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Abstract. A categorical semantics is proposed for the notion of architectural connector 
in the style defined by Allen and Garlan which adopts notions of parameterisation similar 
to those developed for Abstract Data Type specification, and adapts them to formalisms 
for parallel program design. We show how many of the claims made in [1] can be 
formally substantiated, and generalised to formalisms other than CSP. Finally, we show 
how the categorical formalisation lends itself to useful generalisations of the notion of 
connector, namely through the use of multiple formalisms in the definition of the glue and 
the roles. 

1 Introduct ion 

Archi tec tura l  connectors  have emerged  as a powerfu l  tool for suppor t ing  the 
descript ion of  the overall  organisation of systems in terms of components  and their 
interactions [18]. According to [1], an architectural connector (type) can be defined by 

a set of  roles and a glue specification. For  instance, a typical client-server architecture 
can be captured by a connector  type with two roles - cl ient  and server  - which 
describe the expected behaviour of  clients and servers, and a glue that describes how 
the activities of the roles are coordinated (e.g. asynchronous communicat ion between 
the cl ient  and the server). The roles of  a connector type can be instantiated with 
specif ic  components  of  the system under construction, which leads to an overal l  
system structure consisting of  components  and connector instances establishing the 
interactions between the components. 

The similarities between architectural constructions as informally described above and 

parameterised programming [13] are rather striking and have been recently developed 
in [14]. The view of  architectures that is captured by the principles and formalisms 
used in paramete r i sed  p rogramming  is reminiscent  of  Module  In terconnect ion 
Languages and Interface Definition Languages. This perspective is somewhat different 
from the one fol lowed in the work of  Allen, Garlan and other researchers in Software 
Architectures which focuses instead on the organisation of  the behaviour of systems 
as composi t ions of  components  ruled by protocols for communicat ion and synchro- 
nisation. As explained in [1], this kind of  organisation is founded on interaction in 
the behavioural  sense, which explains why formalisms like CSP and C H A M  [2] are 
preferred to the functional flavour of  equational specifications. 

In this paper,  we propose ourselves to show that the mathematical  "technology" of  

(*) This work was partially supported by the Esprit WG 8319 (MODELAGE) and through 
contracts PRAXIS XXI 2/2.1/MAT/46/94 (ESCOLA) and PCSH/OGE/1038/95 (MAGO). 
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parameterisation is also very relevant for the formalisation of architectural connectors 
in the interaction sense, namely when used in conjunction with recently proposed 
algebraic approaches to parallel program design [ 10], in the tradition of the categorical 
approach to General Systems Theory also developed by Goguen [12]. We extend the 
preliminary work that we presented in [9, 16], bringing together architectural 
principles and the categorical approach to reactive system specification and design, and 
focus explicitly on the semantics of the notion of formal connector by abstracting 
from the definition given in the language WRIGHT [1] using CSP. We show how 
many of the claims made in [1] can be formally substantiated, and generalised to 
formalisms other than CSP. Finally, we show how the categorical formalisation 
lends itself to useful generalisations of the notion of connector, namely through the 
use of multiple formalisms in the definition of the glue and the roles. 

More concretely, in section 2, we propose a formalisation of the notion of 
architectural connector in a category of (extended) COMMUNITY programs [10]. In 
section 3, we abstract the structural properties of the formalisms that are necessary to 
support the notion of architectural connector and compare the proposed formalisation 
with the notion of parameterised specification. In section 4, we generalise the 
proposed notion of architectural connector and corresponding instantiation 
mechanisms by allowing the roles (the formal parameters) to be defined in a 
formalism that is more abstract than the one in which the glue is described. 

2 Archi tectural  Connectors  in COMMUNITY 

Formal approaches to software architectures in the interaction sense use languages 
that are typical of concurrent system specification and design like CSP and CHAM. 
To illustrate the categorical approach that we wish to put forward for formalising 
architectural connectors and their relationship to parameterisation, we will use an 
extension of the program design language COMMUNITY presented in [10] with non- 
deterministic assignments. COMMUNITY is similar to IP [11] and UNITY [5]. 

A COMMUNITY program P has the following structure: 

p - dam <I;,qb> 
vat V 
r e a d R  
init I 
t{O g~F g" [B(g) ~ a~D(g)ll a:=F(g,a)] 

where 
�9 <2;,qb> represents the data types that the program uses; to support more abstract 

levels of program design, we work with specifications of these data types, i.e. 
E=<S,~> is a signature in the usual algebraic sense and qb is a set of (first- 
order) axioms over E defining the properties of the operations; if we are 
working at the level of a programming language, we take <E,qb> to be an 
abstraction of the properties of the data types supported by that language; 

�9 V is the set of local attributes (i.e. the program "variables"); each attribute is 

typed by a data sort in S; 
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�9 R is the set of  read-only attributes used by the program (i.e. attributes that are 
to be ins t an t i a t ed  wi th  loca l  a t t r ibutes  o f  o ther  componen t s  in the 
environment);  each attribute is typed by a data sort in S; 

�9 F is the set of action names; each action name has an associated statement (see 
below) and can act as a rendez-vous point for program synchronisation; 

�9 I is a condition on the attributes - the initialisation condition; 
�9 for every action ge  F, B(g) is a condition on the attributes - its guard; 
�9 for every action gc  F and attribute a~ D(g), F(g,a) is an expression denoting a 

set; each time g is executed, a is assigned one of  the values denoted by F(g,a),  
chosen in a non-deterministic way. 

De f in i t i on  2.1: A program signature is a triple <Z ,V,R ,F>  where 
�9 Z is a signature <S,f~> in the usual algebraic sense [6] - S is a set (of sort 

symbols)  and g2 is an S*xS-indexed family (of function symbols). 
�9 V and R are S-indexed families of  sets where S is the set of  sorts. 
�9 F is a 2V-indexed family of sets. We  denote by D(g) the type of  each g in F 

(the set of  attributes that action g can change). We  also denote by D(a), where 
a~ V, the set of actions that can change a, i.e., D(a)={ ge  F:a~ D(g)}. 

Al l  these sets of  symbols are assumed to be finite and mutually disjoint. | 

De f in i t i on  2.2: A program is a pair  <0,A> where 0 is a signature <Z ,V ,R ,F>  and 
A, the body of the program, is a quadruple <qb,I,F,B> where 

�9 qb is a (first-order) axiomatisation of the data type; 
�9 I is a proposit ion over the local attributes (V); 

�9 F assigns to every action gc  F a non-deterministic command, i.e. F maps every 
attribute a in D(g) to a set expression F(a); 

�9 B assigns to every action g~ F a proposition over the attributes (V and R). | 

For  simplicity,  whenever Booleans are used as data types, we abbreviate proposit ions 
of  the form (t=true) to t. We also denote any singleton set by its element. 

A model-theoretic semantics of COMMUNITY is presented in [10] for the deterministic 
fragment. Its extension to non-deterministic assignments is straightforward. 

As an illustration of  the use of  COMMUNITY for defining architectural connectors,  
consider  the s imple case of  a producer-consumer  architectural style. It is easy to 
recognise  in such a connector  two roles - producer  and consumer  - which are 
connected.to a buffer - the glue. 

The fo l lowing program captures the behaviour  of  a bounded buffer. It can store 
elements of  sort elem (which are given by the environment through its read-variable  
val), as long as there is space for them, and it can discard stored elements as long as 
there are such elements in the buffer. 

p r o g r a m  buffer is 
vat b : queue(elem), size : nat 
read val : elem 
init b=empty A size=0 
do get : [size>0 ~ b:=dequeue(b) II size:=size-1] 

I] put : [size<bound ---> b:=enqueue(val,b) II s ize:=size+l]  
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For simplicity, we have omitted the specification of the underlying data type, which 
must include queues and the constant bound of sort integer. The fact that queues are 
not readily available in programming languages as data types reinforces the suitability 
of COMMUNITY for more abstract levels of design. 

Consider now the roles of the connector, which must define the intended behaviour of 
producers and consumers. For the producer, we require a program capable of 
successively producing new values (which are put in the local attribute sval) and 
sending them. If we do not want the role to commit (yet) to a particular way of 
producing new elements, we cannot fully specify the effects of the action produce. 
The instances of the role should be able to adopt their own discipline of production 
because such details of production are not relevant for the communication with the 
buffer. Hence, we have to choose a non-deterministic assignment. In fact, we have to 
choose the most non-deterministic assignment to allow for arbitrary instantiations. 
Intuitively, the most non-deterministic assignment is represented by the set of all 
possible assignments. The corresponding set-expression is the sort symbol itself. 

p rogram producer is 
vat sval : elem, ready : bool 
init ---ready 
do produce : [--xeady --+ sval:=elem I1 ready:=true] 

[] send : [ ready ---> ready:=false] 

The consumer role can be deterministically programmed: 

p r o g r a m  consumer is 
vat rval : elem 
read" b : queue(elem) 
init true 
do receive : [true ~ rval:=first(b)] 

It remains to discuss how both roles can be connected to the glue. 

In the architectural description language WRIGHT [1], the roles and the glue of a 
connector are described as CSP processes. The connections (channels) between these 
different processes arise from the fact that they use the same alphabet - the same 
name used in the role and the glue means a synchronisation point (a channel). Because 
locality of names is enforced in Category Theory, COMMUNITY requires name 
bindings (channels) to be made explicit. Name bindings in COMMUNITY can be easily 

made via signature morphisms. 

Defini t ion/Proposi t ion 2.3: Given program signatures 01=<E1,V1,R1,FI> and 
02=<Z2,V2,R2,F2 >, a signature morphism cs from 01 to 02 consists of a morphism 
between Z1 and Z2 [6] together with a pair (Ccc:VIuR1---~V2uR2, cy~:F1---~F2) of 

functions such that, 
1. For every s~ S and for every a~V1 s, eYcc(a)~ V2 s. 
2. For every se S and for every ae Rls, ~cc(a)~ (V2sUR2s). 
3. For every a~ V1, eY~(Dl(a))=D2(Crct( a))- i 

Program signatures and morphisms constitute a category SIGN 

For instance, in the case of the connection between the producer and the buffer, we 

need the channel (signature) 
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s i g n a t u r e  channel is 
read x:elem 
do a 

The morphisms that perform the required bindings are <x~  sval, a ~  send> between 
channel and producer, and <x~  val, a ~  put> between channel and buffer, meaning 
that the buffer reads the value of the local attribute sval of the producer, and the buffer 
and the producer synchronise in the pair <send,put>. 

The intended semantics of such a connector in WRIGHT [1] is the parallel composition 
(in CSP) of the glue and the different roles. We have already shown [10] that parallel 
composition in COMMUNITY is captured through the colimits of the diagrams that 
depict the interconnections between the components. Hence, it seems intuitive that 
we take the colimit of the diagram that shows how the roles are connected to the glue 
for the semantics of the connector. 

Indeed, program morphisms (which are also called superposition morphisms because 
they capture relationships between programs that are known in the literature as 
superposition or superimposition [5,11]), can be defined such that a category of 
programs is obtained: 

Def ini t ion/Proposi t ion 2.4: A superposition morphism ts:<01,Al>-+<02,A2> 
is a signature morphism cY:01--~02 such that 

1. �9 2 >02 G(O1). 
2. Forall g l e F l , a l e D l ( g l ) ,  

O2 F02 B2(O(gl)) ~ (F2(O(gl),O(al))_ O(Fl(gl,al))). 
3. �9 2 D02 (I 2 D tJ(I1) ). 
4. For every gl e F1, 02 ~02 (B2(O(gl))D ~Y(Bl(gl))). 

where b 0 means validity in the first-order sense. 

Programs and superposition morphisms constitute a category PRO G. | 

Requirement 1 provides us with a morphism of data type specifications as usual. 
Requirements 2 and 3 correspond to the preservation of the functionality of the base 
program: (2) the effects of the instructions can only be preserved or made more 
deterministic and (3) initialisation conditions are preserved. Requirement 4 allows 
guards to be strengthened but not to be weakened, as in regular superposition. 

Proposit ion 2.5: The category PRO G is finitely cocomplete. 

Basically, pushouts (which are the elementary configuration diagrams) work as 
follows [10]: 

�9 actions are synchronised according to the rendez-vous points established by the 
actions of the channel and the morphisms; the resulting joint actions have the 
following properties: 

- their domain is the union of the domains of the joined actions; 
- they perform the parallel composition of the assignments that the joined 

actions have in common; 

- they are guarded by the conjunction of the guards of the joined actions; 
�9 the initialisation condition of the resulting program is given by the conjunction 

of the initialisation conditions of the component programs. 
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However, if channels (signatures) are used in the connections (bindings), the 
connector does not provide a diagram of COMMUNITY programs but of signatures. 
Because, as in [1], we want to obtain a program as the semantics of connectors, we 
have to map the channel (signature) into a program. This mapping is very easily 
defined because there is a straightforward way of assigning a canonical program to 
every channel (signature), and likewise for morphisms. 

The required relationship between signatures and programs is formalised as follows: 

Proposition 2.6: The category SIGN of program signatures is fully embedded in 
the category PRO G of COMMUNITY programs. 

proof: consider the mapping f'.SIGN---~PRO G that, to every signature <2,V,R,F>, 
assigns the empty program, i.e. 

~<E,V,R,F>)  = data <2,0>  
vat V 
readR 
init true 
do gear g: [true ~ II a:--Sa] 

a~ D(g) 

It is easy to see that Fextends to a functor and is a full embedding, l 

Using this embedding, the configuration diagram that formalises the connector is: 

F(channel) F(channel) 

sval ~ x / ~ N  x ~  val b ~ x / ~  x ~  b 
send ~ a a~  put get ~ a a ~ receive 

producer buffer consumer 

The meaning of the connector represented by this diagram is the program returned by 
the colimit of this diagram which, according to 2.5, always exists. This colimit 
corresponds to the parallel composition of buffer, producer and consumer with the 
following restrictions: buffer and producer have to synchronise on actions put and 
send, buffer and consumer have to synchronise on actions get and receive, the read 
attribute val of buffer is instantiated with sval of producer and the read attribute b of 
consumer is instantiated with the attribute b of buffer. This program is given, up to 

isomorphism, by 
program producer-buffer-consumer is 
vat b : queue(elem), rval,val : elem, size : nat, ready : bool 
init b=empty A size=0/x ---xeady 
do produce : [--,ready ---> val:=elem II ready:=true] 

get : [size>0 --~ b:=dequeue(b) I] rval:=first(b) II size:=size-1] 
I put : [size<bound ^ ready 

b:=enqueue(val,b) I[ size:=size+l II ready:=false] 

What we have described are connector types in the sense that they can be instantiated. 
More concretely, the roles of a connector type can be instantiated with specific 
programs. In WRIGHT [1], role instantiation has to obey a compatibility requirement 
(expressed via a refinement relation) which in COMMUNITY is again captured via 
morphisms. Hence, role instantiation can be performed in much the same way as in 
algebraic specifications [3] through afitting morphism. 
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An example of instantiation is the following: 

producer 
/ 

read ~ produce / sval~ sval 

send ~ send ~ ready~ ready 

reader 

with programs reader and writer defined as follows: 
program reader is 
vat val : elem, ready : bool 
read r : elem 
init --ready 
do read :[--,ready 

val:=r l[ ready:=tme] 
B send: [ready ~ ready:=false] 

c o n s u m e r  

get ~ get I rval~b~ brval 

writer  

program writer is 
vat rval : elem, ready : bool 
read b : queue(elem) 
/n/t ready 
do get: [ready 

rval:=first(b) II ready:=false] 
U write : [~ready -4 ready:=true] 

The result of the instantiation is, in WRIGHT, the parallel composition of the glue 
and the role instances which, in COMMUNITY, corresponds to the colimit of the 
diagram that extends the connector configuration with the role instances. Hence, the 
proposed formalisation of connectors agrees with the one given in [1] using CSP. 

3 A r c h i t e c t u r a l  C o n n e c t o r s  a n d  P a r a m e t e r i s a t i o n  

It seems obvious that the semantics of connectors given above in COMMUNITY 
should be able to be generalised to other formalisms. We now ask ourselves which 
properties of COMMUNITY are crucial for supporting software architectures. 

Defini t ion 3.1: A formalism supporting software architectures (which we shall 
call an architectural school) consists of 

�9 a category DESC(that gives semantics to parallel program design); 
�9 a full embedding I~CHAN-->~YESC(where CHNNis a category of "channels"); 

such that DESC admits colimits of all finite diagrams in which shared objects are of 
the form 9~C) with C:CSq6qN | 

For simplicity, we usually identify the architectural school with the embedding. 

Definit ion 3.2: Consider given an architectural school F'.CHAN---~DESC. 

�9 A connection is a tuple <C,G,R,~:F(C)--~G,~t:F(C)--~R> where C:CHAS~, 

G , R : D E S C  are called the channel, the glue and the role of the connection, 
respectively, and (y and g are morphisms in DESC. 

�9 A connector is a finite set of connections with the same glue. 
�9 The semantics of a connector is the colimit of the diagram formed by its 

connections. | 

It remains to discuss role instantiation. 

Definit ion 3.3: Consider given an architectural school F.'CHAN-->DESC. 
�9 A correct instantiation of a connection <C,G,R,G:St(C)---~G, g:5(C)--~R> with 

a description P is a morphism ~:R--+P in DESC. 
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�9 A correct instantiation of a connector is a set {~i :Ri -*Pi}  of correct 
instantiations of its connections. 

�9 The resulting system is the colimit of the diagram consisting of the morphisms 
Cri: ~Ci)--->G and the compositions gti;~i:.gv(Ci)--->Pi . | 

Note that, in the diagram over which the colimit is taken, interconnections are made 
via channels, which implies that such colimits always exist. 

The categorical formalisation of these architectural notions facilitates the formulation 
and proof of some important results. For instance, the universal properties of colimits 
allows us to prove that the system that results from a correct instantiation of a 
connector is a superposition of (refines) the (semantics of the) connector. Let us 
consider, for simplicity, a connector with one role. 

R " ~176 
I 

9~C o : / ~  

) .  
p.o. -=~ S em 

The meaning of the connector is given by the pushout of <~t,o>. The system that 
results from the instantiation of the role with a component P is the pushout of 
<g;[3,o>. The morphism (that results from the universal property of the first 
pushout) from the connector to the overall system means that the system satisfies the 
properties that can be inferred at the architectural level. This is a very important result 
because it allows the properties of connectors to be understood independently of the 
specific contexts (instantiations) in which they are used. This is, actually, one of the 
claims put forward in [1] for the ability of connectors to promote reuse. 

It remains to discuss the expressive power of the proposed notion of connector, 
namely in relation to notions of parameterisafion closer to algebraic specifications. 
There are several forms of parameterisation that have been proposed in the literature 
[17]. In this paper, we take what has been called the Clear-style [3]. Parameterisation 
in this simple style can be characterised by a morphism (connecting the formal 
parameter to the body of the parameterised specification). Like for connectors, the 
instantiation of the parameter is established via a (fitting) morphism from the formal 
to the actual parameter. The specification resulting from the instantiafion is given 

through the pushout of the two morphisms. 

Hence, the main difference between the notion of connector proposed in 3.2 and a 
straightforward adaptation of the notion of parameterisation seems to be that, whereas 
for connectors the formal parameter (role) is connected to the glue via a channel, a 
parameterised description is given through a morphism from the role to the body. 

However, the difference between the two notions is not as big as it may seem. Indeed, 
if we consider the morphism that connects the role of a connector to the description 
that results from its semantics (pushout), we obtain a parameterised description that is 
equivalent to the connector in the sense that, through instantiation, they give rise to 
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the same systems (in the figure below, if the top diagram is a pushout, the bottom 
diagram is a pushout iff the outside diagram is a pushout). 

F(channel) 

r o l e / N N ~ k g l u e  

instance body 

system 

But, does the converse hold as well, i.e. can every parameterised description be 
decomposed into an interaction mediated by a channel? 

In order to understand the relevance of the question, we should analyse some of the 
implications of a positive answer. The main intuitive difference between connectors 
and parameterised descriptions and, hence, the main "novelty" of connectors, is the 
clear separation that is made between the definition of the "domain" of instantiation 
and the instantiation mechanism itself. Indeed, as shown in the definition of 
instantiation, the latter does not involve the role at all, just the channel (and the 
glue). Hence, the role has the sole purpose of defining the nature of the descriptions 
that can be used as instances, i.e. it defines the domain of the connector as an 
operator, but not its functionality. This difference is blurred in the case of  
parameterised descriptions: the formal parameter plays both roles. 

In the context of algebraic specification, it is well known that the distinction between 
the two roles is supported: only the signature of the formal parameter is used in the 
computation of the instantiation; the axioms of the formal parameter are only used to 
select the correct instantiations. 

The answer to the question above is positive in the case where the category DESC 
satisfies a property that we defined in [7] in the context of program synthesis. 

Definition 3.4: An architectural school ~CHAN-->DESC is said to be coordinated 
(and DESC is said to be coordinated over CHAg~ iff Fadmits a faithful, right adjoint 
functor U for which the units are identities. | 

In a coordinated architectural school, every parameterised description ~:F---~B can be 
decomposed into a connector by taking F as role and B as glue interconnected through 
the channel U(F) and the obvious morphisms - the counit eF and I/(U(~));e B. Indeed, 
the pushout of this diagram returns G:F--~B and idB:B--~B. 

J(U(F)) 

U ,,,7~ , 
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Proposition 3.5: In a coordinated architectural school, connectors and 
parameterised descriptions have the same expressive power in the sense that, through 
instantiation, they give rise to the same systems (they have the same semantics). | 

However, even if in coordinated architectural schools the two notions are semantically 
equivalent, they are quite different in methodological terms. When a connector is seen 
as a parameterised program, the identification of the interacting parties and their 
coordination is not explicitly specified in the sense that it may not be possible to 
abstract a glue that corresponds to the minimal control mechanisms that are necessary 
to superpose to the role in order to obtain the body. 

Indeed, it may not be possible to identify the interactions implicitly defined in the 
body and isolate them in an independent description and channel. Thus, it is no longer 
possible to claim that a connector describes an interaction between (independent) 
components. The separation between the role, the glue and their interaction through a 
channel is an intrinsic part of the notion of architectural connector and, hence, even if 
equivalent, the definition given in 3.2 carries more meaning. 

The adjective coordinated is being used because the ability to provide such a clean 
separation between individual components and their interaction through channels is 
typical of coordination models and languages [4]. 

However, many of the formalisms we know are coordinated in this sense: 

Proposition 3.6: Let ~IHEO and SIGNbe the categories of theories and signatures 
of an institution [15]. The free functor P.SIGN--~qHEO that generates the empty 
theory over every signature defines a coordinated architectural school. | 

COMMUNITY, in its extended form, also provides a coordinated architectural school: 

Proposition 3.7: The category PROG of COMMUNITY programs is coordinated 

over the underlying category SlGNof program signatures. 

proof: consider the functor 5q.SIGN---~PROG defined in the proof of 2.5. We are going 
to prove that F is a left adjoint of the forgetful functor V:PROG---~SIGN Let 
0=<Z,V,R,F> be any program signature. Because V(y(0))=0, we can take identities 
for units. Hence, it remains to prove that, for any program P, if o:0---~V(P) is a 
signature morphism, then (y defines a program morphism I/(0)---~P. All the conditions 
for a signature morphism to be a program morphism are met: the set of axioms is 
empty, the initialisation and the guards are universal, and for every g in F, for every s 
in S and a in D(g) of sort s, F(g,a)=s and for every expression e of sort s, eEs. 
Finaly, since V is trivially faithful it results that PRO G is coordinated over SIGN | 

4 Adding Abstraction to Architectural Connectors 

As already mentioned, the purpose of the roles in a connector description is to impose 
restrictions on the local behaviour of the interacting parties. In the approach to 
architectural design outlined in the previous sections, this is achieved through the 
notion of correct instantiation: the instantiation of the roles is performed with 
program morphisms. As also seen above, roles do not play any part in the calculation 
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of the resulting system. They are only used for defining what a correct instantiation 
is. This separation of concerns motivates the adoption of a more abstract formalism 
for the specification of roles. 

In this section, we will show how the choice of a specification logic to represent the 
roles leads to a more abstract notion of connector and we will characterise the 
formalisms which support this new level of abstraction in architectural design. Notice 
that, when in section 2 we extended COMMUNITY with non-determinis t ic  
assignments, the motivation was to allow for more underspecification in the 
definition of roles. That is, we were already moving in the direction of more abstract 
specification formalisms. 

In order to distinguish the roles played by the two formalisms in the definition of 
abstract connectors, we will call PRO G the category of descriptions (programs) of the 
architectural school in which we are working, and 5~'F_E the category of specifications 
(e.g. the category of theories of an institution). As explained in [8], we take the 
relationship between programs and specifications to be given through a functor 
5pec: PROG--+5~C. Given such a functor, the usual notion of satisfaction between 
programs and specifications can be generalised as follows: 

Definition 4.1: A realisation of a specification S is a pair <or,P> such that 
P:PRO G and c~ is a specification morphism S--~Spec(P). | 

In this way, programs are allowed to have features that are not required by the 
specification. Intuitively, the morphism records the design decisions that lead from S 
to P. The notion of realisation can be extended to configurations: 

Definition 4.2: Let S:I--~SPEC be a specification diagram and P:I--~PRO G a 
program diagram with the same shape. Assume that, for every node i:I, Pi is a 
realisation of 5} through a morphism rli. We say that Pis  a realisation of S through 
<qi>i:i when, for every f:i---~j in I, Sf;lqj=lqi;SiJec(Pf). | 

We are also going to assume that the category SPs specifications comes equipped 
with its own channels, i.e. with a full embedding G: x---~ SPEC, and that it is 
coordinated over X in the sense of 3.4. Again, the typical case will be one in which 
SP's is the category of theories of an institution which we know is coordinated over 
the category of signatures. 

We can now generalise definition 3.2: 

Definition 4.3: Consider given two coordinated architectural schools G:X--~SPEC 
and ~ y-BPRO G and a functor Spec: PROG---~ SPEC. 

�9 A connection is a tuple <X,G,R,~Y:G(X)--~Spec(G),g:G(X)__~R > where X:X, 
G:PROG, R:SPs are called the channel, the glue and the role of the connection, 
respectively, and ~ and g are morphisms in SPT.C. 

�9 A connector is a finite set of connections with the same glue. 
�9 The semantics of  a connector is the colimit of the diagram formed by its 

connections. | 

The usefulness of these more abstract connectors depends on the ability to synthesise 
the interconnections between correct instantiations of the roles and the given glue. 
That is, given a connection 
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6 ( X ~  '~ ' j~ .. 5pet;G) 

we should be able to synthesise an interconnection between the glue G and any correct 
instantiation of the role, i.e., any realisation of R. This means that, given 
~:R---->Spec(P) we should be able to synthesise a channel 5yn(X) in y and 
ts':F(Syn(X))-~G, g':F(Syn(X))---->P in PRO G in such a way that the given 
interconnection is respected, i.e., there exists "qG(x):G(X)---->51Jec(F(Syrt(X))) s.t. 
o='q ~(X);SFec(G') and g;[~--~ G(X);Spec(~t'). 

The problem of synthesising interconnections was adressed in [7]. The theorem 
below, one of the results proved therein, determines conditions on the schools 
involved which guarantee that the required synthesis of interconnections is supported. 

T h e o r e m  4.4:  Let G:X-->SPEC and F'.y-~PRO G be two coordinated architectural 
schools with right adjoints U:SPEC-->Xand q2.PROG-~Y. Let Spec: PROG-->SPEC and 
Chart: y-->Xbe functors such that Spec; U=V;Chan. Then, if Chan admits a left adjoint H 
such that H,'F;Spe~ G, we can synthesise interconnections - given objects S1 and $2 
of SPEC interconnected via morphisms q01: G(X)--> S 1 and q02: G(X)--->S2, and 
realisations <G1,PI>, <cY2,P2> of $1 and $2, respectively, we can synthesise an 
interconnection gl :Y->P1 and g2:Y-->P2 that realises <q01,q)2 > as follows: 

- Y is 5(X), which realises G(X) through the identity morphism; 
- gi=5(U(qli;~i));epi where a is the counit of the adjunction between Fand V. | 

D e f i n i t i o n  4.5:  A formalism supporting abstract software architectures (which we 
shall call an abstract architectural school) consists of 

�9 two coordinated architectural schools G:X--->SPs 5q.Y-+PROG; 
�9 a functor Spec:PROG~->SPI~, 

such there exists a functor Chan:y--~Xsatisfying the following properties 
- @~:; ~-- E . c f ~  

- Chan admits a left adjoint Hsuch that H;F;Spec=G. | 
The instantiation of connectors is, as before, defined by the instantiation of their 
roles. Compatibility of a component with a role is, as expected, captured by the 

notion of realisation defined in 4.1. 

D e f i n i t i o n  4 .6:  Consider given an abstract architectural school G:X--+SPEC, 
~.. Y--~PRO G and Spec:PROG-+ SPEC. 

�9 A correct instantiation of a connection <X,G,R,cy: G(X)--+Spec(G),g: G(X) --+R> 
is a realisation of R. 

�9 A correct instantiation of a connector is a set {~i:Ri--+Spec(Pi)} of correct 
instantiations of its connections. 

�9 The resulting system is the colimit of the diagram synthesised according with 

theorem 4.4 in order to realise <cYi,gi;[$i>. | 
Consider again a connector with one role (see figure below). Its meaning is given by 
the pushout of <g,~>. Because synthesis of interconnections is supported, given an 
instantiation of the role with a program P, it is possible to synthesise an 
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S ec l 
P R o G  

interconnection between programs P and G agreeing with the interconnection 
</.t;13,~> of their specifications. The system which results from the instantiation of 
the connector is given by the pushout of the synthesised diagram. 

R 

r  ~ : i 

Sped._T, H( X) ) ) - ,Spe~ G ) 

P 

/ p.o]  System 

_/  
v G 5~H(X)) 

Theorem 4.4 applied to this situation says that the resulting system is a realisation of 
the connector, that is, it satisfies the properties that can be inferred at the architectural 
level. As stressed before, this means that the properties of connectors can be 
understood independently of the specific context in which they are used. 

An illustration of an abstract architectural school can be given in terms of 
COMMUNITY as defined in section 2 and linear temporal logic. We have shown in [8] 
that a functor can be defined between the category of (deterministic) COMMUNITY 
programs and the category of temporal theories. In [7], we further showed that the two 
formalisms satisfy 4-.4. The extension to non-deterministic programs is trivial. 

5 Concluding Remarks 

In this paper, we proposed a formalisation for the notion of architectural connector in 
the sense of [1] which adopts categorical techniques developed for the parameterisation 
of algebraic specifications [17]. These techniques were adapted to formalisms for 
parallel program specification and design, namely the language COMMUNITY [10] in 
the style of UNITY [5] and Interacting Processes (IP) [11]. The proposed formal notion 
of architectural connector consists of an object glue connected to a collection of role 
objects (the formal parameters) through channels. Channels were explicitly modelled 
through a full embedding into the category of program designs, capturing the way 
interconnections are established in process design languages such as CSP and IP. 

The instantiation of roles was defined through (fitting) morphisms and the resulting 
system was defined through colimits, much in the tradition of parameterised 
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specifications in the Clear-style [3]. This semantics was shown to agree with the 
fornaalisation of connector given in [1] using CSP in the sense that colimits of 
configuration diagrams capture parallel composition of concurrent programs [ 10]. We 
also showed how the proposed formalisation fulfils the requirements stated in [1] for 
the ability to understand the behaviour of a connector independently of its use in 
specific contexts, and to reason about the compatibility between roles and instances. 

Moreover, the proposed categorical formalisation of architectural connector was 
shown to be flexible enough to allow for more abstract notion of connector in which 
the glue and the roles are defined in different formalisms or languages. We studied the 
case in which the roles are described in a formalism that is more abstract than the 
glue, e.g. a specification logic (institution) for the roles and a program design 
language for the glue. Recent results on the ability to synthesise interconnections [7] 
were used to define the corresponding instantiation mechanisms. The use of temporal 
logic and COMMUNITY as in [8] was suggested as an example. 

A comparison between the proposed notion of connector and notions of paranaeterised 
specification, in the sense of a morphism from the formal parameter (role) to a body 
[3], revealed that the body in parameterised specifications corresponds to the parallel 
composition of the glue with its roles, i.e. to the "semantics" of the connector. The 
converse representation of parameterised specifications into connectors was shown to 
be possible for categories of descriptions that are coordinated over the category of 
channels, a concept that we introduced in [7] and which captures structural properties 
of formalisms typical of coordination languages and models [4]. An open problem 
remains which consists in being able to isolate the glue from a body which intends to 
capture the joint behaviour of the roles interconnected to the glue, showing that there 
are methodological implications in the way connectors are formalised, making the 
approach based on the explicit identification of the glue and roles seem to be better 
suited for the interaction-based architectural structures in the sense that it is directly 

compositional on the structure of the system. 

Further work is indeed needed on the relationship between architectural notions in the 
interaction sense [1] and the architectural notions that are intrinsic to the use of 
Module Interconnection and Interface Definition Languages and which have been 
formalised using notions of parameterisation typical of algebraic specifications [14]. 
The formalisation of connector that we proposed in COMMUNITY actually requires an 
integration of the two perspectives. For instance, the program that modelled the 
bounded buffer relied on a specification of queues of elements. Hence, we could say 
that the program buffer was also parameterised by elem (the data type of elements) as 
well as by bound. This kind of parameterisation serves the module-based notion of 
architecture and is orthogonal to the interaction-based one: the latter focuses on 
control, i.e. on the scheduling and synchronisation of the different actions, whereas 
the former addresses the modules that are required to provide the data context (namely 
the operations) in which the transformations operated by the actions are defined. We 
intend to fur ther  develop these relationships, namely in the context of the 
parameterisation mechanisms developed in [17] for program modules as algebras, as a 
means of providing an integrated methodology for system specification and design. 
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