992.

