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Received: 5 January 2018 / Accepted: 11 August 2018 / Published online: 28 August 2018
© The Author(s) 2018

Abstract

We formally define the foundations of the Mizar system as an object logic in the Isabelle

logical framework. For this, we propose adequate mechanisms to represent the various

components of Mizar. We express Mizar types in a uniform way, provide a common type

intersection operation, allow reasoning about type inhabitation, and develop a type inference

mechanism. We provide Mizar-like definition mechanisms which require the same proof

obligations and provide same derived properties. Structures and set comprehension opera-

tors can be defined as definitional extensions. Re-formalized proofs from various parts of the

Mizar Library show the practical usability of the specified foundations.

1 Introduction

Mizar [8] is one of the longest-lived proof assistants today. Its set theoretic foundations [27]

together with an intuitive soft type system make the system attractive for mathematicians [68]

and its formal library—the Mizar Mathematical Library (MML) [7]—became one of the

largest libraries of formalized mathematics today. It includes many results absent from those

derived in other systems, such as lattices [9], topological manifolds [63], and random-access

Turing machines [42]. The unique features of the system include:

– A soft type system which allows for dependent types and intersection types,

– Declarative proofs in Jaśkowski-style natural deduction [33],

– Convenient structure types with (multiple) inheritance,

– A term language that allows for disambiguation based on types, in some cases allowing

hundreds of meanings of a single symbol,

– Proof checking corresponding to the research on the notion of “obviousness” of a single

proof step, without the need to explicitly reference proof procedures or tactics.
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Nevertheless, the system has been developed since the seventies, and some of the decisions

taken at that time still affect the current implementation. The following issues have served

as a motivation for the work presented here.

Semantics The complete semantics of Mizar has only been described in papers. The Mizar

reference manual [27] introduces the underlying first-order logic variant by explaining the

behavior of the checker, discusses the soft type system, definitional mechanisms, and

automation mechanisms. Further extensions of the system are described only in the arti-

cles introducing these extensions. Examples include the handling of ellipsis and flexary

connectives [41] and the integration of SAT solvers [53].

Knowledge As Mizar has a highly overloaded language, it is hard to access the contents of

its library. Even with the various attempts at extracting the contents of the library to other

formats (discussed in Sect. 12.3) some of the knowledge contained in the library has never

been completely available outside of the system. In particular, the MML content has been hard

to access for users of other proof assistants and authors of tools that manage mathematical

knowledge.

Monolithic Kernel Issues in the implementation of a proof assistant kernel can result in invalid

proofs being accepted. With the source code of the large kernel of Mizar available only to

the members of the Association of Mizar Users the situation may be more worrying for the

community. Allowing such portability of proofs across systems provides a good way of proof

certification [2].

User Interface The main user interface for verifying Mizar proofs is a batch tool. The tool

processes complete Mizar articles—that are collections of Mizar definitions, statements, and

proofs gathered in a single file (this corresponds to the Isabelle notion of a theory). The

Emacs mode provides some additional functionality, but it is still limited when compared to

the modern interfaces of many other proof assistants [12,80].

1.1 Contributions

In this paper we introduce the semantics of Mizar and discuss the possible ways to express

this semantics in a logical framework. We further implement the Mizar foundations as an

object logic in the Isabelle logical framework [61] and re-formalize a number of articles from

the MML that include all the important techniques used in Mizar to practically demonstrate

the adequacy of our encoding. In particular:

– We specify the semantics of the Mizar core in a concise way mostly abstracting from the

Mizar syntax and from the naming scheme used in the system (Sect. 3).

– We discuss the possible approaches to encode the Mizar semantics in a logical frame-

work. We propose our encoding as an Isabelle object logic that can inherit either from

Isabelle/FOL or from Isabelle/HOL (Sect. 4). The former allows a closer correspondence

with the semantics of Mizar, while the latter allows the use of the packages developed

only for HOL, such as learning-reasoning [13] and counterexample-search [14].

– We specify the Mizar type system in the object logic covering all its peculiarities, includ-

ing intersection types, inhabitation, and sethood. We make all the basic operations (such

as quantifiers and choice) rely on the type system, which allows us to express the set

theory axiomatization similarly to the Mizar one (Sect. 5).

– We propose mechanisms to introduce all the concepts that can be defined in Mizar. We

develop derived mechanisms based on standard Isabelle definitions (Sect. 6).

– We discuss the background knowledge available in Mizar, in particular reserve that glob-

ally assigns given types to selected variable names, ty that collects types of term, and
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cluster that provides user-defined type inference rules. We develop an Isabelle/ML

mechanism that imitates Mizar type inference. (Sect. 7).

– We introduce structures (Sect. 8) and set comprehension operators (Sect. 9).

– To practically show the usability of the defined Mizar foundations, we re-formalize a

number of Mizar articles. The re-formalizations are performed manually, however are

able to use minimal Mizar-like automation. The formalizations include set theoretic

notions, algebraic structures, ordinals, and Mizar computers. Some of these rely on the

Tarski axiom and its basic consequences (Sect. 11 and 10 respectively). A single example

of a re-formalized Mizar proof will be presented in Fig. 3.

– When writing the paper we decided to mostly avoid introducing the vocabulary used in

Mizar jargon and some Mizar literature. A small dictionary of such terms is given in

“Appendix”. We recommend readers who are either familiar with the Mizar terminology

or those who like to further read the Mizar literature to start with this “Appendix”.

The current paper includes certain contents from the papers presented at CPP 2016 [37]

(only an initial axiomatization of the Mizar foundations in Isabelle remains in the current

version), CICM 2017 [35] (where conditional definitions were introduced), MACIS 2017 [34]

(where we proposed the semantics of Mizar structures and set comprehensions) and FedCSIS

2017 [36] (where we proposed partial automation for structure proofs).

The new content in the current paper, which was not covered in any of the previous

works includes automating type inference, the specification of the background information

and the mechanisms for its gathering, and explicit inhabitation predicate. Furthermore, we

simplified the axiomatization of the Mizar foundations to rely on fewer axioms, while at

the same time imitating more closely the semantics of some of the definitions (such as

non) and introduced Mizar-like mother-types and result types for all type definitions. We

performed the corresponding changes to all aspects of the system, which in particular involved

significant changes in the proofs (inhabitation proofs are now necessary for every quantifier

introduction and elimination). The final new content are some of the case studies: ordinals,

natural numbers, and the basic definitions of category theory.

2 Logical Frameworks and Isabelle

Most interactive proof assistants implement a fixed foundational logic. However, it is also

interesting to model logical systems themselves. Logical frameworks have been proposed

for this purpose. Today some of them serve not only as tools for modeling logics, but also

allow users to work in such specified logics, referred to as object logics. The two major

logical frameworks today are LF (with its most current implementations being Twelf [66]

and MMT [64]) and Isabelle [82]. Various other systems are also useful for modeling logics

and working with them, for example λ-Prolog [25] used to implement proof systems for the

calculus of inductive constructions and higher-order logic [23].

The foundations of Isabelle, called the meta-logic Pure are a variant of simple type the-

ory with shallow polymorphism. Pure together with the Isabelle kernel are implemented

in Standard ML. The framework provides functionality that makes it convenient to define

components of object logics, their notations, and the necessary procedures. Isabelle/HOL is

today the most developed Isabelle object logic. Further Isabelle object logics include untyped

set theory [62], constructive type theory, and Lamport’s temporal logic of actions [49]. Paul-

son [61] discuses the various object logics implemented in Isabelle. Isabelle has been the only

logical framework so far to support a complete declarative proof language—Isar. As Isar is
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inspired and therefore quite similar to Mizar [83], it is particularly attractive for representing

Mizar.

The three main syntactic categories of Isabelle/Pure are types, terms, and theorems. Encod-

ing a logic in Isabelle therefore consists of axiomatically specifying the new constructs in each

of these categories, namely introducing the new types, constants, and axioms respectively.

We will illustrate this by giving excerpts of the encoding of first-order logic in Isabelle/Pure.

As for most object logics, this starts with the introduction of the type of propositions:

typedecl o

The propositions of the object logic are related with the propositions of the meta-logic by

specifying a judgement operator, traditionally called Trueprop.

In some object logics it is denoted by ⊢. However, since in FOL and HOL statements are

usually distinguishable from terms by their context, the judgement operator is not usually

shown.

judgment

Trueprop :: o ⇒ prop ((-) 5)

Next, the basic logical constants can be defined. This is usually done together with their

introduction and elimination rules. First-order conjunction and implication together with

their corresponding introduction and elimination rules are as follows:

axiomatization

conj :: o ⇒ o ⇒ o (infixr ∧ 35) and

imp :: o ⇒ o ⇒ o (infixr −→ 25) and

False :: o
where

conjI: P �⇒ Q �⇒ P ∧ Q and

conjunct1: P ∧ Q �⇒ P and

conjunct2: P ∧ Q �⇒ Q and

impI: (P �⇒ Q) �⇒ P −→ Q and

mp: [[P −→ Q; P]] �⇒ Q

As the foundations of Isabelle are polymorphic, it is also possible to specify constants and

axioms parametrized by types. This is for example done for equality:

axiomatization

eq :: α ⇒ α ⇒ o (infixl = 50)

where

refl: a = a and

subst: a = b �⇒ P(a) �⇒ P(b)

In order to specify first-order quantifiers, it is possible to relate them to the meta universal

quantifier:

axiomatization

All :: (a ⇒ o) ⇒ o (binder ∀ 10) and

Ex :: (a ⇒ o) ⇒ o (binder ∃ 10)

where

allI: (
∧

x. P(x)) �⇒ (∀ x. P(x)) and

spec: (∀ x. P(x)) �⇒ P(x) and
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exI: P(x) �⇒ (∃ x. P(x)) and

exE: ∃ x. P(x) �⇒ (
∧

x. P(x) �⇒ R) �⇒ R

Not all constants need to be axiomatized: it is possible to define some of them. The

definition mechanisms available in Isabelle have been recently shown consistent even with

overloaded constants [44] and with the user-level type definition mechanisms available in

HOL [45]. Therefore specifying parts of object logics as constants and deriving their prop-

erties reduces the size of the code one needs to trust. One example of this is truth, which we

can define and prove its introduction rule:

definition True ≡ False −→ False
lemma TrueI: True

unfolding True-def by (rule impI)

The encoding of higher-order logic in Isabelle/Pure follows the same steps. The major

difference is a type constructor for function spaces declared early. The presence of functions

naturally requires a somewhat different axiomatization of quantifiers etc. In the remainder

of the paper we assume basic knowledge of Isabelle. For further information on the syntax

of Isabelle and its features see [81].

3 Mizar Semantics

The core of Mizar is based on first-order predicate logic. Mizar proofs are proofs in natural

deduction, where the primitive inference rules are those of the Jaśkowski system [33] (the

rules proposed by Jaśkowski are only slightly different from the ones by Fitch [26] and the

ones by Ono [60]). The formulations of individual proof steps correspond to valid first-order

predicate calculus formulae. Any first-order predicate logic statement for which a proof in

natural deduction exists, can be justified in Mizar and conversely all individual steps which

Mizar accepts correspond to steps provable in natural deduction.

When it comes to top-level statements, Mizar also allows formulating and justifying

selected statement of second-order predicate logic, namely these where all the second-order

variables are universally quantified at the top-level. These correspond to axiom schemes and

theorem schemes. It is not possible to formulate (or define) properties of higher orders, includ-

ing properties whose arguments are not sets. Various properties that go beyond first-order

logic are handled explicitly in specific ways: set comprehension (Sect. 9), properties assigned

to types (sethood), and properties of meta-level functions and predicates (properties).

Mizar verifies the given proof script in multiple stages. The verification of each individual

proof step first makes sure that the expression is well-formed. This is the case if the article

environment and the needed references are imported successfully [27] and the following

stages succeed:

– Parsing The parsing stage verifies that the whole article is written according to the Mizar

syntax. In this paper we will mostly abstract from the concrete syntax of Mizar, we will

therefore generally ignore this aspect.

– Disambiguation Because of the high level of overloading in the Mizar syntax it is nec-

essary to disambiguate expressions. In particular, for every expression, Mizar checks if

the properties given to its arguments uniquely identify it. By properties we mean typing

information, as discussed in the next Sect. 3.1. This allows overloading, hidden argu-

ments, flexary functions, etc. There are almost 30 kinds of Mizar errors corresponding
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to expression disambiguation. As imitating the syntax of Mizar is not the focus of this

paper, we will again mostly ignore this aspect and rely on the logical framework’s syntax

and disambiguation mechanisms leaving Mizar-like syntax to future work. In the Mizar

implementation the types of expressions are inferred in this stage. We will postpone the

discussion of type inference and our approximation thereof until Sect. 7.1.

– Inhabitation The next verification step ensures that for every expression that requires

an inhabited type, the inhabitation of that type has been proven directly by the user, or

follows from the known type inhabitation relations. The inhabitation check is performed

for the types used in quantifiers, for the introduction of locally fixed variables, for the

use of the choice operator, and for explicit typing judgements with intersection types

term is type1|type2. We discuss this in more detail in Sect. 3.2.

– Sethood For each set comprehension expression, it is necessary to verify that the covering

type has the sethood property. This is necessary to avoid Russell’s paradox and its variants.

More details on sethood are given in Sect. 9.

Given a well-formed expression, Mizar proceeds with the actual proof step verification.

A classical disprover is used for this. The list of assumptions together with the conjecture

are transformed to disjunctive normal form. Finally a form of resolution using background

information together with selected information about equalities (in the form of congruence

closure [54]) is used in the Mizar implementation. There are various limitations to the imple-

mented resolution procedure, both for the written proofs to correspond to the human notion

of obviousness [21,65] and to allow for faster verification. Since we are not interested in these

limitations, we will assume that the last phase corresponds to first-order validity of formulas

in disjunctive normal form [84].

3.1 Mizar Type System

Types are not foundational in the Mizar logic. Semantically, Mizar types correspond to first-

order predicates. Note however, that the proof checking will handle types differently from

predicates. This was already indicated in the previous subsection, here we will discuss the

handling of types in more detail. The fact that types are predicates means that any object can

be of multiple types. To avoid ambiguity, Mizar makes sure that each object is assigned a basic

inhabited type (referred to as radix in Mizar) and optionally a number of additional types

(referred to as adjectives). These can later be extended or changed using Mizar redefinitions:

using the type-widening relation terms can be interpreted as being instances of a more general

type.

The mechanism is similar to the idea of templates in generic programming, as well as

to the use of base classes in object-oriented programming. In fact, most definitions in the

MML are formulated with few argument requirements. The meaning of objects with more

advanced types as arguments is formulated usingredefinition, where the more involved

arguments can be used in (additional) hidden argument positions. Such redefined objects can

be used wherever the non-redefined ones are accepted.

Type inference [52] can automatically derive some of the (adjective) types assigned to an

object. Additional type inference information that is proved by the user is given in the form

of Horn clauses [72]. Type information present in terms combined with the one provided in

the assumptions is propagated in a bottom-up way. Note, that Mizar types can directly or

indirectly depend on other types as well as on term arguments and their types (e.g. the type

being_homeomorphism Function of S,T is defined for S, T being TopStruct).
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This corresponds to dependent types and polymorphism in other systems. Therefore, by

bottom-up we mean both in the subterm order and considering the terms present in the types.

As in other typed systems, Mizar also uses types for early type checking, i.e., prohibiting

expressions where the arguments of a term do not fulfill the properties used in the definition

of the concept. Mizar treats the basic inhabited types differently from other types. First,

the inhabitation proof needs to be provided before such types can be used (syntactically

it is already in their definitions). Second, for each basic inhabited type1 there is precisely

one inhabited type that the current one directly extends to (this restriction will be relaxed

for structure types with multiple inheritance). We will call this the parent type (it is some-

times called mother type in Mizar literature). Inhabited types can also be introduced as

a restriction of a given inhabited type by a list of (adjective) types. For example, the type

Function in its definition is the inhabited typeRelation restricted by the (adjective) type

Function-like, whereRelation is the inhabited typeset restricted by the (adjective)

type Relation-like.

Other (adjective) types do not have further constraints, but specify the inhabited type

for which the given type can serve as a further restriction (e.g. the type Function-like in its

definition specifies that it can refer to objects of the inhabited type set).

3.2 Inhabitation

Certain proof verification optimizations in Mizar assume types to be inhabited. This is for

example the case for quantifiers. Quantifiers that bind variables not present in the subformula

can be dropped by the checker. To avoid inconsistencies every quantifier must therefore

range over an inhabited type. The same mechanism is also used for justifying the semantics

of defined objects, as well as the reservation of variable types (the reserved types will need

to be explicitly added assumptions). This does not restrict Mizar formalization to types that

must be non-empty. For example the Mizar formalization of category theory [17] discusses

possibly empty types.

Consider the inhabited type Θ . If the user employs the intersection type τ |Θ , for example

by writing the formula:

for x being τ|Θ holds P[x]

and Mizar is not able to derive the existence of an object of the type it reports an error (“136

Non registered cluster”). It is however always possible to formulate it as:

for x being Θ st x is τ holds P[x]

Concrete examples of such constructions will be presented in Sect. 6.

3.3 Choice

Since 2008 (Mizar version 7.10.01) an explicit choice operator the is available in Mizar. It

is used for example to define the empty set. Similar to quantifier terms, the choice operator

can be used for any inhabited type.

In fact a variant of the axiom of choice is already implied by the formulation of the Tarski

axiom (Sect. 10). Furthermore, the strong axiom of choice is implied by the conditional

definitions present in Mizar. Therefore the explicit choice operator is just a convenience.

1 Except the root of the type hierarchy, the basic inhabited type object, discussed in Sect. 5.
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Fig. 1 Excerpts of the Mizar articlesTARSKI andXBOOLE_0 and their corresponding Isabelle formalizations

Indeed, it is possible to define a meta-level function taking a single set as an argument, which

is defined under the assumption ⊥, and returns an element of the set that satisfies ⊤. Then, the

result is a value of that type, with no other information provable about it. This corresponds

to the choice operator.

3.4 Definitions

There are five kinds of new concepts that can be added by a Mizar user without extending the

foundational logic. Each may depend on a number of arguments. The user needs to explicitly

give the arguments and their types in the definition. In this section we discuss definitions of

predicates, two kinds of type definitions (basic and adjective types), and meta-level function

definitions. The semantics of structure definitions will be postponed until Sect. 8. Depending

on the kind of definition, Mizar introduces new information (derived definitional theorems)

about the concept. All the derived information is added to the background knowledge. A

number of examples in both Mizar and Isabelle syntax will be given in Fig. 1.

Predicates and Types Defining predicates and (adjective) types is straightforward. Mizar adds

to the background information the expansion given by the definition (excluding conditional

definitions). Mizar is able to automatically expand the definition at any point in the declarative

proof. The definition can be used in two ways. First, it can be unfolded to match the user-given

proof outline with the proof obligation. Second, the properties for the predicates allow for

their corresponding automation.
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Basic Inhabited Types Since every basic type needs to be inhabited, Mizar ensures this at

the time of definition. Furthermore, Mizar distinguishes basic inhabited types that are type

abbreviations (Mizar name: expandable mode) from atomic types. A type abbreviation must

only mention the parent type and the inhabitation information needs to be available in the

environment. The definition of an atomic type can use the special variable it, which in the

context of the definition has the parent type. Then, the user must show that there exists an

object of the parent type which has the defining property. Mizar adds to the background

information two facts. First, that the new type is inhabited. Second, that any value of the new

type is also of the parent type (in particular that the new type can be used in any context

where the parent type could be used). Finally, an introduction rule for a proof of the object

being of the new type becomes available.

Meta-level Functions Mizar allows two kinds of meta-level function definitions: definitions

by equals and definitions by means. The result type of each defined function needs to be

specified and the role of the result type is similar to that of a parent type for basic inhabited

type definitions.

Function definitions by equals play a role similar to abbreviations for expressions and

only require specifying the denoted term. Such a definition also allows modifying the default

type of an expression, when this cannot be expressed with a user-specified typing rule,

which serves as type casting operators in Mizar. For example, the Mizar type of n-element

sequences of real numbers (n-element FinSequence of REAL) and the type of vectors

in n-dimensional Euclidean space (Vector of TOP-REAL n) are isomorphic but not equal,

and it is possible to define casting functions in both directions. For any type-valid occurrence

of the newly defined function, Mizar adds the result type information and the equality to the

definition body.

Function definitions by means need a predicate in the definition body, which can use the

special variable it to refer to the defined object. This is very similar to definitions of functions

by the choice operator in other systems. Note however, that contrary to a direct use of the

choice operator, for such definitions by means it is possible to specify additional conditions

and it is necessary to provide the result type. Two user proof obligations need to be fulfilled:

a proof of existence and of the uniqueness of the result of the function. The definitional

theorem is used by Mizar only when the user explicitly refers to the definition.

4 Our Model of Mizar Semantics

In this section we discuss our semantic model of Mizar alongside relevant parts of its formal-

ization in Isabelle and discuss the adequacy of this model. Our semantic model of Mizar has

evolved in various ways since the initial one [37]: we reduced the number of needed constants

and axioms, consider only one Isabelle type for Mizar types, simplified the handling of choice

and type membership. We added predicates about these concepts (inhabited, sethood, …)

which allow closer mimicking of the logic of Mizar. We made it more flexible with respect

to the underlying Isabelle object logic and finally made definitions much closer to those of

Mizar. In the remainder of this section, we will focus on the current, improved model and

will not highlight differences to the previously considered models. We start with the basics

of FOL or HOL as implemented by the respective Isabelle object logics (only providing a

theory file for each, which makes the syntax the same). An overview of all the introduced

axioms and constants in the object logic together with their roles is given in Table 1.
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Table 1 Overview of the axioms and constants introduced to specify Isabelle/Mizar

Isabelle Constant Kind Role Details

If Definition If-then-else construction

Set, Ty Types Types of Mizar sets and types p. 10

be, define_ty, Axiomatization Type system specification p. 10

def_ty_property

inhabited Definition Type inhabitation p. 10

choice, choice_ax Axiomatization Axiom of choice p. 11

object, in, object_root, Axiomatization Axiomatic article HIDDEN p. 11

object_exists

Ball, Bex Definitions Bounded quantifiers p. 12

ty_intersection, non Definitions Intersection and complement types p. 12

Struct, TheSelectorOf, field Definitions Structures and their fields p. 25

domain_of, strict, Definitions Domains, strictness, restrictions p. 26

the_restriction_of

well_defined Definition Structure declaration p. 28

sethood Definition Type sethood p. 30

Fraenkel1, Fraenkel2, Definitions Set comprehension variants p. 30

the_set_of_all

All other definitions and the Tarski–Grothendieck axioms have been already specified in the MML and are

only translated by us to Isabelle

4.1 Types, Inhabited Types, and Their Declarations

Semantically, (adjective) types and inhabited types are predicates over sets. However Mizar

distinguishes adjectives from inhabited types already syntactically. Namely, types can only

occur as arguments of selected constructions (is, be, being, the, as, qua), while Mizar

predicates must be applied to terms.

We therefore distinguish Mizar types from predicates, by introducing a new Isabelle meta

type of Mizar types Ty. This syntactically distinguishes them from predicates, which allows

for earlier error reporting, but most importantly allows a different processing of the two.

This will be essential for efficient type inference (Sect. 7). Mizar also distinguishes inhabited

types from other (adjective) types syntactically. We have considered separating the two in the

logical framework before [35]. Such separation would indeed allow further control over the

order in which intersection types can be built, to closer imitate the syntax of Mizar, however

does complicate the semantics. We decided to simplify the model, by adding a meta-level

predicate that corresponds to type inhabitation. Combining the two allows us to introduce

fewer axioms to specify the logic.

typedecl Set
typedecl Ty
inhabited(D) ←→ (∃Lx. x be D)

The ∃L is the standard existential quantifier of the logic (either FOL or HOL), as opposed

to the Mizar bounded quantifier, for which we will later use the plain ∃ notation. Note that
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both Isabelle/FOL and Isabelle/HOL are polymorphic logics, so we can use the quantifiers

present there with the type of Mizar sets.

We next introduce the constants specifying the Mizar foundations in Isabelle. The first two

constants, ty_membership and define_ty, specify the relation between types and predicates.

The former, written in infix form S be T,2 given a set S and a type T returns a proposition,

which is valid if the set belongs to the Mizar type. This check is equivalent to the application

of the predicate represented by the Mizar type. The latter allows creating types based on

one-argument predicates. Since Mizar types can be conditional and since basic inhabited

types need to have a parent type, it needs three arguments: the parent type, the condition,

and the predicate. Whenever the parent type is not necessary (e.g. for adjective types) the

root of the type hierarchy will be used. Our previous experiments with define_ty without

the parent type information, would make type inference much more involved and would

not allow expressing the information that applying a type to a term may require some basic

properties. Consider that a Mizar term can only be one-to-one if it is of the Function
type. Now if a term is not a function, it is impossible to prove either that it is or that it is not

one to one.

consts

ty-membership :: Set ⇒ Ty ⇒ o (infix be 90)

define-ty :: Ty ⇒ (Set ⇒ o) ⇒ (Set ⇒ o) ⇒Ty

These two constants will be specified by a single axiom which specifies all the conse-

quences of a type definition. The below definition appears unnecessarily complicated, and it

seems it could be replaced by a type equivalent to a predicate, as discussed earlier. However,

the Mizar semantics is weaker, therefore we consider only selected properties of the formula

it be parent ∧ (cond(it) −→ property(it)). First, from type membership, we can infer its

parent type and that the property holds under the condition. Second, if the parent type, condi-

tion, and property hold, we get membership. The final conjunct corresponds to the semantics

of Mizar, when the property does not hold. It is necessary to show inhabitation for function

definitions and conditional definitions when the condition does not hold.

axiomatization where

def-ty-property: T ≡ define-ty(parent, cond, property) �⇒

(x be T −→ x be parent ∧ (cond(x) −→ property(x))) ∧

(x be parent ∧ cond(x) ∧ property(x) −→ x be T) ∧

(x be parent ∧ ¬cond(x) −→ inhabited(T))

The choice constant is the choice operator specified for inhabited types only with

choice_ax specifying the axiom of choice.

consts

choice :: Ty ⇒ Set (the -)
axiomatization where

choice-ax: inhabited(M) �⇒ (the M) be M

The define_ty constant allows specifying the complement (negation) of a type only under

the assumption that it is of the parent type. It becomes a meta-level function that given a type

returns a type. Note that object will be the root of type hierarchy, and will be specified in

the next section.

2 Mizar syntax allows the keywords be, being, and is for type membership in various contexts, trying to

imitate English. Semantically they are the same. We will use be in this paper wherever possible.
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non A ≡ define-ty(object, λ-. True, λx. ¬ x be A)

From the definition we immediately derive the following theorem which will be used to

interpret non types.

x be non A ←→ ¬ x be A

Similarly the ty_intersection constant with the infix syntax T1|T2 (with a derived

definition of the same name) allows the construction of a type which is the intersection of T1

and T2. The intersection operation will not require inhabited types. We only show the derived

definition:

x be t1 | t2 ←→ x be t1 ∧ x be t2

4.2 Bounded Quantifiers

Universal and existential quantification in Mizar requires specifying the Mizar type of the

introduced bound variable. We introduce two constants Ball and Bex. Their definitions

will be very similar to these of bounded quantifiers in Isabelle/HOL or Isabelle/ZF, however

instead of predicates we use the given Mizar types.

An additional assumption that we make is that the quantified types must be inhabited.

By specifying this as an assumption of the definition, we get the semantics of Mizar: If the

type is empty, it is not possible to prove neither the quantified formula nor its negation. We

additionally introduce standard automation for the bounded quantifiers (Isabelle attributes

[intro!], [dest], etc).

inhabited(D) �⇒ Ball(D, P) ←→ (∀Lx. x be D −→ P(x))
inhabited(D) �⇒ Bex(D, P) ←→ (∃Lx. x be D ∧ P(x))

These two will use the standard notations ∀x:D. P(x) and ∃x:D. P(x) respectively.

Furthermore, the notations ∀x. P(x) (same for ∃) will also refer to the bounded quantifier,

and will only be usable when the implicit type of xwill be specified using reserve (Sect. 7.1).

4.3 Mizar Schemes

Mizar schemes require special treatment in Mizar, as they go beyond first-order logic. Namely,

the statement can range over second-order variables, predicates and functions. All of these

must be universally bound on the top-level. In Isabelle, whether we use FOL or HOL, it is

possible to (even implicitly) meta-universally quantify a theorem statement over free sec-

ond order variables, which makes expressing schemes straightforward. Therefore specifying

a Mizar scheme only requires explicitly specifying the types of the quantified variables.

Consider our Isabelle re-formalization of the Mizar ordinal induction:

theorem ordinal2-sch-1:

assumes A1: P({})

and A2: ∀ A:Ordinal. P(A) −→ P(succ A)

and A3: ∀ A:Ordinal. A = {} ∧ A be limit-ordinal ∧

(∀ B:Ordinal. B in A −→ P(B)) −→ P(A)

shows ∀ A:Ordinal. P(A)
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The corresponding statement in Mizar needs to explicitly specify the argument types of

the predicate P (its argument must be an Ordinal), while in our approach it is necessary

to specify such argument types at each use (if it is not always satisfied by the argument, as is

the case here because of the quantifiers ranging over ordinals).

Mizar requires the user to provide the number of arguments of each quantified predi-

cate and their types. These are used to ensure that the arguments used in each application

of the predicate extend to the given ones. This is also used as part of the parsing mecha-

nism, to identify the expressions in the predicate defining formula. In this paper we do not

focus on imitating the syntax of Mizar, therefore we assume that the syntax is sufficiently

disambiguated.

When it comes to quantification over second-order functions, Mizar requires not only the

types of the arguments but also the return type. This type information is often used in the

proofs of the schemes. The following scheme requires the assumption T0 in the Isabelle

re-formalization:

theorem funct-2-sch-4:

assumes [ty]: C be non empty|set D be non empty|set
and T0: ∀ x:Element-of C. F(x) be Element-of D

shows ∃ f:Function-of C,D. ∀ x:Element-of C. (f . x) = F(x)

where F is explicitly given the type F(Element of C) → Element of D in Mizar.

4.4 Adequacy of theModel

The proposed model allows formulating all Mizar statements, definitions, and proofs. Here

we discuss the adequacy of the basic constructions, while the extension of the logic with new

definitions will be discussed in Sect. 6, and more advanced Mizar constructions, namely set

comprehension operators and structures, as well as the adequacy of their representations will

be discussed in Sects. 8 and 9. Finally, our re-formalization of parts of the MML (Sect. 11)

will show the adequacy of the model in practice.

With the help of explicit typings, every basic Mizar construction, first-order statement or

Mizar typing statement can be expressed in Isabelle/FOL (or HOL). We believe Isabelle/Mizar

is consistent, and its consistency is equivalent to that of other extensions of simple type theory

with axioms of set theory [3,15,58]. In all these cases, consistency amounts to the existence

of a suitably large cardinal. The only additional component of Isabelle/Mizar are types that

correspond to predicates, which are clearly unproblematic—their addition being analogous

to the addition of sets in Isabelle/HOL.

Our semantics is however slightly more liberal than that of Mizar. We relax the Mizar

typing discipline, both in the sense that inhabited types are not distinguished from other

(adjective) types and therefore can be combined in arbitrary ways, but also, because we

allow the user to prove statements that would not be Mizar theorems (but we believe to be

meaningful). Consider a set that has the one-to-one property in the sense of functions. Using

the fact that a one-to-one function exists, we can use the choice operator for this type to get an

element. As it is a set, the following statement is provable, and because the type is inhabited

it can be used with quantifiers allowing us to prove facts about the type:

theorem [ex]: inhabited(set|one-to-one)
theorem ∀ X : set|one-to-one. X be one-to-one|set
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We can also reason about an object not being of a certain type, which is not possible in

Mizar. Since every function transforms its domain to its range, we can prove that if the domain

of x is not mapped to its range, then x cannot be a function. Again, this is reasonable, and

does not lead to inconsistency, but would not be provable in Mizar (could not even be stated):

theorem ∀ x : object. ¬ x be Function-of dom x, rng x −→ ¬ x be Function
using funct-2-th-2 by mauto

5 Set Theory Axiomatization

Given the foundation of the logic underlying Mizar and its type system, we can proceed with

the foundations of set theory. In Mizar these are defined in three axiomatic articles: HIDDEN,

TARSKI_0, and TARSKI_A. In this section we discuss the first two of these articles. The

third axiomatic article, which corresponds to the set theoretic foundations that go beyond the

Zermelo-Fraenkel set theory will be discussed in Sect. 10.

The Mizar article HIDDEN introduces the inhabited types object and set, equality,

and set membership. object is the root of the type hierarchy. This means that everything is

an object and that this type is inhabited. This corresponds to two Isabelle/Mizar axioms that

state these two properties. The types object and set are equivalent in Mizar. Mizar distin-

guishes them to restrict some of the definitional expansions (an example of such a restriction

is preserving equality between numbers rather than to expand it to two set inclusions). We can

define (rather than axiomatize)set to beobject and immediately get its inhabitation. Using

this equivalence requires explicit references to the definition. The next component is equality.

Since equality is already handled by the Mizar checker internally, its definition in the MML is

only for automated testing and documentation purposes. We re-use the equality of the under-

lying Isabelle logic restricted to sets. Set membership becomes a new uninterpreted function.

The Mizar article TARSKI_0 introduces the core axioms of set theory. In Mizar, the

reserve command allows specifying the default types of variables. These are used both in

explicit quantifiers and to implicitly quantify the free variables in statement. In the Isabelle

representation we want to have the axioms stated as clearly as possible, we therefore use

the axiomatization command which means that the types of quantifiers can be handled

automatically but the types of free variables need to be provided explicitly. We will alleviate

this limitation in Sect. 7.1 by providing a new theorem command that can use such implicitly

associated types. The Tarski–Grothendieck axioms can be seen in our formalization, for space

reasons we do not repeat them in the paper.

6 Definitions

Mizar definitions are specified in blocks. However, since we want to abstract from the Mizar

syntax, we will ignore the blocks and focus on imitating each kind of concept that can be

defined individually.

6.1 Type Definitions

There are four major kinds of type definitions in Mizar (we ignore the definitions by cases,

which with higher-order constructions can be directly translated to one of the four major

kinds). Three of these define basic inhabited types.
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Type Defining (adjective) types is straightforward. It consists of the application of the

define_ty constant to a predicate and an original type. We introduce an abbreviation (an

Isabelle term abbreviation is a notation that is unfolded in the input process after type check-

ing, therefore it is never seen by the reasoning core [81]) that allows a more Mizar-like

construction this kind of type introductions, and show as an example the Isabelle/Mizar defi-

nition ofemptywhich is the type ofsets that do not contain any object. The attr3 command

introduces a definition of a type and derives a few basic consequences:

abbreviation (input) attr-prefix (attr - for - means -)
where attr df for ty means prop ≡

(df ≡ define-ty(object, λit .it be ty, prop))

attr xboole-0-def-1 (empty)
attr empty for set means (λit. ¬ (∃ x : object. x in it))

The only theorems introduced to the Mizar environment given a type definition are the

stated equivalence and the introduction and elimination rules for the type. We provide minimal

automation that automatically derives and makes such theorems available to the user.

Type Abbreviations Type abbreviations need to be expanded before the proof checking phase.

This is done by the Mizar analyzer. A type abbreviation has to be inhabited, however this

information does not need to be given together with the definition, but can be stated as a

user-defined typing rule. We can therefore immediately imitate Mizar type abbreviations by

Isabelle abbreviations (of type Ty). The following abbreviation introduces the dependent type

of functions from X to Y.

abbreviation funct-2-mode-1 (Function-of -, -)
where Function-of X,Y ≡ (X,Y: quasi-total) | (PartFunc-of X,Y)

Basic Inhabited Types We define basic inhabited types (Mizar name: non-expandable modes)

using the define_ty constant. The Mizar-like definitions are as follows.

abbreviation (input) mode-prefix (mode - → - means -)
where mode df → ty means prop ≡ (df ≡ define-ty(ty, λ-.True, prop))

Many definitions in Mizar not only introduce a concept but also ensure that it fulfills

various properties, and store only derived properties of the concept. For this, we introduce

a definitional mechanism in Isabelle (mdefinition) which given a statement of a definition

together with an optional environment specified by mlet and a definitional theorem after the

definition statement, asks the user to fulfill the necessary proof obligations and stores only

the derived definitions. A definitional theorem must be an implication. Its first assumption is

discharged with the raw definition. The result is of the form: C1 �⇒ C2 �⇒ . . . �⇒ Cn �⇒

D1 ∧ . . . ∧ Dm , where Ci are the conditions to prove and Di are the derived definitions. The

following is a definitional theorem for the introduction of basic inhabited types, which can

be proved with the help of the set axiom.

lemma mode-property:
assumes df: mode df → ty means prop

and m: inhabited(ty)
and ex: ∃ x:ty. prop(x)

shows (x be df ←→ (x be ty ∧ prop(x))) ∧ inhabited(df)

3 An adjective in the Mizar language is an attribute or its negation.
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With this, we can define a new basic inhabited type by providing a raw definition df, a

proof of the inhabitation of the parent type m and the existence of an element that satisfies

the predicate ex. The derived definition states the conditions required for an object to be

of the newly defined type M and stores the information that M is inhabited. Note that the

inhabitation of the parent type p and the existence condition ex are used only to show that

there exists at least one element of the defined type. We can now give an example of a concrete

basic type definition, namely the dependent type of elements of the given set X:

mdefinition subset-1-def-1 (Element-of -) where

mlet X be set
mode Element-of X → set means
(λit. (it in X if X be non empty otherwise it be empty)) : mode-property

Note, that the information about the inhabitation of the type is indeed necessary for

conditional definitions, as we will show in the next subsection (it was missing in our previously

considered approaches [35]).

Conditional Types Definitions with explicitly stated assumptions are very frequent in Mizar

[28]. Such definitions are referred to as permissive in Mizar. The assumptions are often used

to express the relations between the arguments in cases where the types are not powerful

enough to capture all the conditions.

We will refer to basic inhabited types with assumptions as conditional types. These would

be called permissive modes in Mizar. Consider the type of morphisms between a and b
in the category C. This is an (inhabited) type if a and b are objects of C, C is non empty,

and Hom(a,b) is non-empty. The adjective non empty-struct refers to the carrier being

non-empty. In our Isabelle/Mizar re-formalization, the definition can be as follows (we use

an abbreviation with an assumption, analogous to the previous abbreviation. It also uses an

analogous lemma assume_mode_property, presented below):

mdefinition cat-1-def-5 (Morphism-of) where

mlet C be non empty-struct | non void-struct | CatStr,
a be Object-of C, b be Object-of C

assume HomC(a,b) = {}

mode Morphism-of(a,b,C) → Morphism-of C means
(λit. it in HomC(a,b)): assume-mode-property

The conditional definition allows accessing the definition body only when the condition

is fulfilled.

This means that the assumptions need to be repeated at every use of the definition, like in

the following example. (Note that in the example we use themtheorem command rather than

the standard Isabelle theorem. This allows the automated processing of Mizar background

knowledge and type inference, and will be explained in 7.3)4

mtheorem cat-1-th-5:

∀ f : Morphism-of (a,b,C). HomC(a,b) = {} −→ domC f = a ∧ codC f = b

The same is the case for all the definitions of concepts that rely on a conditional type. We will

present such example in Sect. 6.3 (cat-1-def-13). The lemma used to automatically obtain

the derived properties of such definitions is as follows:

4 The statement of the theorem cat-1-th-5 including all the implicit assumptions is as follows: ∀ C : non

empty-struct | non void-struct | CatStr. ∀ a b : Object-of C. ∀ f : Morphism-of (a,b,C). HomC(a,b) = {} −→

domC f = a ∧ codC f = b.
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lemma assume-mode-property:
assumes df: assume as mode df → ty means prop

and m: inhabited(ty)
and assume-ex: as �⇒ ex x being ty st prop(x)

shows

(x be df −→ (x be ty ∧ (as −→ prop(x))))
∧ (x be ty ∧ as ∧ prop(x) −→ x be df)
∧ inhabited(df)

6.2 Meta-level Functions

As mentioned in Sect. 3.4 meta-level functions are defined by equals or bymeans. A definition

by equals can be considered as a special case of one by means where the property of the

defined object has the form it = . . . and it does not occur on the right-hand side. We will

therefore focus on the definitions by means, later adding infrastructure for definitions by

equals for convenience. A first component that simplifies defining meta-level functions is a

choice operator working at the level of first-order predicates:

abbreviation (input) theProp
where theProp(ty, prop) ≡ the define-ty(ty, λ-. True, prop)

With this operator we can define simple functions by means using a combination of the

information of the result type with the user given predicate. We show an abbreviation intro-

duced for such definitions together with an example definition by means in Isabelle/Mizar,

namely the definition of the power set of the set X:

abbreviation (input) means-prefix (func - → - means -)
where func df → ty means prop ≡ df = theProp(ty, prop)

func zfmisc-1-def-1 (bool -) where

mlet X be set
func (bool X) → set means

λit. (∀ Y. Y in it ←→ Y ⊆ X)

Note the func keyword. As meta-level functions are the most common kind of introduced

objects, we introduce this keyword instead of mdefinition. It additionally uses the appro-

priate definitional theorem and stores some of the derived information in various theorem

lists (Sect. 7.1). The first definitional theorem for functions by means is proved using the

correctness conditions existence and uniqueness, as well as the fact that the result

type is inhabited. Only the result type is automatically known in Mizar, the other two derived

theorems require explicit references to the definition.

lemma means-property:
assumes df: func df → ty means prop

and m: inhabited(ty)
and ex: ∃ x:ty. prop(x)
and un:

∧
x y. x be ty �⇒ y be ty �⇒

prop(x) �⇒ prop(y) �⇒ x = y
shows df be ty ∧ prop(df) ∧ (x be ty ∧ prop(x) −→ x = df)

The main reason why uniqueness is important for meta-level functions defined in Mizar

is efficiency. Uniqueness is used implicitly in the congruence closure algorithm at the base
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of Mizar’s proof checker to make processing of terms more efficient. Equivalent meta-level

functions (including these defined by means) are assumed to return same results on same

inputs [55]. This is clearly true for mathematical functions, even these defined by choice,

as it is in our model. Even so, an easy way to avoid uniqueness proof obligations in Mizar

would be to explicitly use the axiom of choice on inhabited types. However, such definitions

would prohibit subsequent redefinitions. Namely, without uniqueness conditions, it would

not be possible to show that choice applied to the new condition is equal to choice applied

to the previous one.

The definitions by equals are a special form of these by means:

abbreviation (input) equals-prefix (func - → - equals -)
where func df → ty equals term ≡

func df → ty means λit. it = term

where additionally the uniqueness condition is simplified out and the existence con-

dition is reduced to coherence, that is showing that the term is of the declared return

type.

6.3 Conditional Functions

Mizar meta-level functions can be conditional. Conditions imply more complex definitional

theorems: they need to specify the properties satisfied when the arguments satisfy the assump-

tions and when it is not the case. If the conditions are not satisfied, the only information the

Mizar checker knows about the term is its result type. We imitate this by the following

notation and definitional theorem which corresponds exactly to the Mizar semantics:

abbreviation (input) as-means (assume - func - → - means -)
where assume as func df → ty means prop ≡

df = the define-ty(ty, λ-. as, prop)

lemma assume-means-property:
assumes df: assume as func df → ty means prop

and assume-ex: as �⇒ ∃ x:ty. prop(x)
and assume-un:

∧
x y. as �⇒ x be ty �⇒ y be ty �⇒

prop(x) �⇒ prop(y) �⇒ x = y
and mode-ex: inhabited(ty)

shows

df be ty ∧ (as −→ prop(df)) ∧ (as ∧ x be ty ∧ prop(x) −→ x = df)

The following definition of morphism composition requires a conditional definition.

func cat-1-def-13 (- ◦
-,-,-,- -) where

mlet C be Category, a be Object-of C, b be Object-of C,
c be Object-of C, f be Morphism-of (a,b,C), g be Morphism-of (b,c,C)

assume HomC(a,b)={} ∧ HomC(b,c)={}

func g ◦C,a,b,c f → Morphism-of(a,c,C) equals g ∗C f

Note however, that not all Mizar library uses of conditional definitions necessitate the

assumption to define the function. Often the conditions are only there to ensure the non-

emptiness of the argument types. Furthermore, it also enforces a particular way in which the

Mizar checker verifies reasoning steps, making proofs more efficient.

123



Semantics of Mizar as an Isabelle Object Logic 575

The next part of the MML that we re-formalize are all the basic meta-level functions in set

theory. We show the Mizar definitions and the corresponding Isabelle code in Fig. 1. Note,

that all these function definitions have proofs of existence, uniqueness, as well as a number

of properties which are a part of our formal proofs.

6.4 RemainingMizar Definitions

Mizar predicates directly correspond to predicate definitions in Isabelle. Mizar definitions by

cases require an if construct. We needed and provided definitions with two cases, however

the Mizar library contains for examplesignwhich is defined using three cases. All such non-

standard definitions can be reformulated to the basic definitions we provide. Furthermore,

extended Mizar language constructs (for example ellipsis [41]) could be expanded to the

provided Isabelle basic definitions.

7 Type Inference

All the type knowledge (as well as other kinds of background knowledge available in Mizar)

can be formulated as Isabelle theorems. Certain kinds of knowledge are automatically con-

sidered by Mizar reasoning steps [27]. Since some type reasoning is necessary in almost

every Mizar proof step, in this section we discuss the kinds of background information avail-

able in Mizar (mostly type information) and propose a type inference mechanism. We also

mention automation for other background knowledge, such as introduction rules for proofs

of predicates or types.

7.1 Background Type Information

Type information can be introduced in Mizar in three ways. In this section we discuss these

ways together with the procedures we use to gather this information.

Explicit Type Information Whenever a variable is introduced in a line of reasoning using

one of the basic constructs (let, consider, reconsider) its type is either given explicitly at

the declaration or a type associated with that variable name (by the reserve command) is

used. We introduce a reserve command in Isabelle, that lets a user associate default types

with variable names. We also introduce an Isabelle attribute [ty] which stores a list of

theorems of the shape term is Θ in the local proof context. The theorems from this list will

be automatically used by specific tactics.

Definitional Theorems There are various kinds of type information that originate from defi-

nitional theorems, as discussed in the previous Sect. 6:

1. Function result types. These are given in definitions and can be stored by a designated

theorem list (ty_func_cluster).
2. Parent types. Both the extension of types to their parent (inhabited) types and to the

ancestors in case of structures can be again stored in a theorem list (ty_parent).
3. Inhabitation information. A list of types that are inhabited is stored (ex).

The three lists store type inference rules (Horn clauses), however they are separate, as

they will be used differently. For the first one, the conclusion can be a larger term than the

terms in the premises (so they can only be safely used backwards). For the second one, this is

not the case: the right-hand side terms are simpler than the ones in the premises. For the last
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one, these are inhabitation information. Re-definitions which modify functor result types can

be directly stored in the first list. As re-definitions are mostly syntactic, we will not discuss

these in this paper.

User-Given Type Inference Rules There are three kinds of such rules, referred to as cluster

registrations in Mizar.

– existential retain type non-emptiness information for types. These can again be stored in

the ex list. For example the expansion of Function of X,Y:

theorem [ex]:
X be set ∧ Y be set �⇒

inhabited(X,Y: quasi-total | PartFunc-of X,Y)

– conditional extend the list of types assigned to a term, given that particular types

have already been established. These are again similar to ty_parent. Examples include:
theorem [ty-cond-cluster]:

Y be set �⇒ F be Y-valued | Function �⇒

F be Y -bijective �⇒ F be Y -onto | one-to-one

theorem [ty-cond-cluster]:
Y be set �⇒ F be Y-valued | Function �⇒

F be Y -onto | one-to-one �⇒ F be Y -bijective
– functorial automatically provide type information for compound terms expanding the

information given in the definitions. For example the composition operation is defined

for relations, however when applied to two functions it is also a function:

theorem [ty-func-cluster]:
f be Function ∧ g be Function �⇒ (g ◦ f) be Function-like

Mizar stores two lists of types for each variable (upper and lower cluster). The explicit

information about all variables is expanded (rounded-up) by all the user-given inference rules

to obtain the second list.

In our type inference mechanism, we will imitate the information passed between the Mizar

analyzer and the checker by the theorem list ty. That list will include all the rounded up

information about all the terms in the current goal-state [52]. Furthermore, to imitate the

Mizar super-cluster automation [52], we add the type information selected from the premises

and the antecedents of the implications (since the facts are in the implication form) rounding-

up the ty list repeatedly. Mizar uses the type information in the main verification process as

part of unification, to add new type information to terms [84]. Details of our procedure follow.

7.2 Automating Type Inference

To support the user of the Isabelle/Mizar object logic, we develop a number of proof methods

and other automation mechanisms that try to imitate the Mizar type inference using the logical

framework infrastructure.

As information about any variable is added to the background knowledge using the ty
attribute, we try to derive the consequences of this information and (recursively) add it to

the same knowledge base. For example, given the information that x be empty|set and

the user proved typing rule that any empty|set is also finite, we want to derive the

information that x is finite and possibly any other consequences of this information. In

particular, such user type information can include dependent types. Note that using the user-
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Fig. 2 A pseudo-code overview of the type inference automation in Isabelle/Mizar

given typing rules in an uncontrolled way would often loop, deriving typing information

about larger and larger terms.

Our type inference procedure consists of two functions. The function J attempts to derive

consequences of a typing judgement without generating new terms and the function T tries

to derive all types of a given term. A simplified overview of the procedure in pseudo-code

is given in Fig. 2. The functions infer_judgement and infer_term correspond to J

and T respectively.

The function J first separates the intersection types to individual typing judgements. All

are added to the set ty and processed one by one. For each judgement, we first process its

subterms. This includes both the subterms of the left-hand side and of the right-hand side.

For example x be Subset of 〈A,A〉 would also have A and the pair 〈A,A〉 as subterms.

For each such subterm t we call T (t). Next, we look at the user-given forward typing rules.

For each typing rule we attempt to discharge the last assumption with the added individual

typing judgement. If this succeeded, all previous assumptions are discharged with theorems

from the set ty from the right (the order is important to resolve type dependencies correctly).

If this returned a new typing judgement j , we call J ( j) recursively.

The function T (t) first calls itself recursively on all the subterms of t . Then it looks at

all the user-given backward typing rules. We try to unify the term t with the left-hand side

of the judgement in the conclusion of the typing rule. If this succeeds, we discharge all the

remaining assumptions from the right using the theorems in the set ty. If this succeeds, we

get a single new typing judgement; we apply J to that new judgement.
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Fig. 3 A proof of a property of group inverses in Mizar and corresponding Isabelle/Mizar

The two defined functions are used as follows in Isabelle/Mizar. First, when a user declares

a typing judgement with the attribute ty the function J is called on the judgement. Second,

we provide a proof method mty, which looks at all the propositions involved in the current

proof goal and calls T on these propositions. To get even closer to the Mizar by, we implement

a method that attempts to instantiate all the user given helper theorems and instantiates them

exhaustively with the typing information derived from the goal. Finally the proof method

mauto does call mty to derive all type consequences, mby to instantiate the Mizar typing

information, and calls auto [81] on the goal. We will use it as a replacement of the Mizar

by for most of the goals in the re-formalizations.

The behavior of our typing procedure is very similar to the typing procedure implemented

in Mizar, however we do not impose any limits on the typing.

7.3 Type Inference Example

To illustrate our type inference, consider the proof of the group inverse property presented in

Fig. 3. The variable G is reserved to be a group, while g and h are its elements. For reserved

variables, their uses are automatically bound with an outermost universal quantifier, and the

variable is introduced into the line of reasoning.

The mtheorem command realizes this on the top-level in our representation. However,

eliminating the quantifier requires the type to be inhabited—we ensure this using ex. The

information about G, g, h are added to the list ty. The procedure discussed in the previous

subsection computes the consequences of this information for all the subterms of the goal.

This generates 23 theorems on the ty list. For each inference step, the list is locally extended,

up to 35 typing judgements in this proof. Examples of derived information include G is
unital, (h ⊗G g)-1

G is Element-of-struct G, and the carrier of G is non empty.

As illustrated in Fig. 3 the similarity between Mizar and Isar allows us to reformulate the

proof outlines. Such a similarity is however not always possible. Minor issues include the
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lack of take in Isar (which requires creating a subproof after each take), or the fact that Mizar

can change the thesis within one proof block, which in Isabelle corresponds to the use of a

very involved initial proof method. Despite the automation mechanisms we provide, there are

many cases where the Mizar proofs can be shorter than these done in our re-formalization.

The final difference is the explicit need to state the proof methods.

8 Structures

In this section we introduce the semantics of Mizar structure and present our Isabelle model

thereof.

8.1 Mizar Structure Semantics

Mizar structures represent mathematical tuples, where the fields of the tuple are additionally

equipped with labels. Such labels allow referring to particular fields of a tuple even as tuples

are extended or restricted. We will refer to the association between the labels and the types of

the corresponding fields as the structure type. This is equivalent to a class signature in object

oriented languages or in some proof assistants. An actual object of a particular structure

type will be referred to as a structure instance. The Mizar approach does not remember the

positions of the elements in the tuples, but ensures that the labels of the elements are unique

(the labels are called selectors in Mizar). Mizar structures are quite similar to the work of

Naraschewski and Wenzel [51] which uses parametric polymorphism to define records with

labels, however the Mizar type system allows multiple inheritance and requires no coercions

between structure types and their subtypes.

Structure instances can be modeled by partial functions from the labels to the values

on that labels. Structure types can be modeled by functions from the labels to the allowed

types of values on those labels. In order to ensure structure inheritance (including multiple

inheritance), structure types only specify the minimal set of labels that must be contained

in the function definition and not the whole domain. Every assignment must be of the form

sel → spec, where sel is a selector and spec is the specification of the type of values that

of the functions applied to that selector. Note, that the type of a particular field can depend

of the values on the other selectors.

Consider the tuple 〈R,+, 0, ·, 1〉. It can be interpreted as a ring, where the structure type

should specify that it must contain a set R, two binary operations +, · and two selected

elements 0, 1 of the set. The following Mizar structure doubleLoopStr is used in the

MML as the structure type for a ring:

struct (multLoopStr_0, addLoopStr) doubleLoopStr (#
carrier → set, addF → BinOp of the carrier,
ZeroF → Element of the carrier, multF → BinOp of the carrier,
OneF → Element of the carrier #)

where the list (multLoopStr_0, addLoopStr) specifies the structures the current one

inherits from. multLoopStr_0 corresponds to a multiplicative group with a selected zero

〈R, ·, 0, 1〉 and addLoopStr corresponds to an additive group without a selected element

〈R,+〉.

The structure type only corresponds to the signature of the structure. Further properties

that make the above type correspond to rings are added by further intersecting this type with
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(adjective) types that correspond to those properties. The structure type definition in Mizar

ensures the inhabitation of the newly defined type. For this, the checker verifies that all the

defined structure specifications are non-empty. The selectors occurring in one specification

cannot repeat. Furthermore, the order of the selectors in Mizar is important and the use of

a selector in a specification is only allowed after providing its specification. Finally, Mizar

verifies that the new type inherits from its ancestors, i.e. the assignments of all ancestors

appear in newly defined structure type.

Mizar provides the following definitional theorems for any user-given structure type defi-

nition str. First, the structure type is inhabited. Second, a strict str version of the type

is created. An object is of the strict structure type, if it contains only the selectors specified

in the definition of str. Third, for each assignment from selector sel to its specification

spec and for each X : str the term the sel of X becomes available. It corresponds to an

application of sel to X and its type is spec(X). Fourth, a constructor of the structure type

is introduced (Mizar name: aggregate). An example constructor in Mizar is:

definition
func F_Real → strict doubleLoopStr equals
doubleLoopStr
(# REAL, addreal, multreal, In(1, REAL), In(0, REAL) #);

end;

This constructor is of the type strict str and all its fields are as given, for exam-

ple the addF of F_Real = addreal. Fifth, if two objects of the type str are both

strict str and all their fields are equal, than the objects are equal. Finally a restric-

tion of an object to an ancestor structure is possible. For example:

the addLoopStr of F_Real = addLoopStr(# REAL, addreal #)

8.2 Formal Structure Preliminaries

We will represent structure types by schemes of functions. Like in Mizar, these structure

types can be further restricted by the user (using the intersection type system) with further

given properties. The structure type will specify the domain of every structure instance of that

type. Additionally, it will specify the types of the elements in the co-domain. To represent

such (partial) functions, we first re-formalize the first few articles of the MML that formally

define Mizar functions. As these do not use Mizar structures, they can be directly used to

represent both structure types and structure instances without adding any new axioms to the

foundations.

Our structure definition starts by defining the selector of. This corresponds to a partial

function application, but does not return the default value when the argument is outside of

the domain of the function (which is the behavior of function application in the MML). The

meta-level function definition infrastructure presented in Sect. 6 can be used directly. To

fulfill the correctness conditions uniqueness and existence we need the condition

that selector in dom Str.

definition TheSelectorOf (the - of -) where

func the selector of Str → object means λit.
∀ T : object. [selector,T] in Str −→ it = T

To specify the assignments, it is necessary to have an infinite set of distinct labels. Strings

could be used for this purpose, but to further reduce the part of the MML formalization
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required to specify structures, we chose to use the set theoretic natural numbers 0 = {},

succ(X) = X ∪ {X} . The only property that we need to derive about these labels is dis-

tinctness. We define the label “carrier” to 0 and all subsequent labels as distinct numbers. All

labels are currently manually defined in the mizar_string theory.

As shown in the examples in Sect. 8.1, parts of the specification may refer to other fields

of the structure. For this reason, we make each selector a meta-level function, which given

the current structure instance returns the type of that assignment. Now we can define a single

assignment from a selector to its specification as a meta-level function again:

definition field (infix → 9) where

selector → spec ≡ define-ty(object, λ-. True,λit.
the selector of it be spec(it) ∧ selector in dom it)

To illustrate this in practice, consider the double loop structure which serves as the signa-

ture of various algebraic structures including rings and fields. The carrier is a set (it can

ignore the argument S), while for example the zero uses the argument S to specify its type

as an Element of the carrier of S. The definition finally requires the derived definition

lemma given the explicitly given domain (last line of the below mdefinition) discussed

further in Sect. 8.3.

mdefinition doubleLoopStr-d(doubleLoopStr) where

struct doubleLoopStr (#

carrier → (λS. set);
addF → (λS. BinOp-of the carrier of S);

ZeroF → (λS. Element-of the carrier of S);

multF → (λS. BinOp-of the carrier of S);

OneF → (λS. Element-of the carrier of S)

#) : well-defined-property[of - - {carrier}∪{addF}∪{ZeroF}∪{multF}∪{OneF}]

To correctly imitate the semantics of each assignment, is it sufficient to ensure the condi-

tions the selector of it be spec(it) andselector in dom it, where the latter allows

us to globally specify the minimal set contained in the domain of any instance of a structure

type. Now the domain of the structure can also be defined globally. Note however, that the

result can only be evaluated for a particular defined structure type. We give the definition of

domain_of together with an example:

definition domain-of (domain-of -) where

func domain-of M → set means (λit.
(∃ X:M. it = dom X) ∧ (∀ X : M. it ⊆ dom X))

lemma domain-of doubleLoopStr =

{carrier} ∪ {addF} ∪ {ZeroF} ∪ {multF} ∪ {OneF}

In a similar way we can globally define strict as a meta-level construction that given

a structure type returns its strict version.

definition strict where

strict(M) ≡ define-ty(object,λ-.True, λX. X be M ∧ dom X = domain-of M)

We finally define the restriction of an instance to a structure type. A restriction must be

strict by construction. The definition directly uses the restriction of a function to a smaller

domain, which we denote by f ↾A:
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definition the-restriction-of (the-restriction-of - to -) where

func the-restriction-of X to Str → strict(Str)
equals X↾domain-of Str

8.3 Partial Automation for Structures

For every user-defined structure we would like to automatically derive the same properties

which Mizar assumes. In this subsection we will present a general lemma which will make

individual structure definitions simpler. This lemma, when instantiated with the raw structure

definition, shall return all the derived facts. The first approach to stating such a lemma is as

follows:

lemma struct-scheme:
assumes df: struct S Fields

and exist: ∃L X . X be Fields|Struct ∧ dom X = D
and monotone: ∀L X1. X1 be Fields|Struct −→ D ⊆ dom X1
and restriction: ∀L X1. X1 be Fields|Struct −→ X1↾D be Fields

shows (x be S ←→ x be Fields|Struct) ∧

inhabited(S) ∧ inhabited(strict(S)) ∧

domain-of S = D ∧

(E be S −→ the-restriction-of E to S be strict(S))

where Struct is equivalent to Funct, however we will not want to unfold this

definition outside of structure definitions to avoid structures being fully expanded to

Function-like Relation-like set. Now, to define a concrete structure type, one

needs to specify the domain D of a structure. We give an outline of the proof, for more details

see the formalization. The existence and monotonicity assumptions (ex and monotone) in

the lemma are necessary to show the correctness of the definition of domain_of (its exis-

tence and uniqueness) to obtain the equality domain_of S = D. Next, the-restriction-of
X to S is defined by equals, therefore the correctness of this definition requires a proof that

the right hand side has the correct return type, i.e.X↾domain_of S is of the typestrict(S).

To show that it is of the type S we use the equation domain_of S = D. To show that it is

also strict we need to show dom (X↾domain_of S) = domain_of S . This follows by

definition of function restriction and the monotone assumption. This completes the proof.

To further simplify the definitions of structures, we note that the choice operator can be

used to fulfill the existence condition. An example use of the choice operator the to show

that the double loop structure is inhabited is:

term {[carrier, the set]} ∪

{[addF, the BinOp-of (the set)]} ∪

{[ZeroF, the Element-of (the set)]} ∪

{[multF, the BinOp-of (the set)]} ∪

{[OneF, the Element-of (the set)]}

however using it directly would be quite tedious. For doubleLoopStr the manual proof in

Isabelle requires about 100 lines. We will instead create structures recursively. This is similar

to what is implemented in Mizar.

A naive approach to constructing structures recursively which would directly use

the struct_scheme lemma, fails for the following reasons. The assumptions of the

struct_scheme lemma can be used to show the non-emptiness of a defined structure type
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S. However, the assumptions about the ancestors of A are insufficient to prove the other prop-

erties of S. In particular, there is no condition that would correspond to the restriction
condition, which would in turn give the necessary information as to which extensions of A
satisfy all the assignments of A.

For this reason, we extend the struct_scheme lemma assumptions by an additional

condition, which will allow using the properties of the ancestorA in the proofs of the currently

defined structure. This condition, well_defined, is as follows:

definition well-defined-prefix (infix well defined on 50)

where

Fields well defined on D ≡

(∃L X . X be Fields|Struct ∧ dom X=D) ∧

(∀L X1. X1 be Fields|Struct −→ D ⊆ dom X1 ∧ X1↾D be Fields) ∧

(∀L X1 X2. X1 be Fields|Struct ∧

X2 be Struct ∧ D ⊆ dom X1 ∧ X1 ⊆ X2 −→ X2 be Fields)

We can now derive a defining lemma with stronger assumptions (they are stronger, as

Fields well defined on D implies exists, monotone, and restriction):

lemma well-defined-property:
assumes df: struct S Fields

and well: Fields well defined on D
shows (x be S ←→ x be Fields|Struct) ∧

inhabited(S) ∧ inhabited(strict(S)) ∧

domain-of S = D ∧

(E be S −→ the-restriction-of E to S be strict(S)) ∧

(Fields well defined on D)

The list of existing assignments specified for the domain D can be augmented with a new

assignment selector → specification given that the selector is not present in

D, and that any selectors the specification uses are present in D.

As the maximum number of extended selectors used in a new specification in the MML is

three, we formulate the following lemma that can be used to create new specifications. Note,

that it can directly be used for the cases of one and two new selectors and a version without

selectors is even simpler. We skip these in the paper.

theorem Fields-add-3-arg-Mode:
assumes Fields well defined on D

sel-1 in D sel-2 in D sel-3 in D ¬ sel in D
and

∧
X1. X1 be Fields|Struct �⇒

inhabited (M1(the sel-1 of X1, the sel-2 of X1, the sel-3 of X1))

shows Fields | (sel → (λS. M1 (the sel-1 of S, the sel-2 of S, the sel-3 of S)))

well defined on D ∪ {sel}

Using this lemma we can provide a partial automation for defining structures: a single

Isabelle tactic (the use of the lemma followed by auto with a number added introduction and

elimination rules) can now automate the obligations necessary for a structure definition.

Mizar structures also allow inheritance. In our approach the inheritance information always

follows in a straightforward way from the first conjunct of struct_scheme. We can show

such a proved inheritance lemma:
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theorem doubleLoopStr-inheritance[ty-parent]:
assumes X be doubleLoopStr
shows X be multLoopStr-0 ∧ X be addLoopStr

using assms doubleLoopStrA addLoopStrA multLoopStr-0A by auto

The final property needed to adequately imitate the Mizar semantics of structures, is the

fact that structure constructors are of structure types. Such typing rules are again proved for

every structure. For example:

lemma doubleLoopStr-AG[ty-func]:
assumes X be set A be BinOp-of X Z be Element-of X
M be BinOp-of X E be Element-of X

shows

[#carrier�→X; addF�→A; ZeroF �→Z; multF �→M; OneF �→E#] be doubleLoopStr

where the constructor [# . . . #] is a set-theoretic function, that is a union of pairs.

8.4 Structure Adequacy

The proposed model of structures is very similar to that of Lee-Rudnicki [47] imitating

the Mizar model closely. When it comes to the actual interaction with the structures our

implementation is slightly more liberal: it allows providing inheritance information after the

point of the definition, as well as allows to prove the inhabitation of a structure type directly.

The automation we provide is similar to that given by Mizar, but it is also possible to

directly show structure extensions that would require an indirect definition with further type

restrictions in Mizar. Consider a structure similar to 1-sorted, but where the carrier
must be additionally non-empty. We cannot indicate 1-sorted as an ancestor of the struc-

ture, because Mizar reports the error 92: Type of the field must be equal
to the type in prefix.

theorem

X be Inhabited-1-sorted �⇒ X be 1-sorted
X be non empty-struct|1-sorted �⇒ X be Inhabited-1-sorted

Furthermore, the correctness of definitions in Mizar relies on the order of the fields,

whereas in our model it is even possible to define a structure whose selector specifications

refer to each other mutually:

definition

struct Test (# testA → (λT. Element-of the testB of T);

testB → (λT. Element-of the testA of T) #)

It is possible to prove the correctness of this definition, since {} is Element of {} , see

subset_1_def_1 on page 16. For this simple example we can even show properties, for

example that this structure uniquely determines its fields:

theorem ∀ T:Test. the testA of T = {} ∧ the testB of T = {}
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9 Set Comprehension

Mizar set comprehensions allow defining sets which satisfy the given predicate (see [27,

Fraenkel]). The Mizar syntax for set comprehension is:

{t(v1,v2,. . .,vn) where v1 is Θ1, v2 is Θ2,. . .,vn is Θn :P[v1,v2,. . .,vn ]}

Semantically, such a set comprehension has the type set in Mizar. The system does not allow

a further specification of the type (as opposed to, e.g., function definitions, where the result

type can be explicitly given). To avoid Russell’s paradox, set comprehension expressions

are well-formed only when all the types Θ1,Θ2, . . . , Θn have the sethood property. If not,

Mizar reports the “It is only meaningful for sethood property” error [28].

Definition 1 A Mizar-type Θ has the sethood property if all objects of the type Θ are elements

of some set.

Set membership applied to well-formed set comprehension terms is automatically

expanded as follows:

x in {t(v1,v2,. . .,vn) where v1 is Θ1, v2 is Θ2,. . .,vn is Θn :P(v1,v2,. . .,vn)}
←→

∃v1 : Θ1, v2 : Θ2, . . .,vn : Θn . x = t(v1,v2,. . .,vn) ∧ P[v1,v2,. . .,vn ]

To faithfully represent Mizar set comprehensions in Isabelle, we first define the sethood
property, and derive its basic consequence. Like in the MML, we show the sethood property

for various major types. We provide a tactic to automate sethood inheritance proofs.

definition sethood(M) ≡ ∃ X:set. ∀ x:object. x be M −→ x in X
theorem sethood:

sethood(M) ←→ (∃ X:set. ∀ x:object. x be M ←→ x in X)

We can now show the existence of set comprehensions globally. For this we introduce a

Frankel definition:

definition Fraenkel1 where

func Fraenkel1 (F, D, P) → set means λit.
∀ x : object. x in it ←→ (∃ y : D. x = F(y) ∧ P(y))

and show that it has all the necessary properties:

lemma Fraenkel-A1:

fixes F :: Set ⇒ Set and P :: Set ⇒ o
assumes [ex]:inhabited(L) sethood(L)

shows Fraenkel1(F, L, P) be set ∧

(∀ x : object. x in Fraenkel1(F, L, P) ←→ (∃ y : L. x = F(y) ∧ P(y))) ∧

(x be set ∧ (∀ xa : object. xa in x ←→ (∃ y : L. xa = F(y) ∧ P(y)))
−→ x = Fraenkel1(F, L, P))

The main step in the proof, is to use the sethood property to show:

show ∃ x : set. ∀ xa : object. xa in x ←→ (∃ y : L. xa = F(y) ∧ P(y))

The comprehension operator Frankel1 defined above is limited to unary predicates and

functions. We can extend it to more arguments recursively using Cartesian products. For this
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we re-formalize parts of the Mizar article ZFMISC_1 which introduces such set theoretic

products and use this to define set comprehensions for n-ary predicates and functions.

The formalized Theorem Frankel_A1 together with the usual set comprehension nota-

tion allows the following example, which gives the image of the function f on the set X.

term {f. x where x be Element-of dom f: x in X}

Mizar additionally introduces an abbreviation for set comprehensions used without any

property. the set of all t(v1,v2,. . .,vn) where v1 is Θ1, v2 is Θ2,. . .,vn is Θn abbreviates

{t(v1,v2,. . .,vn) where v1 is Θ1, v2 is Θ2,. . .,vn is Θ2: not contradiction}. We only show

the corresponding Isabelle abbreviation in the following example:

theorem funct-1-th-110:

assumes [ty]:B be non empty|functional|set f be Function
and f = union B

shows

dom f = union the set-of-all dom g where g be Element-of B
rng f = union the set-of-all rng g where g be Element-of B

10 Beyond ZF

Many formalizations in the MML rely on the extension of the standard ZF axiomatization

by the Tarski axiom. To complete the Mizar foundations in Isabelle, we express the Tarski–

Grothendieck axiom and re-derive a number of its consequences which will be used by the

more advanced case studies.

The Tarski axiom states that for every set N, there exists a set M that contains N, is closed

under subsets, power sets and each subset of M is a member of M or is equipotent with M. Its

first statement is done in the last axiomatic Mizar article TARSKI_A. The statement refrains

from using most derived definitions. Here, we only present the derived version of the axiom,

reformulated using a power set construction:

reserve X,Y,N,M for set
mtheorem zfmisc-1-th-112:

∃ M. N in M ∧ (∀ X,Y. X in M ∧ Y ⊆ X −→ Y in M) ∧

(∀ X. X in M −→ bool X in M) ∧

(∀ X. X ⊆ M −→ X,M areequipotent ∨ X in M)

To actually obtain the universe M of a given set N, the Mizar article CLASSES1 [6]

introduces a meta-level function Tarski-Class which returns the smallest set that satisfies

the above predicates. We have not re-formalized the results from the CLASSES articles yet,

as this relies on a substantial part of the Mizar library. We do, however, discuss some of

its consequences here to explain the adequacy of our model when it comes to Mizar’s set

theoretical universes.

One of the consequences of the formulation of the axiom introduced by Tarski is the

axiom of choice. This is also the case in Mizar. The Mizar theorems WELLORD2:17 and

WELLORD2:18 use the Tarski axiom to derive a well-ordering of any set. Note, that it is

possible to reformulate the axiom, so it does allow universes but without implying the axiom

of choice. This is done for example by Brown in Egal [15], however in Isabelle/Mizar we

avoid this modification to stay faithful to Mizar.
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Furthermore, Tarski’s axiom also implies the generalized axiom of infinity, which can

be used to derive ordinals, as we will do in one of our case studies (Sect. 11.2), as well

as the von Neumann hierarchy and universal classes in the Mizar articles CLASSES1, 2
by Bancerek [6]. First, one shows that it is possible to construct arbitrary ordinal-based

sequences. Using their uniqueness it is possible to define the (von Neumann) rank of a set.

Finally, various relations between such defined Ranks and universes (the function Tarski-
Class) were proven. Another frequent use of the Tarski axiom in the MML is a simplified

scheme for defining a function based on the function graph (relation) and the domain but

without specifying the range (CLASSES1:sch 1). The proof of the scheme again needs to

use the minimal ordinal assigned to any x in the domain.

11 Case Studies

We have already shown excerpts from various Mizar articles re-formalized in Isabelle includ-

ing the examples from set theory (Fig. 1), groups (Fig. 3), and categories. In this section we

further want to argue that our model does not only correctly represent Mizar’s foundations,

but is also usable for practical Mizar-like formalization. For this we show small excerpts of

various re-formalization case studies we have done.

Having performed these case studies, we can also give some observations about the usabil-

ity of Isabelle/Mizar in comparison with the original Mizar system for practical formalization

of mathematics. A major benefit of using Isabelle/Mizar is the fact, that there is only one

article environment. Setting up article environments is a big effort for Mizar users hindering

the start of formalizations. Isabelle also allows nice Unicode notations and the configuration

of notations in the formalization process. Currently, the Isabelle overloading mechanism is

much weaker than that of Mizar. Also, a priority based grammar means that one needs more

parentheses in Isabelle. Derived type information available in a theorem list makes it very

easy to inspect the typing procedure. This is only available in the semantic Mizar form, which

is not normally available to a user. The Mizar proof outlines are more flexible, making them

easier to write, however they are harder to verify than the Isabelle ones. Some of the Mizar

steps involve a large syntax burden when translating to Isabelle. This is the case for trans-

lating the Mizar consider steps to Isar obtain steps, since the Isar existential elimination is

weaker than that of Mizar. Finally, the Mizar automation is still incomparable with the one

we provide: in some cases it can be found by calls to Sledgehammer, however in many cases

manual instantiations are necessary.

11.1 Algebra

A field is defined in the Mizar library as a structure that inherits from nine other structures

(e.g. additive and multiplicative groups). Inheritance between these structures concerns the

signatures (independent types corresponding to A, ⊕A, ⊖A, 0A, ⊗M , and /M ) the actual

group axioms (again types corresponding to the structure satisfying particular axioms), and

the background information (reductions etc.).

We tested the usability of the proposed foundations by re-formalizing a selection of 15

structure types present in the articles STRUCT_0, GROUP_1, RLVECT_1, ALGSTR_0,

VECTSP_1, which define all the ancestors of a field (doubleLoopStr), and the 50 main

adjectives used in the field definitions, as well as the 16 basic binary and unary operations.

This involved 146 formal proofs. Here we present a single statement which shows when a
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product of two field elements is zero. More properties and their proofs are included in the

Isabelle/Mizar formalization.

reserve F for Field
reserve x,y for Element-of-struct F
mtheorem x ⊗F y = 0F ←→ x = 0F ∨ y = 0F

11.2 Ordinals and Natural Numbers

The Tarski axiom can be used to define the type of ordinals. Indeed in the MML and in our

re-formalization ordinals are epsilon-transitive and epsilon-connected sets. We next show

that the ordinals are ordered and that the ordinal successor returns an ordinal:

mtheorem ordinal1-th-10:

¬A in B ∧ A = B −→ B in A

We can then derive the transfinite induction (the scheme was already presented on page

12). The smallest ordinal that contains the empty set can be denoted as omega. By showing

that omega has the sethood property, we finally obtain the natural numbers with the standard

zero and successor operators. Natural number induction can be derived as a consequence of

ordinal induction:

theorem ordinal-2-sch-19:

assumes [ty]: a be Nat
and A1: P({})

and A2: ∀ n : Nat. P(n) −→ P(succ n)

shows P(a)

11.3 RandomAccess TuringMachines

The Simple Concrete Model (SCM) [42] is a quite specific model of computers, designed

to be nicely expressible in set theory. The Mizar formalization introduces a formal model

corresponding to random-access Turing machines [24], their instructions, and programs. It

has been considered to be a more realistic model than Turing machines for physical com-

puters [50]. 66 Mizar articles concern SCMs and the proofs of various properties of this

model.

The definition of AMI-Struct is the only structure in the MML where the specification

uses three different selectors of the defined structure at the same time. All other structures

use at most two selectors directly. The formalization uses both structures and set comprehen-

sion operators in non-trivial ways. We re-formalized the first few articles formalizing Mizar

computers. We reached the theorem that shows that a Trivial-AMI N is of the computer

type and that it does halt, which shows the non-emptiness of the Mizar type of computers:

theorem extpro-1:

assumes [ty]: N be with-zero | set
shows haltTrivial-AMI N be halting Trivial-AMI N, N
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12 RelatedWork

Various other proof assistant foundations are based on set theory. Also certain Mizar features

have been imitated in other systems and exports between Mizar and other systems were

considered. In this section we discuss related works, dividing it in these categories.

12.1 Formalizations of Set Theory

Paulson [62] developed the Isabelle/ZF object logic based on the Zermelo-Fraenkel set theory.

The foundational axioms used in ZF are different from the Tarski–Grothendieck ones used

in Mizar. Furthermore, the logic is untyped, while Mizar relies on a precise type system.

Finally, the Isabelle/ZF library and the automation provided are quite different from the

Isabelle/Mizar emulation.

Zhan is developing an object logic based on untyped set theory together with the auto2 [87]

automation package for Isabelle. The library tries to support even stronger automation that

of Mizar, with no references to previously proved theorems at all. However, explicit instan-

tiations for certain (especially second-order) theorems are necessary. Again the foundations,

the library, and the automation are different from ours.

Agerholm and Gordon [3] were the first to represent set theory in HOL. The approach of

adding set theory axioms on top of HOL was further extended by Obua first in HOLZF [57] in

Isabelle and later in the ProofPeer system, where the basic higher-order logic is minimal [58].

There, the support for automated distinguishing of object logic and meta-logic functions has

been considered [59].

Kunčar [46] attempted to recover the Mizar type system in HOL Light. The considered

approach worked well for the first few articles from the MML, but would require changes to

accommodate for the more advanced concepts, such as dependent types.

The Egal [15] system starts with intuitionistic type theory adding a set theory variant that

is very close to that of Mizar. It includes a formulation of the Tarski axiom as a function that

explicitly returns a Grothendieck universe for a set. There is however no type system and

the automation is very limited. Nevertheless, Brown was able to re-formalize large formal

libraries in Egal, such as the Grundlagen [31].

Other large formalization systems based on set theory include the B-Method tool-chain [1]

as well as the Metamath [48] system.

12.2 Mizar Features in Other Systems

Harrison [30] has developed the first Mizar-style proof mode for a HOL-based proof assistant.

He also created an imitation of the Mizar prover by in HOL Light without the Mizar types.

There have been many attempts to create Mizar-like declarative proof modes since. Syme

developed the Declare [67] prototype proof language for multiple higher-order provers.

Wenzel’s PhD work [79] brought the Isar declarative proof language for Isabelle. Today, it is

not only a language for proofs, but also for complete interaction with the prover, with most

users rarely interacting with the read-eval-print loop of the underlying LCF prover. Wiedijk

developed Mizar-light [85] and miz3 [86] for the HOL Light theorem prover.

In intuitionistic type theory, Corbineau [18] proposed the C-zar declarative proof language

for Coq. The first author with Wiedijk discussed automated conversion of tactical proofs to

declarative ones for Coq [39]. Lean [22] allows switching to the declarative proof mode in a

tactical proof and back.
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Theoretical properties of type systems with intersection types have been a field of study

since the seventies [40]. This is however quite different from soft intersection types as the

ones used in Mizar and our model of it.

12.3 Exports BetweenMizar and Other Systems

The first attempt at Mizar interpretation and use for first-order theorem proving was done by

Dahn, Wernhard, and Byliński in the ILF project [19,20].

The most comprehensive exports of Mizar data have been developed by Urban. Its first

version (MPTP 0.1) [69] exported Mizar directly to first-order logic targeting the SPASS

prover [78] using the DFG format [29]. This was followed by a complete XML export [70]

of the Mizar semantic layer, which included an adaptation of Mizar to internally use XML.

The next version of MPTP (0.2) [73]—has been based on the XML export. It natively uses

the Prolog-based MPTP format, which extends the first-order TPTP by dependent types and

other constructs of the Mizar logic. Recently a higher-order version of the data-set has been

created, which includes all the schemes and set comprehension operators as simple type

theory statements and is compatible with TH0 provers [16].

These have served as a basis for a number of experiments and tools in automated theorem

proving and machine learning [4,38,75,76], ATP-based cross-verification [77] and expla-

nation of Mizar proofs [74]. Custom exports of MML have been developed by Urban and

Bancerek for semantic searching tools such as MoMM [56] and MML Query [10] and their

integration in the MizarMode Emacs interface [11,71].

Iancu et al. [32] have exported all the statements from the Mizar Mathematical Library

to the LF logic in the MMT logical framework. The export does not include the proofs or

the semantics of the more advanced concepts, and its main purpose is to allow the use of

various mathematical knowledge management services for the Mizar library. This includes

browsing, search, and proof advice.

Another export of the Mizar library has been created from the Mizar parser intermediate

representation, the Weakly Strict Mizar (WSX), to allow accessing the Mizar knowledge [56].

The use of this export combined with other stages of Mizar processing could be part of an

automated translation from Mizar to Isabelle in future work.

Krauss and Schropp [43] have developed a proof-preserving translation from Isabelle/HOL

to Isabelle/ZF. The interpretation included all basic Isabelle/HOL concepts including type

classes and translated HOL type checking to explicit reasoning about set membership. This

would in principle allow combining all the HOL libraries with the possibility to reason

with the full power of set theory, however its performance was discouraging for larger HOL

developments in practice.

13 Conclusions

We have defined the semantics of Mizar as an Isabelle object logic, developed a Mizar-like

type inference mechanism and showed that it allows re-formalizing various parts of the Mizar

Mathematical Library. Our formalization can be found at: http://cl-informatik.uibk.ac.at/cek/

isabellemizar-jar2017.tgz. It totals 662 KB of Isabelle proofs and its re-formalized part of

the MML includes 185 Mizar definitions (including types and meta-level functions) and 433

proofs.

In this paper we have not focused on the Mizar syntax, and a natural next step would be to

also allow Mizar-like overloading, disambiguation, and other convenience mechanisms for
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reasoning with its type system. Furthermore, we would like to imitate other Mizar automation

mechanisms, such as derivation of inhabitation information or background processing of

properties. A further step would be to imitate the Mizar by proof justification, or provide a

similar mechanism that would also correspond to the notion of obviousness in mathematics,

including reasoning modulo equalities rather than the use of a simplifier. Finally, our re-

formalization has been done manually so far. Extracting and combining the information from

the various Mizar processing stages could allow (partially) automating the proof translation.
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Appendix: Dictionary of Mizar Jargon

In this paper we tried to express Mizar concepts using common type-theoretic expressions.

Here, we provide a dictionary of expressions used in the Mizar jargon and some Mizar

literature.

– Fraenkel operator. set comprehension operator

– permissive definition. a definition with a precondition

– Mizar type. a type in an intersection type system

– mother type. parent type

– attribute. a (soft) type

– adjective. an attribute or its complement (negation)

– mode. an inhabited type

– radix type. a basic inhabited type

– parametric type. a dependent type

– functor. a meta-level function

– cluster registration. a type inference rule proved by the user

– rounding-up adjectives. type inference using the available clusters

– expandable mode. a type abbreviation

– background knowledge. a typing environment
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