
Semantics of Context-Free Languages

by

DONALD E. KNUTH

California Institute of Technology

ABSTRACT

"Meaning" may be assigned to a string in a context-free language by defining "at-

tributes" of the symbols in a derivation tree for that string. The attributes can be de-

fined by functions associated with each production in the grammar. This paper

examines the implications of this process when some of the attributes are "synthe-

sized", i.e., defined solely in terms of attributes of the descendants of the correspond-

ing nonterminal symbol, while other attributes are "inherited", i.e., defined in terms

of attributes of the ancestors of the nonterminal symbol. An algorithm is given which

detects when such semantic rules could possibly lead to circular definition of some

attributes. An example is given of a simple programming language defined with both

inherited and synthesized attributes, and the method of definition is compared to

other techniques for formal specification of semantics which have appeared in the

literature.

A simple technique for specifying the "meaning" of languages defined

by context-free grammars is introduced in Section 1 of this paper, and its

basic mathematical properties are investigated in Sections 2 and 3. An

example which indicates how the technique can be applied to the formal

definition of programming languages is described in Section 4, and finally,

Section 5 contains a somewhat biased comparison of the present method to

other known techniques for semantic definition. The discussion in this

paper is oriented primarily towards programming languages, but the same

methods appear to be relevant also in the study of natural languages.

1. Introduction. Let us st/ppose that we want to give a precise defini-

tion of binary notation for numbers. This can be done in many ways, and in

this section we want to consider a manner of definition which can be gen-

eralized so that the meaning of other notations can be expressed in the

same way. One such way to define binary notation is to base a definition on

MATHEMATICAL SYSTEMS THEORY, Vol . 2, No. 2

Published by Springer-Verlag New York Inc.

127

128 DONALD E. KNUTH

the following context-free grammar:

B ---> 0

B ---> l

(1.1)

L--> B

L --+LB

N---~ L

N---~ L . L

(Here the terminal symbols a r e . , 0, and 1; the nonterminal symbols are

B, L, and N, s tanding respectively for bit, list of bits, and number ; and a

binary number is in tended to be any string of terminal symbols which can

be obtained f rom N by application of the above productions.) This gram-

mar says in effect that a binary number is a sequence of one or more O's

and l's, optionally followed by a radix point and another sequence o f one

or more O's and l's. Fur thermore , the g rammar assigns a certain tree struc-

ture to each binary number ; for example, the string 1101 • 01 receives the

following structure:

(1.2)

N

/ \
L

/ \
L B

/ \ I
L B 1

/ \ I
L B 0

1 I
B 1

I
1

L
/ \

L B

I I
B 1

I
0

It is natural to define the meaning of binary notation (1.1) in a step-by-

step manne r corresponding to this structure; the meaning of the notation

as a whole is built up f rom meanings of each part. This can be done by

assigning attributes to the nonterminal symbols, as follows:

Each bit B has a "value" v(B) which is an integer.

Each list of bits L has a "length" l(L) which is an integer.

Each list of bits L has a "value" v(L) which is an integer.

Each number N has a "value" v(N) which is a rational number .

(Note that each L has two attributes; in general we could ascribe any de-

sired number of attributes to each nonterminal symbol.)

The g rammar (1.1) may now be augmented so that semantic rules are

given for each

B - ~

B---~

L---~
(1.3)

L 1 ---}

N ' -*

N ' -*

Semantics of Context-Free Languages

rule of the syntax:

0

1

B

L2B

L

L1 • L2 v (N) = v(LO + v(L2)/2 uL2~

v(B) = o

v (B) = 1

v(L) = v(B), l(L) = 1

v(L1) = 2v(L2) + v(B),

v(N) = v(L)

I(L1) = I(L2) + 1

129

(In the fourth and sixth rules subscripts have been used to distinguish

between occurrences of like nonterminals.) Here the semantic rules define

all of the attributes of a nonterminal in terms of the atrributes of its im-

mediate descendants, so ultimately values are defined for each attribute.

The semantic rules are phrased in terms of notations which are assumed to

be already understood. Notice for example that the symbol "0" in the

semantic rule "v(B) = 0" is to be interpreted quite differently from the

symbol "0" in the production "B ~ 0"; the former denotes a mathematical

concept, the integer zero, while the latter denotes a written character which

has a certain elliptical shape. In a sense it is just coincidence that the two

symbols look the same.

The structure (1.2) may be augmented by showing the attributes at

each level:

N(v _ 13.25)

y d, k2) ,(VT,) .(y=,
L(v/= 3, l = 2) B(v=. O) 1 = 0) 1

o i
B(~ = 1) 1

!

1

Thus "1101 • 01" means 13.25 (in decimal notation).

This manner of defining semantics for context-free languages is es-

sentially well known, since it has already been used by several authors. But

there is an important way to extend this method, and it is this extension

which will be of primary interest to us.

Suppose for example that we want to define the semantics of binary

notation in a different way corresponding more closely to the manner in

which we usually think of the notation. The leading "1" in "1101 • 01"

really denotes 8, although according to (1.4)it is ascribed the value 1. Per-

haps therefore it would be better to define the semantics in such a way that

130

positional characteristics

tributes:

DONALD E. KNUTH

play a role. We could have the

Each B has a "value" v(B) which is a rational number .

Each B has a "scale" s(B) which is an integer.

Each L has a "value" v(L) which is a rational number .

Each L has a " length" l(L) which is an integer.

Each L has a "scale" s(L) which is an integer.

Each N has a "value" v (N) which is a rational number .

These attributes can be def ined as follows:

following at-

(1.5)

Syntactic rules

B---~O

B - - ~ I

L - - * B

L1 --* L2B

N --~ L

N ~ L 1 • L2

Semantic rules

v(B) = 0

v(B) = 2 *~

v(L) = v(B), s(B) = s(L), l(L) = 1

v(L1) = v(L~) + v(B), s(B) = s(L~),

s(L2) = s(L1) + 1, l(L~) = l(L~) + 1

v (N) = v(L), s(L) = 0

v (N) = v (L ,) + v(L2), s(LO = O,

s(L2) = --/(L2)

(Here the semantic rules are listed using the convent ion that the right-

hand side of each equat ion is the definit ion o f the lef t -hand side; thus,

"s(B) = s(L)" says that s(L) is to be evaluated first, then s(B) is def ined to

have this same value.)

T h e impor tan t fea ture o f g r ammar (1.5) is that some o f the attributes

are def ined for nonterminals which appear on the right side o f the corre-

sponding product ion , while in (1.3) all attributes were def ined when the

nontermina l appea red on the left side. He re we are using both synthesized

attributes (which are based on the attributes o f the descendants o f the non-

terminal symbol) and inherited attributes (which are based on the attributes

o f the ancestors). Synthesized attributes are evaluated f rom the bot tom up

in the tree s tructure, while inher i ted attributes are evaluated f rom the top

down. G r a m m a r (1.5) contains the synthesized attributes v(B), v (L) , l(L),

v (N) and also the inher i ted attributes s(B) and s(L), so the evaluation in-

volves going in both directions. T h e evaluated s t ructure co r respond ing to

the string 1101 • 01 is

(1.6)

Semantics of Context-Free Languages 131

i N (v = l i .25) ~

L(v = O, l= 1, s = - 1) B(v=

\ .25, s = - 2) I

B(vTO, s = - I) 1

0

L(v = 13, l = 4, s.= 0)

~/ v = 12, l = 3, s = l~ B(v = 1, s = O)
\

i \ .
L(v = 12, 1=2 , s = 2) B(v = O, s ~ 1) 1

LIV T 8, I= I, s= 3~) B(v T 4, s= 2~) 0

B(v ~ 8, s = 3) 1

1

Here it can be noted that the "length" attributes of the L's to the right of

the radix point must be evaluated from the bottom up before the "scale"

attributes can be evaluated (from the top down) and finally the "value"

attributes (from the bottom up).

Grammar (1.5) is probably not the "best possible" grammar for binary

notation, but it does seem to correspond better to our intuition than gram-

mar (1.3). (A grammar which agrees more exactly with our conventional

understanding of binary notation could be based on a different set of pro-

duction rules which would assign another structure to the string of bits at

the right of the radix point; then the "length" attribute, which is not really

relevant, would be unnecessary.)
Our interest in g rammar (1.5) is not that it is an ideal definition of

binary notation, but rather that it shows an interaction between inherited

and synthesized attributes. It is not always obvious when semantic rules

such as those in (1.5) do not amount to a circular definition, because the

attributes are not evaluated in a single direction; an algorithm which tests

for circularity appears later in this paper.

The importance of inherited attributes is that they arise naturally in

practice and that they are "dual" to synthesized attributes in a straight-

forward manner. Although binary notation can be formulated using

nothing but synthesized attributes, there are many languages for which

such a restriction leads to a very awkward and unnatural definition of

semantics. Situations which involve a mixture of inherited and synthesized

attributes are essentially the same as the cases which have been most dif-

ficult to handle in previous formulations of semantic rules.

2. Formal properties. Let us now put the ideas of synthesized and in-

herited attributes into a more precise and more general setting.

Suppose we have a context-free grammar f~ = (V, N, S, 6~), where V is

the (finite) vocabulary of terminal and nonterminal symbols; N C V is the

set of nonterminal symbols; S • N is the "start symbol", which appears on

the right-hand side of no production rule; and ~ is the set of production

rules. Semantic rules are added to fg in the following manner: To each

132 DONALD E. KNUTH

symbol X • V we associate a finite set `4(X) o f at tr ibutes; `4(X) is par t i t ioned

into two disjoint sets, the synthesized at tr ibutes Ao(X) and the inher i ted

at t r ibutes A~(X). We requi re AI(S) to be emp ty (i.e., the start symbol S has

no inher i ted attributes); similarly we requi re Ao(X) to be e m p t y if X is a

te rminal symbol. Each at t r ibute a in A(X) has a (possibly infinite) set o f

possible values V~, f r o m which one value will be selected (by means o f the

semant ic rules) for each a p p e a r a n c e o f X in a der ivat ion tree.

Let ~ consist o f m product ions , and let the p-th p roduc t ion be

(2.1) Xpo ~ XpaXp2 • • • Xp,p ,

where np t> 0, Xp0 • N, and Xpj • V for 1 ~< j ~< np. T h e semantic rules a re

functionsfpj~ def ined for all 1 ~< p ~< m, 0 <~j ~< np, and ct • Ao(Xpj) i f j = 0,

ot •,4 ~(Xpj) i f j > 0. Each such funct ion is a m a p p i n g of V~, x V~2 x • • • x Vat

into V~, for some t = t(p,j, o 0 >i O, where each o~ = ai(p,j, or) is an at t r ibute

o f some Xpki, for 0 ~< k~ ---- k~(p,j, o~) <~ np, 1 <~ i <~ t. In o the r words, each

semant ic rule maps values of cer tain at t r ibutes of Xp0, Xpl, • • • , Xpnp into

the value o f some at t r ibute o f Xpj.

For example , (1.5) is the g r a m m a r ~ = ({0, 1, . , B, L, N} , {B, L, N} , N,

{B ~ O, B ~ 1, L ---) B, L ~ LB, N --) L, N --~ L • L }). T h e at tr ibutes are

Ao(B) = {v}, AI(B) = {s}, Ao(L) = {v, l}, A,(L) = {s}, Ao(N) = {v) ,AI(N) =~,

and Ao(x) = A~(x) = ~ for x • {0, 1, .}. T h e at t r ibute value sets are Vv =

{rational numbers} , V, = VI = {integers}. A typical p roduc t ion rule is the

four th p roduc t ion X40 "-~ X41X42, where n4 = 2, X40 = X41 = L, X42 = B. A

typical semant ic rule c o r r e s p o n d i n g to this p roduc t ion isf40~, which defines

v(X4o) in te rms of o the r attr ibutes; in this casef40~ maps V~ x V~ into V~, and

it is t h e mappingf40~(x, y) = x +y . (This is the rule "v(L1) = v(L2) + v(B)" of

(1.5); in t e rms of the r a the r c u m b e r s o m e notat ion o f the p reced ing para-

g r a p h we have t(4, 0, v) = 2, oq(4, 0, v) = a2(4, 0, v) = v, k1(4, 0, v) = 1,

k2(4, 0, v) = 2.)

T h e semant ic rules may be used to assign a "mean ing" to strings o f the

contex t - f ree language, in the following way. For any der ivat ion of a termi-

nal s t r ing t f r o m S by a sequence of product ions , construct the der ivat ion

t ree in the usual way: T h e root o f this t ree is S, and each node is labeled

e i ther with a te rmina l symbol, or with a non te rmina l symbol Xp0 corre-

spond ing to an appl icat ion o f the p- th product ion , for some p; in the lat ter

case the node has np immed ia t e descendants ,

(2.2)

X p l X p 2 ° . . X p n p

(cf. (1.2)). Now let X be the label o f a node of the t ree and let c~ e A (X) b e

an at t r ibute of X. I f o~ • Ao(X) then X = Xp0 for some p, while if o~ • A 6 X)

then X = Xp~ for s o m e j and p, 1 ~<j ~< np, where in e i ther case the t ree in the

n e i g h b o r h o o d o f this node has the f o r m (2.2). T h e at t r ibute ~ is def ined to

Semantics of Context-Free Languages 133

have the value v at this node if, in the corresponding semantic rule

(2.3) fpj,~: Val X • • • X Vat ---> Va

all of the attributes al, • • • , at have previously been defined to have the

respective values v l , ' ' ' , vt at the respective nodes labeled Xpkl, • " • ,

Xpk t, and v = fpj,~(vl, • • • , vt). This process of attribute definition is to be

applied th roughout the tree until no more attribute values can be defined,

and then the defined attributes at the root of the tree constitute the "mean-

ing" corresponding to the derivation tree (cf. (1.6)).

It is natural to require that the semantic rules are formulated in such a

way that all attributes can always be defined at all nodes, in any conceivable

derivation tree. Let us say the semantic rules are well defined if this condition

holds. Since there are in general infinitely many derivation trees, it is im-

portant to be able to decide if a given g rammar has well defined semantic

rules or not. An algori thm for testing this condition is presented in Section 3.

Let us note that this method of semantic definition is as powerful as

any conceivable method could be, in the sense that the value of any at-

tribute of any node of a derivation tree may depend in any desired way on

the entire tree. For example, suppose we ascribe two inheri ted attributes

l ("location") and t ("tree") to each symbol except S in a context-free

grammar , and one synthesized attribute s Csubtree") t o each nonter-

minal symbol. Here 1 ranges over finite sequences of positive integers

{a~ • a2 ak} which specify the location of tree nodes in a familiar

index or "Dewey decimal" notation (see [8, p. 310]); t and s consist of sets

of o rdered pairs (l, X) , where l is a node location and X is a symbol of the

g rammar denot ing the label of the node at location I. The semantic rules,

for each product ion (2.1), are:

= II(Xpo) " j
l(Xpj) t j

(2.4) t(Xpj) = J t (X ,o)
[s(X.o)

s(X,,o) = {(l(Xpo),

Thus, for example, in the

s (N) = {(1, L), (2, •)

if Xpo ~ S ;

ifXpo = S;

if Xpo ~ S ;

if X~o -- S ;
np

Xpo)[Xpo ~ S } U jl~J= "[s(Xpj)l X p j ~ N } :

tree (1.2) we have

(3, L), (1.1, L), (1.2, B), (3.1, L), (3.2, B),

(1,1.1, L), (1.1.2, B), (1.2.1, 1), (3.1.1, B), (3.2.1, 1),

(1.1.1.1, L), (1.1.1.2, B), (1.1.2.1, 0), (3.1.1.1, 0),

(1.1.1.1.1, B), (1.1.1.2.1, 1), (1.1.1.1.2.1, 1)}.

This clearly contains all the informat ion of the entire derivation tree. The

semantic rules (2.4) define the attribute t on all nodes (except the root)

to be the set represent ing the entire derivation tree, while 1 is the location

134 DONALD E. KNUTH

of that node. It is therefore evident that any conceivable function of the

derivation tree can be an attribute of any node, since such a function is

f(t, l) for somef.

Similarly we can show that synthesized attributes alone are sufficient

to define the meaning associated with any derivation tree, since the syn-

thesized attribute w defined by the rule

np

(2.5) w(Xpo) = {(0, Xp0)} U U {(j" a,x)l (a,X) ~w(Xvj),XpjeN}
j=l

evaluated at the root specifies the entire tree. Any semantic rules definable

by the method of this section can be considered to be a function of this

attribute w, and therefore the method is inherently no more powerful

than a method which uses no inherited attributes. But this statement is

very misleading, since semantic rules which do not use inherited attributes

are often considerably more complicated (and more difficult to under-

stand and to manipulate) than semantic rules which allow both kinds of

attributes. The ability to let the whole tree influence the attributes of each

node of the tree often leads to rules of semantics which are much simpler

and which correspond to the way in which we actually understand the

meanings involved.

3. Testing for circularity. Now let us consider an algorithm which

determines whether or not a collection of semantic rules, as described in

the previous section, is well defined; in other words, we want to know when

the semantic rules will always lead to definitions of all attributes at all

nodes of all derivation trees. We may assume that the grammar contains

no "useless" productions, i.e., that each production of ~ appears in the

derivation of at least one terminal string.

Let 3- be any derivation tree obtainable in the grammar, having only

terminal symbols as labels of its terminal nodes, but allowed to have any

symbol of V (not only the start symbol S) as the label of the root. Then we

can define a directed graph D(~--) corresponding to 3- by taking the

ordered pairs (X, a) as vertices, where X is a node of J - and a is an at-

tribute of the symbol which is the label of node X. The arcs of D(~--) go

from (XI, al) to (X2, a2) if and only if the semantic rule for the value of

attribute a2 depends directly on the value of attribute a~. For example,

if 3- is the tree (1.2) and if the semantic rules are given by (1.5), then

D(3-) is the directed graph

Semantics of Context-Free Languages 135

In other words, the vertices of D(3-) are the attribute values which must be

determined, and the arcs specify the dependency relations which imply

that certain attribute values must be computed before others. (Cf. (1.6).)

It is clear that the semantic rules are well defined if and only if no

directed graph D(Y') contains an oriented cycle. For if there are no

oriented cycles, there is a well-known procedure which assigns values to

each attribute (see [8, p. 258]). And if there is an oriented cycle in some

D(J-) , the fact that the grammar contains no useless productions implies

that there is an oriented cycle in some D (J ') in which the root of Y- has

the label S; this ~" is a derivation tree of the language for which it is im-

possible to evaluate all of the attributes. Therefore the problem, "Are the

semantic rules well-defined?" reduces to the problem, "Do the directed

graphs D(~--) contain any oriented cycles?"

Each directed graph D(T) may be regarded as the superposition of

smaller directed graphs Dp corresponding to each of the productions

Xp0 --* Xp~ • • • Xpnp of the grammar, 1 ~< p ~< m. In the notation of Section

2, the directed graph Dp has vertices (Xp~, a), for 0 <~ j <~ rip, a ~ A(Xpj), and

arcs from (Xpk i, oti) to (Xpj, a) for 0 <~j <~ np, a ~ Ao(Xpj) i f j = 0, ot E AI(Xpj) if

j > 0, ki = ki(p,j, oO, oti = ai(p,j, or), 1 <~ i <<- t(p,j, or). In other words, Dp re-

flects the dependencies of all the semantic rules associated with the p-th

production. For example the six productions of grammar (1.5) correspond

to six directed graphs, namely

DI: °v(B) °s(B) D2: "v(~B) "s(B)

(3.2)
o3: o4:

"*v(B) #s(B) ov(L2) *'I(L2) ds(L2) "*v(B)-'°s(B)

° (N) Ds:]Iv(N) Dn: ,/, , ~ .
• v(L) .l(L)*s(L) *v(L1) .t(L,) s(L,) v(Lz)*ttL2~*s(L2)

The directed graph (3.1) is obtained by "pasting together" various sub-

graphs having these forms. In general if 9- has a terminal symbol as the

label of the root, D(~--) has no arcs; if the root of 9-- is labeled with a non-

terminal symbol, ~-" has the form

(3.3)
/X.o\

Y--1 " ' " 3-,p

for some p, where ~--j is a derivation tree with Xp~ as the label of the root,

for I ~ j ~ np. In the former case we will say ~-- is a derivation tree of type

0, and in the latter case we will say ~-- is a derivation tree oftypep; according

to the definition, D(~--) is obtained in this case from Dp, D(J-1), • • • ,

D(3",p) by identifying the vertices for attributes of Xpj with the correspond-

ing vertices for the attributes of the root of 3-j in D(~--j), 1 <~j <~ np.

136 DONALD E. KNUTH

In o r d e r to test whe ther D(ff-) contains o r ien ted cycles, one fu r t h e r

concept is useful. Let p be the n u m b e r o f a product ion , and for 1 <<. j <<- np

suppose G~ is any di rected g raph whose vertices are a subset of/I(Xpj), the

attributes o f Xpj; then let

(3.4) D p [G . • • • , Grip]

be the di rected g raph obta ined f rom D v by add ing an arc f r o m (Xpj, or) to

(Xp¢, a ') whenever there is an arc f rom a to a ' in Gj. For example, if we have

v l s v s

GI = e ~ • , G2 = T,~ •

and if D 4 is the di rected g raph appear ing in (3.2), then D4[G1, G2] is

T h e following a lgor i thm may now be used: "For 1 ~ p ~< m let D~ be the

di rected g raph with vertices A(Xp0), and with an arc f rom a to a ' if and only

if there is an or ien ted path f rom (Xp0, a) to (Xp0, a ') in D v. Let D~ be the

empty di rected graph having no vertices. Now add f u r t h e r arcs to D'I, • • • ,

Dm by the following p rocedu re until no fu r t h e r arcs can be added: Choose

an in teger p, with 1 ~< p ~< m, and for 1 ~<j ~< np let q(j) = 0 ifXp¢ is terminal ,

or choose an in teger q(j) such that Xp~ is the lef t -hand side o f the q(j)-th

product ion , i.e., X¢o)0 = Xpj. T h e n if there is an or ientdd path f rom (Xpo, a)

to (Xp0, a ') in the di rected g raph

(3.5) D v[D~,,, • • • , D;,ap)],

there should be an arc f rom a to a ' in D~." It is clear that this process must

ult imately te rminate with no more arcs added , since only finitely many arcs

are possible in all.

In the case o f g r a m m a r (1.5), this a lgor i thm begins with

V $ V 8 V l S

t = t = O O O ' - ---oo D2 D1 L, ° D3

v l s v v

D' D' • D' • 4 ~-- • • • 5 = 6 =

and adds arcs until finally we have

V ° $ ~ 8 V l $

D', = • • D~' = U" D~ = -~,~,,.

I s v v
t _ _

9 4 - o~.,/o D ; = • D~ = •

After the above a lgor i thm terminates, we can prove that there is an

oriented path f rom (X, or) to (X, or') in some D(ff-), where if" is a derivation tree of

type p with root X, i f and only i f there is an arc f rom ot to or' in D~. For the con-

struction does not add any arc f rom a to a ' unless such aD(3-) exists; the

a lgor i thm could readily be ex tended so that it would in fact pr int out an

Semantics of Context-Free Languages 137

appropriate derivation tree ~- for each arc in Di, • • • , D~,. Conversely,

suppose Y" is a derivation tree with root X, for which D(Y-) contains an

oriented path f rom (X, or) to (X, a'); we can prove by induct ion on the num-

ber o f nodes of Y" that there is an arc f rom a to a ' inD, , where Y- is of type

p: Since D(~J ") contains at least one arc, 3- must be of the form (3.3), and

D(J ') is "pasted together" f rom Dp, D(~"I), • • • , D(Sr%). By induct ion and

the fact that no arcs run f rom D(~Y'j) to D(J'~,) f o r j # j* , any arcs of the as-

sumed path which appear in D(~--1), • • • , D(3-%) may be replaced by ap-

propriate arcs in Dp[D~t), • • • , D'~,p)], where Y'j is o f type q(j), 1 ~<j ~< np;

and we have an oriented path f rom (Xp0, a ') in this directed graph, hence
t

there is an arc f rom a to a ' in Dp.

The above algori thm now affords a solution to the problem posed in

this section:

T H E O R E M . Semantic rules added to a grammar as described in Section 2 are

well defined i f and only i f none of the directed graphs (3.5), for any admissible

choice of p, q(1), • • • , q(np) as specified in the above algorithm, contains an

oriented cycle.

Proof I f (3.5) contains an oriented cycle, the remarks just made prove

that some D(3-) contains an oriented cycle. Conversely, if ~-- is a tree with

the fewest possible nodes, such that D(J ') contains an oriented cycle, then

~-- must be of the form (3.3) and D(J ') is "pasted together" f rom Dp,

D(3-1), • • • , D(3-%). By the minimality of 3-, the oriented cycle involves

at least one arc of Dp, and therefore we may argue as above that any arcs

o f the cycle which are within D (3"1), • • • , D (9--%) may be replaced by arcs

of (3.5) when ~--~ is of the type q(~).

4. A s imple programming language. Now let us consider an example

of how the above techniques of semantic definition can be applied to pro-

g ramming languages. For simplicity let us study a formal definition o f a

little language that describes Tu r ing machine programs.

A T u r i ng machine (in the classical sense) processes an infinite tape

which may be though t of as divided into squares; the machine can read or

write characters f rom a finite alphabet on the tape in the square which is

currently being scanned, and it can move the scanning position to the left

or right. The following program, for example, adds unity to an integer

expressed in binary notation and prints a radix point at the right of this

number , assuming that the square just to the right of the number is to be

scanned at the beginning and end of the program:

tape a lphabet is blank, one, zero, point;

print "point";

go to carry;

test: if the tape symbol is "one" then

(4.1) {print "zero"; carry: move left one square; go to test};
print "one";
realign: move right one square;

if the tape symbol is "zero" then go to realign.

138 DONALD E. KNUTH

(It is hoped that the reader will find this programming language sufficiently

self-explanatory that he understands it before any formal definition of the

language is given, although of course this is not necessary. The above pro-

gram is not intended as an example of good programming, rather as an ex-

ample of the features of the simple language considered in this section.)

Since every programming language must have a name, let us call the

language Turingol. Any well-formed Turingol program defines a program

for a Turing machine; let us say a Turing machine program consists of

a set Q of "states";

a set Z of "symbols";

an "initial state" qo E Q;

a "final state" q® ~ Q;

and a "transition function" 6 which maps (Q - {q~o}) × X into X × {-1, O,

+1 } × Q. If 8(q, s) = (s', k, q') we may say informally that, if the machine is

in state q and scanning symbol s, it will print symbol s', move k spaces to

the right (meaning one space to the left if k = -1), and go into state q'.

More formally, a Turing machine program defines a computation on any

"initial tape contents", i.e., on any doubly infinite sequence

(4.2) " " " , a - 3 , a - 2 , a-l , ao, a l , a 2 , a 3 , • " "

of elements of ~, as follows: At any moment of the computation there is a

"current state" q ~ Q and an integer-valued "tape position" p; initially q - q0

andp --- 0. I fq ~ q=, and if 6(q, ap) = (s', k, q'), the computation proceeds by

replacing the value of ap by s', then by replacing p by p + k and q by q'. I f

q = q=, the computation terminates. (The computation might not termi-

nate; for program (4.1) this happens if and only ifaj ="one" for allj < 0.)

Now that we have a precise definition of Turing machine programs, we

wish to define the Turing machine program corresponding to any given

Turingol program (and at the same time to define the syntax of Turingol).

For this purpose it is convenient to introduce a few abbreviation conven-

tions.

(1) The semantic rule "include x in B" associated with a production will

mean that x is to be a member of set B, where B is an attribute of the start

symbol S of the grammar. The value of B will be the set of all x for which

such a semantic rule has appeared corresponding to each appearance of

the production in the derivation tree. (This rule may be regarded as an

abbreviation for the semantic rule

(4.3)
%

B(Xpo) = U B(Xpj) U {x] "include x in B" is associated

J=~ with the p-th production}

Semantics of Context-Free Languages 139

added to each production, with a set B added as a synthesized attribute of

each nonterminal symbol, and B(x) the empty set for each terminal symbol.

These rules clearly make B(S) the desired set.)

(2) The semantic rule "definef(x) =y" associated with a production will

mean that y is to be the value of the func t ionf evaluated at x, w h e r e f is an

attribute of the start symbol S of the grammar. If two rules occur defining

f(x) for the same value of x, this is an error condition, and any derivation

tree which allows this condition to occur may be said to be malformed.

Fur thermore , f may be used as a function in any other semantic rules, with

the proviso that f (x)may only appear when f has been defined at x; any

derivation tree which calls for an undefined value of f (x) is malformed.
(This type of rule is important, for example, to ensure that there is agree-

ment between the declaration and use of identifiers. In the example below

this convention implies that programs are malformed if the same identifier

is used twice as a label or if a go to statement specifies an identifier which is

not a statement label. The rule may essentially be thought of as "include

(x, y) i n f " , as in (1), i f f is regarded as a set of ordered pairs; additional

checks for malformedness are also included. We may regard "well-formed

or malformed" as an attribute of S; appropriate semantic rules analogous

to (4.3) which completely specify this "define f(x) = y" convention are

readily constructed and left to the reader.)

(3) The function "newsymbol" appearing in any semantic rule will

have, as its value, an abstract element which for each evaluation of "new-

symbol" is different from the abstract element produced by other evalua-

tions of newsymbol . (This convention can readily be expressed in terms of

other semantic rules, e.g., by making use of the l attributes of (2.3) which

has a different value at each node of a tree. The function newsymbol

serves as a convenient source of "raw material" for constructing sets.)

We have observed that conventions (1), (2), (3) can be replaced by other

constructions of semantic rules which do not use these conventions, so they

are not "primitives" for semantics. But they are of fairly wide utility, since

they correspond to concepts which are often needed, so they may be re-

garded as fundamental aspects of the techniques for semantic definition

presented in this paper. The effect of using these conventions is to reduce

the number of attributes that are explicitly mentioned and to avoid un-

necessarily long rules.

Now it is a simple matter to present a formal definition of the syntax

and semantics of Turingol.

Nonterminal symbols: P (program), S (statement), L (list of statements),

I (identifier), O (orientation), A (alphabetic character), D (declaration).

Terminal symbols: a b c d e f g h i j k lFm n o p q r s t u v w x y z . , : ; { } tape

alphabet is print go to i f the symbol then move left right one square

140

Start symbol: p

Attributes:

Name of attribute

Q

qo

q=

label

symbol

follow

DONALD E, KNUTH

Type of value

Set

Set

Element of Q

Element of Q

Function from (Q-q=) × ~i,

intoX x { -1 ,0 ,+1} XQ

Function from strings of

letters into elements of Q

Function from strings of

letters into elements of S

Element of Q

d +1

text String of letter's

start Element of Q

Productions and semantics: See Table 1.

Purpose

States of the program

Symbols of the program

Initial state

Final state

Transition function

State table for statement

labels

Symbol table to tape

symbols

State immediately follow-

ing statement or list of
statements

Direction

Identifier

State at the beginning of a

statement or list of state-

ments (an inherited

attribute).

Notice that two states correspond to each statement S: start (S) is the

state corresponding to the first instruction of the statement (if any), and it

is an inherited attribute of S; follow (S) is the state which "follows" the state-

ment, the state which is normally reached after the statement is executed.

In the case of a "go statement", however, the program does not transfer to

follow (S), since the action of the statement is to change control to another

place; follow (S) may be said to follow statement S "statically" or "textually",

not "dynamically" during a run of the program.

In Table 1, follow (S) is a synthesized attribute; it is possible to give

similar semantic rules in which follow (S) is inherited, although a less effi-

cient program would be obtained for null statements (see Rule 4.4). Simi-
larly, both start (S) and follow (S) could be synthesized attributes, but at the

expense of additional instructions in the Turing machine program for

statement lists (Rule 6.2).
This example would be somewhat simpler if we had used a less standard

definition of Turing machine instructions. The definition we have used

requires reading, printing, and shifting in each instruction, and also makes

the Turing machine into a kind of "one-plus-one-address computer" in

which each instruction specifies the location (state) of the next instruction.

Semant ics o f Con tex t -Free L a n g u a g e s

T a b l e 1.

141

Description No. Syntactic Rule Example Semantic Rules

Letters 1.1 A ~ a a text (A) = a.
. (similarly for all letters)

1.26 A --*z z

Ident i f iers 2.1 1 ---> A m
2.2 1 --> 1,4 marilyn

Declarat ions 3.1 D ---> tape tape a l phabe t

a l phabe t is I is marilyn

3.2 D ---> D, I tape a l phabe t
is marilyn,
jayne, birgitta

Print s t a t emen t 4.1 S --* p r i n t "I" p r i n t 'jayne"

Move s t a t emen t 4.2 S --* m o v e 0 o n e m o v e l e f t o n e

s q u a r e s q u a r e

4.2.1 O "-' lef t le f t

4.2.2 O --* f i gh t f i gh t

Go s t a t emen t 4.3 S ~ go to I go to boston

Null s t a t emen t 4.4 S --~

Condi t ional 5.1 $1 --> i f the tape i f the tape

s t a t emen t s y m b o l is "I" s y m b o l is

t h e n $2 "nmr/lyn"
t h e n

p r i n t "]ayne"

Labeled 5.2 S 1 --> I : Sz boston: m o v e

s t a t emen t lef t o n e

s q u a r e

C o m p o u n d 5.3 S --> {L} {print'Jayne";;
s t a t emen t go to boston }

List o f 6.1 L ---> S p r i n t "'jayne"
s t a t emen t s

6.2 LI -~ L2; S print"jayne";;
go to boston

P r o g r a m 7 P - * D ; L . t ape a lphabe t

is marilyn,
jayne, birgitta;
p r i n t "'jayne ".

text (A) = z.

text (1) = text (A).

text (I) = text (I) text (A).

def ine symbol (text (I)) =
n e w s y m b o l ;

i n c l u d e symbol (text (1)) in S.

def ine symbol (text (/))=

n e w s y m b o l ;

i n c l u d e symbol (text (I)) in S.

def ine 8 (start (S), s) = (symbol

(text (I)), 0, follow (S)) for

a l l s e X;

follow (S) = n e w s y m b o l ;

i n c l u d e follow (S) in Q.

def ine 8 (start (S), s) = (s, d(O),

follow (S)) for all s e X;

follow (S) = n e w s y m b o l ;

i n c l u d e follow (.S) in Q.

d(O) = - 1 .

d(O) = +1.

def ine 8 (start (S),s)= (s, O,
label (text (I)) for all s e X;

follow (S) = n e w s y m b o l ;

i n c l u d e follow (S) in Q.

follow (S) = start (S).

def ine 8 (start (SO,s) = (s, O,

follow ($2)) for all s ~ X -

symbol (text (1));

def ine 8 (start (SO,s) = (s, O,

s tar t ($2)) for s = symbol

(text (I));

s tar t ($2) = n e w s y m b o l ;

follow ($1) = follow ($2);

i n c l u d e s tar t ($2) in Q.

def ine label (text (I)) =

start (S~);

s tar t (Sz) = start ($1);

follow (SO = follow ($2).

s tart (L) = start (S);

follow (S) = follow (L).

s tar t (S) = start (L);

follow (L) = follow (S).

s tar t (L2) = start (LI);

follow (L2) = n e w s y m b o l ;

i n c l u d e follow (Lz) in Q;

s tar t (S) = follow (Lz);
follow (LO = follow (S).

q0 = n e w s y m b o l ;
i n c l u d e q0 in Q;

s tar t (L) = qo;

q® = follow (L).

142 DONALD E, KNUTH

The method of defining semantic rules in this example, with an inherited

"first (S)" and a synthesized "follow (S)" attribute, lends itself readily also

to computers or automata in which the (n + 1)st instruction normally is

performed after the n-th. Then (follow (S) -- start (S)) would be the num-

ber of instructions "compiled" for statement S.

This definition of Turingol seems to approach the desirable goal of

stating almost exactly the same things which would appear in an informal

programmer's manual explaining the language, except that the description

is completely formal and unambiguous. In other words, this definition

perhaps corresponds to the way we actually understand the language in

our minds. The Definition 4.1 of a print statement, for example, might be

freely rendered in English as follows:

"A statement may have the form

print "I"

where I is an identifier. This means that, whenever this statement is exe-

cuted, the tape symbol on the currently scanned square will be replaced by

the symbol denoted by I, regardless of what symbol was being scanned;

afterwards the program will continue with a new instruction, which is de-

fined (by other rules) to be the instruction following this statement."

5. Discussion. The idea of defining semantics by associating synthe-

sized attributes with each nonterminal symbol, and associating correspond-

ing semantic rules with each production, is due to Irons [6, 7]. Originally

each nonterminal symbol was given exactly one attribute, its "translation".

This idea was applied by Irons and later authors, notably McClure [14], in

the design of "syntax-directed compilers" which translate programming

languages into machine instructions.

As we have observed in Section 2, synthesized attributes alone are (in

principle) sufficient to define any function of a derivation tree. But in

practice, the inclusion of inherited attributes as well as synthesized attri-

butes, as described in this paper, leads to important simplifications. The

definition of Turingol, for example, shows that the agreement between

declaration and use of symbol s , and the association of labels to statements,

may be easily treated. "Block structure" is another common aspect of pro-

gramming languages whose definition is greatly facilitated by the use of

inherited attributes. In general, inherited attributes are useful when part

of the meaning of some construction is determined by the context in which

that construction appears. The method of Section 2 shows how both in-

herited and synthesized attributes can be treated formally, and Section 3

shows that it is possible to rule out problems of circularity (which are poten-

tial sources of difficulty when both inherited and synthesized attributes
are mixed).

The principal contributions to formal semantic definition of program-

ming languages, at least those known to the author at the time of writing,

are de Bakker's definition of ALGOL 60 by means of a growing Markovian

Semantics of Context-Free Languages 143

algorithm [1] ; Landin's definition of ALGOL 60 by means of the X-calculus

[9, 10, 11] (see also B6hm [2, 3]); McCarthy's definition of MicrO-ALGOL by

means of recursive functions applied to the program and to "state vectors"

[12] (see also McCarthy and Painter [13]); Wirth and Weber's definition

of Euler, by means of semantic rules applied as a program is parsed [16];

and the IBM Vienna Laboratory's definition of PL/I [15] based on the

work of McCarthy, Landin, and abstract machines defined by Elgot [4, 5].

The most striking difference between the previous methods and the

definition of Turingol in Table 1 is that the other definitions are processes

which are defined on programs as a whole in a rather intricate manner; it

may be said that a person must understand an entire compiler for the

language before he can understand the definition of the language. This

difficulty is most pronounced in the work of de Bakker, who defines a

machine having approximately 800 instructions, analogous to Markov

algorithms but somewhat more complicated; at each stage of this ma-

chine's computations we are to execute the last applicable instruction, so

we cannot verify that instruction number 100 will be performed until we

can prove to ourselves that the 700 subsequent instructions are inapplic-

able; furthermore, additional instructions are added to the list by the ac-

tions of the machine. It is clearly very difficult for a reader to understand

the workings of such a machine, or to give formal proofs of its important

properties. By contrast, the above definition of Turingol defines each con-

struction of the language only in terms of its "immediate environment",

minimizing to a large extent the interconnections between the definitions

of different parts of the language. The definition of compound statements

and go statements, etc., does not influence the definition of print state-

ments in a substantial way; for example, any of Rules 4.1, 4.2, 4.3, 4.4, 5.1,

5.3 could be deleted and we would obtain a valid definition of another

language. This localization and partitioning of the semantic rules tends to

make the definition easier to understand and more concise.

Although the other authors cited above do not make use of such an

intricately interwoven definition as de Bakker's, the relatively complex

interdependence is still present. For example, consider the formal defini-

tion of Euler given by Wirth and Weber [16, pp. 94-98]; this is a concise

definition of a very sophisticated language, and so it is certainly one of the

most successful formal definitions ever devised. Yet even though Wirth

and Weber tested their definition by means of extensive computer simula-

tion, it is quite probable that their language contains some features which

would surprise its authors. The following Euler program is syntactically

and semantically well-formed, although the label L is never followed by

a colon:

± beg in label L; new .4; .4 ~-- O;

if false then go to L else L;

out 1 ; L ; A ~ - A + 1 ; o u t 2 ;

if false then go to L else

i f A < 2 then go to L else out 3; L end ±

144 DONALD E. KNUTH

The output of this program is 1, 2, 2, 3! Oversights such as this are not un-

expected when an algorithmic definition of a language is constructed; they

are less likely to occur when the methods of Section 4 are employed.

It appears to be reasonable to assert that none of the previous schemes

for formal definition of semantics could produce a definition of Turingol

that is as brief or as easy to comprehend as the definition given above; and

(although the details have not of course been worked out) it also appears

that ALGOL 60, Euler, MicrO-ALGOL, and PL/I can be defined using the

methods of Section 4 in a manner which has advantages over the defini-

tions previously given. But of course the author cannot judge these things

impartially, and more experience is needed before these claims can be

substantiated.

Notice that semantic rules as given in this paper do not depend on any

particular form of syntactic analysis. In fact, they need not even be tied

down to specific forms of the syntax: All that the semantic rules depend on

is the name of the nonterminal symbol on the left of a production and the

names of the nonterminals on the right. Particular punctuation marks, and

the order in which the nonterminals appear on the right-hand side of any

production, are immaterial as far as the semantic rules are concerned.

Thus, the method of semantics considered here blends well with

McCarthy's idea [12, 13] of "abstract syntax".

When a syntax is ambiguous, in the sense that some strings of the

language have more than one derivation tree, the semantic rules give us

one "meaning" for each derivation tree. For example, suppose the rules

L1 ~ BL2 v(L1) = 2t(L2)v(B) q- v(L2), l(Li) =/(L2) + 1

are added to grammar (1.3). Then the grammar becomes syntactically

ambiguous; but it still is semantically unambiguous since the attribute

v(N) has the same value over all derivation trees. On the other hand, if we

were to change production 5.2 of Turingol from S ~ I: S to S ~ S: I, the

grammar would become syntactically and semantically ambiguous.

REFERENCES

[1] J. w. DZ BAKKER, Formal definition ofprogramming languages, with an application to the defini-

tion of ALGOL 60, Math Cent. Tracts 16, Mathematisch Centrum, Amsterdam, 1967.

[2] C. B6HM, The CUCH as a formal and description language, Formal Language Description

Languages for Computer Programming, pp. 266-294, Proc. IFIP Working Conf.,

Vienna (1964), North Holland, 1966.
[3] CORRADO B6HM and WOLF GROSS, "Introduction to the OUCH," Automata Theory (ed. by

E. R. Caianiello), pp. 35-65, Academic Press, 1966.

[4] C. C. ELGOT, "Machine species and their computation languages," Formal Language

Description Languages for Computer Programming, pp. 160-179, Proc. IFIP Working

Conf., Vienna (1964), North Holland, 1966.

[5] C. C. ELGOT and A. ROBINSON, "Random-access, stored program machines, an approach

to programming languages,"J. ACM 11 (1964), 365-399.
[6] EDGAR T. 1RONS, A syntax directed compiler for ALGOL 00, Comm. ACM 4 (1961), 51-55.

Semantics of Context-Free Languages 145

[7] EDGAR T. IRONS, Towards more versatile mechanical translators, Proc. Sympos. Appl.

Math., Vol. 15, pp. 41-50, Amer. Math. Soc., Providence, R. I., 1963.
[8] DONALD E. KNUTH, The Art of Computer Programming, I, Addison-Wesley, 1968.

[9] P.J. LANDXN, "The mechanical evaluation of expressions," Comp.J. 6 (1964), 308-320.

[10] P.J. LANDIN, A formal description of ALGOL 60, Formal Language Description Languages
for Computer Programming, pp. 266-294, Proc. IFIP Working Conf., Vienna, (1964),

North H.olland, 1966.

[11] P. J. LANDIN, A correspondence between ALGOL 60 and Church's lambda notation,

Comm. ACM 8 (1965), 89-101, 158-165.

[12] JOHN MCCARTHY, A formal definition of a subset of ALGOL, Formal Language Descrip-
tion Languages for Computer Programming, pp. 1-12, Proc. IFIP Working Conf.,

Vienna (1964), North Holland, 1966.

[13] JOHN MCCARTHY and JAMES PAmTrR, Correctness of a compiler for arithmetic expres-

sions, Proc. Sympos. Appl. Math., Vol. 17, to appear, Amer. Math. Soc., Providence,
R. I., 1967.

[14] ROBERT M. McCLUm~, T M G - A syntax directed compiler, Proc. ACM Nat. Conf. 20

(1965), 262-274.

[15] PL/I Definition Group of the Vienna Laboratory, Formal definition of PL/L IBM Techni-

cal Report TR 25.071 (1966).
[16] NXKLAUS WroTH and HELMUT WEBER, Euler: A generalization of ALGOL, and its for-

mal definition, Comm. ACM 9 (1966), 11-23, 89-99,878.

(Received 15 November 1967)

