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ABSTRACT 

"Meaning" may be assigned to a string in a context-free language by defining "at- 

tributes" of the symbols in a derivation tree for that string. The attributes can be de- 

fined by functions associated with each production in the grammar. This paper 

examines the implications of this process when some of the attributes are "synthe- 

sized", i.e., defined solely in terms of attributes of the descendants of the correspond- 

ing nonterminal symbol, while other attributes are "inherited", i.e., defined in terms 

of attributes of the ancestors of the nonterminal symbol. An algorithm is given which 

detects when such semantic rules could possibly lead to circular definition of some 

attributes. An example is given of a simple programming language defined with both 

inherited and synthesized attributes, and the method of definition is compared to 

other techniques for formal specification of semantics which have appeared in the 

literature. 

A simple technique for specifying the "meaning" of  languages defined 

by context-free grammars is introduced in Section 1 of  this paper, and its 

basic mathematical properties are investigated in Sections 2 and 3. An 

example which indicates how the technique can be applied to the formal 

definition of  programming languages is described in Section 4, and finally, 

Section 5 contains a somewhat biased comparison of  the present method to 

other known techniques for semantic definition. The discussion in this 

paper is oriented primarily towards programming languages, but the same 

methods appear to be relevant also in the study of  natural languages. 

1. Introduction. Let us st/ppose that we want to give a precise defini- 

tion of  binary notation for numbers. This can be done in many ways, and in 

this section we want to consider a manner of  definition which can be gen- 

eralized so that the meaning of  other notations can be expressed in the 

same way. One such way to define binary notation is to base a definition on 
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128 DONALD E. KNUTH 

the following context-free grammar:  

B ---> 0 

B ---> l 

(1.1) 

L--> B 

L --+LB 

N---~ L 

N---~ L . L  

(Here the terminal  symbols a r e . ,  0, and 1; the nonterminal  symbols are 

B, L, and N, s tanding respectively for bit, list of  bits, and number ;  and a 

binary number  is in tended to be any string of  terminal  symbols which can 

be obtained f rom N by application of  the above productions.) This gram- 

mar  says in effect that  a binary number  is a sequence of  one or more O's 

and l's, optionally followed by a radix point and another  sequence o f  one 

or  more O's and l's. Fur thermore ,  the g rammar  assigns a certain tree struc- 

ture to each binary number ;  for example,  the string 1101 • 01 receives the 

following structure: 

(1.2) 

N 

/ \  
L 

/ \  
L B 

/ \  I 
L B 1 

/ \  I 
L B 0 

1 I 
B 1 

I 
1 

L 
/ \  

L B 

I I 
B 1 

I 
0 

It is natural  to define the meaning  of  binary notation (1.1) in a step-by- 

step manne r  corresponding to this structure; the meaning  of  the notation 

as a whole is built up  f rom meanings of  each part. This can be done  by 

assigning attributes to the nonterminal  symbols, as follows: 

Each bit B has a "value" v(B) which is an integer. 

Each list of  bits L has a "length" l(L) which is an integer. 

Each list of  bits L has a "value" v(L) which is an integer. 

Each number  N has a "value" v(N) which is a rational number .  

(Note that  each L has two attributes; in general we could ascribe any de- 

sired number  of  attributes to each nonterminal  symbol.) 

The  g rammar  (1.1) may now be augmented  so that semantic rules are 



given for each 

B - ~  

B---~ 

L---~ 
(1.3) 

L 1 ---} 

N ' -*  

N ' -*  
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rule of the syntax: 

0 

1 

B 

L2B 

L 

L1 • L2 v (N)  = v(LO + v(L2)/2 uL2~ 

v(B) = o 

v ( B ) =  1 

v(L) = v(B), l(L) = 1 

v(L1) = 2v(L2) + v(B), 

v(N) = v(L) 

I(L1) = I(L2) + 1 
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(In the fourth and sixth rules subscripts have been used to distinguish 

between occurrences of like nonterminals.) Here the semantic rules define 

all of the attributes of a nonterminal in terms of the atrributes of its im- 

mediate descendants, so ultimately values are defined for each attribute. 

The semantic rules are phrased in terms of notations which are assumed to 

be already understood. Notice for example that the symbol "0" in the 

semantic rule "v(B) = 0" is to be interpreted quite differently from the 

symbol "0" in the production "B ~ 0"; the former denotes a mathematical 

concept, the integer zero, while the latter denotes a written character which 

has a certain elliptical shape. In a sense it is just coincidence that the two 

symbols look the same. 

The structure (1.2) may be augmented by showing the attributes at 

each level: 

N(v _ 13.25) 

y d, k2 ) ,(VT,) .(y=, 
L(v/= 3, l = 2) B(v=. O) 1 = 0 )  1 

o i 
B(~ = 1) 1 

! 

1 

Thus "1101 • 01" means 13.25 (in decimal notation). 

This manner of defining semantics for context-free languages is es- 

sentially well known, since it has already been used by several authors. But 

there is an important way to extend this method, and it is this extension 

which will be of primary interest to us. 

Suppose for example that we want to define the semantics of binary 

notation in a different way corresponding more closely to the manner in 

which we usually think of the notation. The leading "1" in "1101 • 01" 

really denotes 8, although according to (1.4)it is ascribed the value 1. Per- 

haps therefore it would be better to define the semantics in such a way that 
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positional characteristics 

tributes: 
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play a role. We could have the 

Each B has a "value" v(B) which is a rational number .  

Each B has a "scale" s(B) which is an integer.  

Each L has a "value" v(L)  which is a rational number .  

Each L has a " length" l(L) which is an integer.  

Each L has a "scale" s(L) which is an integer.  

Each N has a "value" v (N)  which is a rational number .  

These  attributes can be def ined as follows: 

following at- 

(1.5) 

Syntactic rules 

B---~O 

B - - ~ I  

L - - * B  

L1 --* L2B 

N --~ L 

N ~ L 1 • L2 

Semantic rules 

v(B) = 0 

v(B) = 2 *~  

v(L)  = v(B), s(B) = s(L), l(L) = 1 

v(L1) = v(L~) + v(B), s(B) = s(L~), 

s(L2) = s(L1) + 1, l(L~) = l(L~) + 1 

v (N)  = v(L),  s(L) = 0 

v (N)  = v (L , )  + v(L2), s(LO = O, 

s(L2) = --/(L2) 

(Here  the semantic rules are listed using the convent ion that the right- 

hand  side of  each equat ion is the definit ion o f  the lef t -hand side; thus, 

"s(B) = s(L)" says that s(L) is to be evaluated first, then  s(B) is def ined to 

have this same value.) 

T h e  impor tan t  fea ture  o f  g r ammar  (1.5) is that some o f  the attributes 

are def ined for  nonterminals  which appear  on the right side o f  the corre-  

sponding  product ion ,  while in (1.3) all attributes were def ined when the 

nontermina l  appea red  on the left side. He re  we are using both  synthesized 

attributes (which are based on the attributes o f  the descendants  o f  the non-  

terminal  symbol) and inherited attributes (which are  based on the attributes 

o f  the ancestors). Synthesized attributes are evaluated f rom the bot tom up 

in the tree s tructure,  while inher i ted attributes are evaluated f rom the top 

down. G r a m m a r  (1.5) contains the synthesized attributes v(B), v (L) ,  l(L),  

v ( N )  and also the inher i ted attributes s(B) and s(L),  so the evaluation in- 

volves going in both directions. T h e  evaluated s t ructure  co r respond ing  to 

the string 1101 • 01 is 



(1.6) 
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i N ( v =  l i .25) ~ 

L(v = O, l= 1, s = - 1 )  B(v= 

\ .25, s = - 2 ) I  

B(vTO, s = - I  ) 1 

0 

L(v = 13, l = 4, s.= 0) 

~/ v =  12, l =  3, s = l~ B(v = 1, s = O) 
\ 

i \ .  
L(v = 12, 1=2 ,  s =  2) B(v = O, s ~  1) 1 

LIV T 8, I= I, s= 3~) B(v T 4, s= 2~) 0 

B(v ~ 8, s = 3) 1 

1 

Here it can be noted that the "length" attributes of  the L's to the right of  

the radix point must be evaluated from the bottom up before the "scale" 

attributes can be evaluated (from the top down) and finally the "value" 

attributes (from the bottom up). 

Grammar (1.5) is probably not the "best possible" grammar for binary 

notation, but it does seem to correspond better to our intuition than gram- 

mar (1.3). (A grammar which agrees more exactly with our conventional 

understanding of  binary notation could be based on a different set of  pro- 

duction rules which would assign another structure to the string of  bits at 

the right of  the radix point; then the "length" attribute, which is not really 

relevant, would be unnecessary.) 
Our interest in g rammar  (1.5) is not that it is an ideal definition of  

binary notation, but rather that it shows an interaction between inherited 

and synthesized attributes. It is not always obvious when semantic rules 

such as those in (1.5) do not amount to a circular definition, because the 

attributes are not evaluated in a single direction; an algorithm which tests 

for circularity appears later in this paper. 

The importance of  inherited attributes is that they arise naturally in 

practice and that they are "dual" to synthesized attributes in a straight- 

forward manner. Although binary notation can be formulated using 

nothing but synthesized attributes, there are many languages for which 

such a restriction leads to a very awkward and unnatural definition of  

semantics. Situations which involve a mixture of  inherited and synthesized 

attributes are essentially the same as the cases which have been most dif- 

ficult to handle in previous formulations of semantic rules. 

2. Formal properties.  Let us now put the ideas of  synthesized and in- 

herited attributes into a more precise and more general setting. 

Suppose we have a context-free grammar f~ = (V, N, S, 6~), where V is 

the (finite) vocabulary of  terminal and nonterminal symbols; N C V is the 

set of  nonterminal symbols; S • N is the "start symbol", which appears on 

the right-hand side of  no production rule; and ~ is the set of  production 

rules. Semantic rules are added to fg in the following manner: To each 
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symbol  X • V we associate a finite set `4(X) o f  at tr ibutes;  `4(X) is par t i t ioned  

into two disjoint sets, the synthesized at tr ibutes Ao(X) and the inher i ted  

at t r ibutes  A~(X). We requi re  AI(S) to be emp ty  (i.e., the start  symbol  S has 

no inher i ted  attributes);  similarly we requi re  Ao(X) to be e m p t y  if X is a 

te rminal  symbol.  Each at t r ibute  a in A(X) has a (possibly infinite) set o f  

possible values V~, f r o m  which one  value will be selected (by means  o f  the 

semant ic  rules) for  each a p p e a r a n c e  o f  X in a der ivat ion tree. 

Let  ~ consist o f  m product ions ,  and  let the p-th p roduc t ion  be 

(2.1) Xpo ~ XpaXp2 • • • Xp,p , 

where  np t> 0, Xp0 • N, and  Xpj • V for  1 ~< j ~< np. T h e  semantic  rules a re  

functionsfpj~ def ined  for  all 1 ~< p ~< m, 0 <~j ~< np, and  ct • Ao(Xpj) i f j  = 0, 

ot •,4 ~(Xpj) i f j  > 0. Each such funct ion is a m a p p i n g  of  V~, x V~2 x • • • x Vat 

into V~, for  some t = t(p,j, o 0 >i O, where  each o~ = ai(p,j, or) is an at t r ibute 

o f  some Xpki, for  0 ~< k~ ---- k~(p,j, o~) <~ np, 1 <~ i <~ t. In  o the r  words,  each 

semant ic  rule maps  values of  cer tain at t r ibutes  of  Xp0, Xpl, • • • , Xpnp into 

the value o f  some at t r ibute  o f  Xpj. 

For  example ,  (1.5) is the g r a m m a r  ~ = ({0, 1, . ,  B, L, N} ,  {B, L, N} ,  N, 

{B ~ O, B ~ 1, L ---) B, L ~ LB, N --) L, N --~ L • L } ). T h e  at tr ibutes are  

Ao(B) = {v}, AI(B) = {s}, Ao(L) = {v, l}, A,(L) = {s}, Ao(N) = {v) ,AI(N)  =~,  

and  Ao(x) = A~(x) = ~ for  x • {0, 1, .}. T h e  at t r ibute  value sets are  Vv = 

{rational numbers} ,  V, = VI = {integers}. A typical p roduc t ion  rule is the 

four th  p roduc t ion  X40 "-~ X41X42, where  n4 = 2, X40 = X41 = L, X42 = B. A 

typical semant ic  rule c o r r e s p o n d i n g  to this p roduc t ion  isf40~, which defines 

v(X4o) in te rms  of  o the r  attr ibutes;  in this casef40~ maps  V~ x V~ into V~, and  

it is t h e  mappingf40~(x, y) = x +y .  (This is the rule  "v(L1) = v(L2) + v(B)" of  

(1.5); in t e rms  of  the r a the r  c u m b e r s o m e  notat ion o f  the p reced ing  para-  

g r a p h  we have t(4, 0, v) = 2, oq(4, 0, v) = a2(4, 0, v) = v, k1(4, 0, v) = 1, 

k2(4, 0, v) = 2.) 

T h e  semant ic  rules may be used to assign a "mean ing"  to strings o f  the 

contex t - f ree  language,  in the following way. For  any der ivat ion of  a termi-  

nal s t r ing t f r o m  S by a sequence  of  product ions ,  construct  the der ivat ion 

t ree in the usual way: T h e  root  o f  this t ree is S, and  each node  is labeled 

e i ther  with a te rmina l  symbol,  or  with a non te rmina l  symbol  Xp0 corre-  

spond ing  to an appl icat ion o f  the p- th  product ion ,  for  some p; in the lat ter  

case the node  has np immed ia t e  descendants ,  

(2.2) 

X p l  X p 2  ° . . X p n  p 

(cf. (1.2)). Now let X be the label o f  a node  of  the t ree and  let c~ e A ( X ) b e  

an at t r ibute  of  X. I f  o~ • Ao(X) then  X = Xp0 for  some p, while if  o~ • A 6 X  ) 

then  X = Xp~ for  s o m e j  and  p, 1 ~<j ~< np, where  in e i ther  case the t ree  in the 

n e i g h b o r h o o d  o f  this node  has the f o r m  (2.2). T h e  at t r ibute  ~ is def ined  to 
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have the value v at this node if, in the corresponding semantic rule 

(2.3) fpj,~: Val X • • • X Vat ---> Va 

all of  the attributes al,  • • • , at have previously been defined to have the 

respective values v l , ' ' ' ,  vt  at the respective nodes labeled Xpkl, • " • , 

Xpk t, and v = fpj,~(vl, • • • , vt). This process of  attribute definition is to be 

applied th roughout  the tree until no more attribute values can be defined, 

and then the defined attributes at the root of  the tree constitute the "mean- 

ing" corresponding to the derivation tree (cf. (1.6)). 

It  is natural  to require that the semantic rules are formulated in such a 

way that all attributes can always be defined at all nodes, in any conceivable 

derivation tree. Let us say the semantic rules are well defined if this condition 

holds. Since there are in general  infinitely many derivation trees, it is im- 

portant  to be able to decide if a given g rammar  has well defined semantic 

rules or  not. An algori thm for testing this condition is presented in Section 3. 

Let us note that this method  of  semantic definition is as powerful  as 

any conceivable method  could be, in the sense that the value of  any at- 

tribute of  any node of  a derivation tree may depend  in any desired way on 

the entire tree. For example,  suppose we ascribe two inheri ted attributes 

l ("location") and t ("tree") to each symbol except S in a context-free 

grammar ,  and one synthesized attribute s Csubtree") t o  each nonter-  

minal symbol. Here  1 ranges over finite sequences of  positive integers 

{a~ • a2 . . . . .  ak} which specify the location of  tree nodes in a familiar 

index or "Dewey decimal" notation (see [8, p. 310]); t and s consist of  sets 

of  o rdered  pairs (l, X ) ,  where l is a node location and X is a symbol of  the 

g rammar  denot ing the label of  the node at location I. The  semantic rules, 

for each product ion (2.1), are: 

= II(Xpo) " j  
l(Xpj) t j  

(2.4) t(Xpj) = J t (X ,o)  
[s(X.o)  

s(X,,o) = {(l(Xpo), 

Thus,  for example, in the 

s ( N )  = {(1, L), (2, • ) 

if Xpo ~ S ; 

ifXpo = S; 

if Xpo ~ S ; 

if X~o -- S ; 
np 

Xpo)[ Xpo ~ S }  U jl~J= "[s(Xpj)l X p j ~  N } :  

tree (1.2) we have 

(3, L), (1.1, L), (1.2, B), (3.1, L), (3.2, B), 

(1,1.1, L), (1.1.2, B), (1.2.1, 1), (3.1.1, B), (3.2.1, 1), 

(1.1.1.1, L), (1.1.1.2, B), (1.1.2.1, 0), (3.1.1.1, 0), 

(1.1.1.1.1, B), (1.1.1.2.1, 1), (1.1.1.1.2.1, 1)}. 

This clearly contains all the informat ion of  the entire derivation tree. The  

semantic rules (2.4) define the attribute t on all nodes (except the root) 

to be the set represent ing the entire derivation tree, while 1 is the location 
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of that node. It is therefore evident that any conceivable function of the 

derivation tree can be an attribute of any node, since such a function is 

f(t, l) for somef.  

Similarly we can show that synthesized attributes alone are sufficient 

to define the meaning associated with any derivation tree, since the syn- 

thesized attribute w defined by the rule 

np 

(2.5) w(Xpo) = {(0, Xp0)} U U {(j" a,x)l (a,X) ~w(Xvj),XpjeN} 
j=l  

evaluated at the root specifies the entire tree. Any semantic rules definable 

by the method of this section can be considered to be a function of  this 

attribute w, and therefore the method is inherently no more powerful 

than a method which uses no inherited attributes. But this statement is 

very misleading, since semantic rules which do not use inherited attributes 

are often considerably more complicated (and more difficult to under- 

stand and to manipulate) than semantic rules which allow both kinds of 

attributes. The ability to let the whole tree influence the attributes of each 

node of  the tree often leads to rules of  semantics which are much simpler 

and which correspond to the way in which we actually understand the 

meanings involved. 

3. Testing for circularity. Now let us consider an algorithm which 

determines whether or not a collection of semantic rules, as described in 

the previous section, is well defined; in other words, we want to know when 

the semantic rules will always lead to definitions of all attributes at all 

nodes of all derivation trees. We may assume that the grammar contains 

no "useless" productions, i.e., that each production of ~ appears in the 

derivation of at least one terminal string. 

Let 3- be any derivation tree obtainable in the grammar, having only 

terminal symbols as labels of its terminal nodes, but allowed to have any 

symbol of V (not only the start symbol S) as the label of the root. Then we 

can define a directed graph D(~--) corresponding to 3- by taking the 

ordered pairs (X, a) as vertices, where X is a node of J -  and a is an at- 

tribute of the symbol which is the label of node X. The arcs of D(~--) go 

from (XI, al) to (X2, a2) if and only if the semantic rule for the value of 

attribute a2 depends directly on the value of attribute a~. For example, 

if 3- is the tree (1.2) and if the semantic rules are given by (1.5), then 

D(3-)  is the directed graph 
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In other words, the vertices of D(3-)  are the attribute values which must be 

determined, and the arcs specify the dependency relations which imply 

that certain attribute values must be computed before others. (Cf. (1.6).) 

It is clear that the semantic rules are well defined if and only if no 

directed graph D(Y') contains an oriented cycle. For if there are no 

oriented cycles, there is a well-known procedure which assigns values to 

each attribute (see [8, p. 258] ). And if there is an oriented cycle in some 

D(J-) ,  the fact that the grammar contains no useless productions implies 

that there is an oriented cycle in some D ( J ' )  in which the root of Y- has 

the label S; this ~" is a derivation tree of the language for which it is im- 

possible to evaluate all of the attributes. Therefore the problem, "Are the 

semantic rules well-defined?" reduces to the problem, "Do the directed 

graphs D(~--) contain any oriented cycles?" 

Each directed graph D(T) may be regarded as the superposition of  

smaller directed graphs Dp corresponding to each of  the productions 

Xp0 --* Xp~ • • • Xpnp of  the grammar, 1 ~< p ~< m. In the notation of Section 

2, the directed graph Dp has vertices (Xp~, a), for 0 <~ j <~ rip, a ~ A(Xpj), and 

arcs from (Xpk i, oti) to (Xpj, a) for 0 <~j <~ np, a ~ Ao(Xpj) i f j  = 0, ot E AI(Xpj) if 

j > 0, ki = ki(p,j, oO, oti = ai(p,j, or), 1 <~ i <<- t(p,j, or). In other words, Dp re- 

flects the dependencies of  all the semantic rules associated with the p-th 

production. For example the six productions of  grammar (1.5) correspond 

to six directed graphs, namely 

DI: °v(B) °s(B) D2: "v(~B) "s(B) 

(3.2) 
o3: o4: 

"*v(B) #s(B) ov(L2) *'I(L2) ds(L2) "*v(B)-'°s(B) 

° (N) Ds:]Iv(N)  Dn: ,/, , ~ .  
• v(L) .l(L)*s(L) *v(L1) .t(L,) s(L,) v(Lz)*ttL2~*s(L2) 

The directed graph (3.1) is obtained by "pasting together" various sub- 

graphs having these forms. In general if 9- has a terminal symbol as the 

label of the root, D(~--) has no arcs; if the root of 9-- is labeled with a non- 

terminal symbol, ~-" has the form 

(3.3) 
/X.o\ 

Y--1 " ' "  3-,p 

for some p, where ~--j is a derivation tree with Xp~ as the label of the root, 

for I ~ j  ~ np. In the former case we will say ~-- is a derivation tree of type 

0, and in the latter case we will say ~-- is a derivation tree oftypep; according 

to the definition, D(~--) is obtained in this case from Dp, D(J-1), • • • , 

D(3",p) by identifying the vertices for attributes of  Xpj with the correspond- 

ing vertices for the attributes of the root of 3-j in D(~--j), 1 <~j <~ np. 
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In o r d e r  to test whe ther  D(ff-) contains o r ien ted  cycles, one  fu r t h e r  

concept  is useful. Let  p be the n u m b e r  o f  a product ion ,  and  for  1 <<. j <<- np 

suppose  G~ is any di rected g raph  whose vertices are  a subset of/I(Xpj), the  

attributes o f  Xpj; then  let 

(3.4) D p [ G .  • • • ,  Grip] 

be the di rected g raph  obta ined f rom D v by add ing  an arc f r o m  (Xpj, or) to 

(Xp¢, a ' )  whenever  there  is an arc f rom a to a '  in Gj. For  example,  if  we have 

v l  s v s  

GI = e ~ • ,  G2 = T,~ • 

and  if D 4 is the di rected g raph  appear ing  in (3.2), then  D4[G1, G2] is 

T h e  following a lgor i thm may now be used: "For  1 ~ p ~< m let D~ be the 

di rected g raph  with vertices A(Xp0), and  with an arc f rom a to a '  if  and only 

if there  is an or ien ted  path f rom (Xp0, a) to (Xp0, a ' )  in D v. Let  D~ be the 

empty  di rected graph  having no vertices. Now add f u r t h e r  arcs to D'I, • • • , 

Dm by the following p rocedu re  until no fu r t h e r  arcs can be added:  Choose 

an in teger  p, with 1 ~< p ~< m, and  for  1 ~<j ~< np let q(j) = 0 ifXp¢ is terminal ,  

or  choose an in teger  q(j) such that  Xp~ is the lef t -hand side o f  the q(j)-th 

product ion ,  i.e., X¢o)0 = Xpj. T h e n  if there  is an or ientdd path f rom (Xpo, a) 

to (Xp0, a ' )  in the di rected g raph  

(3.5) D v[D~,,,  • • • , D;,ap)], 

there  should be an arc f rom a to a '  in D~." It is clear that this process must  

ult imately te rminate  with no  more  arcs added ,  since only finitely many  arcs 

are possible in all. 

In the case o f  g r a m m a r  (1.5), this a lgor i thm begins with 

V $ V 8 V l S 

t = t = O O O ' - ---oo D2 D1 L,  ° D3 

v l s  v v 

D' D' • D' • 4 ~-- • • • 5 =  6 =  

and  adds arcs until finally we have 

V ° $  ~ 8 V l $ 

D', = • • D~' = U" D~ = -~,~,,. 

I s v v 
t _ _  

9 4 -  o~.,/o D ;  = • D~ = • 

After  the above a lgor i thm terminates,  we can prove that  there is an 

oriented path f rom (X, or) to (X, or') in some D(ff-), where if" is a derivation tree of  

type p with root X,  i f  and only i f  there is an arc f rom ot to or' in D~. For  the con- 

struction does not  add any arc f rom a to a '  unless such aD(3- )  exists; the 

a lgor i thm could readily be ex tended  so that  it would in fact pr int  out  an 
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appropriate  derivation tree ~- for each arc in Di, • • • , D~,. Conversely, 

suppose Y" is a derivation tree with root X, for  which D(Y-) contains an 

oriented path f rom (X, or) to (X, a');  we can prove by induct ion on the num-  

ber o f  nodes of  Y" that  there is an arc f rom a to a '  inD, ,  where Y- is of  type 

p: Since D(~J ") contains at least one arc, 3-  must  be of  the form (3.3), and 

D(J ' )  is "pasted together"  f rom Dp, D(~"I),  • • • , D(Sr%). By induct ion and 

the fact that  no arcs run  f rom D(~Y'j) to D(J'~,) f o r j  # j* ,  any arcs of  the as- 

sumed path which appear  in D(~--1), • • • , D(3-%) may be replaced by ap- 

propriate arcs in Dp[D~t), • • • , D'~,p)], where Y'j is o f  type q(j), 1 ~<j ~< np; 

and we have an oriented path f rom (Xp0, a ' )  in this directed graph,  hence 
t 

there is an arc f rom a to a '  in Dp. 

The  above algori thm now affords a solution to the problem posed in 

this section: 

T H E O R E M .  Semantic rules added to a grammar as described in Section 2 are 

well defined i f  and only i f  none of  the directed graphs (3.5), for  any admissible 

choice of  p, q(1), • • • , q(np) as specified in the above algorithm, contains an 

oriented cycle. 

Proof  I f  (3.5) contains an oriented cycle, the remarks just  made prove 

that  some D(3-) contains an oriented cycle. Conversely, if ~-- is a tree with 

the fewest possible nodes, such that  D(J ' )  contains an oriented cycle, then 

~-- must  be of  the form (3.3) and D(J ' )  is "pasted together"  f rom Dp, 

D(3-1), • • • , D(3-%). By the minimality of  3-, the oriented cycle involves 

at least one arc of  Dp, and therefore  we may argue as above that  any arcs 

o f  the cycle which are within D (3"1), • • • , D (9--%) may be replaced by arcs 

of  (3.5) when ~--~ is of  the type q(~). 

4. A s imple programming language. Now let us consider an example 

of  how the above techniques of  semantic definition can be applied to pro- 

g ramming  languages. For simplicity let us study a formal  definition o f  a 

little language that  describes Tu r ing  machine programs. 

A T u r i ng  machine (in the classical sense) processes an infinite tape 

which may be though t  of  as divided into squares; the machine can read or  

write characters f rom a finite alphabet on the tape in the square which is 

currently being scanned, and it can move the scanning position to the left 

or right. The  following program,  for example,  adds unity to an integer 

expressed in binary notation and  prints a radix point at the right of  this 

number ,  assuming that  the square just  to the right of  the number  is to be 

scanned at the beginning and  end of  the program: 

tape a lphabet  is blank, one, zero, point; 

print "point"; 

go to carry; 

test: if the tape symbol is "one" then 

(4.1) {print "zero"; carry: move left one square; go to test}; 
print "one"; 
realign: move right one square; 

if the tape symbol is "zero" then go to realign. 
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(It is hoped that the reader will find this programming language sufficiently 

self-explanatory that he understands it before any formal definition of  the 

language is given, although of course this is not necessary. The above pro- 

gram is not intended as an example of good programming, rather as an ex- 

ample of  the features of the simple language considered in this section.) 

Since every programming language must have a name, let us call the 

language Turingol. Any well-formed Turingol program defines a program 

for a Turing machine; let us say a Turing machine program consists of 

a set Q of "states"; 

a set Z of "symbols"; 

an "initial state" qo E Q; 

a "final state" q® ~ Q; 

and a "transition function" 6 which maps (Q - {q~o}) × X into X × {-1, O, 

+1 } × Q. If  8(q, s) = (s', k, q') we may say informally that, if the machine is 

in state q and scanning symbol s, it will print symbol s', move k spaces to 

the right (meaning one space to the left if k = -1),  and go into state q'. 

More formally, a Turing machine program defines a computation on any 

"initial tape contents", i.e., on any doubly infinite sequence 

(4.2) " " " , a - 3 ,  a - 2 ,  a-l ,  ao, a l ,  a 2 ,  a 3 ,  • " " 

of elements of ~, as follows: At any moment of  the computation there is a 

"current state" q ~ Q and an integer-valued "tape position" p; initially q - q0 

andp  --- 0. I fq ~ q=, and if 6(q, ap) = (s', k, q'), the computation proceeds by 

replacing the value of ap by s', then by replacing p by p + k and q by q'. I f  

q = q=, the computation terminates. (The computation might not termi- 

nate; for program (4.1) this happens if and only ifaj  ="one" for allj < 0.) 

Now that we have a precise definition of Turing machine programs, we 

wish to define the Turing machine program corresponding to any given 

Turingol program (and at the same time to define the syntax of Turingol). 

For this purpose it is convenient to introduce a few abbreviation conven- 

tions. 

(1) The semantic rule "include x in B" associated with a production will 

mean that x is to be a member of  set B, where B is an attribute of the start 

symbol S of the grammar. The value of B will be the set of all x for which 

such a semantic rule has appeared corresponding to each appearance of 

the production in the derivation tree. (This rule may be regarded as an 

abbreviation for the semantic rule 

(4.3) 
% 

B(Xpo) = U B(Xpj) U {x] "include x in B" is associated 

J=~ with the p-th production} 
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added to each production, with a set B added as a synthesized attribute of 

each nonterminal symbol, and B(x) the empty set for each terminal symbol. 

These rules clearly make B(S) the desired set.) 

(2) The semantic rule "definef(x) =y"  associated with a production will 

mean that y is to be the value of the func t ionf  evaluated at x, w h e r e f  is an 

attribute of the start symbol S of the grammar. If  two rules occur defining 

f(x) for the same value of x, this is an error condition, and any derivation 

tree which allows this condition to occur may be said to be malformed. 

Fur thermore , f  may be used as a function in any other semantic rules, with 

the proviso that f ( x )may  only appear when f has been defined at x; any 

derivation tree which calls for an undefined value of f (x)  is malformed. 
(This type of rule is important, for example, to ensure that there is agree- 

ment between the declaration and use of identifiers. In the example below 

this convention implies that programs are malformed if the same identifier 

is used twice as a label or if a go to statement specifies an identifier which is 

not a statement label. The rule may essentially be thought of as "include 

(x, y) i n f " ,  as in (1), i f f  is regarded as a set of ordered pairs; additional 

checks for malformedness are also included. We may regard "well-formed 

or malformed" as an attribute of S; appropriate semantic rules analogous 

to (4.3) which completely specify this "define f(x) = y" convention are 

readily constructed and left to the reader.) 

(3) The function "newsymbol" appearing in any semantic rule will 

have, as its value, an abstract element which for each evaluation of "new- 

symbol" is different from the abstract element produced by other evalua- 

tions of newsymbol .  (This convention can readily be expressed in terms of 

other semantic rules, e.g., by making use of the l attributes of (2.3) which 

has a different value at each node of a tree. The function newsymbol  

serves as a convenient source of "raw material" for constructing sets.) 

We have observed that conventions (1), (2), (3) can be replaced by other 

constructions of semantic rules which do not use these conventions, so they 

are not "primitives" for semantics. But they are of fairly wide utility, since 

they correspond to concepts which are often needed, so they may be re- 

garded as fundamental aspects of the techniques for semantic definition 

presented in this paper. The effect of using these conventions is to reduce 

the number of attributes that are explicitly mentioned and to avoid un- 

necessarily long rules. 

Now it is a simple matter to present a formal definition of the syntax 

and semantics of Turingol. 

Nonterminal symbols: P (program), S (statement), L (list of statements), 

I (identifier), O (orientation), A (alphabetic character), D (declaration). 

Terminal symbols: a b c d e f g h i j k lFm n o p q r s t u v w x y z . ,  : ; .... { } tape 

alphabet is print go to i f  the symbol  then move  left right one  square 
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Start symbol: p 

Attributes: 

Name of attribute 

Q 

qo 

q= 

label 

symbol 

follow 

DONALD E, KNUTH 

Type of value 

Set 

Set 

Element of  Q 

Element of  Q 

Function from (Q-q=) × ~i, 

intoX x { -1 ,0 ,+1}  XQ 

Function from strings of  

letters into elements of  Q 

Function from strings of  

letters into elements of  S 

Element of  Q 

d +1  

text String of  letter's 

start Element of  Q 

Productions and semantics: See Table 1. 

Purpose 

States of  the program 

Symbols of  the program 

Initial state 

Final state 

Transition function 

State table for statement 

labels 

Symbol table to tape 

symbols 

State immediately follow- 

ing statement or list of  
statements 

Direction 

Identifier 

State at the beginning of  a 

statement or list of  state- 

ments (an inherited 

attribute). 

Notice that two states correspond to each statement S: start (S) is the 

state corresponding to the first instruction of  the statement (if any), and it 

is an inherited attribute of S; follow (S) is the state which "follows" the state- 

ment, the state which is normally reached after the statement is executed. 

In the case of  a "go statement", however, the program does not transfer to 

follow (S), since the action of  the statement is to change control to another 

place; follow (S) may be said to follow statement S "statically" or "textually", 

not "dynamically" during a run of  the program. 

In Table 1, follow (S) is a synthesized attribute; it is possible to give 

similar semantic rules in which follow (S) is inherited, although a less effi- 

cient program would be obtained for null statements (see Rule 4.4). Simi- 
larly, both start (S) and follow (S) could be synthesized attributes, but at the 

expense of  additional instructions in the Turing machine program for 

statement lists (Rule 6.2). 
This example would be somewhat simpler if we had used a less standard 

definition of  Turing machine instructions. The definition we have used 

requires reading, printing, and shifting in each instruction, and also makes 

the Turing machine into a kind of  "one-plus-one-address computer" in 

which each instruction specifies the location (state) of  the next instruction. 
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Description No. Syntactic Rule Example Semantic Rules 

Letters  1.1 A ~ a a text  (A) = a. 
. . . . . . . . . .  (similarly for  all letters) 

1.26 A --*z z 

Ident i f iers  2.1 1 ---> A m 
2.2 1 --> 1,4 marilyn 

Declarat ions 3.1 D ---> tape  tape  a l phabe t  

a l phabe t  is I is marilyn 

3.2 D ---> D, I tape a l phabe t  
is marilyn, 
jayne, birgitta 

Print  s t a t emen t  4.1 S --* p r i n t  "I" p r i n t  'jayne" 

Move s t a t emen t  4.2 S --* m o v e  0 o n e  m o v e  l e f t  o n e  

s q u a r e  s q u a r e  

4.2.1 O "-' lef t  le f t  

4.2.2 O --* f i gh t  f i gh t  

Go  s t a t emen t  4.3 S ~ go to I go to boston 

Null  s t a t emen t  4.4 S --~ 

Condi t ional  5.1 $1 --> i f  the  tape  i f  the  tape  

s t a t emen t  s y m b o l  is "I" s y m b o l  is 

t h e n  $2 "nmr/lyn" 
t h e n  

p r i n t  " ]ayne" 

Labeled 5.2 S 1 --> I : Sz boston: m o v e  

s t a t emen t  lef t  o n e  

s q u a r e  

C o m p o u n d  5.3 S --> {L} {print'Jayne";; 
s t a t emen t  go to boston } 

List o f  6.1 L ---> S p r i n t  "'jayne" 
s t a t emen t s  

6.2 LI -~  L2; S print"jayne";; 
go to boston 

P r o g r a m  7 P - * D ; L .  t ape  a lphabe t  

is  marilyn, 
jayne, birgitta; 
p r i n t  "'jayne ". 

text  (A) = z. 

text  (1) = text  (A). 

text  (I) = text  (I) text  (A). 

def ine  symbol  (text (I)) = 
n e w s y m b o l ;  

i n c l u d e  symbol  (text (1)) in  S. 

def ine  symbol  (text ( / ) )=  

n e w s y m b o l ;  

i n c l u d e  symbol  (text (I)) in  S. 

def ine  8 (start (S), s) = (symbol 

(text (I)), 0, follow (S)) for  

a l l s e  X; 

follow (S) = n e w s y m b o l ;  

i n c l u d e  follow (S) in Q. 

def ine  8 (start (S), s) = (s, d(O), 

follow (S)) for  all s e X; 

follow (S) = n e w s y m b o l ;  

i n c l u d e  follow (.S) in  Q. 

d(O) = - 1 .  

d(O) = +1.  

def ine  8 (start (S),s)= (s, O, 
label (text (I)) for  all s e X; 

follow (S) = n e w s y m b o l ;  

i n c l u d e  follow (S) in  Q. 

follow (S) = start  (S). 

def ine  8 (start (SO,s) = (s, O, 

follow ($2)) for  all s ~ X - 

symbol  (text (1)); 

def ine  8 (start (SO,s) = (s, O, 

s tar t  ($2)) for  s = symbol  

(text (I)); 

s tar t  ($2) = n e w s y m b o l ;  

follow ($1) = follow ($2); 

i n c l u d e  s tar t  ($2) in  Q. 

def ine  label (text (I)) = 

start  (S~); 

s tar t  (Sz) = start  ($1); 

follow (SO = follow ($2). 

s tart  (L) = start  (S); 

follow (S) = follow (L). 

s tar t  (S) = start  (L); 

follow (L) = follow (S). 

s tar t  (L2) = start  (LI); 

follow (L2) = n e w s y m b o l ;  

i n c l u d e  follow (Lz) in Q; 

s tar t  (S) = follow (Lz); 
follow (LO = follow (S). 

q0 = n e w s y m b o l ;  
i n c l u d e  q0 in  Q; 

s tar t  (L) = qo; 

q® = follow (L). 
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The method of defining semantic rules in this example, with an inherited 

"first (S)" and a synthesized "follow (S)" attribute, lends itself readily also 

to computers or automata in which the (n + 1)st instruction normally is 

performed after the n-th. Then (follow (S) -- start (S)) would be the num- 

ber of instructions "compiled" for statement S. 

This definition of  Turingol seems to approach the desirable goal of  

stating almost exactly the same things which would appear in an informal 

programmer's manual explaining the language, except that the description 

is completely formal and unambiguous. In other words, this definition 

perhaps corresponds to the way we actually understand the language in 

our minds. The Definition 4.1 of  a print statement, for example, might be 

freely rendered in English as follows: 

"A statement may have the form 

print "I" 

where I is an identifier. This means that, whenever this statement is exe- 

cuted, the tape symbol on the currently scanned square will be replaced by 

the symbol denoted by I, regardless of what symbol was being scanned; 

afterwards the program will continue with a new instruction, which is de- 

fined (by other rules) to be the instruction following this statement." 

5. Discussion. The idea of defining semantics by associating synthe- 

sized attributes with each nonterminal symbol, and associating correspond- 

ing semantic rules with each production, is due to Irons [6, 7]. Originally 

each nonterminal symbol was given exactly one attribute, its "translation". 

This idea was applied by Irons and later authors, notably McClure [ 14], in 

the design of  "syntax-directed compilers" which translate programming 

languages into machine instructions. 

As we have observed in Section 2, synthesized attributes alone are (in 

principle) sufficient to define any function of  a derivation tree. But in 

practice, the inclusion of  inherited attributes as well as synthesized attri- 

butes, as described in this paper, leads to important simplifications. The 

definition of  Turingol, for example, shows that the agreement between 

declaration and use of  symbol s , and the association of  labels to statements, 

may be easily treated. "Block structure" is another common aspect of  pro- 

gramming languages whose definition is greatly facilitated by the use of  

inherited attributes. In general, inherited attributes are useful when part 

of the meaning of  some construction is determined by the context in which 

that construction appears. The method of  Section 2 shows how both in- 

herited and synthesized attributes can be treated formally, and Section 3 

shows that it is possible to rule out problems of  circularity (which are poten- 

tial sources of  difficulty when both inherited and synthesized attributes 
are mixed). 

The principal contributions to formal semantic definition of program- 

ming languages, at least those known to the author at the time of  writing, 

are de Bakker's definition of  ALGOL 60 by means of  a growing Markovian 
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algorithm [ 1 ] ; Landin's definition of  ALGOL 60 by means of  the X-calculus 

[9, 10, 11] (see also B6hm [2, 3]); McCarthy's definition of  MicrO-ALGOL by 

means of  recursive functions applied to the program and to "state vectors" 

[12] (see also McCarthy and Painter [13]); Wirth and Weber's definition 

of Euler, by means of  semantic rules applied as a program is parsed [ 16]; 

and the IBM Vienna Laboratory's definition of  PL/I [15] based on the 

work of  McCarthy, Landin, and abstract machines defined by Elgot [4, 5]. 

The most striking difference between the previous methods and the 

definition of  Turingol in Table 1 is that the other definitions are processes 

which are defined on programs as a whole in a rather intricate manner; it 

may be said that a person must understand an entire compiler for the 

language before he can understand the definition of  the language. This 

difficulty is most pronounced in the work of  de Bakker, who defines a 

machine having approximately 800 instructions, analogous to Markov 

algorithms but somewhat more complicated; at each stage of  this ma- 

chine's computations we are to execute the last applicable instruction, so 

we cannot verify that instruction number 100 will be performed until we 

can prove to ourselves that the 700 subsequent instructions are inapplic- 

able; furthermore,  additional instructions are added to the list by the ac- 

tions of  the machine. It is clearly very difficult for a reader to understand 

the workings of  such a machine, or to give formal proofs of  its important 

properties. By contrast, the above definition of  Turingol defines each con- 

struction of  the language only in terms of  its "immediate environment", 

minimizing to a large extent the interconnections between the definitions 

of  different parts of  the language. The definition of  compound statements 

and go statements, etc., does not influence the definition of  print state- 

ments in a substantial way; for example, any of  Rules 4.1, 4.2, 4.3, 4.4, 5.1, 

5.3 could be deleted and we would obtain a valid definition of  another 

language. This localization and partitioning of  the semantic rules tends to 

make the definition easier to understand and more concise. 

Although the other authors cited above do not make use of  such an 

intricately interwoven definition as de Bakker's, the relatively complex 

interdependence is still present. For example, consider the formal defini- 

tion of  Euler given by Wirth and Weber [16, pp. 94-98];  this is a concise 

definition of a very sophisticated language, and so it is certainly one of  the 

most successful formal definitions ever devised. Yet even though Wirth 

and Weber tested their definition by means of  extensive computer  simula- 

tion, it is quite probable that their language contains some features which 

would surprise its authors. The following Euler program is syntactically 

and semantically well-formed, although the label L is never followed by 

a colon: 

± beg in  label L; new  .4; .4 ~-- O; 

if  false then  go to L else  L; 

out  1 ; L ; A  ~ - A +  1 ; o u t 2 ;  

if  false then  go  to L else  

i f  A < 2 then  go to L else  out  3; L end  ± 
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The output of this program is 1, 2, 2, 3! Oversights such as this are not un- 

expected when an algorithmic definition of a language is constructed; they 

are less likely to occur when the methods of Section 4 are employed. 

It appears to be reasonable to assert that none of the previous schemes 

for formal definition of semantics could produce a definition of Turingol 

that is as brief or as easy to comprehend as the definition given above; and 

(although the details have not of course been worked out) it also appears 

that ALGOL 60, Euler, MicrO-ALGOL, and PL/I can be defined using the 

methods of  Section 4 in a manner which has advantages over the defini- 

tions previously given. But of course the author cannot judge these things 

impartially, and more experience is needed before these claims can be 

substantiated. 

Notice that semantic rules as given in this paper do not depend on any 

particular form of  syntactic analysis. In fact, they need not even be tied 

down to specific forms of the syntax: All that the semantic rules depend on 

is the name of the nonterminal symbol on the left of a production and the 

names of the nonterminals on the right. Particular punctuation marks, and 

the order in which the nonterminals appear on the right-hand side of any 

production, are immaterial as far as the semantic rules are concerned. 

Thus, the method of semantics considered here blends well with 

McCarthy's idea [12, 13] of "abstract syntax". 

When a syntax is ambiguous, in the sense that some strings of  the 

language have more than one derivation tree, the semantic rules give us 

one "meaning" for each derivation tree. For example, suppose the rules 

L1 ~ BL2 v(L1) = 2t(L2)v(B) q- v(L2), l(Li) =/(L2) + 1 

are added to grammar (1.3). Then the grammar becomes syntactically 

ambiguous; but it still is semantically unambiguous since the attribute 

v(N) has the same value over all derivation trees. On the other hand, if we 

were to change production 5.2 of Turingol from S ~ I: S to S ~ S: I, the 

grammar would become syntactically and semantically ambiguous. 
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