
Semantics of FODA Feature Diagrams

Yves Bontemps?, Patrick Heymans,
Pierre-Yves Schobbens, and Jean-Christophe Trigaux??

Institut d’Informatique, University of Namur

Abstract. Extended Feature Oriented Domain Analysis (FODA) Feature Diagrams (EFD)
were introduced to compensate for a purported ambiguity and lack of precision and expres-
siveness of the original FODA feature diagrams (OFD). However, EFD never received a
formal semantics, which is the hallmark of precision and unambiguity. We propose here a
semantics for both diagrams. From this we demonstrate that OFD are precise, unambigu-
ous, and expressively complete, and thus that all extensions add no expressiveness. A finer
notion is thus needed to compare these languages. Two solutions are well-established: suc-
cinctness and embeddability, that measures naturalness of a language. This tool shows that
EFD indeed bring some naturalness, but are harmfully redundant and that the same natu-
ralness can be attained with the simpler varied FD (VFD). We also show that no ambiguity
is present, in fact.

1 Introduction

When engineering software product lines (PL), constructing FD is commonly used to capture
commonalities and variabilities between products and to bridge the gap between requirements and
design. Kang et al. define a feature (F) as “any prominent and distinctive aspect or characteristic
that is visible to various stakeholders (i.e. end-users, domain experts, developers, etc.)” [9]. FD
provide a concise and explicit representation of variability. They guide the choices to be made
for determining the features of specific products and facilitate the reuse of software components
implementing these features.

The original FD (OFD) were introduced in the FODA methodology back in 1990 [9] (Fig. 1).
Since then, they have undergone several extensions [6, 14, 13, 4, 20, 3, 10] intended to “improve their
expressiveness”. However, this has never been demonstrated. In this paper, we adopt a rigorous
approach towards checking the validity of such claims.

Contrary to folk belief, we prove formally that these extensions add absolutely no expressive-
ness to OFD, since OFD are maximally expressive. We do not question the fact that EFD have
important advantages over the original ones, but we show rigorously that they are succinctness
and embeddability rather than expressiveness. Then, we revisit the “ambiguity” problem invented
in [13]. We show that it is more rigorously termed a harmless redundancy issue.

To get to these results, we first overview the FD found in literature. This is the topic of
Section 2 where we focus on syntactic variations, which are rigorously defined in Section 3.1.
Semantic concerns are addressed in Section 4. A fully formal definition of FD is given in Section 3.2.
Surprisingly, although extremely concise and translated almost literally from [9], such a definition
has never been published beforehand, while it is well known [7] that formal semantics is the
best way (1) to make sure that models are unambiguous (Def. 14) and (2) to start building safe
automated reasoning tools, be it for verification, transformation or, more specifically, for assisting
stakeholders in choosing features.

EFD are as expressive (Theorem 2), but more succinct (Theorem 5) and natural (Theorem 4).
But these measures also detect that EFD are harmfully redundant and that the simpler VFD
gives the same naturalness with a much simpler syntax. VFD is thus the FD language we can

? FNRS Research Fellow
?? Work Supported by Walloon Region and FSE in FIRST Europe Objective 3 Project PLENTY

EPH3310300R0462 / 215315

recommend for general use: it is simple, natural, succinct, has a simple formal semantics and is
expressively complete. The problem of EFD is the presence of synonymous constructs, which are
often believed to bear different meanings. This opens the way to misunderstandings as well as
endless, pointless arguments between stakeholders.

We terminate Section 4 with the purported [14] problem of ambiguity (Def. 14), that is actually
harmless redundancy (Def. 15).

2 State of the art

2.1 FODA

The reference definition of FD is provided in the Feature Oriented Domain Analysis (FODA)
method [9]. As depicted in figure 1, the original FD (OFD) are composed of:

1. The concept or root refers to the complete product line.
2. The nodes can be mandatory (by default) or optional (with a hollow circle, e.g. coolant).
3. The relations between nodes can be:

(a) consists-of: It has two meanings, and-decomposition (e.g. between Monitor Fuel Consumption

and its sons) or xor-decomposition (e.g. between Methods and its sons).
(b) constraints: either requiresor mutex, an abbreviation for “mutually-exclusive-with”. Con-

straints were first added as textual annotation, but later drawn in the graph, a variant we
call Graphical OFD (GOFD).

Monitor
Temperatures

coolant

 oil

Monitor Engine

system

Monitor Fuel
Consumption

Monitor Engine

Performance

engine

transmission

Monitor exhaust

levels and
temperature

Monitor RPM

Based on
type of
driving

Miles/galonl/Km

Measures

Based on

drive

Based on
distance

Methods

Fig. 1. FODA: Monitor Engine System

2.2 FeatuRSEB

FeatuRSEB [6] is a combination between the FODA method and the Reuse-Driven Software En-
gineering Business (RSEB) method. RSEB is a use-case driven systematic reuse process, where
variability is captured by structuring use cases and object models with variation points and vari-
ants. As illustrated in Fig. 2, FeatuRSEB uses XOR (white diamonds) and OR (black diamonds)
nodes. We call such diagrams RFD.

2.3 Generative programming

Czarnecki and Eisenecker [4] have extended OFD for use in the Generative Programming (GP)
approach. Mandatory, alternative and optional nodes are completed with “or-features”, “optional
alternative features” and “optional or-features”. The authors argue that FD are directed graphs
and not just trees. Their FD can now also contain cardinalities [2, 3] like in EFD (Section 2.4).
We call these diagrams GPFD.

Monitor
Temperatures

coolant

 oil

Monitor Engine

system

Monitor Fuel
Consumption

Monitor Engine

Performance

engine

transmission

Monitor exhaust

levels and
temperature

Monitor RPM

Based on
type of
driving

Miles/galonl/Km

Measures

Based on

drive

Based on
distance

Methods

Fig. 2. FeatuRSEB: Monitor Engine System

2.4 Feature diagrams with multiplicities

Riebisch claims that multiplicities are partially represented with those previous notations [14].
Moreover, he indicates that “unfortunately, these combinations of mandatory and optional fea-
tures with alternatives, OR and XOR relations could lead to ambiguities” [13]. In order to limit
these drawbacks, he extends the GPFD notation with UML-like multiplicities and mandatory and
optional relations [14]. As illustrated in Fig. 3, he marks mandatory relations with a filled cir-
cle. Multiplicity denotes the minimum and maximum number of edges to be chosen from those
originating from the node. We call these diagrams EFD.

Monitor
Temperatures

coolant

 oil

Monitor Engine

system

Monitor Fuel
Consumption

Monitor Engine

Performance

engine

transmission

Monitor exhaust

levels and
temperature

Monitor RPM

Based on

type of
driving

Miles/galonl/Km

Measures

Based on

drive

Based on
distance

Methods

1..3

1..1

Fig. 3. Feature Diagram with multiplicities: Monitor Engine System

3 Formal definition

3.1 Syntax

In this section, we present a syntax for OFD and EFD, see Fig. 1 and 3.

Definition 1 (Original feature diagram). An original feature diagram (OFD) D [9] is a
labeled graph with:

1. nodes n ∈ N (e.g. all text in any Figure), that are labeled as:
(a) One node type, either:

i. xor-node x ∈ X, denoting features that are realized by including exactly one of their
sons. They are drawn with an arc joining their outgoing links (see Methods in Fig. 1).

ii. and-node a ∈ A, denoting features that are realized by including all their sons, such as
Monitor Engine Performance, in Fig. 1;

and optionally:
(b) as the concept or root r ∈ N . It is drawn at the top (eg. Monitor Engine System in

Fig. 1). There is a unique concept in an FD, conventionally an and-node: r ∈ A

(c) leaf f ∈ F are features in the meaning of Section 1. They are drawn at the bottom of the
diagram.

(d) optional o ∈ O, drawn with a small hollow circle above, cf. coolant in Fig. 1.
2. edges →⊆ N × N labeled mandatory such that

(a) Only the concept has no father: n 6→ m iff n = r.
(b) The hierarchy is acyclic: ¬(n1 → . . . → nk → n1)

3. a set of constraints Φ of the forms n1 mutex n2, or n1 requires n2. For the sake of Section 4.2,
where all must be labeled graph, we will represent constraints by their syntax tree, attached to
the root.

Definition 2 (Extended feature diagram). Extended feature diagrams (EFD) add a new node
type, variation points V P (i . . . j), where i ∈ N and j ∈ N ∪ {∗} are called the multiplicities.

3.2 Semantics

The semantics of a FD will be a product line, whose products provide a set of features (F) (Def. 5).
The notion of model is introduced in [9, p.64], with the examples of models of X10 terminals.

Definition 3 (Model). A model m ∈ M of a FD is a subset of its nodes, plus a second copy
noted o′ of its optional nodes: M = P(N] O′). We let n′ = n for non-optional nodes.

Definition 4 (Valid model). [9, p.70] A model m ∈ M is valid for a diagram D ∈ FD, noted
m � D iff:

1. The concept is in the model: r ∈ m

2. If a xor-node is in the model, exactly one of its sons is: x ∈ m ⇒ ∃!n.x → n ∧ n′ ∈ m

3. If a and-node is in the model, all its sons are: a ∈ m ⇒ ∀n.(a → n ⇒ n′ ∈ m)
4. If a V P (i . . . j) is in the model, the number of its sons that are in the model is between i and

j (included). v ∈ M ⇒ i ≤ |{n|x → n ∧ n′ ∈ M}| ≤ j

5. If a non-concept node is in the model, some of its fathers, called its justification, is: n′ ∈
m ∧ n 6= r ⇒ ∃n1.n1 → n ∧ n1 ∈ m

6. The justification of o is o′: o ∈ m ⇒ o′ ∈ m

7. The model must satisfy all formulae from the constraint set: ∀φ ∈ Φ, m � φ, where:
m � n1 mutex n2 iff n1 and n2 are not both in m;
m � n1 requires n2 iff when n1 is in m, n2 too.

Definition 5 (Product line).

1. A product p ∈P is a set of leaves: P = P(F).
2. The product of a model m, noted [[m]], is m ∩ F . Many models denote the same product.
3. A product line is a set of products: PL = P(P) = P(P(F)).
4. The product line of a FD d is the products of its valid models: [[d]] = {m ∩ F |m � d}

3.3 Discussion of the semantics

Our semantics is node-based, following [9, p.70]; an alternative would be to take an edge-based
semantics, where models are sets of edges and the conditions on sons are replaced by conditions
on edges. In fig 4, {l, m} is a valid edge-based model, but not a valid node-based model.

Almost each paper in Section 2 has understood the meaning of options in a different way. Thus
we contradict some. In our semantics, Fig. 3 admits a model with neither l/km or miles/gallon,
for instance.

Our use of justifications works well with a finite acyclic hierarchy, but will not extend to the
infinite or cyclic case. In this case, a complex solution in the style of stable models [19] will be
needed, and will give the same result for our simple case.

r

x y

l m n

Fig. 4. edge- or node-based?

4 Formal comparison

In this section, we will compare FD w.r.t. expressiveness, embeddings, succinctness, redundancy.

4.1 Expressiveness

The expressiveness of a language is the part of its semantic domain that it can describe.

Definition 6 (Expressiveness). The expressiveness of a language L is the set E(L) = {[[D]]|D ∈
L}. A language L1 is more expressive than a language L2 if E(L1) ⊃ E(L2). A language L with
semantic domain M (i.e. its semantics is [[·]] : L → M) is expressively complete if E(L) = M.

The semantic domain M of FD is PL = P(P(F)). In other words: every FD defines a PL. Now,
we can ask the converse question: Can every PL be expressed by a FD of a given kind? In other
words: are these FD expressively complete?

We start with the two textual constraints mutexand requires. It is the only part of OFD that
was never extended, hinting that it is complete. We prove the opposite.

Theorem 1. There is a FD D (Fig. 9) and a boolean formula ϕ that no set of mutex, requiresconstraints
can express, i.e., {m|m |= D ∧ m |=B ϕ} 6= {m|m |= D ∧ m |= Φ}

Proof. Any FD on the top row of Fig. 9 has 4 nodes and allows to choose any combination of the
3 leaves. Its PL has 8 models and products. Impose the constraint ϕ = C ∨D. Its PL has 6 models
and products. There are 4 nodes, thus 4 values for n1 and n2, so 16 possible mutexconstraints, and
the same for requires. Thus 232 sets are possible, but many express the same PL. None of these
sets Φ expresses [[ϕ]], more precisely (1) [[Φ]] ⊂ [[ϕ]] or (2) [[Φ]] ∩ {C, D} = P ({C, D}). We induce
on Φ. If it is empty, we have (2). Else, let φ be a constraint in Φ. For n1requiresn1 or if n1 and
n2 6∈ {C, D} we have (2) ; else, we have (1).

One should not over-interpret this theorem. First, it is true only of some fixed FD. The FD
of Fig. 5 expresses this PL, and indeed OFD are expressively complete (Theorem 2). Second, if
nesting constraints were allowed, Sheffer [18] has shown that mutexalone is complete, even when
base symbols are taken from F instead of N .

Now we ask: Can every PL be expressed by an OFD? Many authors assumed no, and extended
OFD. We need a small tool to solve this question: the first normal form of a product line.

Definition 7 (First normal form). The first normal form of a PL P N1(P) has as xor-nodes
the root X = {r}, as and-nodes the products A = P , no optional nodes O = ∅, edges from the root
to each product, and from each product to its constituent features: n → p iff n = r ∧ p ∈ P ∨ n ∈
P ∧ p ∈ n, and no constraints, see e.g. Fig. 5.
The language of first normal forms is thus called N1(PL).

Note that this form is expressed in a subset of OFD:

Definition 8. COFD is OFD without constraints nor options.

Theorem 2. Every PL can be expressed by a COFD, e.g. by its first normal form:

∀P ⊆ 2F .∃N1(P) ∈ COFD.P = [[N1(P)]]

r

{f1} {f2}

f2

{f1,f2}

f1

Fig. 5. Normal form of product line {{f1}, {f2}, {f1, f2}}

Kang [9, p.87] also noted that OFD are redundant. He proposed to get rid of the graphical part
and use only textual constraints. Theorem 1 excludes this. One can, on the contrary, get rid of
the constraints. Another alternative is to choose a rich, but fixed, graphical part. Then all the
information is in the constraints:

Definition 9 (Second normal form). The second normal form of a product line P , noted
N2(P), is a COFD where the root is the only xor-node, connected all possible sets of leaves which
are and-nodes connected to their leaves. Then we use a mutexwith root to exclude the combinations
that should not be included in the PL.

Theorem 3. For any set of leaf features F , there is a FD N2({F}) such that any PL L on F can
be expressed by constraints on N2({F}).

This does not contradict Theorem 1, but shows that some FD with many nodes provide enough
grip to constraints, while simple FD do not.

Thus all extensions of COFD are exactly as expressive as COFD, since the latter already have
maximal expressiveness.

Probably the critics of OFD confused expressiveness with succinctness or naturalness, that are
often used as a substitute for expressiveness when all languages are equally expressive (as is the
case, e.g., with programming languages.)

4.2 Embeddability

When all languages have the same expressiveness, one needs finer criteria to compare them. [5],
following [11], pointed that to be natural, the translation used for the proof of expressiveness
should be done without a global reorganization:

Definition 10 (Embeddability). L1 is embeddable into L2 iff there is an embedding T : L1 →
L2 that is:

1. compositional (also called modularor homomorphic): T (C1(e)) = C2(T (e)), for all constructs
C1 of L1, where e is a vector of meta-variables, adequately typed w.r.t. C1’s subterms expected
types, and C2 is an expression in language L2 containing the same meta-variables.

2. correct: ∀l1 ∈ L1, [[T (l1)]] = [[l1]].

Said otherwise, an L1 compiler can be obtained by putting a trivial macro pre-processor in front
of an L2 compiler.

The graphical languages considered in this paper have no context-free syntax, so that compo-
sitionality cannot apply. We generalize it:

Definition 11 (Graphical embeddability). A graphical language L1 is embeddable into L2

iff there is a correct embedding T : L1 → L2 that is:

1. node-controlled[8]: T is expressed as a set of rules D1 → D2, where D1 is a diagram containing
a distinguished node, and all possible relations with this node. Its translation D2 is a subgraph
in L2, plus how the existing relations should be connected to nodes of this new subgraph.

Our second definition is a generalization of the first one, if we view syntax trees as labeled graphs,
and allow syntax trees with sharing.

Embeddability is widely considered as an adequate notion for comparing “natural expressive-
ness” of languages. Specially, non-trivial self-embeddability is considered as harmful redundancy.
It means that there is a strict sublanguage where everything can be expressed as naturally, thus
that the language is unnecessarily complex. All abstraction and decomposition principles are kept
in the smaller language. Indeed, the replacement is purely local and only impacts the diagram
size or shape by a constant factor. We now show that EFD have such a sublanguage, that we call
VFD.

Definition 12 (VFD). VFD is the sublanguage of EFD with just VPs.

Theorem 4. The normal forms are embeddable into COFD; COFD is embeddable into OFD;
OFD is embeddable into EFD; EFD is embeddable into VFD and conversely.

The first two embeddings are obvious. For the third, we provide the translation in Fig. 7 and
an example in Fig. 6.

Monitor
Temperatures

F_coolant

Oil

Monitor Engine

system

Monitor Fuel
Consumption

Monitor Engine

Performance

Engine

Transmission

Monitor exhaust
levels and

temperature

Monitor
RPM

Based on
type of
driving

Miles/galonl/Km

Measures

Based on

drive

Based on
distance

Methods

1..3

1..1

2..2

2..2

3..3

coolant

0..1

0..0

0..0

0..0

0..0
0..1 0..1

0..1
0..1 0..1

0..0

0..0
4..4

F_Based
on type of

driving

F_Miles/
galon

F_l/Km F_Based
on drive

F_Based on
distance

0..0 0..0
0..0

0..0
0..0

Fig. 6. Varied Feature Diagram(VFD): Monitor Engine System

Instead of . . . write . . .

a and-node with number of sons s a VP(s . . . s)
a xor-node a VP(1 . . . 1)
an or-node a VP(1 . . . ∗)

an optional node o a VP(0 . . . 1) with son o

n1 mutexn2
a VP(1..1), and-son of r, with sons
n1, n2

n1 requiresn2

a VP(1..2), and-son of r, with two
sons n2,¬n1, himself a VP(0..0)
with son n1.

Fig. 7. Embedding EFD into VFD in 3n

4.3 Succinctness

Furthermore, the cost of translating between these notations is not prohibitive.

Definition 13 (Succinctness). Let G be a set of functions from N → N. A language L1 is G-as
succinct as L2, noted L2 ≤ G(L1), iff there is a correct translation T : L1 → L2 that is within
G: ∃g ∈ G, ∀n ∈ N, ∀l1 ∈ L1, |l1| ≤ n ⇒ |T (l1)| ≤ g(n). Common values for G are “identically”
= {n}, “thrice” = {3n}, “linearly” = O(n), “cubically” = O(n3), “exponentially” = O(2n). We
will omit “identically”.

EFD

O(n3)wwppppppppppp

n

��

BCor(C)OFD

O(n)

77ppppppppppp

O(n)

''NNNNNNNNNNN

V FD
O(n3)

ggNNNNNNNNNNN

3n

OO

Fig. 8. Translations between Feature Diagram Languages

In Fig. 8, BC are the combinatorial boolean electronic circuits [16, 17, 21]. They are built from
mutex gates [18].

Theorem 5. 1. EFD ≤ OFD ≤ COFD.
2. EFD ≤ VFD.
3. VFD ≤ 3·EFD.
4. COFD ≤ O(V FD3).
5. VFD ≤ BC.
6. BC ≤ O(V FD3).

Proof. 1. Let T (D) = D.
2. Let T (D) = D.
3. Fig 7.
4. We translate each variation point v of multiplicity µ . . . ν by a subgraph of quadratic size.

Assume its sons are ordered as s1, . . . , sq. We introduce fresh xor-nodes of the form (i, j)
where 0 ≤ i ≤ q is the number of sons treated, and 0 < j ≤ ν ≤ q is the number of sons in
the model among the sons treated. When i = q, if µ ≤ j ≤ ν, we replace it by the true node
(a and-node with 0 sons with a and-link from the root). Else, we replace it by the false node
(a xor-node with 0 sons). Each (i, j) with i < q has two and-sons, based on a case analysis of
whether the son i is in the model. The first (i, j)+ is and-node with sons si and (i + 1, j + 1).
The second (i, j)− is and-node with sons ¬si and (i + 1, j). ¬si is a xor-node with two sons,
si and a true node.

5. A mutexs gate can be translated by a VP(0 . . . s − 1).
6. First translate the VFD to a COFD as above. We note that each node has zero or two sons.

It is known that every boolean operator can be translated linearly in BC, so we replace each
node by this translation.

These results compose, e.g. VFD ≤ 3·OFD by using (1) and (3). Thus VFD can naturally encode
any FD, multiplying its size by at most 3.

This is rather surprising when considering the necessary complexity of any PL language.

Theorem 6. Any expressively complete language for PL must have PL that are expressed expo-
nentially in the number of leaf features.

Thus all languages considered here agree on the PL that are expressed polynomially:

Theorem 7. A series of PL is expressed polynomially by a FD iff it has a polynomial boolean
circuit (PBC) [12].

4.4 Redundancy

Another criticism [13] of OFD is that they are ambiguous:

Definition 14 (Ambiguity). A diagram (or sentence) is ambiguous iff it has two different
meanings: [[D]] 6= [[D]]. A language is ambiguous iff it contains an ambiguous diagram or sen-
tence.

This is obviously impossible with a formal semantics, since [[.]] is a function. The semantics pre-
sented here is already present (albeit in English) in [9], thus we were surprised to see this claim
in [13].

Fig. 9. Ambiguity example [13]

Let us examine the “proof” of [13] in Fig. 9. It shows [[D1]] = [[D2]]. Let us name this property:

Definition 15 (Harmless redundancy). A language L is harmlessly redundant iff ∃D1, D2 ∈
L.D1 6= D2 ∧ [[D1]] = [[D2]]. Otherwise, it is a normal form (NF).

All FD except normal forms are thus harmlessly redundant. But a normal form cannot be as
natural (Corollary 1).

4.5 Complexity

We consider the complexity of implementing a CASE tool supporting FD. Our envisioned CASE
tool shall support two tasks: designing and analyzing new FD, and resolving variation points by
interacting with a customer to obtain a model. In the latter problem, the customer is asked ques-
tions following the root down to the leaves. When the customer chooses, this choice is propagated,
pruning the FD. A choice that leads to no product should never be proposed to the user.

In the theorems of this section, we use FD to stand for COFD, OFD, VFD or EFD.

Theorem 8. Deciding whether an FD has products is NP-complete.

The design task is made of several use cases. First, an analyst draws a FD. Since VFD are
now less popular than EFD, although better, as advocated in the previous sections, it may be
easier to allow input in the syntax of any FD. The tool translates those into VFD, following the
rules of Fig. 7, and lets the analyst switch between the two views. Doing so would ensure a better
acceptance and a steeper learning curve.

Secondly, when a FD is considered too complex, an engineer could want to manually refactor
it. After such a modification, a natural question to ask is whether the PL described by this new
FD is the same. Similarly, when PL are developed by several persons, conflicts may arise and, in
order to solve them, it can be interesting to first compare PL, and give a product showing the
difference.

Theorem 9. Deciding whether two FD have the same valid models is coNP-complete. Giving a
model in their difference is NP-complete.

Theorem 10. Deciding whether two FD are equivalent (have the same products) is coNP-complete.
Giving a product in their difference is NP-complete.

Corollary 1. For any normal form NF for which equivalence can be decided in polynomial time,
putting a FD into NF is coNP-complete.

No NF failing this condition is known: our two NF (Defs. 7 and 9) are in O(n log n), for instance.
All known coNP-complete algorithms take exponential time. So in practice, putting a FD into NF
is exponential. An embbeding is linear, so that no NF can be as natural as a FD language.

5 Conclusion

Through this paper, we hope to have clarified feature diagrams. We have shown how to evaluate
their various extensions. Expressiveness is not a criterion here, since no extension can increase
the expressiveness of OFD. We should use a succinct, natural and non-redundant language. Then
VFD is clearly the winner.

Our formalization decides concisely every detail of these diagrams. Some might disagree on the
meaning of specific examples. But at least we opened the field for a precise and fruitful discussion,
and we believe to have good arguments for our choices.

A feature is formalized here as a meaningless symbol: we just follow [9] in that. In [15], we
have shown how to consider a feature as coordinated transformations of models at several levels of
abstraction, thus giving it a rich formal semantics. It gives rise to an integrated Transformational
Model-Driven Approach (TMDA) for Product Lines (PL).

Variation points can be added to any type of diagrams (or text), obtaining thus “varied di-
agrams”. We will give their generic semantics. The treatment of variation will thus also be har-
monized in the whole development. This is a restricted case of the approach above [15], since it
cannot deal with addition of unexpected features but it has a more appealing graphical syntax
and a simpler semantics.

Our formalization has the same structure as the definition of logics. Many natural questions
arise if we see FD as a logic; the main one is to provide a sound and complete inference system.
Such a system has to be graphical, since we use a graphical syntax. For instance, in [1], we gave
a graphical inference system for a graphically similar, but semantically very different, language:
priority graphs.

We only studied static product lines. An important future topic of study is their evolution.

References

1. Andreka, Ryan, and Schobbens. Operators and laws for combining preference relations. JLC: Journal
of Logic and Computation, 12, 2002.

2. Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich W. Eisenecker. . generative pro-
gramming for embedded software: An industrial experience report. In Don Batory, Charles Consel,
and Walid Taha., editors, ACM SIGPLAN/SIGSOFT Conference on Generative Programming and
Component Engineering, pages 156–172, Berlin-Heidelberg, 2002. Springer-Verlag.

3. Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Staged configuration using feature
models. In Proc. SPLC04, 2004.

4. Ulrich W. Eisenecker and Krzysztof Czarnecki. Generative Programming: Methods, Tools, and Appli-
cations. Addison-Wesley, 2000.

5. M. Felleisen. On the expressive power of programming languages. In N. D. Jones, editor, Proceedings
of the Third European Symposium on Programming, volume 432 of Lecture Notes in Computer Science,
pages 134–151. Springer Verlag, 1990.

6. M. Griss, J. Favaro, and M. d’Alessandro. Integrating Feature Modeling with the RSEB. In Proceedings
of the Fifth International Conference on Software Reuse, pages 76–85, Vancouver, BC, Canada, June
1998.

7. D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and all that stuff, part i: The basic
stuff. Technical Report MCS00-16, Faculty of Mathematics and Computer Science, The Weizmann
Institute of Science, 2000.

8. Dirk Janssens and Grzegorz Rozenberg. On the structure of node label controlled graph languages.
Inform. Sci., 20:191–244, 1980.

9. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, November 1990.

10. Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe. Feature-Oriented Product Line Engineering. IEEE
Software, 19(4):58–65, July/August 2002.

11. Stephen Cole Kleene. Introduction to Metamathematics, volume 1 of Bibliotheca Mathematica. North-
Holland, Amsterdam, 1952.

12. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
13. M. Riebisch. Towards a More Precise Definition of Feature Models. Position Paper. In: M. Riebisch,

J. O. Coplien, D, Streitferdt (Eds.): Modelling Variability for Object-Oriented Product Lines, 2003.
14. Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow. Extending Feature Diagrams

with UML Multiplicities. In Proceedings of the Sixth Conference on Integrated Design and Process
Technology (IDPT 2002), Pasadena, CA, June 2002.

15. Mark Ryan and Pierre Yves Schobbens. Fireworks: A formal transformation-based model-driven
approach to features in product lines. In Tomi Männistö and Jan Bosch, editors, Proc. WS. on
Software Variability Management for Product Derivation - Towards Tool Support, 2004.

16. Claude Shannon. A symbolic analysis of relay and switching circuits. Master’s thesis, MIT, 1937.
17. Claude Shannon. A symbolic analysis of relay and switching circuits. Transactions American Institute

of Electrical Engineers, 57:713–723, 1938.
18. Henry M. Sheffer. A set of five independent postulates for boolean algebras, with application to logical

constants. Trans. AMS, 14:481–488, 1913.
19. T. Soininen and I. Niemelä. Developing a declarative rule language for applications in product configu-

ration. In G. Gupta, editor, Practical Aspects of Declarative Lan-guages First International Workshop,
PADL’99, Proceedings, volume 1551 of Lecture Notes in Computer Science, pages 305–319. Springer-
Verlag, 1999.

20. Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. On the Notion of Variability in Software Product
Lines. In Proceedings of the Working IEEE/IFIP Conference on Software Architecture (WICSA’01),
2001.

21. Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag, New
York, 1999.

