
PartllI

FASE

Semantics of Architectural Connectors

J . L . F i a d e i r o and A.Lopes
Department of Informatics

Faculty of Sciences, University of Lisbon,
Campo Grande, 1700 Lisboa, PORTUGAL

{ llf, mal } @ di.fc.ul.pt

Abstract. A categorical semantics is proposed for the notion of architectural connector
in the style defined by Allen and Garlan which adopts notions of parameterisation similar
to those developed for Abstract Data Type specification, and adapts them to formalisms
for parallel program design. We show how many of the claims made in [1] can be
formally substantiated, and generalised to formalisms other than CSP. Finally, we show
how the categorical formalisation lends itself to useful generalisations of the notion of
connector, namely through the use of multiple formalisms in the definition of the glue and
the roles.

1 Introduct ion

Archi tec tura l connectors have emerged as a powerfu l tool for suppor t ing the
descript ion of the overall organisation of systems in terms of components and their
interactions [18]. According to [1], an architectural connector (type) can be defined by

a set of roles and a glue specification. For instance, a typical client-server architecture
can be captured by a connector type with two roles - cl ient and server - which
describe the expected behaviour of clients and servers, and a glue that describes how
the activities of the roles are coordinated (e.g. asynchronous communicat ion between
the cl ient and the server). The roles of a connector type can be instantiated with
specif ic components of the system under construction, which leads to an overal l
system structure consisting of components and connector instances establishing the
interactions between the components.

The similarities between architectural constructions as informally described above and

parameterised programming [13] are rather striking and have been recently developed
in [14]. The view of architectures that is captured by the principles and formalisms
used in paramete r i sed p rogramming is reminiscent of Module In terconnect ion
Languages and Interface Definition Languages. This perspective is somewhat different
from the one fol lowed in the work of Allen, Garlan and other researchers in Software
Architectures which focuses instead on the organisation of the behaviour of systems
as composi t ions of components ruled by protocols for communicat ion and synchro-
nisation. As explained in [1], this kind of organisation is founded on interaction in
the behavioural sense, which explains why formalisms like CSP and C H A M [2] are
preferred to the functional flavour of equational specifications.

In this paper, we propose ourselves to show that the mathematical "technology" of

(*) This work was partially supported by the Esprit WG 8319 (MODELAGE) and through
contracts PRAXIS XXI 2/2.1/MAT/46/94 (ESCOLA) and PCSH/OGE/1038/95 (MAGO).

506

parameterisation is also very relevant for the formalisation of architectural connectors
in the interaction sense, namely when used in conjunction with recently proposed
algebraic approaches to parallel program design [10], in the tradition of the categorical
approach to General Systems Theory also developed by Goguen [12]. We extend the
preliminary work that we presented in [9, 16], bringing together architectural
principles and the categorical approach to reactive system specification and design, and
focus explicitly on the semantics of the notion of formal connector by abstracting
from the definition given in the language WRIGHT [1] using CSP. We show how
many of the claims made in [1] can be formally substantiated, and generalised to
formalisms other than CSP. Finally, we show how the categorical formalisation
lends itself to useful generalisations of the notion of connector, namely through the
use of multiple formalisms in the definition of the glue and the roles.

More concretely, in section 2, we propose a formalisation of the notion of
architectural connector in a category of (extended) COMMUNITY programs [10]. In
section 3, we abstract the structural properties of the formalisms that are necessary to
support the notion of architectural connector and compare the proposed formalisation
with the notion of parameterised specification. In section 4, we generalise the
proposed notion of architectural connector and corresponding instantiation
mechanisms by allowing the roles (the formal parameters) to be defined in a
formalism that is more abstract than the one in which the glue is described.

2 Archi tectural Connectors in COMMUNITY

Formal approaches to software architectures in the interaction sense use languages
that are typical of concurrent system specification and design like CSP and CHAM.
To illustrate the categorical approach that we wish to put forward for formalising
architectural connectors and their relationship to parameterisation, we will use an
extension of the program design language COMMUNITY presented in [10] with non-
deterministic assignments. COMMUNITY is similar to IP [11] and UNITY [5].

A COMMUNITY program P has the following structure:

p - dam <I;,qb>
vat V
r e a d R
init I
t{O g~F g" [B(g) ~ a~D(g)ll a:=F(g,a)]

where
�9 <2;,qb> represents the data types that the program uses; to support more abstract

levels of program design, we work with specifications of these data types, i.e.
E=<S,~> is a signature in the usual algebraic sense and qb is a set of (first-
order) axioms over E defining the properties of the operations; if we are
working at the level of a programming language, we take <E,qb> to be an
abstraction of the properties of the data types supported by that language;

�9 V is the set of local attributes (i.e. the program "variables"); each attribute is

typed by a data sort in S;

507

�9 R is the set of read-only attributes used by the program (i.e. attributes that are
to be ins t an t i a t ed wi th loca l a t t r ibutes o f o ther componen t s in the
environment); each attribute is typed by a data sort in S;

�9 F is the set of action names; each action name has an associated statement (see
below) and can act as a rendez-vous point for program synchronisation;

�9 I is a condition on the attributes - the initialisation condition;
�9 for every action ge F, B(g) is a condition on the attributes - its guard;
�9 for every action gc F and attribute a~ D(g), F(g,a) is an expression denoting a

set; each time g is executed, a is assigned one of the values denoted by F(g,a),
chosen in a non-deterministic way.

De f in i t i on 2.1: A program signature is a triple <Z ,V,R ,F> where
�9 Z is a signature <S,f~> in the usual algebraic sense [6] - S is a set (of sort

symbols) and g2 is an S*xS-indexed family (of function symbols).
�9 V and R are S-indexed families of sets where S is the set of sorts.
�9 F is a 2V-indexed family of sets. We denote by D(g) the type of each g in F

(the set of attributes that action g can change). We also denote by D(a), where
a~ V, the set of actions that can change a, i.e., D(a)={ ge F:a~ D(g)}.

Al l these sets of symbols are assumed to be finite and mutually disjoint. |

De f in i t i on 2.2: A program is a pair <0,A> where 0 is a signature <Z ,V ,R ,F> and
A, the body of the program, is a quadruple <qb,I,F,B> where

�9 qb is a (first-order) axiomatisation of the data type;
�9 I is a proposit ion over the local attributes (V);

�9 F assigns to every action gc F a non-deterministic command, i.e. F maps every
attribute a in D(g) to a set expression F(a);

�9 B assigns to every action g~ F a proposition over the attributes (V and R). |

For simplicity, whenever Booleans are used as data types, we abbreviate proposit ions
of the form (t=true) to t. We also denote any singleton set by its element.

A model-theoretic semantics of COMMUNITY is presented in [10] for the deterministic
fragment. Its extension to non-deterministic assignments is straightforward.

As an illustration of the use of COMMUNITY for defining architectural connectors,
consider the s imple case of a producer-consumer architectural style. It is easy to
recognise in such a connector two roles - producer and consumer - which are
connected.to a buffer - the glue.

The fo l lowing program captures the behaviour of a bounded buffer. It can store
elements of sort elem (which are given by the environment through its read-variable
val), as long as there is space for them, and it can discard stored elements as long as
there are such elements in the buffer.

p r o g r a m buffer is
vat b : queue(elem), size : nat
read val : elem
init b=empty A size=0
do get : [size>0 ~ b:=dequeue(b) II size:=size-1]

I] put : [size<bound ---> b:=enqueue(val,b) II s ize:=size+l]

508

For simplicity, we have omitted the specification of the underlying data type, which
must include queues and the constant bound of sort integer. The fact that queues are
not readily available in programming languages as data types reinforces the suitability
of COMMUNITY for more abstract levels of design.

Consider now the roles of the connector, which must define the intended behaviour of
producers and consumers. For the producer, we require a program capable of
successively producing new values (which are put in the local attribute sval) and
sending them. If we do not want the role to commit (yet) to a particular way of
producing new elements, we cannot fully specify the effects of the action produce.
The instances of the role should be able to adopt their own discipline of production
because such details of production are not relevant for the communication with the
buffer. Hence, we have to choose a non-deterministic assignment. In fact, we have to
choose the most non-deterministic assignment to allow for arbitrary instantiations.
Intuitively, the most non-deterministic assignment is represented by the set of all
possible assignments. The corresponding set-expression is the sort symbol itself.

p rogram producer is
vat sval : elem, ready : bool
init ---ready
do produce : [--xeady --+ sval:=elem I1 ready:=true]

[] send : [ready ---> ready:=false]

The consumer role can be deterministically programmed:

p r o g r a m consumer is
vat rval : elem
read" b : queue(elem)
init true
do receive : [true ~ rval:=first(b)]

It remains to discuss how both roles can be connected to the glue.

In the architectural description language WRIGHT [1], the roles and the glue of a
connector are described as CSP processes. The connections (channels) between these
different processes arise from the fact that they use the same alphabet - the same
name used in the role and the glue means a synchronisation point (a channel). Because
locality of names is enforced in Category Theory, COMMUNITY requires name
bindings (channels) to be made explicit. Name bindings in COMMUNITY can be easily

made via signature morphisms.

Defini t ion/Proposi t ion 2.3: Given program signatures 01=<E1,V1,R1,FI> and
02=<Z2,V2,R2,F2 >, a signature morphism cs from 01 to 02 consists of a morphism
between Z1 and Z2 [6] together with a pair (Ccc:VIuR1---~V2uR2, cy~:F1---~F2) of

functions such that,
1. For every s~ S and for every a~V1 s, eYcc(a)~ V2 s.
2. For every se S and for every ae Rls, ~cc(a)~ (V2sUR2s).
3. For every a~ V1, eY~(Dl(a))=D2(Crct(a))- i

Program signatures and morphisms constitute a category SIGN

For instance, in the case of the connection between the producer and the buffer, we

need the channel (signature)

509

s i g n a t u r e channel is
read x:elem
do a

The morphisms that perform the required bindings are <x~ sval, a ~ send> between
channel and producer, and <x~ val, a ~ put> between channel and buffer, meaning
that the buffer reads the value of the local attribute sval of the producer, and the buffer
and the producer synchronise in the pair <send,put>.

The intended semantics of such a connector in WRIGHT [1] is the parallel composition
(in CSP) of the glue and the different roles. We have already shown [10] that parallel
composition in COMMUNITY is captured through the colimits of the diagrams that
depict the interconnections between the components. Hence, it seems intuitive that
we take the colimit of the diagram that shows how the roles are connected to the glue
for the semantics of the connector.

Indeed, program morphisms (which are also called superposition morphisms because
they capture relationships between programs that are known in the literature as
superposition or superimposition [5,11]), can be defined such that a category of
programs is obtained:

Def ini t ion/Proposi t ion 2.4: A superposition morphism ts:<01,Al>-+<02,A2>
is a signature morphism cY:01--~02 such that

1. �9 2 >02 G(O1).
2. Forall g l e F l , a l e D l (g l) ,

O2 F02 B2(O(gl)) ~ (F2(O(gl),O(al))_ O(Fl(gl,al))).
3. �9 2 D02 (I 2 D tJ(I1)).
4. For every gl e F1, 02 ~02 (B2(O(gl))D ~Y(Bl(gl))).

where b 0 means validity in the first-order sense.

Programs and superposition morphisms constitute a category PRO G. |

Requirement 1 provides us with a morphism of data type specifications as usual.
Requirements 2 and 3 correspond to the preservation of the functionality of the base
program: (2) the effects of the instructions can only be preserved or made more
deterministic and (3) initialisation conditions are preserved. Requirement 4 allows
guards to be strengthened but not to be weakened, as in regular superposition.

Proposit ion 2.5: The category PRO G is finitely cocomplete.

Basically, pushouts (which are the elementary configuration diagrams) work as
follows [10]:

�9 actions are synchronised according to the rendez-vous points established by the
actions of the channel and the morphisms; the resulting joint actions have the
following properties:

- their domain is the union of the domains of the joined actions;
- they perform the parallel composition of the assignments that the joined

actions have in common;

- they are guarded by the conjunction of the guards of the joined actions;
�9 the initialisation condition of the resulting program is given by the conjunction

of the initialisation conditions of the component programs.

510

However, if channels (signatures) are used in the connections (bindings), the
connector does not provide a diagram of COMMUNITY programs but of signatures.
Because, as in [1], we want to obtain a program as the semantics of connectors, we
have to map the channel (signature) into a program. This mapping is very easily
defined because there is a straightforward way of assigning a canonical program to
every channel (signature), and likewise for morphisms.

The required relationship between signatures and programs is formalised as follows:

Proposition 2.6: The category SIGN of program signatures is fully embedded in
the category PRO G of COMMUNITY programs.

proof: consider the mapping f'.SIGN---~PRO G that, to every signature <2,V,R,F>,
assigns the empty program, i.e.

~<E,V,R,F>) = data <2,0>
vat V
readR
init true
do gear g: [true ~ II a:--Sa]

a~ D(g)

It is easy to see that Fextends to a functor and is a full embedding, l

Using this embedding, the configuration diagram that formalises the connector is:

F(channel) F(channel)

sval ~ x / ~ N x ~ val b ~ x / ~ x ~ b
send ~ a a~ put get ~ a a ~ receive

producer buffer consumer

The meaning of the connector represented by this diagram is the program returned by
the colimit of this diagram which, according to 2.5, always exists. This colimit
corresponds to the parallel composition of buffer, producer and consumer with the
following restrictions: buffer and producer have to synchronise on actions put and
send, buffer and consumer have to synchronise on actions get and receive, the read
attribute val of buffer is instantiated with sval of producer and the read attribute b of
consumer is instantiated with the attribute b of buffer. This program is given, up to

isomorphism, by
program producer-buffer-consumer is
vat b : queue(elem), rval,val : elem, size : nat, ready : bool
init b=empty A size=0/x ---xeady
do produce : [--,ready ---> val:=elem II ready:=true]

get : [size>0 --~ b:=dequeue(b) I] rval:=first(b) II size:=size-1]
I put : [size<bound ^ ready

b:=enqueue(val,b) I[size:=size+l II ready:=false]

What we have described are connector types in the sense that they can be instantiated.
More concretely, the roles of a connector type can be instantiated with specific
programs. In WRIGHT [1], role instantiation has to obey a compatibility requirement
(expressed via a refinement relation) which in COMMUNITY is again captured via
morphisms. Hence, role instantiation can be performed in much the same way as in
algebraic specifications [3] through afitting morphism.

511

An example of instantiation is the following:

producer
/

read ~ produce / sval~ sval

send ~ send ~ ready~ ready

reader

with programs reader and writer defined as follows:
program reader is
vat val : elem, ready : bool
read r : elem
init --ready
do read :[--,ready

val:=r l[ready:=tme]
B send: [ready ~ ready:=false]

c o n s u m e r

get ~ get I rval~b~ brval

writer

program writer is
vat rval : elem, ready : bool
read b : queue(elem)
/n/t ready
do get: [ready

rval:=first(b) II ready:=false]
U write : [~ready -4 ready:=true]

The result of the instantiation is, in WRIGHT, the parallel composition of the glue
and the role instances which, in COMMUNITY, corresponds to the colimit of the
diagram that extends the connector configuration with the role instances. Hence, the
proposed formalisation of connectors agrees with the one given in [1] using CSP.

3 A r c h i t e c t u r a l C o n n e c t o r s a n d P a r a m e t e r i s a t i o n

It seems obvious that the semantics of connectors given above in COMMUNITY
should be able to be generalised to other formalisms. We now ask ourselves which
properties of COMMUNITY are crucial for supporting software architectures.

Defini t ion 3.1: A formalism supporting software architectures (which we shall
call an architectural school) consists of

�9 a category DESC(that gives semantics to parallel program design);
�9 a full embedding I~CHAN-->~YESC(where CHNNis a category of "channels");

such that DESC admits colimits of all finite diagrams in which shared objects are of
the form 9~C) with C:CSq6qN |

For simplicity, we usually identify the architectural school with the embedding.

Definit ion 3.2: Consider given an architectural school F'.CHAN---~DESC.

�9 A connection is a tuple <C,G,R,~:F(C)--~G,~t:F(C)--~R> where C:CHAS~,

G , R : D E S C are called the channel, the glue and the role of the connection,
respectively, and (y and g are morphisms in DESC.

�9 A connector is a finite set of connections with the same glue.
�9 The semantics of a connector is the colimit of the diagram formed by its

connections. |

It remains to discuss role instantiation.

Definit ion 3.3: Consider given an architectural school F.'CHAN-->DESC.
�9 A correct instantiation of a connection <C,G,R,G:St(C)---~G, g:5(C)--~R> with

a description P is a morphism ~:R--+P in DESC.

512

�9 A correct instantiation of a connector is a set {~i :Ri -*Pi} of correct
instantiations of its connections.

�9 The resulting system is the colimit of the diagram consisting of the morphisms
Cri: ~Ci)--->G and the compositions gti;~i:.gv(Ci)--->Pi . |

Note that, in the diagram over which the colimit is taken, interconnections are made
via channels, which implies that such colimits always exist.

The categorical formalisation of these architectural notions facilitates the formulation
and proof of some important results. For instance, the universal properties of colimits
allows us to prove that the system that results from a correct instantiation of a
connector is a superposition of (refines) the (semantics of the) connector. Let us
consider, for simplicity, a connector with one role.

R " ~176
I

9~C o : / ~

) .
p.o. -=~ S em

The meaning of the connector is given by the pushout of <~t,o>. The system that
results from the instantiation of the role with a component P is the pushout of
<g;[3,o>. The morphism (that results from the universal property of the first
pushout) from the connector to the overall system means that the system satisfies the
properties that can be inferred at the architectural level. This is a very important result
because it allows the properties of connectors to be understood independently of the
specific contexts (instantiations) in which they are used. This is, actually, one of the
claims put forward in [1] for the ability of connectors to promote reuse.

It remains to discuss the expressive power of the proposed notion of connector,
namely in relation to notions of parameterisafion closer to algebraic specifications.
There are several forms of parameterisation that have been proposed in the literature
[17]. In this paper, we take what has been called the Clear-style [3]. Parameterisation
in this simple style can be characterised by a morphism (connecting the formal
parameter to the body of the parameterised specification). Like for connectors, the
instantiation of the parameter is established via a (fitting) morphism from the formal
to the actual parameter. The specification resulting from the instantiafion is given

through the pushout of the two morphisms.

Hence, the main difference between the notion of connector proposed in 3.2 and a
straightforward adaptation of the notion of parameterisation seems to be that, whereas
for connectors the formal parameter (role) is connected to the glue via a channel, a
parameterised description is given through a morphism from the role to the body.

However, the difference between the two notions is not as big as it may seem. Indeed,
if we consider the morphism that connects the role of a connector to the description
that results from its semantics (pushout), we obtain a parameterised description that is
equivalent to the connector in the sense that, through instantiation, they give rise to

513

the same systems (in the figure below, if the top diagram is a pushout, the bottom
diagram is a pushout iff the outside diagram is a pushout).

F(channel)

r o l e / N N ~ k g l u e

instance body

system

But, does the converse hold as well, i.e. can every parameterised description be
decomposed into an interaction mediated by a channel?

In order to understand the relevance of the question, we should analyse some of the
implications of a positive answer. The main intuitive difference between connectors
and parameterised descriptions and, hence, the main "novelty" of connectors, is the
clear separation that is made between the definition of the "domain" of instantiation
and the instantiation mechanism itself. Indeed, as shown in the definition of
instantiation, the latter does not involve the role at all, just the channel (and the
glue). Hence, the role has the sole purpose of defining the nature of the descriptions
that can be used as instances, i.e. it defines the domain of the connector as an
operator, but not its functionality. This difference is blurred in the case of
parameterised descriptions: the formal parameter plays both roles.

In the context of algebraic specification, it is well known that the distinction between
the two roles is supported: only the signature of the formal parameter is used in the
computation of the instantiation; the axioms of the formal parameter are only used to
select the correct instantiations.

The answer to the question above is positive in the case where the category DESC
satisfies a property that we defined in [7] in the context of program synthesis.

Definition 3.4: An architectural school ~CHAN-->DESC is said to be coordinated
(and DESC is said to be coordinated over CHAg~ iff Fadmits a faithful, right adjoint
functor U for which the units are identities. |

In a coordinated architectural school, every parameterised description ~:F---~B can be
decomposed into a connector by taking F as role and B as glue interconnected through
the channel U(F) and the obvious morphisms - the counit eF and I/(U(~));e B. Indeed,
the pushout of this diagram returns G:F--~B and idB:B--~B.

J(U(F))

U ,,,7~ ,

514

Proposition 3.5: In a coordinated architectural school, connectors and
parameterised descriptions have the same expressive power in the sense that, through
instantiation, they give rise to the same systems (they have the same semantics). |

However, even if in coordinated architectural schools the two notions are semantically
equivalent, they are quite different in methodological terms. When a connector is seen
as a parameterised program, the identification of the interacting parties and their
coordination is not explicitly specified in the sense that it may not be possible to
abstract a glue that corresponds to the minimal control mechanisms that are necessary
to superpose to the role in order to obtain the body.

Indeed, it may not be possible to identify the interactions implicitly defined in the
body and isolate them in an independent description and channel. Thus, it is no longer
possible to claim that a connector describes an interaction between (independent)
components. The separation between the role, the glue and their interaction through a
channel is an intrinsic part of the notion of architectural connector and, hence, even if
equivalent, the definition given in 3.2 carries more meaning.

The adjective coordinated is being used because the ability to provide such a clean
separation between individual components and their interaction through channels is
typical of coordination models and languages [4].

However, many of the formalisms we know are coordinated in this sense:

Proposition 3.6: Let ~IHEO and SIGNbe the categories of theories and signatures
of an institution [15]. The free functor P.SIGN--~qHEO that generates the empty
theory over every signature defines a coordinated architectural school. |

COMMUNITY, in its extended form, also provides a coordinated architectural school:

Proposition 3.7: The category PROG of COMMUNITY programs is coordinated

over the underlying category SlGNof program signatures.

proof: consider the functor 5q.SIGN---~PROG defined in the proof of 2.5. We are going
to prove that F is a left adjoint of the forgetful functor V:PROG---~SIGN Let
0=<Z,V,R,F> be any program signature. Because V(y(0))=0, we can take identities
for units. Hence, it remains to prove that, for any program P, if o:0---~V(P) is a
signature morphism, then (y defines a program morphism I/(0)---~P. All the conditions
for a signature morphism to be a program morphism are met: the set of axioms is
empty, the initialisation and the guards are universal, and for every g in F, for every s
in S and a in D(g) of sort s, F(g,a)=s and for every expression e of sort s, eEs.
Finaly, since V is trivially faithful it results that PRO G is coordinated over SIGN |

4 Adding Abstraction to Architectural Connectors

As already mentioned, the purpose of the roles in a connector description is to impose
restrictions on the local behaviour of the interacting parties. In the approach to
architectural design outlined in the previous sections, this is achieved through the
notion of correct instantiation: the instantiation of the roles is performed with
program morphisms. As also seen above, roles do not play any part in the calculation

515

of the resulting system. They are only used for defining what a correct instantiation
is. This separation of concerns motivates the adoption of a more abstract formalism
for the specification of roles.

In this section, we will show how the choice of a specification logic to represent the
roles leads to a more abstract notion of connector and we will characterise the
formalisms which support this new level of abstraction in architectural design. Notice
that, when in section 2 we extended COMMUNITY with non-determinis t ic
assignments, the motivation was to allow for more underspecification in the
definition of roles. That is, we were already moving in the direction of more abstract
specification formalisms.

In order to distinguish the roles played by the two formalisms in the definition of
abstract connectors, we will call PRO G the category of descriptions (programs) of the
architectural school in which we are working, and 5~'F_E the category of specifications
(e.g. the category of theories of an institution). As explained in [8], we take the
relationship between programs and specifications to be given through a functor
5pec: PROG--+5~C. Given such a functor, the usual notion of satisfaction between
programs and specifications can be generalised as follows:

Definition 4.1: A realisation of a specification S is a pair <or,P> such that
P:PRO G and c~ is a specification morphism S--~Spec(P). |

In this way, programs are allowed to have features that are not required by the
specification. Intuitively, the morphism records the design decisions that lead from S
to P. The notion of realisation can be extended to configurations:

Definition 4.2: Let S:I--~SPEC be a specification diagram and P:I--~PRO G a
program diagram with the same shape. Assume that, for every node i:I, Pi is a
realisation of 5} through a morphism rli. We say that Pis a realisation of S through
<qi>i:i when, for every f:i---~j in I, Sf;lqj=lqi;SiJec(Pf). |

We are also going to assume that the category SPs specifications comes equipped
with its own channels, i.e. with a full embedding G: x---~ SPEC, and that it is
coordinated over X in the sense of 3.4. Again, the typical case will be one in which
SP's is the category of theories of an institution which we know is coordinated over
the category of signatures.

We can now generalise definition 3.2:

Definition 4.3: Consider given two coordinated architectural schools G:X--~SPEC
and ~ y-BPRO G and a functor Spec: PROG---~ SPEC.

�9 A connection is a tuple <X,G,R,~Y:G(X)--~Spec(G),g:G(X)__~R > where X:X,
G:PROG, R:SPs are called the channel, the glue and the role of the connection,
respectively, and ~ and g are morphisms in SPT.C.

�9 A connector is a finite set of connections with the same glue.
�9 The semantics of a connector is the colimit of the diagram formed by its

connections. |

The usefulness of these more abstract connectors depends on the ability to synthesise
the interconnections between correct instantiations of the roles and the given glue.
That is, given a connection

516

6 (X ~ '~ ' j~ .. 5pet;G)

we should be able to synthesise an interconnection between the glue G and any correct
instantiation of the role, i.e., any realisation of R. This means that, given
~:R---->Spec(P) we should be able to synthesise a channel 5yn(X) in y and
ts':F(Syn(X))-~G, g':F(Syn(X))---->P in PRO G in such a way that the given
interconnection is respected, i.e., there exists "qG(x):G(X)---->51Jec(F(Syrt(X))) s.t.
o='q ~(X);SFec(G') and g;[~--~ G(X);Spec(~t').

The problem of synthesising interconnections was adressed in [7]. The theorem
below, one of the results proved therein, determines conditions on the schools
involved which guarantee that the required synthesis of interconnections is supported.

T h e o r e m 4.4: Let G:X-->SPEC and F'.y-~PRO G be two coordinated architectural
schools with right adjoints U:SPEC-->Xand q2.PROG-~Y. Let Spec: PROG-->SPEC and
Chart: y-->Xbe functors such that Spec; U=V;Chan. Then, if Chan admits a left adjoint H
such that H,'F;Spe~ G, we can synthesise interconnections - given objects S1 and $2
of SPEC interconnected via morphisms q01: G(X)--> S 1 and q02: G(X)--->S2, and
realisations <G1,PI>, <cY2,P2> of $1 and $2, respectively, we can synthesise an
interconnection gl :Y->P1 and g2:Y-->P2 that realises <q01,q)2 > as follows:

- Y is 5(X), which realises G(X) through the identity morphism;
- gi=5(U(qli;~i));epi where a is the counit of the adjunction between Fand V. |

D e f i n i t i o n 4.5: A formalism supporting abstract software architectures (which we
shall call an abstract architectural school) consists of

�9 two coordinated architectural schools G:X--->SPs 5q.Y-+PROG;
�9 a functor Spec:PROG~->SPI~,

such there exists a functor Chan:y--~Xsatisfying the following properties
- @~:; ~-- E . c f ~

- Chan admits a left adjoint Hsuch that H;F;Spec=G. |
The instantiation of connectors is, as before, defined by the instantiation of their
roles. Compatibility of a component with a role is, as expected, captured by the

notion of realisation defined in 4.1.

D e f i n i t i o n 4 .6: Consider given an abstract architectural school G:X--+SPEC,
~.. Y--~PRO G and Spec:PROG-+ SPEC.

�9 A correct instantiation of a connection <X,G,R,cy: G(X)--+Spec(G),g: G(X) --+R>
is a realisation of R.

�9 A correct instantiation of a connector is a set {~i:Ri--+Spec(Pi)} of correct
instantiations of its connections.

�9 The resulting system is the colimit of the diagram synthesised according with

theorem 4.4 in order to realise <cYi,gi;[$i>. |
Consider again a connector with one role (see figure below). Its meaning is given by
the pushout of <g,~>. Because synthesis of interconnections is supported, given an
instantiation of the role with a program P, it is possible to synthesise an

517

SPTA7

S ec l
P R o G

interconnection between programs P and G agreeing with the interconnection
</.t;13,~> of their specifications. The system which results from the instantiation of
the connector is given by the pushout of the synthesised diagram.

R

r ~ : i

Sped._T, H(X))) - ,Spe~ G)

P

/ p.o] System

_/
v G 5~H(X))

Theorem 4.4 applied to this situation says that the resulting system is a realisation of
the connector, that is, it satisfies the properties that can be inferred at the architectural
level. As stressed before, this means that the properties of connectors can be
understood independently of the specific context in which they are used.

An illustration of an abstract architectural school can be given in terms of
COMMUNITY as defined in section 2 and linear temporal logic. We have shown in [8]
that a functor can be defined between the category of (deterministic) COMMUNITY
programs and the category of temporal theories. In [7], we further showed that the two
formalisms satisfy 4-.4. The extension to non-deterministic programs is trivial.

5 Concluding Remarks

In this paper, we proposed a formalisation for the notion of architectural connector in
the sense of [1] which adopts categorical techniques developed for the parameterisation
of algebraic specifications [17]. These techniques were adapted to formalisms for
parallel program specification and design, namely the language COMMUNITY [10] in
the style of UNITY [5] and Interacting Processes (IP) [11]. The proposed formal notion
of architectural connector consists of an object glue connected to a collection of role
objects (the formal parameters) through channels. Channels were explicitly modelled
through a full embedding into the category of program designs, capturing the way
interconnections are established in process design languages such as CSP and IP.

The instantiation of roles was defined through (fitting) morphisms and the resulting
system was defined through colimits, much in the tradition of parameterised

518

specifications in the Clear-style [3]. This semantics was shown to agree with the
fornaalisation of connector given in [1] using CSP in the sense that colimits of
configuration diagrams capture parallel composition of concurrent programs [10]. We
also showed how the proposed formalisation fulfils the requirements stated in [1] for
the ability to understand the behaviour of a connector independently of its use in
specific contexts, and to reason about the compatibility between roles and instances.

Moreover, the proposed categorical formalisation of architectural connector was
shown to be flexible enough to allow for more abstract notion of connector in which
the glue and the roles are defined in different formalisms or languages. We studied the
case in which the roles are described in a formalism that is more abstract than the
glue, e.g. a specification logic (institution) for the roles and a program design
language for the glue. Recent results on the ability to synthesise interconnections [7]
were used to define the corresponding instantiation mechanisms. The use of temporal
logic and COMMUNITY as in [8] was suggested as an example.

A comparison between the proposed notion of connector and notions of paranaeterised
specification, in the sense of a morphism from the formal parameter (role) to a body
[3], revealed that the body in parameterised specifications corresponds to the parallel
composition of the glue with its roles, i.e. to the "semantics" of the connector. The
converse representation of parameterised specifications into connectors was shown to
be possible for categories of descriptions that are coordinated over the category of
channels, a concept that we introduced in [7] and which captures structural properties
of formalisms typical of coordination languages and models [4]. An open problem
remains which consists in being able to isolate the glue from a body which intends to
capture the joint behaviour of the roles interconnected to the glue, showing that there
are methodological implications in the way connectors are formalised, making the
approach based on the explicit identification of the glue and roles seem to be better
suited for the interaction-based architectural structures in the sense that it is directly

compositional on the structure of the system.

Further work is indeed needed on the relationship between architectural notions in the
interaction sense [1] and the architectural notions that are intrinsic to the use of
Module Interconnection and Interface Definition Languages and which have been
formalised using notions of parameterisation typical of algebraic specifications [14].
The formalisation of connector that we proposed in COMMUNITY actually requires an
integration of the two perspectives. For instance, the program that modelled the
bounded buffer relied on a specification of queues of elements. Hence, we could say
that the program buffer was also parameterised by elem (the data type of elements) as
well as by bound. This kind of parameterisation serves the module-based notion of
architecture and is orthogonal to the interaction-based one: the latter focuses on
control, i.e. on the scheduling and synchronisation of the different actions, whereas
the former addresses the modules that are required to provide the data context (namely
the operations) in which the transformations operated by the actions are defined. We
intend to fur ther develop these relationships, namely in the context of the
parameterisation mechanisms developed in [17] for program modules as algebras, as a
means of providing an integrated methodology for system specification and design.

519

Acknowledgements
We wish to thank Tom Maibaum and Carlos Paredes for many useful discussions.

References
1. R.Allen and D.Garlan, "Formalising Architectural Connection", in Proc. 16th ICSE,

1994, 71-80. (See also Formal Connectors, CMU-CS-94-115.)
2. G.Berry and G.Beudol, "The Chemical Abstract Machine", Theoretical Computer

Science 96, 1992, 217-248.
3. R.Burstall and J.Goguen, "The Semantics of CLEAR, a Specification Language", in

Proc. Advanced Course on Abstract Software Specification, LNCS 86, Springer-
Verlag 1980, 292-332.

4. P.Ciancarini and C.Hankin, Coordination Languages and Models, LNCS 1061,
Springer-Verlag 1996.

5. K.Chandy and J.Misra, Parallel Program Design - A Foundation, Addison-Wesley
1988.

6. H.Ehrig and G.Mahr, Fundamentals of Algebraic Specification 1: Equations and Initial
Semantics, Springer-Verlag 1985.

7. J.Fiadeiro, A.Lopes and T.Maibaum, "Synthesising Interconnections", in D.Smith
and J.P.Finance (eds) Proc. 1FIP TC 2 Working Conference on Algorithmic Languages
and Calculi, Chapman Hail, in print.

8. J.Fiadeiro and T.Maibaum, "Interconnecting Formalisms: supporting modularity,
reuse and incrementality", in G.E.Kaiser (ed) Proc. 3rd Syrup. on Foundations of
Software Engineering, ACM Press 1995, 72-80.

9. J.Fiadeiro and T.Maibaum, "A Mathematical Toolbox for the Software Architect", in
J.Kramer and A.Wolf (eds)Proe. 8th International Workshop on Software
Specification and Design, IEEE Computer Society Press 1996, 46-55.

10. J.Fiadeiro and T.Maibaum, "Categorical Semantics of Parallel Program Design",
Science of Computer Programming, in print.

11. N.Francez and I.Forman, Interacting Processes, Addison-Wesley 1996.
12. J.Goguen, "Categorical Foundations for General Systems Theory", in F.Pichler and

R.Trappl (eds) Advances in Cybernetics and Systems Research, Transcripta Books
1973, 121-130.

13. J.Goguen, "Principles of Parametrised Programming", in Biggerstaff and Perlis (eds)
Software Reusability, Addison-Wesley 1989, 159-225.

14. J.Goguen, "Parametrised Programming and Software Architecture", in Symposium on
Software Reusability, IEEE 1996.

15. J.Goguen and R.Burstall, "Institutions: Abstract Model Theory for Specification and
Programming", Journal of the ACM 39(1), 1992, 95-146.

16. C.Paredes, J.Fiadeiro and F.Costa, "Architectural Specifications: Modeling and
Structuring Behavior through Rules", in H.Kilov and W.Harvey (eds) Object-Oriented
Behavioral Specifications, Kluwer Academic Publishers 1996, 221-240.

17. D.Sannella, S.Sokolowski and A.Tarlecki, "Toward Formal Development of Programs
from Algebraic Specifications: Parameterisation Revisited", Acta Informatica 29,
1992, 689-736.

] 8. M.Shaw and D.Garlan, Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall, 1996.

