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Semantics of Ranking Queries for Probabilistic Data

Jeffrey Jestes, Graham Cormode, Feifei Li, and Ke Yi

Abstract —Recently, there have been several attempts to propose definitions and algorithms for ranking queries on probabilistic data.
However, these lack many intuitive properties of a top-k over deterministic data. We define several fundamental properties, including
exact-k, containment, unique-rank, value-invariance, and stability, which are satisfied by ranking queries on certain data. We argue
these properties should also be carefully studied in defining ranking queries in probabilistic data, and fulfilled by definition for ranking
uncertain data for most applications. We propose an intuitive new ranking definition based on the observation that the ranks of a tuple
across all possible worlds represent a well-founded rank distribution. We studied the ranking definitions based on the expectation,
the median and other statistics of this rank distribution for a tuple and derived the expected rank, median rank and quantile rank
correspondingly. We are able to prove that the expected rank, median rank and quantile rank satisfy all these properties for a ranking
query. We provide efficient solutions to compute such rankings across the major models of uncertain data, such as attribute-level and
tuple-level uncertainty. Finally, a comprehensive experimental study confirms the effectiveness of our approach.

Index Terms —probabilistic data, ranking queries, top-k queries, uncertain database.
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1 INTRODUCTION represent a huge number of possible (deterministic) realiz

Ranking queries are a powerful concept in focusing attentions of the (probabilistic) data—an exponential blow-upr

on the most important answers to a query. To deal with massk}¢ Size of the relation representing the data. A key profaem
quantities of data, such as multimedia search, streamiteg gsuch databases is howlto extend the familiar semantics of.the
web data and distributed systems, tuples from the undeylyifPP* Query to this setting, and how to answer such queries
database are ranked by a score, usually computed baSEigiently. To this end, there have been several recent svork
on a user-defined scoring function. Only the fopuples outlining possmle_ deflm_tlons, and assoc_nated aIgontfﬁeet _
with the highest scores are returned for further inspecticl- [29] base their ranking on the confidence associated with
Following the seminal work by Fagiet al. [11], such queries each query r_esult. Sohmaft_al. [37] extend the semantics of
have received considerable attention in traditional it 2nking queries from certain data and study the problem of
databases, including [23], [19], [40] and many others. Sé@nklng tuples when there is both a score and probability for
the excellent survey by llyast al. [20] for a more complete €2ch tuple. Subsequently, there have been several other ap-
overview of the many important studies in this area. proaches to ranking based on combining score and likelihood

Within these motivating application domains—distribyted43]: [38], [41], [18] (discussed in detail in Appendix A).

streaming, web and multimedia applications—data arrives i For certain data with a single score value, there is a clear
massive quantities, underlining the need for ordering loyesc total ordering based on their scores from which the kois-

But an additional challenge is data is typically inherefiligzy ~derived, which leads to clean and intuitive semantics. This
or uncertain. For instance, multimedia and unstructureld wparticularly natural, by analogy with the many occurrenaes
data frequently require data integration or schema mappitagp- lists in daily life: movies ranked by box-office receipts,
[15], [7], [16]. Data items in the output of such operatioms a athletes ranked by race times, researchers ranked by number
usually associated with a confidence, reflecting how welf thef publications (or other metrics), and so on. With uncertai
are matched with other records from different data sourcelita, there are two distinct orders to work with: ordering by
In applications that handle measurement data, e.g., sersenre, and ordering by probability. There are many possible
readings and distances to a query point, the data is inhgrenvays of combining these two, leading to quite different hssu
noisy, and is better represented by a probability distidout as evidenced by the multiple definitions which have been
rather than a single deterministic value [8], [10]. In recogoroposed in the literature, such as U-%o[87], U-kRanks
nition of this aspect of the data, there have been significda#], Global-Topg: [43] and PT% [18]. In choosing a definition,
research efforts devoted to producipgpbabilistic database we must ask, what conditions do we want the resulting query
management systemshich can represent and manage dagnswer to satisfy. We address this following a principled
with explicit probabilistic models of uncertainty. Sometalole approach, returning to ranking query properties on cedaia.
examples of such systems include MystiQ [9], Trio [1], OrioNVe provide the following properties which are desirableton t
[34] and MayBMS [2]. output of a ranking query as a minimum:

With a probabilistic database, it is possible to compactly ) ) ,

o Exact#: The top# list should contain exactly items;
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should not be listed multiple times within the tép- For an uncertain relation d¥ tuples, the processing cost
« Stability: Making an item in the togk list more likely or of our algorithm isO(NN?3) in the attribute-levelmodel,
more important should not remove it from the list. and O(N M?) in the tuple-levelmodel whereM is the

« Value-invarianceThe scores only determine the relative ~ number of rules in the database (Section 7).
behavior of the tuples: changing the score values withoute We present a comprehensive experimental study that
altering the relative ordering should not change thekpp- confirms the effectiveness of our approach for various

We define these properties more formally in Section 4.1. anking definitions (Section 8). _ _ _
These properties are satisfied for certain data, and capture We discuss other issues related to this work in Appendix
much of our intuition on how a “ranking” query should behave. ~ B: €.9., continuous functions, further properties of a rank
A general axiom of work on extending data management INd and the interesting relationship between our study and
from certain data to the uncertain domain has been that basic [24] which proposes a general framework for imposing
properties of query semantics should be preserved to the bes different ranking definitions in probabilistic data.
extent possible [9], [4]. But, as we demonstrate, none of
the prior works on ranking queries for probabilistic data ha2 BACKGROUND

systematically examined these properties and studiedhehetyjych effort has been devoted to modeling and processing
a ranking definition satisfies them. It should be noted these fincertain data, so we survey only the most related work. TRIO
ranking properties are by no means a complete characien'za{l], [4], [30], MayBMS [2], Orion [34], [33] and MystiQ
for ranking uncertain data. Nevertheless, it is an intérgst [9] are promising systems currently being developed. Gener
and important problem to search for meaningful definitiong,ery processing techniques have been extensively studied
that satisfy at least these properties. under the possible worlds semantics [8], [9], [13], [21]dan
Lastly, we note prior work stated results primarily in thgmportant query types with specific semantics are explored
tuple-leveimodel [1], [9]; here, we show results for bdtiple- in more depth, skyline queries [28] and heavy hitters [42].
level and attribute-levelmodels [8], [39]. Indexing and nearest neighbor queries under the attrilouts-

Our contributions. To remedy the shortcomings we identifymodel have also been explored [26], [35], [39], [6], [8]. [27

we propose an intuitive new approach for ranking based onAPpendix A discusses the most closely related works on
the rank distribution of a tuple’'s ranks across all possib@Swering tope queries on uncertain databases [18], [37],
worlds. Using this well-founded rank distribution as thesisa [43], [41]. Techniques have included the Monte Carlo ap-
of the ranking, we study ranking definitions based on typicRroach of sampling possible worlds [29], Al-style branch-
statistical values over a distribution. Specifically, and-bound search of the probability state space [37], dymam

« We formalize some important semantics of rankingéogramming approaches [41.]’ [43], [17], and applying tall
queries on certain data and migrate them to probabilis .Chernoff) bounds to determine when to prune [18]. There

data (Section 4.1), systematically examine the charact&y-°"9°'"9 work to understand semantics of fop ueries
-~ L . . N a variety of contexts. For example, the work of Lian
istics of existing approaches for this problem with respec ; . . .

. : . and Chen [25] deals with ranking objects based on spatial

to these properties (Appendix A), and summarize these : . . .

- . uncertainty, and ranking based on linear functions.eGal.
characteristics (Section 4.2) [14] presented a detailed study on finding the typical vector
« We propose a new approach based on the distributiontﬂf P y g yp

each tuple’s ranks across all possible worlds. By Ieverag—at effectively sample the score distribution from the-top

) D s Cn query results in uncertain databases. Recently, Soliatan
ing statistical properties on such a rank dlstr|but|on,rsu%lI [38] extended their study on tabqueries [37] to Group-
as the expectation, the median and the quantile, we deryé y 4 P

ryée . .
the expected rank, the median rank and quantile ran%y aggregate queries, and fo the case when scores give a

L artial order, instead of a total order [36]. A general framek
We are able to show that the new definitions provably . . . : - . .
i ; o r imposing various ranking definitions in probabilistiated
satisfy these requirements. These new definitions wor

seamlessly with both thattribute-leveland tuple-level Was_recer_ltly proposed_ by lat al. [24]. We dl_scussed the
. : relationship between this study and that work in Appendix B.
uncertainty models (Section 4.3). C L
. - ) . Our study on the tuple-level model limits us to considering
« We provide efficient algorithms for expected ranks in . . )
: . correlations in the form of mutual exclusions. More advahce
both models. For an uncertain relation df constant-

sized tuples, the processing cost of expected ranksrusles and processing may be needed for complex correlations

O(N'log N) for both models. In settings where ther ecen_t works based on graphical prol_aa_lbmstlc mod_els and
. ; ; . Bayesian networks have shown promising results in both
is a high cost for accessing tuples, we show pruning.. : P
) g : line [31] and streaming data [22]. In these situationgjah
techniques based on probabilistic tail bounds that call | oaches are based on Monte-Carlo simulations [21], [29]
terminate the search early and guarantee that the: top—pp ’
has been found (Section 5 and 6).
. We study additional properties guaranteed by mediah UNCERTAIN DATA MODELS
and quantile ranks and present dynamic programs felany models for describing uncertain data have been pre-
computing them. The formulations are different in theented in the literature. The work by Das Sarataal. [30]
attribute-leveland thetuple-levelmodels, however, they describes the main features and contrasts their properties
are similar for the median and different quantile valuesind descriptive ability. Each model describes a probabilit
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tuples score
t1 {(100,0.4), (70,0.6)}

distribution overpossible worldswhere each possible world

corresponds to a single deterministic data instance. Th& mo £ 1(92,0.6), (80,0.4)}

expressive approach is to explicitly list each possiblelavor ts {(85,1)}

and its associated probability; such a method is referreasto world W Pr[W]
complete as it can capture all possible correlations. However, {t1 = 100,22 = 92,3 =85} | 0.4 x 0.6 x 1 =0.24

complete models are very costly to describe and manipulate {t1 =100, 3 = 85,12 = 80} | 0.4 x 0.4 x 1 =0.16
since there can be exponentially many combinations of tuple gz z g?iz i 2(5)7 2 i Zg% 8.2 z 8.2 z i z 8,22
each generating a distinct possible world [30]. _ : ’ : : : —

Typically, we are able to make certaindependence as- Fig. 2. _An example of possible worlds for attribute-level
sumptions that unless correlations are explicitly describedincertainty model.

events are assumed to be independent. Consequently; likeli . .
hoods can be computed using standard probability caloulsti probabilityp(t) independently. In more complex models, there

(i.e. multiplication of probabilities of independent et®n The are dependencies among the tuples, which can be specified

strongest independence assumptions lead tdo#tsic model by a s_et ofgeneration rules These can be in the form of
where each tuple has a probability of occurrence, and énrelatlons_[l], [4]. complex events_[9], or c_>ther forr_ns._

tuples are assumed fully independent of each other. This iSAII_prewous work concerned with ranking queries In un-
typically too strong an assumption, and so intermediateeimdce_rtam data_\ has focused on the tuple-level uncertaintyeinod
allow the description of simple correlations between ttapIeWIth excl_u5|0n. ruleg(18], [37], [43], ,[41] where each tuple
This extends the expressiveness of the models, while kgepfPPears in a single rute Each ruler lists a set of tuples that
computations of probability tractable. We consider two eled ar€ mutually exclusive so that at most one of these can appear

that have been used frequently within the database comynuriff @y Possible world. Arbitrary generation rules have been
In our discussion, without loss of generality, a probatdis discussed in [37], [38], but they have been shown to require

database contains simply one relation. exponential processing complexity [18], [41]. Hence, athwi
many other works in the literature [37], [18], [41], [42], we

Attribute-level uncertainty model. In this model, the prob- primarily consider exclusion rules in this model, whereteac
abilistic database is a table of tuples. Each tuple has onegycjysion rule has a constant number of choices. In addition
attribute whose value is uncertain (together with othetab®r each tuple appears in at most one rule. The total probability
attributes). This uncertain attribute has a (finite) digemedf o )l tuples in one rule must be less or equal to one, so that
descr|b|ng its value dlstn_bu_tlon. When instantiatingsthin- it can be properly interpreted as a probability distribatido
certain relatlor_l to a certain instance, each tuple drayvlesevaSimp|ify our discussion, we allow rules containing only one
for its uncer@aln.att.rlbute based on the assomated_ dsqdt tuple and require that all tuples appear in (exactly) onénef t
and the choice is independent among tuples. This model hggs. This is essentially equivalent to the popular xiiefes
many practical applications such as sensor readings [2Q], [ model [1]. This tuple-level model is a good fit for applicatio
spatial objects with fuzzy locations [39], [8], [6], [27]2€]. here it is important to capture correlations between siple
etc. More important, it is very easy to represent this modg{is model has been used to fit a large number of real-life
using the traditional relational database model, as Obder‘éxamples [4], [9], [37], [18], [42]. Examples of a relatiom i
by Antovaet al. [3]. For the purpose of ranking queries, thgnis model are shown in Figures 3 and 4. This relation has
important case is when the uncertain attribute represémts ty tuples andM rules. The second rule says thatand ¢,

score for the tuple, and we would like to rank the tuples basgdnot appear together in any certain instance of thisioelat
on this score attribute. LeY; be the random variable denoting;; 5150 constrains that(ts) + p(ts) < 1.

the score of tuplg;. We assume thak; has a discrete pdf

with bounded sizes;. This is a realistic assumption for many tuples | score| p(t) rules
practical applications, including movie ratings [9], andrg 0 0 p(t1) P I
matching [7]. The general, continuous pdf case is discussed ta V2 p(t2) T2 {ta,ts}
in Appendix B. In this model we are essentially ranking the : :

set of independent random variabl&s, ..., X . A relation tz.v UIN pltn) Tl'w {t57t;7tN}

following this model is illustrated in Figure 1. For tuplg the

score takes the value ; with probabilityp; ; for 1 < j < s;. Fi9- 3. Tuple-level uncertainty model.

tuples score tuples | score| p(t) rules
t1 100 0.4 —
t {(vi1,p11), (V1,2,P1.2), -5 (V1,51,P1,80) } | {ti}
to 92 0.5
to {(2,1,p2,1), ..., (V2,55, P2,55) } t 80 1 T2 | {t2,ta}
: : ty 70 | 05 s | {ta}
iy {(vna,pN1)s -, (UNsy  PNsy) } world W Pr[WV]

. . ) {t1,t2,t3} p(t1)p(t2)p(ts) = 0.2
Fig. 1. Attribute-level uncertainty model. {t1,ts,ta} p(t1)p(t3)p(ts) = 0.2
Tuple-level uncertainty model. In the second model, the {ta,ts} | (1 —p(ta))p(t2)p(ts) =0.3
attributes of each tuple are fixed, but the entire tuple may or {ta;ta} | (1—p(t))p(ts)p(ts) =03

may not appear. In the basic model, each tupppears with Fig. 4. An example of possible worlds for tuple-level
uncertainty model.
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The possible world semantics. We denote the uncertainand hence give properties which a user would naturally expec

relation asD. In the attribute-level uncertainty model, arof a ranking over uncertain data. These properties should be

uncertain relation is instantiated intopassible worldby tak- seen largely aglesirable but by no meanssufficientfor a

ing one independent value for each tuple’s uncertain atiib ranking. Our main purpose in introducing them is to make

according to its distribution. Denote a possible worldl&as them explicit, demonstrate prior definitions do not adhere

and the value fort;’s uncertain attribute inl¥ as w;,. In to them all, and provoke discussion about which properties

the attribute-level uncertainty model, the probabilitytthl” should hold in general for proposed ranking methods.

occurs isPr[IWV] = H;VZI Pj,z» Wherez satisfiesv; , = wy;. It The first property is very natural, and is also used in [43].

is worth mentioning that in the attribute-level case we giva Definition 1 (Exactk): Let Ry be the set of tuples (asso-

have VIV € W,|W| = N, whereW is the space of all ciated with their ranks) in the top-query result. If|D| > &,

the possible worlds. The example in Figure 2 illustrates thieen|Ry| = k.

possible worlds for an uncertain relation in this model. The second property captures the intuition that if an item
For the tuple-level uncertainty model, a possible wdild is in the topk, it should be in the tog for any &’ > k.

from W is now asubsetof tuples from the uncertain relationEquivalently, the choice ok is simply a slider that chooses

D. The probability ofW occurring isPr[W] = H?ilpW(Tj), how many results are to be returned to the user, and changing

where for any ruler that applies taD, pw (7) is defined as & should only change the number of results returned, not the

: derlying set of results.
t frAW = {t}; underiyin ,
() = ]1)(_)’2 (t:) :f :ﬂ W= é,}’ Definition 2 (Containment)For anyk, Ry C Ry.1. [
bw 0 tier P otherwise ’ Replacing ©” with “ C”, gives theweak containmengroperty.

The next property stipulates that the rank assigned to each

A notable difference for the tuple-level uncertain model igiple in the topk list should be unique.
that given a random possible world, not all tuples fromD  Definition 3 (Unique ranking):Let (i) be the identity of
will appear. Hence, the size of the possible world can rangee tuple from the input assigned rankn the output of the
from 0 to V. The example in Figure 4 illustrates the possiblganking procedure. Thenique rankingproperty requires that
worlds for an uncertain relation in this model. Vi # §,re(i) # me(4). u

We iterate that every uncertain data model can be seen as Recently, Zhang and Chomicki [43] proposed stability
succinct description of a distribution over possible weiltf.  condition in the tuple-level uncertainty model. We adops th
Each possible world is a certain table on which we can evalugroperty and generalize it to the attribute-level model:
any traditional query. The focus of uncertain query procgss  Definition 4 (Stability): In the tuple-level model, given a
is (1) how to “combine” the query results from all the possibltuple ¢; = (vi, p(t;)) from D, if we replacet; with tl =
worlds into a meaningful result for the query; and (2) hOV(’va(tlT)) Wherevg > vi,p(tg) > p(t;), then
to process such a combination efficiently without exphcitl ti € Rp(D) =t € Ri(D'),
materializing the exponentially many possible worlds. whereD’ is obtained by replacing with ’%T in D.

Difference of the two models under ranking queries. W £or the attribute-level model, the statement for stability

emphasize that there is a significant difference for the tWamains the same but wittﬂ defined as follows. Given a

models in th_e contexf[ oh_nkmg tupl_esMore specnjcally, th? tuplet; whose score is a random variablg, we obtaintl by

goal of ranking queries in uncertain databases is to der'vereeblacingXi with a random variables ! that is stochastically
K3

mga_mng]‘tul orderllngtft()rjll Fulples n thde d_ata?ésenlotelmtgatt greater or equal thar§32] X;, denoted as?(l.T = X;, meaning
is is not equivalent to deriving an ordering for all valdlea Pr(XZ-T > 2) > Pr(X; > 2) for all 2 € (-0, 50). -

tuples inD may take. In the attribute-level model, all tuples Stability captures the intuition that if a tuple is already

in D will part|C|pate_ in the ranking process in every p053|bl% the top#, making it “probabilistically larger” should not
world. In contrast, in the tuple-level model only a subset of. " o N .
eject it. Stability also implies that making a non-tbpguple

tuopsﬁisbllg?/vgvr':gp?:'C'gitin:;:hzlzﬁgﬁlnﬁ ?ggf:szr:;orr:ag'Vﬁ%Jsrobabilistically smaller should not bring it into the tép-
b ' P ' 9 bp The final property captures the semantics that the score

between relations in the attribute-level and tuple-leveteis, oo . ) ; .
function is assumed to only give a relative ordering, and is

these have different sets of tuples to rank (often, withedéfht
oo : . .~ not an absolute measure of the value of a tuple.
cardinalities). As such, this means that there is no simple_ " = : : .
) . .. .~Definition 5 (Value invariance)Let D denote the relation
reduction between the two cases, and different algorithmic: - " ,
. . . which includes score valuas < vy < .... Let s, be any set
solutions are needed for each. It remains a tantalizingoes e p L,
L of score values satisfying; < v, <..., and defineD’ to be
to make further use of structural similarities between the t

. _ T . :
models to design a unified approach for ranking in both. V\% with all SCoresv; replaced W'thvi; The value invariance
hope this can be addressed in future work. property requires thak,.(D) = Ry,(D') for any k. "

Discussion of Value Invariance. The value-invariance prop-
erty is defined as it (trivially) holds in the deterministic

_ ] ) setting. It is more debatable if it should always be enforced
4.1 Properties of Ranking Queries over uncertain data. The argument against value-invagianc
We now define a set of properties for ranking tuples. Thesetably arises when the score may have an intuitive linear
are chosen to describe key properties of ranking certaia, dahterpretation (e.g. when measuring financial profits, éttee

4 RANKING QUERY SEMANTICS
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Ranking method Exadt- Containment Unique-Rank Value-Invariant  Stability
U-topk [37] X X v v v
U-kRanks [37], [25] v v X v X
PT-% [18] X weak v v v
Global-topk [43] v X v v v
Expected score v v v X v
Expected rank v v v v v

Fig. 5. Summary of Ranking Methods for Uncertain Data

profit is considered twice as good). In such scenarios, valde® Top-k Queries on Probabilistic Data

invariance can ignore the “common sense” meaning of . now consider how to extend ranking queries to uncertain
scores and lead to counter-intuitive results. For thesescas data. The two uncertainty models require different appeac

is clearly preferable to choose a method which dosobey |, the attribute-level model, a tuple has a random scoretbut i
this property, and instead define an appropriate requiremeg, v exists in any random possible world, i.e., everyeupl
which captures the given semantics of the score value. participates in the ranking process in all possible wordts]

Nevertheless, we argue this property is important to camsidve rank theseV tuples based on their score distribution. In
for a number of reasons. There are many cases when the sé@¥irast, in the tuple-level model, a tuple has a fixed score
has no such linear interpretation. For example, consider #ut it may not always appear, i.e., it may not participate in
general case where there is no explicit score value revéaledhe ranking process in some possible worlds. We still aim to
the algorithm; instead, for any pair of (deterministic) legp Produce a ranking on alV tuples, taking this into account.
there is an “oracle” which reports which ranks above the Considering the tuple-level model, the difficulty of extend
other. This encodes a total order. Then any method which dg ranking queries to probabilistic data is that there ave n
operate in this setting must necessarily obey value inmagia two distinct orderings present in the data: that given by the
whereas methods which rely on being given a score valgeore, and that given by the probabilities. These two tyfes o
will be unable to operate. Other examples arise when scot@frmation need to be combined in some meaningful way to
arise from outputs from the sum of classification algorithmgroduce the tog (this can be orthogonal to the model used to
and so have no linear property. Instead, we only have thagi@scribe the uncertainty in the data). In Appendix A we dietai
larger total score is preferable. Here (as in the detertignisa variety of approaches that have been taken, and discuiss the
ranking case), the ranking should be invariant under differ shortcomings with respect to the conditions we have defined.
score values which give the same total ordering. For exampldie key properties are summarized in Figure 5.
consider the relation with tuple-level uncertainty ilieged in
Flgure_ 4. I_—Iere, the scores af@ < 80 < 92 < 100. The 4.3 The Rank Distribution and Expected Ranks
value invariance property demands that we could replacethe

scores with, say] < 2 < 3 < 1000, and the result of the Motivated by deficiencies of existing definitions, we propos
ranking would stil be the same. a new ranking framework that depends on the ranks of a

tuple across all possible worlds and we refer to these ranks

Whether or not value invariance is considered desirable il"(f%r a given tuplet), together with the corresponding possible
given ranking situation, it is important to know if a propdseyorids’ probabilities, as’s rank distribution. Our intuition is
ranking method will guarantee the property or not. Itis p@1 that top4 over certain data is defined by first providing a total
surprising to note thaall existing ranking definitions [37], ordering of the tuples, and then selecting thébest” tuples
[18], [25], [43] for probabilistic data have this property.  ynder the ordering. Any such definition immediately progide

the containment and unique-ranking properties. Afterctajg

Properties and Probabilities. Observe that these conditionsexpected score due to its sensitivity to the score values (i.
make little explicit reference to probability models, arghc it does not provide value invariance), a natural candidste i
apply to almost any ranking setting. They trivially hold foiconsider the orderings based on ttaaks of the tuple over
the top4 semantics over certain data. It should neverth&he possible worlds. More formally,
less be noted that these properties are not meant to be Befinition 6 (Ranks of a tuple in all possible worlds):
complete characterization of ranking queries in probsiiili The rank of tuplet; in a possible worldi? is defined to be
data. Indeed, in some cases, a specific application may otlig number of tuples whose score is higher thaifthe top
require a subset of these conditions. However, in order tiaple has rank 0), i.ezankw (t;) = |{t; € Wlv; > v;}].
choose a ranking definition to work with for different domainin the tuple-level model, for a worldV wheret; does not
requirements, it is imperative to examine the semantics afpear, we defineanky, (¢;) = |W|, i.e. it follows after all
ranking queries for probabilistic data, especially in tbatext appearing tuples. [ ]
of real-world applications, and to understand which ragkin The ranks of a tuple;; in all possible worlds and the
definitions provide which properties. The intricate intagp probabilities of all worlds constitute a proper probabil-
between the score and the probability attributes indicatiég distribution function (pdf): rank(¢;), i.e., rank(¢;) =
that no single definition will be a universal best choice fof(rankw (;), Pr[W])} for YIW € W, since} .y, Pr[W] =
all applications. Nevertheless, we believe that many maatud. Note to form a well-defined pdf we need to combine (sum
situations will require all these five simple properties tdch up the corresponding probabilities) the ranks from diffiere
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possible worlds that have the same value (irenkw (¢;)) 5.1 Exact Computation
from the above set. Formally, lét(t;) be a random variable g, pefinition 8 and the linearity of expectation, we have
for the rank of tuplef; in a random selected possible world,

Definition 7 (Rank Distribution):The rank distribution of a r(t;) = Zpr[Xj > Xl (3)
tuplet;, rank(t;), is a proper probability distribution function o

(pdf) for the random variablé(¢,;) defined as: )
The brute-force search (BFS) approach requi’éd’) time to

computer(t;) for one tuple and)(N?) time to compute ranks

rank(t;) : Pr[R(t;) = V] = Z Pr[W], of all tuples. The quadratic dependence/éris prohibitive for
WEW|rankw (t;)=V large N. Below we present an improved algorithm requiring
VYV €[0,N]m O(N log N) time. We observe that (3) can be written as:

The rank distribution for a tuple captures important infor-
mation on how a tuple behaves in terms of ranking across ZPM (vi,e) — PrX; > ”M])v (4)
all possible worlds. Applying statistical operators to leac
distribution to generate a single statistic is a natural Way where we defingy(v) = >, Pr[X; > v] (Proof in Appendix
summarize the rank distribution, and can be used as the bagjs Let U be the universe of all possible values of &,
for ranking. We first study thexpectationwhich leads to a ; = 1,... N. Because we assume each pdf has size bounded
new ranking method, which we call tlexpected rank by s, we have|U| < |sN|. Whens is a constant, we have
Definition 8 (Expected RankjThe expected rank of tuple |7| = O(N).
t; is the expectation ofrank(t;). The smallerrank(t;)’s Now observe that we can precompute) for all v € U
expectation, the smallgg’s final rank, denoted as(t;). with a linear pass over the input after sortitigwhich has a
In the attribute-level model, the expected rarfk;) can be cost of O(V log N). Following (4), exact computation of the
computed as the expectation oankyy (t;)'s, then the topk  expected rank for a single tuple can now be done in constant
tuples with the lowest (t;) can be returned. More precisely, time giveng(v) for all v € U. While computing these expected
ranks, we maintain a priority queue of siZe that stores
r(t) = E[R(t:)] = Z PrW]-rankw (t:) (1) ey tuples with smallest expected ranks dynamically. When
WeWtiew all tuples have been processed, the contents of the priority
In the tuple-level model, in a worldl” wheret; does not queue are returned as the final answer. Computing takes
appearrankyy (t;) = [W|, i.e. we imagine it follows after all time O(N log N); getting expected ranks of all tuples while
the tuples which do appear (as per Definition 6 above). Somaintaining the priority queue také3(N log k) time. Hence,
the overall cost of this approach (N log N). We denote
r(t) = m;w Pr[W]rankw (t:), @ this algorithm asA-ERrankand descrgbe it in ,)Appendix D.
where the definition ofranky (¢;) is extended so that ]
rankyy (t:) = [W| if t; ¢ W. (Proof in Appendix & m °2 Pruning by Expected Scores
For the example in Figure 2, the expected rank #pris A-ERank is very efficient even for largt values. However,
r(t2) = 024 x 1 +0.16 x 2+ 0.36 x 0+ 0.24 x 1 = 0.8. in certain scenarios accessing a tuple is considerablynesiype
Similarly r(t1) = 1.2, r(t3) = 1, and so the final ranking is (if it requires significant 10 access). It then becomes @dxir
(t2,t3,t1). For the example in Figure 4;(t2) = 0.2 x 1 + to reduce the number of tuples accessed in order to find
0.2x3+03x0+0.3x2=14. Notet, does not appear the answer. It is possible to find a set of (possibly more
in the second and the fourth worlds, so its ranks are takentkan k£ tuples) which is guaranteed to include the true top-
be 3 and 2, respectively. Similarly(t:) = 1.2, r(t3) = 0.9, & expected ranks, by pruning based on tail bounds of the

r(t4) = 1.9. So the final ranking ists, t1,t2, t4). score distribution. If tuples are sorted in decreasing oade
We prove expected ranks satisfies all five fundamenthleir expected scores, i.E[X;]'s, we can terminate the search
properties in Appendix C. Specifically, early. In the following discussion, we assume that & j,
Theorem 1:Expected rank satisfies exdct-containment, thenE[X;] > E[X;] for all 1 < 4,5 < N. Equivalently, we
unique ranking, value invariance, and stability. can think of this as an interface which generates each taple i
turn, in decreasing order &f[X;].
5 ATTRIBUTE-LEVEL UNCERTAINTY MODEL The pruning algorithm scans these tuples, and maintains an

JF
This section presents efficient algorithms for calculatihg ;Ege; :2)(\)/\[/Jenrdb(z)zg1 d)og?n?tfoTaﬁy)ur:(;resﬁctztplzueege?\(())::(;

expected rank of an uncertain relati@ with N tuples in ~_
the attribute-level uncertainty model. We first show an exal - The algorithm halts when there are at lefst” (;)'s that

algorithm that can calculate the expected ranks of all mPl:;Znsnmeg”el;roizag[l ;us&)eoi:/éugrlgcfft}ﬁ.A.p’penr(]j?;?): been
in D with O(N log N) processing cost. We then propose an
algorithm that can terminate the search as soon as thé top-

tuples with thek smallest expected ranks are guaranteed to b&(ti) < Z PrlX; > Xi] -n sz 4
found without accessing all tuples. J<n,j#i

- ()
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The first term in (5) can be computed using only seen tuplee show anO(nlogn) pruning algorithm, which only reads

t1,...,t,. The second term could be computed uskigand the firstn tuples, assuming thexpectechumber of tuples in

X,,. Hence, from scanned tuples, we can maintain an upg®ris known to the algorithm.

bound onr(¢;) for each tuple in{t1,...,¢,}, i.e., we can set

r*(t;) to be (5) fori = 1,...,n. r+(ti)'§ second term is g 1 Exact computation

updated for every new, (as well as the first term far,).
Now we provide the lower bound~. Consider any unseen

tuplet,,u > n, we have Proof in Appendix ¢

From Definition 8, in particular (2), given tuples that areted
by their score attribute, we have:

(DI B STy © ) =pt) 3 )+ (1-pit)
Bl j<n t=1 T U ’

_ B thoti, p(t;)
This holds for any unseen tuple. Hence, wesetto be (6). : 1—719(%) + Z p(t;)
Note that (6) only depends on the seen tuples. It is updated £t
with every new tuple,,. _ _ The first term computes’s expected rank for random worlds

_These bounds lead immediately to an algorithm that maignen it appears, and the second term computes the expected
tains 7 (¢;)'s for all tuplesty, ... ¢, andr~. For each new gjze of a random worldl” whent,; does not appear ifi’. The
tuple t,,, the r*(¢;)'s and r~ are updated. From these, we Xijor, P(E5) .
find the kth largestr™(¢;) value, and compare this to. If term ==y 1S the expected number of appearing tuples

in the same rule as;, conditioned ort; not appearing, while

it is less, then we know for sure that ttietuples with the "
P th&ip(tj) accounts for the rest of the tuples. Rewriting,

smallest expected rankgobally are among the first tuples,
and can stop retrieving tuples. Otherwise, we move on to the

. . ti) =p(t;) - t;
next tuple. We refer to this algorithm @#sERank-Prune r(ti) =p(t:) Z p(t)

A remaining challenge is how to find thetuples with the AR
smallest expected ranks using the firsttuples alone. This + Z p(t;) + (1= p(t:)) - p(t)). )
is difficult as it is not possible to obtain a precise order on tjots t50t:
their final ranks without inspecting alV tuples inD. Instead,  Let ¢; = =i p(t;). We first computey; in O(N) time.
we use the curtailed databaBe = {t1,...,t,}, and compute At the same time, we find the expected number of tuples,

exact expected rank'(t;) for every tuple (fori € [1,n]) t; E[w| = Z;Lp(tj)- Now (7) can be rewritten as:

in D’. The rankr’(¢;) turns out to be an excellent surrogate '

for 7(t;) for i € [1,n] in D (when the pruning algorithm  r(t;) =p(t:) - (¢ — Y p(t;)+ > p(t;)

terminates after processinguples). Hence, we return the top- tiots,j<i tj0t;

k of these as the result of the query. We show an evaluation o N ‘

of the quality of this approach in our experimental study. + (1= pE)(EIW] - plt) Z p(t;)- (@)
A straightforward implementation oA-ERrank-Prunere-

quiresO(n?) time. After seeing,,, the bounds in both (5) and By keeping the auxiliary informatioh_, ., ;_; p(t;) (i.e., the

(6) can be updated in constant time, by retaifing , z_ﬁ for sum of _probab|I|t|es of tuples that have score vz_alues higher

each seen tuple. The challenge is updating the first term)in {8an ¢; in the same rule as;) and }_, , p(t;) (i.e., the

for all i < n. A basic approach requires linear time, for addingUm of probabilities of tuples that are in the same rule as

Pr[X, > X] to the already compute}l",_,, , ., Pr[X; > ) for each tuplet; in D, »(;) can be computed irD(1)

X;] for all i's as well as computing”,__, Pr[X; > X,,]. lime. By maintaining a priority queue of size that keeps

This leads to a complexity a(n?) for algorithm A-ERrank- the k tgples with thel smallest(t;)’s, we can select the top-

Prune. Using a similar idea in designing algorithm A-ERaniPles inO(N log k) time. Note that botf}_, ., ., p(t;) and

it is possible to utilize value univerdé’ of all seen tuples and >_:,:, P(t;) are cheap to calculate initially given all the rules

maintain prefix sums of the(v) values, which would drive in @ single scan of the relation (taking tinig§V), since each

tjot;

down the cost of this step 0 (nlogn). tuple appears in exactly one rule). Whénis not presorted
by ¢;’s score attribute, the running time of this algorithm is
6 TUPLE-LEVEL UNCERTAINTY MODEL dominated by the sorting ste@,(NV log N). The pseudo-code

. . . . for T-ERank is presented in Appendix D.
We now consider ranking an uncertain dataliasa thetuple- P bp

level uncertainty modelForD with N tuples andV/ rules, the )

aim is to retrieve thé tuples with the smallest expected rank5-2 Pruning

Recall each rule; is a set of tuples, wher®, . p(t;) < 1. Provided that the expected number of tupigsV’|] is known,
Without loss of generality we assume the tuplgs .., ¢, are we can answer tog-queries more efficiently using pruning
already sorted by the ranking attribute ands the tuple with techniques without accessing all tuples. Note fAg#|] can
the highest score. We uggo¢; to denotet; and¢; are in the be efficiently maintained i®(1) time whenD is updated with
same exclusion rule ang # ¢;; we uset;3t; to denotet; and deletion or insertion of tuples. AB[|W|] is simply the sum of
t; are not in the same exclusion rule. We first give an exaall the probabilities (note that it does not depend on thesl
O(N log N) algorithm which accesses every tuple. Secondli,is reasonable to assume that it is always available. Sl
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the attribute-level uncertainty case, we assumeZfhpatovides For the attribute-level uncertainty model example
an interface to retrieve tuples in order of their scorelatte in Figure 2, t;'s rank distribution rank(t;) is
from the highest to the lowest. {(0,0.4),(1,0),(2,0.6)}. Therefore, ¢;'s median rank
The pruning algorithm scans the tuples in order. After sgeim.,,(¢1) is 2. Similarly, r,,,(t2) = 1 andr,,,(t3) = 1. Hence,
t,, it can compute(¢,,) exactly usingk[|W|] andg,, in O(1) the final ranking is(ts, t3,¢1), which is identical to the final
time based on (8). It also maintain$®), the k-th smallest ranking obtained from the expected ranks. For the tupletev
r(t;) among all the tuples that have been retrieved. This cancertainty model example in Figure 4,s rank distribution
be done with a priority queue i®(log k) time per tuple. A rank(t4) is {(0,0),(1,0.3),(2,0.5),(3,0.2)}. t4's median
lower bound onr(t,) for any ¢ > n is computed as follows rank r,,(t4) is 2. Similarly, 7,,,(t1) = 2, rp,(t2) = 1, and
(Proof in Appendix ¢ rm(t3) = 1. The final ranking is(¢z, t5,t1,t4) Whereas the
final ranking from the expected ranks wWds, t1, t2, t4).
Clearly, the median rank is a special caseafuantile rank

Thus, whenr¥) < ¢, — 1, we know for sure there are atWhere ¢ = 0.5. Ranking by the median or the-quantile

leastk tuples amongst the first with expected ranks smallerrankS, of all tuples is .straightforw.ard. We first dgrive a kota
than all unseen tuples. At this point, we can safely terneina@rdering of all tuples in thascendingorder of theirr,, (t:)'s

the search. In addition, recall that for all the scannedetsipl (7 7’¢,(ti)5)' and thek tuples with the smallest values of
their expected ranks are calculatexactlyby (8). Hence this T (ti)'s (_or ro(ti)'s) are_returned as the top-We can S_hOW
algorithm—which we dutT-ERank-Prune-can simply return that ranking by the median rank (or the general quantile rank

the current topk tuples. From the above analysis, its time co&ffers all properties satisfied by the expected rank. Fdgmal
is O(n log k) wheren is potentially much smaller thaiv. Theorem 2:Ranking by median and quantile ranks satisfies
all properties in Figure 5. The proof is quite similar to the

proof of Theorem 1, so we omit it.
7 MEDIAN AND QUANTILE RANKS The next important problem is whether we can calculate

Our expected rank definition uses the expectation as the basi(t:) or 74(t;) efficiently for a tuplet;. Note, besides for
of ranking, i.e., the absolute ranks of each tuple from di@nking purposes, these values themselves are imporédist st
possible worlds are represented by their mean. It is welwmno tics to characterize the rank distribution @fin all possible
that the mean (or equivalently, the expectation) is stesily Worlds, rank(¢;). In the sequel, in a random possible world
sensitive to the distribution of the underlying values (ir o if ¢; andz; are tied ranking by their scores, ranks before
case, the absolute ranks of the tuple from all possible wjrldt; if ¢ < j. In general, other tie-breaking mechanisms could
especially when there are outliers in the distribution. gt ibe easily substituted. Also, our algorithms work the samg wa
natural to consider alternate statistical operators asp#sis for median and quantile ranks for any quantile values. Hence
of the ranking, such as the median of the rank distributidar brevity, we focus on discussing median ranks and extend
instead of the mean. This can be further generalized to ahyo quantile ranks at the end of each case. Recall that fpr an
quantile for the distribution of absolute ranks for a tuptecss tuple ¢, R(¢) is a random variable that denotés rank in a
all possible worlds. We can then derive the final ranking dasgandom possible worldR(t)’s distribution is represented by
on such quantiles. Furthermore, the rank distributionk(¢;)  t's rank distributionrank(t).
for a tuplet; reflects important characteristics ffs rank in
any random possible world. Studying these critical sia8st 7 >  Attribute-Level Uncertainty Model
(median and general quantiles) for this rank distribut®of
independent interest. This section formalizes these ideds . i . .
presents efficient algorithms to compute the median and-qué['ﬁ'certam score attribute is represented by the randoraliar
tile ranks for uncertain databases in both the attributetend @ = 1(Vi1:Pi1)s .-, (Vis; pis;)} for some constans;.
tuple-level uncertainty models. Similarly to the approtaken V}/hen X ta}kes thg values;, (denote this as a special tgple
for the expected rank, we first present the definitions foseheti)’ tuple tis_r.ank n f”‘” possmle \ivorlds could be described
ranks and discuss the efficient, polynomial-time algor'ﬂhnpy a pr,obablhty fj|_str|but|or3~ank(ti) = rank(ti|ti = vi1)
that compute such ranks; then we improve the efficiency Wihireltl ?eanil glveE that .kV\ﬁe cincentrat? orlczz}ICl;Iat|ng
our algorithms by designing necessary pruning techniques@2k(%:) first. Note thatrank(t;) = Pr{R(t;) = £ for
¢=0,...,N—1 (thatis, the distribution gives the probability
of the random variablé(¢.) taking on each of théV possible
7.1 Definitions and Properties rank values). For any other tupte € D A j # 4, we calculate
We formally define the median and quantile rank as, Pr[t; > ti] = 301, pjelvie > vin, and Prft; < t}],
Definition 9: For tuplet; € D, its median rank.,, (t;) is the Pr[t; = ] similarly. Then whenj < i,
median value frons;’s rank distributionrank(¢;), i.e., it is the _ N 1 1
value in the cumulative distributive function (cdf) afnk(t,), Prifi(ty) < (i) = Prit; > 1]+ Prity = ;] and
denoted asdf(rank(t;)), that has a cumulative probability of ~ Prlf(t;) > R(t;)] = Prlt; <t;]
0.5; For any user-defined-quantile wherep € (0,1), the ¢-
quantile rank oft; is the value in thedf(rank(¢;)) that has
a cumulative probability o, denoted as(t;). [ | Pr[R(t;) < R(t})] = Pr[t; > t!] and

r(te) > q—1>q,—1

In the attribute-level uncertainty model, given a tupjeits

and whenj > i,



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

Pr[R(t;) > R(t;)] = Pr[t; < t;] + Prt; = t}]. Pruning Techniques. In practice, the number of choices of
each tuple could be large. The contribution by the factor of
s in the overall computation cost for the algorithth(sN?3)
efficiently. Now, for each tuplée; there are two possible out- may be r.10njnegl|g.|ble. To remedy this problem, an important
. . . . .1 . observation is that if we rank the score values of all chofoes
comes, either it ran.ks higher .thablthh probability p; or it a tuple in decreasing order, then the median (or any quantile
ranks lower tha; with probabilityp;. There ar¢ N —1) such  rank value for a tuple after seeing more choices will only
independent events (one for eagtfor j € {1,..., N} —{i}). increase. This intuition gives us a way to lower-bound the
This could be viewed aswnerallzed binomial distributionn | ,adian (or any quantile) rank value in any intermediatesstep
the]th trial, the head probability i |p and the tail probability ey seeing any number of choices for a tuple. Specifically,
is pj. The possible ranks of (essentially it is(t:|t; = vi.1))  after calculating the rank distributionsnk(t!)’s for the first
are simply the possible number of heads from this distri- number of choices for a tuple, we denote the lower-bound
bution. Then,rank(¢}) is the probability distribution on the onry, (t;) asrs, (t;) (or r(t;) for a quantile rank(t;) with a
number of heads in this generalized binomial distributi@n, quantile valuep). We would like to maintainZ, (¢;) such that
rank(t;) = Pr[number of heads= /] for £ = 1,...,N — 1. (a) forVéy, (s € [1, 5], if {1 < £o, thenrf (t;) < r2(t;); and
For the binomial distribution, there is a compact closedrfo (b) -5 (¢;) = r,,(t;). The same holds for the quantile ranks.
formula to calculatePr[number of heads= /] for any /. Assume we can achieve the above, an immediate pruning
This no longer holds for the generalized binomial distridoit technique is to maintain a priority queue of sizéor the first
However, one can efficiently compul[number of heads= ¢ (¢ e [1, V)) tuples whose exact median ranks (or quantile
¢] for all ¢ in this case as follows. Lek., ; be the probability ranks) have already been calculated. The priority queue-is o
that in the first; trials there arey number of heads. Then, dered by increasing order of the tuple’s exact median rank (o
o ) T ) ) guantile rank) and we denote tkéh tuple’s rank ag,. When
B = Bymtjmr X0y By o1 X0 (10) processmg théﬁ + 1)-th tuple, after calculatingank(t}_ ,)'s
From equation 10, the rank distributioank(¢}) is defined by for i = 1,...,z-th choices oft, 1, if 7% (t;) > r (or
Pr[number of heads: ¢] for £ € {0,1,...,N — 1}, which is 72(t,) > rk), we can stop processing the remaining choices of
given by Ey y—1's for £ € {0,1,..., N —1}. This observation ¢, , and safely claint,,; has no chance to be in the final top-
and Equation 10 immediately glve us a dynamic programminganswer. If one has to exhaust all choices ffor;, then the
formulation to calculate the rank dlStI’IbutIQBnk(tl) exact rankr,, (t¢+1) (or r4(ts+1)) is obtained and the priority
We can carry out the similar procedure to obtain thgueue is updated if necessary:tif.,’s rank is smaller than
distributionsrank(t;), . .., rank(;*), one for each choice of r, it will be inserted into the queue with its rank and the last
t;. Finally, rank(t;) = PY[R(M =(]forl € {0,1,...,N—1}, (the kth) element of the queue will be deleted.
where Pr(R(t;) = €] = Y7" pix x Pr[R(tf) = ¢] and  The remaining challenge is how to calculate the lower-
Pr[R(tf) = (] is given byrank(tf), i.e, the rank distribution bound rZ (¢;) for a tuple ¢; after processing its first:
of t;, rank(t;), is simply the weighted sum of the distributionghoices. A key observation is each tuple’s choices are gorte
rank(t;), ..., rank(t;"). With rank(t;), one can easily gét’s by descending order of their score values, i.e., for and
median rankr,,(t;) or any ¢-quantile rankry(t;). Given a ¢, ¢, € [1,s;], if £1 < £o, thenu; o, > v; 4,. After processing
query parametek, the final step is to simply retrieve the the firstz (z < s;) choices oft;, we have obtained: rank

In short, for anyt;, we can calculate botfPr[R(¢;) <
R(t})], denoted a@}, andPr[R(t;) > R(t})], denoted a@ﬁ,

tuples with the smallest median (or quantile) rank values. Wistributions, rank(t}), ..., rank(t¥). At this point, we can
denote this algorithm ad-MQRank construct a (notional) tuple , with (z+1) choices as follows:
Example 1:For the attribute-level uncertainty model ex{(v; ,p; 1), ..., (Viz,Piz), (Vizs 1 — Yo, pis)}. The firstz
ample in Figure 2,t3's rank distribution rank(t3) = choices oftw are identical to the first: choices oft;; and
rank(talta = 92) is {(0,0.6),(1,0.4),(2,0)} and 3's the last choice of;, has the same score value,, with
rank distribution rank(t3) = rank(t2[ts = 80) iS probability asi—7_, p; — we aggregate the probability of
{(0,0),(1,0.6),(2,0.4)}. Therefore, to’s rank distribution ga|| remaining choices (af) into one choice and make its score
rank(2) is {(0,0.36), (1,0.48), (2,0.16)}. U value the same as the last processed choicertthene) from

We observe that the same principle could be applied for the we can write the rank distribution for constructed tuple
case of contmuous distributions. Essen'ually, for a tuplave  as follows, which follows immediately from its construatio

need to computg! = Pr(X; > X,] andp; = Pr[X; < X Lemma 1:We haveV/ € [1,z], rank(t!,) = rank(t{);
for any other tuple € D, whereX; andX are two random rank(t”l) = rank(¢?,); and rank(t; ;) = >y, pie X

variables with continuous d|str|but|ons Onp§ and p] are pank(t) + (1 — Zf_lz;m) x rank(t?).

available, the rest is the same as discussed above. The next result is the median (quantile) value from dis-
The Complexity of A-MQRank. For an uncertain databa$e tribution rank(¢; ,) will not be larger than the median (or
with N tuples and assuming that each tuple takes on at mastresponding quantile) value in distributieank(;), i.e.,

s possible choices, the cost of one dynamic program for oneLemma 2:Vz € [1,s;) andVe € [0,1], r4(tiz) < re(ts).
choice of a tuple (i.e. applying (10)) ©(N?). We have to A special case is that,, (t; .) < 7m ().

do this for each choice of every tuple. Hence, the cost of theThis follows immediately from Lemma 1 and the definition
algorithm A-MQRankis O(sN?). When s is a constant, the of 7,(¢) andr,,(t) for any tuplet. Lemma 2 indicates that
complexity of A-MQRankis O(N?3). by constructing;; , after processing the first choices of the
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tuple ¢;, we can efficiently obtain a lower bound ep(¢;) or appears is no longer independent of the event exgctlyl
rm(t;). This can be done after processing each choice; oftuples inD;_; appear. Similarly, for the second term in (11),
and it perfectly satisfies our pruning framework. Note Lemmahent; does not appear in a random world withtuples, we

1 shows that after processing the firsthoices of the tuplé;, may not simply multiply(1 — p(¢;)) by the probability of this
rank(¢; ) can be obtained immediately (and hencerji&; ;) event: it could be one tuple from the same rule contairting
or r,(t;.) is immediate). We denote this pruning techniqubas already appeared, which asseértsannot appear at all.

as theA-MQRank-Prunelgorithm. _ To overcome this difficulty, we first conveR; to a database
D; where all rules contain only one tuple and apply the
7.3 Tuple-level Uncertainty Model above algorithm orD; to computeR; ;'s. We constructD;

" as follows: For each ruler € D; and tuples inT, we
In the tuple-level model, we have additional challenges due - _ - =
create one tuplg and one rulet = {t} € D;, where

to the presence of exclusion rules. We leverage the dynamt%) — S, p(t), with all of E's other attributes set to null
ter ' :

programming formulation that is similar in spirit to some oﬁssentially% represents all tuples in a rule€ D;. Now the

the existing work in the tuple-level model [41], [5]. . R;; computed fromD; is the same as the probability that
Our approach begins by sorting all tuples by tescending exactly j tuples inD; appear, because fdt; ; we only care

order of their score values. Without loss of generality, we : .
; R ; 7’ "dbout the number of tuples appearing, merging does nottaffec
assume that for any;,t; € D,i # j, if ¢ < j, thent,’s

. : anything since the probability thaiappears is the same as the
score value is greater or equal thgi's score value. Ties are ymhing P y PP

o i - probability that one of the tuples in appears.
broken arbitrarily or can be otherwise specified. -, - .
Let D; be the database wheR is restricted (both the Now, we can compute all th&; ;'s, but another difficulty is

o the probabilityt;’s rank is equal tg if it appears is no longer
tuples and the rules) on the firsttuples {¢,,...,t;} for sim:))lyp(t») g ... This f?appecry\s it hF;F; some preceging
i=1,...,N, ie, for eachr € D, 7 = 7({t1,...,t:} ¢ T :

. ) . . . ) tuples from the same rule i®;_;. Then the existence of
is included inD;. We first discuss the simplified tuple-level P !

o . t; has to exclude all these tuples, whilg_; ; includes the
model where each rule contains just one tuple, i.e., evgigtu bability of th il ds th . f th
is independent from all other tuples in the database. In t fobability of the possible worlds that contain one of them.

. . . : o 0 handle this case, one can defibg ; = D, — {t|t
case, our idea is based on the following simple intuitione ThD andt €  andt; € 7}, i.e D_rmi?;lthe velrsilon éﬂ|) <
1—1 1 ) Iy 7—1 i—1

mg%%zc:g;:f;fagﬁﬁi ?ezpf?grr: t?]tergrnsb; _dleﬁ)jnlgz gnlyeg? that excludes all tuples from the same ralevhich contains
v iup P ppear, t;. Just asR;_; ; is defined with respect t®;_;, let R4 ;

no mattemwhichtuples appear. Now, lek; ; be the probability . ) - .
' . be the probability exactly tuples fromD,_, have appeared in
that doml ted Id fromy h tlyj tuples, . i—1
ata randomly genstarec wore 1t as exatty PS4 random possible world. We construgj_, as follows: For

ie., R;; = _.Pr[W|D;], and Ry = 1, R;; = 0 if _ .
s Also leérvflzji d b(|e tr]1e roba(l)i)oilit that & randomly&2CN ruler € Di_, and tuples inr, we create one tupfeand
J =t ’ N-17 P Y Yone rule7 = {t} € D,_,, wherep(t) = >, p(t), with all

generated world fronD — {t;} has exactlyj tuples. Then, - " g
based on Definition 6, it is clear that the probability thgs Of_ts other attributes set to null. Now, computirig ; from

. . D;_, is done in the same fashion as (12).
rank equals tg in a randomly generated world fro is: il .
q 9 y9 For the second term in (11), to cater for the case when a

Pr[R(t;) = j] = p(t:) - Ri—1,; + (1 — p(ti)) - Rg,ﬂlyj, (11) random world generated from databde- {¢;} has exactly

j tuples andt; does not appear, there are two cases. In case
one, none of the tuples in this random world is from the
same rule that containg, we denote this event’'s probability
as R;,i_‘Lj; In the second case, one of thetuples in this
random world comes from the same rule which contains
and this event’s probability iR;ﬁLj. We can compute both
Ry, ; and Ry . similarly as we compute the; ;'s.

Ri;j =p(ti)Ri—1,j-1+ (L —p(t;))Ri—1;. (12) The probabilityt;’s rank in a random world equalsis:

recalling R(¢;) is a random variable denoting the rank fpin

a random possible world. The final rank distributiomk(¢;)
is simply represented by the pai(g, Pr[R(¢;) = j]), for j =
0,...,N—1. For any tuple,, it is straightforward to calculate
Ry, for all j’s in a similar fashion as we compufe; ;'s.
Our job is then to comput®; ;'s, which in this case is:

This gives us a dynamic programming formulation to cal@ilaPr[R(t;) = j] = p(t:)-R;,_; ;+(1—p(t:)) ~RJ§,Z':17J-+R;,TM,
the R, ;'s. We can then effectively compute the rank distribu- (13)
tion rank(t;) for the tuplet;. Consequently, both the mediarsince R;_, ; already excludes all tuples from the same rule
rank and theg-quantile rank for the tuple; can be easily containingt;. We calculate this probability for alj’'s where
obtained. We do this for each tuple in the database and retyrs 0, ..., N—1; then(j, Pr[R(¢;) = j])’sforj =0,...,N—
the k tuples with the smallest median ranks or theuantile 1 is the rank distributiomank(t;) for tuplet;. Both the median
ranks as the answer to the tépquery. rank and thep-quantile rank can be easily obtained thereafter.
The general case when there are multiple tuples in one rllee top% answer could be easily obtained after calculating
is more complex. Nevertheless, in this case, the probgbilihe median (or the quantile) rank for each tuple. We denote
that ¢;'s rank is equal toj in a randomly generated worldthis algorithm asl-MQRank
from D still follows the principle outlined in (11). However, Example 2:We consider tuplet, for the tuple-level
R; ; can no longer be calculated as in (12), becausg fifas uncertainty model example in Figure 4. Far the

some preceding tuples from the same rule, the eventtthati?,, ;'s, where ¢ = 4 and j = 0,1,2,3 in this



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

case, are{(0,0),(1,0.6),(2,0.4),(3,0)}, the Ry'F, 's are . [—8Fs—AERAW

{(0,0),(1,0),(2,0.3),(3,0.2)}, and theRJ(,i__Lj’s are all zero - R//”/M/B/b x 1 W
as the probability that neither or ¢, appear is zero. Then, §* £09 Y\\\/H(—_x
rank(t,) is {(0,0),(1,0.3),(2,0.5), (3,0.2)}. O Ew Qog

Complexity of T-MQRank. In the basic case where each rulezl b > E

contains only one tuple, the cost of the dynamic program t ¥ Suw §°‘7 B e ot <t movie
compute theR; ;'s is O(N?), and one can computey' ; ;'S w55 5 P Skt
for all ¢;’s similarly in O(N?) time. After which, for each N: number of tuples x 10° (5=5) k (N=10°, 5=5)

t;, obtamlng the entire distributiorank(t;) given R; j's and (@ Running time of exact algorithmgb) A-ERank-Prune’s Precision/Recall.
Ry, ; is linear. Hence, the overall cost d3(N?).

In the second case when each rule may contain multipl
tuples, we have to invoke the dynamic programming formulaalues aré: = 100, N = 10, 000, s = 5, tuples in an exclusion
tion for ,_, ; based onD;,, which is different for eact;. rule () is ¢» = 5, and tuples sharing a is ¢ = 30%.
However, the size of the table for the dynamic programming
formulation is onlyO(M?), whereM < N is the number of g 1 Expected Ranks
rules in the database. The cost of calculatifig' 1;S and
RN“F1 's is alsoO(M?) for every tuplet;. Hence, the overall
cost of this algorithm iO(N M?).

eg 6. Attribute-level model: performance analysis.

8.1.1 Attribute-level Uncertainty Model

We first studied the performance of the exact algorithm A-
ERank by comparing it to the basic brute-force search (BFS)
approach omu andmovie. The distribution on the probability

8 EXPERIMENTS universe does not affect the performance of either algorith
We implemented our algorithms in GNU C++. All experimentsince both algorithms calculate the expected ranks of plétu
were executed on a Linux machine with2&Hz CPU and The score value distribution has no impact on BFS, but does
2GB main memory. We utilized synthetic data sets to studyffect A-ERank: the uniform score distribution results e t

the impact of data sets with different characteristics othboworst performance given a fixed number of tuples, as it leads
the score and the probability distribution. We additiopallto a large set of possible values. So, amongst the synthetic
tested our algorithms on a real data setpvie from the data sets we only considew for this experiment, to give the
MystiQ project.movieconsists of data integrated from IMDBtoughest test for this algorithm.

and Amazon. Each record imovie consists of an IMDB  Figure 6(a) shows the total running time of these algorithms
id (imdbid), IMDB string, Amazon id &id), Amazon string, as the size ofD (the number of tuplesN) is varied, up to
and a probability, where the paim{dbidaid) is unique. We 100,000 tuples. Note we can only varyiovie up to N =
convertedmovieto the attribute-level and tuple-level model$6, 769 for this and the following attribute-level experiments.
by grouping records by thémdbid attribute. To obtain an A-ERank outperforms BFS by up to six orders of magnitude.
attribute-level representation we created a single tupleéch This gap grows steadily a& gets larger. A-ERank has very
imdbid group where the pdf consists of all of tlaéd in the low query cost: it takes only about 10ms to find the expected
group. To obtain a tuple-level representation we createdranks of all tuples forN = 100,000, while the brute force
tuple for eachaid in an imdbid group and we also createdapproach takes ten minutes. Results are similar for otHeesa

an exclusion rule 1) for eachimdbid group consisting of of s.

all aid in the group. For both models we rank tuples by the As discussed in Section 5.2, A-ERank-Prune is an approx-
aid attribute. Themoviedata set consists of 246,816 uniquémate algorithm, in that it may not find the exact thp-
(imdbid, aid) pairs and there are 56,769 unigualbidgroups Figure 6(b) reports its approximation quality on variousada
with an average of 4.38id per group. For the experiments wesets using the standapdecisionandrecall metrics. Since A-
vary only N andk for movie whereN is varied by uniformly ERank-Prune always returistuples, its recall and precision
and randomly selecting tuples. To generate synthetic @dsa sare always the same. Figure 6(b) shows it achieves high
we developed several data generators for both models. Eagproximation quality: recall and precision are near thetio
generator controls the distribution on the score value dk wpercentile formovie and in the 90th percentile when the score
as the probability. For both models, these distributiorferre is distributed uniformly for the synthetic data sets. Thasto

to the universe of score values and probabilitieden we case occurs when the data is skewed on both dimensions,
take the union of all tuples irD. The distributions used where the potential for pruning is greatest. The reasonhfier t
include uniform, Zipfianand correlated bivariate They are is that as more tuples are pruned, these unseen tuples have
abbreviated aau, zipf and cor. For each tuple, we draw a greater chance to affect the expected ranks of the observed
a score and probability value independently from the scongples. Even though the pruned tuples all have low expected
distribution and probability distribution respectivelile refer scores, they could still have values with high probabiliy t

to the result of drawing from these two distributions by thbe ranked above some seen tuples, because of the heavy tail
concatenation of the short names for each distributiondores of their distribution. Even in this worst case, the recaltlan
then probability, i.ezipfu indicates a Zipfian distribution of precision of T-ERank-Prune is abog%.

scores and uniform distribution of probabilities. The défa We also evaluate the pruning power of A-ERank-Prune in
skewness for the Zipfian distribution is2, and other default Appendix E.1.1. The results show A-ERank-Prune is more ef-
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Fig. 7. Tuple-level model: performance analysis. Fig. 8. Impact of different correlations on T-ERank-Prune.

ficient for skewed distributions. However, there is stilbegh 8.2 Median and Quantile Ranks
information from expected scores to prune even for motgyr primary concern when evaluating A-MQRank, A-

uniform distributions. MQRank-Prune, and T-MQRank was the time necessary to
. retrieve the tope from an uncertain database. To evaluate
8.1.2 Tuple-level Uncertainty Model the query time for A-MQRank and T-MQRank we utilize

For our experiments in the tuple-level model, we first invesw and movie. The results for other data sets are similar
tigate the performance of our algorithms. As before, thefs the computational effort imposed by A-MQRank and T-
is a brute-force search based approach which is much mbt@Rank are the same regardless of the distribution as both
expensive than our algorithms, so we do not show these sesudgorithms compute the median or quantile rank for every
A notable difference in this model is the pruning algorithriuple in the database. We utilizeovie, uu, uzipf, zipfzipf,
is able to output the exact tdp-providedE[|W|], the expected and zipfu to show the effect different distributions have on
number of tuples o, is known. Figure 7(a) shows the totatthe pruning power of A-MQRank-Prune. We also analyze the
running time for the T-ERank and T-ERank-Prune algorithnffect positively correlated and negatively correlatethdzets
on uu and movie. Both algorithms are extremely efficient.have on the processing time of A-MQRank-Prune. For all
For 100, 000 tuples, the T-ERank algorithm takes less tha@xperiments we present the results from calculating theianed
100 milliseconds to compute the expected ranks of all typlg@nks of all tuples, as other general quantiles performlaiiyi
applying pruning, T-ERank-Prune finds the samemallest
ranks in just 1 millisecond. However, T-ERank is still highl 8.2.1 Attribute-Level Uncertainty Model
efficient, and is the best solution whé&f|1V|] is unavailable. We first analyze the effects of varying the number of tuples
Figure 7(b) shows the pruning power of T-ERank-Prune fa¥ with respect to the processing time for A-MQRank and
different data sets. We fi% = 100,000 and varyk. T-ERank- A-MQRank-Prune in Figure 9(a). Recall A-MQRank and A-
Prune prunes more tha#% of tuples for allk for movie MQRank-Prune are botf?(sN?). However, the pruning tech-
which shows T-ERank-Prune may be very effective at prunimgques utilized in A-MQRank-Prune could allow the algomith
real data for certain applications. We also see a skewed dis-avoid performing the)(N?) dynamic program for all the
tribution on either dimension increases the pruning cdipabi unique entries in the pdf of a tuple. The effects of this pngni
of T-ERank-Prune. Even in the worst case of processing are apparentin Figure 9(a). We utilizeovie anduu and vary
T-ERank-Prune is able to prune more tH#¥ of tuples. N from 2,000 to 12,000. The processing time fapvie is
Our next experiments study the impact of correlatiorless than that ofiu for both algorithms as is on average 4
between a tuple’s score value and probability. We say the twomovie whereas inuu s = 5 for all tuples. In all cases A-
are positively correlated when a tuple with a higher scoteera MQRank-Prune requires less processing time. In Figure 9(b)
also has a higher probability; a negative correlation meansve analyze the effect of varying for A-MQRank and A-
tuple with a higher score value has a lower probability. SuétQRank-Prune. Here we use only: as we cannot vary in
correlations have no impact on the performance of T-ERamkovie. In this experiments is varied from 2 to 10. Again
as it computes the expected ranks for all tuples. Howevare see the pruning of A-MQRank-Prune performs very well
correlation does have an interesting effect on the prunieffectively reducing the constant in th@(sN?) complexity
capability of T-ERrank-Prune. Using correlated bivaridsga of A-MQRank.
sets of different correlation degrees, Figure 8(a) repttats We next analyze the effect different distributions have on
pruning experiment for T-ERank-Prune wifi = 100,000. the pruning power of A-MQRank-Prune. In Figure 9(c) we
The strongly positively correlated data set with-&.8 correla- study the effects of varying over movie, uu, zipfzipf,
tion degree allows the highest amount of pruning, whereas thzipf, and zipfu on A-MQRank-Prune. We see in general
strongly negatively correlated data set with-8.8 correlation the processing time grows almost linearly with respect to
degree results in the worst pruning power. But even in the It is apparent the pruning utilized by A-MQRank-Prune
worst case, T-ERank-Prune still pruned more tl@% of works best for scores which are uniformly distributed and
tuples. Figure 8(b) reflects the running time of the sanprobabilities which follow a zipfian distribution. Regaedk of
experiment. T-ERank-Prune consumes between 0.1 andhB distribution A-MQRank-Prune shows excellent scaigbil
milliseconds to process00, 000 tuples. with respect tok. In Figure 9(d) we analyze the effect of
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Fig. 9. Attribute-level model: median and quantile ranks performance analysis.

1200 our comparisons. In general, our results show thektdists

for both median and expected ranks are rather differentlwhic
shows median and expected ranks enable us to emphasize
different characteristics of a rank distribution. We alsody

the similarity of the topk lists of the median ranks and
different quantile ranks ak varies. We observe this similarity

is very stable, with quantiles closer to the median havingamo
similar top% lists. The complete details of our results appear

in Appendix E.2.
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Fig. 10. Tuple-level model: median and quantile ranks
performance analysis.

9 CONCLUSION

We have studied semantics of ranking queries in probalbilist

varying k over the positively and negatively correlated datdata. We adapt important properties that guide the definitio
sets. In general we see correlations of the data set do Rbfanking queries in deterministic databases and analyae c

affect the pruning of A-MQRank-Prune. acteristics of existing tog- ranking queries for probabilistic
data. These properties naturally lead to the ranking approa

8.2.2 Tuple-Level Uncertainty Model that is based on the rank distribution for a tuple across all

We evaluate the effect of varying the number of tuphésin possible worlds in an uncertain domain. Efficient algorishm

the database and the percentage of tuples from the dataf@5dW0 major uncertainty models ensure the practicality of
which share a rule with another tuplein Figure 10. Note ©Ur approach. Our experiments demonstrate that ranking by

the value selected fak is irrelevant as the quantile rank forexPected ranks, median ranks and quantile ranks is efficient
every tuple is computed. In Figure 10(a) we see the amodRiboth attribute-level and tuple-level uncertainty madel

of time required to determine the median ranks increases
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Electronic Appendix to “Semantics of Ranking Queries for
Probabilistic Data”

Jeffrey Jestes, Graham Cormode, Feifei Li, and Ke Yi

APPENDIX A probability across all worlds). This method has the advgmta

Topr-k QUERIES ON PROBABILISTIC DATA that it more directly incorporates the likelihood infornaat,

Here we detail a variety of previous aporoaches for ans eriand satisfies unique ranking, value invariance, and stabili
yorp PP FEMR ¢ it may not always returrk tuples when?D is small,

a top# query over probabilistic data. We observe that none also pointed out in [12]. More importantly, it violates

e : : S
of the definitions proposed by previous works satisfy all cﬁ_l containment property. In fact, there are simple exasnple
the five fundamental properties of a ranking query discusse ' '

. . . where the topt can be completely disjoint from the top-
in Section 4.1. A summary of our observations here appars in ; . -
Figure 5 (k+1). Consider the attribute-level model example in Figure 2.

The top-1 result under the U-Tépdefinition is ¢y, since its
Ignore one dimension. A baseline approach is to ignore ongyrobability of having the highest score in a random possible
dimension (score or likelihood). If we ignore likelihood itworld is 0.24 + 0.16 = 0.4, larger than that oft, or ts.
becomes an insta_nce of ranking certain da_ta. The work Qbwever, the top-2 result igt,,t5), whose probability of
Ré et al. [10] studies the case where there is no score, apging the top-2 i9).36, larger than that oft1, o) or (t1,t3).
instead ranks the results of a query solely by their protigbil Thys, the top-2 list is completely disjoint from the top-1.
(across all possible worlds). However, when there is batesc Similarly one can verify that for the tuple-level model exalen
and probability information available, ignoring one dirs@&m jn Figure 4, the top-1 result i§ but the top-2 is(ts, t3) or

is insufficient for most purposes. Such simple methods may, +,). No matter what tie-breaking rule is used, the top-2 is
trivially satisfy the above five basic properties, but theyl f completely disjoint from the top-1.

to meaningfully combine information in the input. They are . ] )
easily shown to lead to undesirable features, such as rgnkjiost likely tuple at each rank. The previous approach fails

very low probability tuples above much more probable onebecause it deals with top-sets as immutable objects. Instead,

Combine two rankings. There has been much work on takin we could consider the property of a certain tuple being rdnke

itiol Ki d bining th taking the t th in a possible world. In particular, leX; ; be the event
multiple rankings and compining them (e.g. taking € top t tuplej is ranked: within a possible world. Computing
guery web search results from multiple search engines,

. . 2 UPT|X, 5] for all 4, § pairs, this approach reports tlith result
combining them to get an overall ranking) based on minimiz. argﬂlaxj Pr[X;,], ie., the tuple that is most likely to be

ing disagreements [4], [5]. Likewise, skyline-based appfes ranked ith over all possible worlds. This is the-kRanks

extract points which do not dominate each other, and are r]dt ] . N
: ) . ) h [11]; tially th definit d
themselves dominated, under multiple ordered dimensibjns [P%proac [11]; essentially the same definition is proposed &

But h hes fail t t for the inh i { Rankin [9] and analyzed in the context of distributions over
ut such approaches 1ail to accountfor In€ innerent Sewmn épatial data. This definition overcomes the shortcomindg-of
of the probability distribution: it is insufficient to treatsimply

: . ; . . Topk and satisfies exadt-and containment. However, it fails
as an ordinal attribute, as this loses the meaning of thévela P

likelihood dd i i ired " on unique ranking, as one tuple may dominate multiple ranks
IKelinoods, and does not guarantee our required properti® o+ 1he same time. A related issue is that some tuples may be

Most likely top-k. Since a probabilistic relation can definequite likely, but never get reported. So in Figure 2, the top-
exponentially many possible worlds, one approach to the top under this definition ig1,¢s,t:: t; appears twice and,

k problem finds the tog- set that has the highest supporgever; for Figure 4, there is a tie for the third position, and
over all possible worlds. In other words, (conceptuallyf@xt there is no fourth placed tuple, even though= 4. These
the top# from each possible world, and compute the suppdgsues have also been pointed out in [7], [12]. In addition, i
(probability) of each distinct top- set found. TheU-Topk  fails on stability, as shown in [12], since when the score of a
approach [11] reports the most likely tépas the answer to tuple becomes larger, it may leave its original rank but cann
the ranking query (that is, the topset with the highest total take over any higher ranks as the dominating winner.

Jeffrey Jestes and Feifei Li are with the Computer SciengeBeent, Florida Rank by top-k probability. Attempting to patch the previous
State Unviersity. {jestes, lifeife} @cs.fsu.edu) definition, we can replace the event “tuples at rankk” with
Graham Cormode is with AT&T Labs-Research. (graham@reseatt.com) h “ & i K b " d b h
Ke Yi is with the Department of Computer Science and EngingeHong the event “tuple: Is at rankk or better”, and reason about the

Kong University of Science and Technology. (yike@cskk)st. probability of this event. That is, define the tépsrobability
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of a tuple as the probability that it is in the tdpever all andr,(t) (quantile rank) for any quantile valug Intuitively,
possible worlds. Therobabilistic threshold toge query PT- a smallvar(t) suggests that(¢) and r,,(¢) will be similar
k for short) returns the set of all tuples whose foprobability (in the extreme case, an extremely smali(¢) suggests that
exceeds a user-specified probability[7]. However, for a evenr,(t) for any ¢ value will be similar tor(t)). If all tuples
user specifieth, the “top«” list may not containk tuples, in the database have smallr(¢)’s, then ranking by expected
violating exactk. If we fix p and increasé;, the top# lists do ranks probably is a good choice. On the other hand, if a large
expand, but they only satisfy the weak containment properbumber of tuples have largear(¢) values, then ranking by
For instance consider the tuple-level example in Figuref 2. éxpected ranks does not provide a good reflection on the ranks
we setp = 0.4, then the top-1 list i€t;). But both the top- of various tuples. Rather, ranking by median ranks or some
2 and top-3 lists contain the same set of tuplgst.,t3. A quantile ranks should be used.
further drawback of using PA-for ranking is that the user It remains to show how to computewr(¢) given an un-
has to specify the threshofdwhich greatly affects the result. certain tuplet. Clearly, this task is trivial if one is provided
Similarly, theGlobal-Tog: method ranks the tuples by theirwith the rank distributionrank(t). Recall that our algorithms
top-k probability, and then takes the tdpef these [12] based for ranking by median ranks or quantile ranks in Section
on this probability. This makes sure that exadtlyuples are 7, in both uncertain models, work by firstly computing the
returned, but it again fails on containment. In Figure 2,emdrank distribution for any given tuple in the database, then
the Global-Top definition, the top-1 ist;, but the top-2 is deriving the median (or the quantile) from the computed
(t2,t3). In Figure 4, the top-1 i¢;, but the top-2 iSt3,t2).  rank distribution. So, as a straightforward extensionséhe
Further, note that ak increases towardd’, then the impor- algorithms can easily support the calculatiorvef(t) for any
tance of the score diminishes, so these two methods reduceusie ¢t as well. It is an open problem to find more direct ways
simply ranking the reported top-tems by probability alone. to computevar(t), but the existence of correlations between

Expected score. The above approaches all differ from tratuples suggests that this may not be more efficient than gimpl
ditional ranking queries, in that they do not define a singkomputing the rank distribution.

ordering of the tuples from which the tdpis taken—in other georing functions. Our analysis has assumed that the score is
words, they do not resemble “tdg-in the literal interpretation 5 fixed value. In general, the score can be specified at query
of the term. A simple approach in this direction is to jusfme by a user defined function. Note that all of our offline
compute the expected score of each tuple, and rank by thigorithms (for expected ranks, median and quantile ranks)
score, then take the top-This method may be desirable wheryiso work under this setting, as long as the scores can be
the score has a strong linear interpretation (e.g. it remiss computed. If the system has some interface that allows us to
a financial profit), but it does not apply in the “oracle modeligtrieve tuples in the score order (for the tuple-level orde
where only the relative ordering of each pair of tuples isag_iv in the expected score order (for the attribute-level moazly

Itis easy to check that the expected score approach diregilyining algorithms for expected ranks are applicable a wel
implies exactk, containment, unique ranking, and stability. A main application of a query-dependent scoring function is

However, this is very dependent on the values of the Scor%shearest-neighbor queries, which is the foiuery instan-

consider a tuple which has very low probability but a scorgyiaq in spatial databases. Here, the score is implicitly t
that is orders of magnitude higher than others—then it 9§f&ance of a data point to a query point. When the data points
propelled to the top of the ranking, since it has the highegfe yncertain, the distance to the query is a random variable
expected score, even though it is unlikely. But if we reduGgnich can be modeled as an attribute-level uncertaintyicela
this score to being just greater than the next highest stioee, Existing works [3], [9] essentially adopt BRanks semantics

tuple will drop down the ranking. It therefore violates valu g qefine k-nearest-neighbor queries in spatial databases. We
invariance. Furthermore, in the tuple-level model, SmEing  pgjieve that our ranking definition makes a lot of sense in

the expected score ignores all the correlation rules caelple ¢ context, and may have similar benefits over previous
definitions of uncertain nearest neighbors.
APPENDIX B When a relation has multiple (certain and uncertain) at-
OTHER ISSUES tributes on which a ranking query is to be performed, the user
typically will give some function that combines these nlki
attributes together and then rank on the output of the fancti
When at least one of the attributes is uncertain, the output o
the function is also uncertain. This gives us another irtgtan
where our ranking semantics and algorithms could be applied

Variance of the rank distribution: connection of expected
ranks, median ranks and quantile ranks. Implicit in all our
discussions so far is that for any uncertain tupléhere is a
well-defined probability distributiomank(t) over its possible
ranks within the uncertain relation. Within this settinget
expected rank, median rank and quantile rankt afre the Continuous distributions. When the input data in the
expectation, median, and quantile of this distributiorpees attribute-level uncertainty model is specified by a cortim
tively. It is certainly meaningful to study other propestief distribution (e.g. a Gaussian or Poisson), it is often hard t
these distributions. In particular, we next discuss théavae compute the probability that one variable exceeds another.
of the rank distributionank(¢), which we denote agar(¢). A However, by discretizing the distributions to an approjeria
first observation is thatar(t) is a good indicator to gauge thelevel of granularity (i.e., represented by a histogram), we
difference among-(¢) (expected rank)r,,(t) (median rank) can reduce to an instance of the discrete pdf problem. The
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0.18 0.09 0.09 0.09 we chose to determine the rank of tuples not present in a
t2 | 2 t3 |3 ta | 4 t5 |5 world W as [W|. This is an intuitive choice (the missing
ti ] 1 b2 | 2 b2 | 2 t2 | 2 tuples were all ranked “equal last”), but other choices are
0.22 0.11 0.11 0.11 possible. A different approach is to compute the rank of a
t]1 t3]3 ta [ 4 ts [ 5 tuple only over those world$V where it does appear, and
Fig. 11. Possible worlds for the example where all previ- ~then to scale this by the probability that it appears. This ca
ous definjtions fail to satisfy the faithfulness. be understood in terms of conditional probabilities: foe th
tuples | score| p(t) expected rank definition, we compute the rank of a tuple
rules 0.105 . A X
t 1 0.3 p. o T3 by summing the probabilities that other tuples appear which
ta 2 1035 Tl ( lt ! t2 ) score more highly thah This can be viewed as the probability
t3 0.5 | 0.65 2l v ! that each tuplet’ outrankst and ¢ appears; dividing this
0.195 by p(t) gives the conditional probability’ outrankst given
_ 0.245 0.455 - . . e
t | 1 15 05 thatt appears. Accordingly, we can call this the “conditional
ts | 0.5 2 | 3 | - expected rank” of;, e(¢;). Formally, adopting the convention

that the tuples are indexed in decreasing order of theirescor
e(ti) = 5ay(L+ Xj<i, o P(t;)), which can be computed
in constant time for each; after computing prefix sums on
error in this approach is direcﬂy related to the granWamiIt thep(tl-)’s and on the prObabi”tieS associated with each rule.
the discretization. Moreover, observe that our pruningeda On the example in Figure 4, we obtaift,) = 1/0.4 = 2.5,
methods initially require only information about expecteé(t2) = (1+0.4)/0.5 =238, e(t3) = (14+0.4+0.5)/1=1.9
values of the distributions. Since continuous distriougi@re and e(ta) = (1 + 0.4 + 1)/0.5 = 4.8. This yields the
typically described by their expected value (e.g., a Gamssiranking (ts,t1,t2,t1), the same as under the expected rank
distribution is specified by its mean and variance), we can rgémantics. Likewise, the properties of exacteontainment,

the pruning algorithm on these parameters directly. unigue-rank and value-invariance follow immediately.fgity

Further properties of a ranking. It is certainly reasonable glso follows easily: increasing the score of a tupleannot

to define further properties and analyze when they holfjcrease the sum of probabilities of tuples with lower sspre

However, formulating the right properties can be trickyr Fowhile increasing its probability drives dowryp(¢), so either
' ay e(t) cannot increase, ensuring that if it was in the top-

example, Zhang and Chomicki [12] defined a property A ) .
“faithfulness”, which demands that (in the tuple-level ratd efore it will remain so after. We leave further study of this
alternate semantics to future work.

given two tuplest; = (v1,p(t1)) and it = (va, p(ta)) with

vr < vy andp(ty) < p(t2), thenty, € Ry = t5 € Ri.  parametrized Ranking Function. In parallel to this work, a

This intuitive property basically says thatif “dominates™:, ney ranking framework for probabilistic data was proposed
thent, should always be ranked at least as high.adt was [g] namely, the parametrized ranking function (PRF). It is

claimed that the Global-Tdpdefinition satisfies this property, jnteresting to note that PRF adopts a similar basis to that
however this only holds in the absence of exclusion rulegqown in this work for ranking probabilistic data. Esselfyja
There are cases with exclusions where all existing defiiBtioyhe pasis of ranking in PRF is also the rank distributions
fail on faithfulness. Consider the following example: for different tuples. However, instead of using the expecta
tions, medians or quantiles of these ranking distributitms
derive a total ordering of tuples, Li et al. proposed that any
v; 1 2 3 4 5 . . - o
p(t) |04 045 02 02 02 parametrlzed fl_mct|on may be defined over the rank distribu-
tions of tuples, i.e., the final rank value of a tuple D, where
with rulesm = {t1,t3,t4,t5}, 72 = {t2}. The possible worlds |D| = N, could be defined a§ " ;' w(t,i) Pr[R(t) = i,
of this relation is shown in Figure 11. Herg, “dominates” where {w(t,0),...,w(t, N — 1)} is a set of(N — 1) user-
t1, but all of the previous definitions (U-Tép U-kRanks, defined parametrized functions. Clearly, the basis for bove
Global-Togk, and PTk) will select t; as the top-1. On this ranking definition isPr[R(¢) = ¢] for i = {0,...,N — 1},
example, ranking by expected ranks will raftkas the top- which is nothing else but the rank distribution ffrank(t).
1, hence, satisfying the “faithfulness” requirement. Buisi Note that the PRF is a framework for ranking, but not a ranking
easy to construct other examples where the expected rahk w#finition by itself. Many ranking definitions are possibte t
also rank a dominating tuple lower than a dominated tuplee defined in the PRF framework, for example, it is indeed
Consider the example shown in Figure 12, the expected ramssible to define the expected rank in this paper under the
of ¢1 is 0.105 x 1 + 0.245 x 1 + 0.455 x 1 = 0.805. But PRF framework. However, it is not feasible to directly define
the expected rank of; is 0.195 x 2 + 0.455 x 1 = 0.845. the median and quantile ranks using the PRF mechanism.
Hence,t, ranks aftert; even thoughts dominatest;. Our Nevertheless, one may extend the PRF framework to support
initial study suggests that “faithfulness” defined this wagty the median and quantile ranks when its ranking definitioes ar
not be achievable, and one has to somehow take rules (irm,longer constrained by using only parametrized functions

correlations) into consideration in order to make it a veabl  gjnce the ranking basis is the rank distributions for tuples
Rank of missing tuples. In the tuple-level uncertainty model,whenw(t, ) is independent from for all < € {0,..., N — 1}

Fig. 12. A database D and its possible worlds where the
expected rank does not satisfy the faithfulness.

ti |t ty ts ty s
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(which is prevalent as also noted in [8]), all such rankings >3 piePr(X] <wv;] (becauseX; < X])
within the PRF framework necessarily follow value-invaca. i €
Different instantiations of the parametrized functioft, ) in _ ZPY[XJ < X)) = r’(t}).

the PRF framework introduces quite different definitioniss|

an intriguing and challenging open problem to further study
the rich semantics and properties the PRF framework impose&or anyi’ # i,
on various ranking definitions extended from it.

Approximate expected ranks. The rank distribution of an

J#

T(ti/) = PI‘[Xi/ < Xl] + Z Pr[Xi’ < Xj]

uncertain tuple follows the Poisson Binomial distributidn el

follows from standard results in statistics [2], [6] the ekped = pirePrlose < XiJ+ D PrXy < X))
rank of a tuplet is approximated by the sum of probabilities ¢ JF G

of the tuples ranked beforkein the tuple-level model. Since < pr Prlvy o < XJ] + Z Pr[X; < Xj]
the focus of this work is to rank the uncertain tuples based on ¢ G A

their exactexpected ranks (or median or quantile ranks for that _ _ 7 _ R
purpose), i.e., we are interested at computingekacttop- = PriXe < Xi]+ #;# PriXe < X;] =r(ts)

results in each framework (be it expected ranks, mediansrank
or quantile ranks), we do not pursue this observation furthRext consider the tuple-level model. 1f has a larger score
in this presentation. We leave further study of approximatgant; but the same probability, ther(t;) > T/(tZT) follows
top-k ranks of uncertain data to future work. We observgasily from (2) sincerankyy (¢;) can only get smaller while
the key challenges to address are to design approximatiig second term of (2) remains unchanged. For similar resason
schemes for broader models of uncertain data, and to qy:an;i( ) <1 (ty) for anyi’ # i.
the quality of the approximation over all possible uncertai |f tT has the same score as but a larger probability,
relations, or else to describe particular cases of una:ert%nkw( t;) stays the same for any possible world, but
relations which are guaranteed to be well-approximatee. TP, )] may change. We divide all the possible worlds into
hope is an approximation which compromises on finding thgree categories: (a) those containihg(b) those containing
exact answer can compensate with computational efficiencyne of the tuples in the exclusion rulefef(other thary;), and

(c) all other possible worlds. Note thRt[17] does not change
APPENDIX C for any W in c_ategory (b), so we only focu_s on categories
(a) and (c). Sincer(t;) is nothing but a weighted average

PROOFS of the ranks in all the possible worlds, where the weight
Proof of Equation 2 of W is Pr[W], it is sufficient to consider the changes in
the contribution of the possible worlds in categories (aj an
r(t) = Z Pr[W]rankw (¢ Z Pr[W (c). Observe that there is a one-to-one mapping between the
tiEW tigW possible worlds in category (c) and (&); «— W U {¢;}. For
= Z Pr[W] rankyy (t;) each such pair, its contribution id¢;) is

e Pr[W] - W+ Pr[W U {t:}] - rankyyoey (). (14)

Proof of Theorem 1 For simplicity, we assume the expected
ranks are unique, and so the ranking forms a total orderi
In practice, ties can be broken arbitrarily e.g. based orinigav
the lexicographically smaller identifier. The same tiedhkiag
issues affect the ranking of certain data as well.

The first three properties follow immediately from the fadf’( )
that the expected rank is used to give an ordering. Value 1 1
. . . . ti) —p(t; ) |W t:)— plt; k At
invariance follows by observing that changing the scoreesl m(p(t:) = p( %))| |+ m(p(t) = plts)) rankwo) (%)
will not change the rankings in possible worlds, and theeefo = m(p(ti) — p(t; ) (W] — rankyyyge,y (£:)) < 0.
dolgcs)‘rn;;gn;n?/:/eeths?]c?v)\(/pt?\(;teevrr:a?\kae chanae a tubldo The same holds for each pair of possible worlds in categories

1 i y W . 9 up (a) and (c). Therefore we havét;) > (tT).

t; (as in Definition 4), its expected rank will not increase; For anys’ # i, the contribution of each pair is

while the expected rank of any other tuple will not decrease. yi' # i, P
Let 7’ be the expected rank in the uncertain relati®hafter ) , 7. ,
changingt: o IOWe n0ed 10 show that(ts) > r/(]) and Pr[W] - rankyw (t) + Pr[W U {t;}] - rankyy (4,3 (). (15)

ppose the tuples in the exclusion rule ofiret; 1, ..., t; s.
ote thatW and W U {t;} differs only in the |nclu3|on of
t;, so we can writePr[W] = 7 (1 — ", p(ti,¢) — p(t;)) and
Pr[W U {t;}] = mp(t;) for somen. Whenp(t;) increases to
the increase in (14) is

r(ts) < 1/(ty) for anyi’ # i, Whenp(t;) increases to(t]), the increase in (15) is
Consider the attribute-level model first. By Definition 8 and .
linearity of expectation, we have m(p(t:) — p(t;))(rankw (t) — ranky g,y (tr)) > 0.
Zpr [(X: < Xj] ZZPM Pr[X; < v;] The same holds for each pair of possible worlds in categories

i i ¢ (a) and (c). Therefore we havé(t; ) > r(t;).
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Proof of Equation 4

r(ti) = Zi]ﬂi,e PriX; > v; ] = ipi,e ZPr[Xj > v, 4]

j#i £=1 {=1 j#i

= i:pi,l(ZPr[Xj > ’Ui_’g] — PI‘[Xi > viyg])

= Zpl ¢(q(vie) — Pr[X; > Ui,l])

where we defing(v) =3, Pr[X; > v].
Proof of Equation 5

riti) = > PrX;> X+ > PrX;> X

J<n,j#i n<j<N
= Z PI‘[Xj > Xl] + Z Zpi_[ PI‘[Xj > viyg]
j<n,j#i n<j<N £=1
< PriX; > Xj] i
PRIESEEPIRED B S
i<n,j#i n<j<N (=1
(Markov Ineq.)
* E[X,]
< Z Pr[X; > X;] -n Zpl —
J<n,j#i

Proof of Equation 6
r(ty) > D Pr[X; > X, =n-> Pr[X, > X|]

j<n i<n
8j
= n-— Z me Pr(X, > vj ]
ji<n £=1
2 E| Xn
> n—=> Y piu——=.  (Markov Ineq.)
j<n £=1 J:

Proof of Equation 9

rte) =p(te) - > plt;)

tj()tg,j<€
+ > ol —p(te)) - Y plt;) (from (7))
0ty t;oty
=p(te) - > p(t;) + E[WI[] = p(te) —p(te) - Y pl(ty)
t;Sty,j<l 3ty

E[WI[ = p(te) = p(te) - | Dopt)— > p(ty)

t;3te tjote,j <l
=E[W[ —p(te) —p(te) - > pl(t;). (16)
tjSte,j>4

In the second step, we used the fact that

Dotjot, P(L3) + 2t 01, P(E) = E[[WI] = p(te).

Now, sinceq, = -, _,p(t;), we observe that
BIWIl—q =Y _pt;)+pte) > > plt;).
Jj>¢ tjéte,j>e

Continuing with (16), we have:

r(te) = E[WI[] = p(te) — p(te) - (E[W]] - q¢)

> q—1>2¢q,—1.
The last step uses the monotonicitygf—by definition,q,, <
qe if n < £. Since tuples are scanned in order, obviodsly n.

APPENDIX D
ALGORITHM PSeEUDO CODE

Algorithm 1: A-ERank(, k)

1 CreateU containing values fromt;. X1, ..., tny.Xn, in order;
2 Computeg(v) Yv € U by one pass ovel/;

3 Initialize a priority queueA sorted by expected rank;

4 fori=1,...,N do
5
6
7

Computer( i) using¢(v)’s and X; using Eqn. (4);

Insert (¢;,r(t:)) into A;

if |A] > k then Drop element with largest expected rank
from A;

8 return A;

Algorithm 2: T-ERank(, k)

1 SortD by score attribute s.t. if;.v; > t;.v;, theni < j;
2 Computeg; Vi € [1, N] andE[|W|] by one pass oveD;
3 Initialize a priority queueA sorted by expected rank;
4 fori=1,...,N do

5 \; Computer( ;) using (8);

6

if |A] > k then drop element with largest expected rank
from A;

7 return A;

APPENDIX E
FURTHER EXPERIMENTS

E.1 Expected Ranks
E.1.1 Expected Ranks in the Attribute-level Model
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Fig. 13. Attribute-level: Fig. 14. Tuple-level: Ef-
Pruning of A-ERank- fect of ¢ for median and
Prune. quantile ranks.

Figure 13 shows the pruning power of A-ERank-Prune. In
this experimentN = 100,000, s = 5, and k is varied from
10 to 100. It shows we often only need to materialize a small
number of tuples ofD (ordered by expected score) before
we can be sure we have found the tlopacross a variety
of data sets. Intuitively, a more skewed distribution oreit
dimension should increase the algorithm’s pruning poweis T
intuition is confirmed by results in Figure 13. When both
distributions are skewed, A-ERank-Prune could halt thersca
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N

after seeing less that0% of the relation. For thenovie data
set A-ERank-Prune is also effective and prunes aln505t
of the tuples. Even for more uniform distributions suchuas
expected scores hold enough information to prune.
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E.1.2 Expected Ranks in the Tuple-Level Model
Figure 14 shows by increasing the number of tuples in a rule

1 in uu, while also requiring, = 30%, reduces the amount of  (a) Attr.-level uncertainty model. (b) Tuple-level uncertainty model.

time to compute median ranks. This is explainable by the fact ) ] ]
that increasing the number of tuples in any ruleiill clearly ~Fig- 15. Normalized averaging Kendall distance for ex-

cause the total number of exclusion rules in the databasePgfted and median ranks with different & values.
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E.2 Comparison of Expected and Median Ranks

We have shown retrieving the tdpfrom an uncertain database
following either the attribute-level or tuple-level modelay
be Computed efficiently ||®(N 10g N) time when ranking by 20 a0 eopT @0 1000 00 o a0 e 1000
expected _ranks. We haYe also presented algorithms t.O COm(_a) Attr.-level uncertainty model. (b) Tuple-level uncertainty model.
pute median and quantile ranks for a database following the
attribute-level and tuple-level model i0(sN?) and (NM?) Fig. 16. Normalized averaging Kendall distance for me-

time respectively. It is evident not only from our experirteen dian and quantile ranks with different k values.

but also from the corresponding complexities for the exgrebct

rank and median and quantile rank algorithms that retrggvidCavg (71, 72) € [0,&2 + (5)] for any two topk lists 7 and

the top% tuples from an uncertain database using expected The smallest value foK,,4(71, 72) happens whem; and
ranks may require much less computational effort than nmediz are identical as two ordered sets; and the largest value for
or quantile ranks. It is clear from Figure 9 and Figure 10 thdfa.¢(71, 72) happens whem; andr, are completely disjoint.
determining the top: from both attribute-level and tuple-levelHence, a meaningful way to represent the similarity between
uncertain databases using median ranks requires on the off&y two topk lists, 71 and 7, is to use thenormalized

of 10* seconds. In comparison, from Figure 6 and Figure veraging Kendall distancevhich is defined as:

we can see we need less than one second to determine the top-

k for both attribute-level and tuple-level uncertain datdsa Kpavg(11,72) = 5 0
utilizing the expected ranks. It is not surprising ranking b k* + (2)

median ranks requires more computational effort than rBJlkiC|ear|y K (r1,72) € [0,1]. Smaller k. (11,72) values
. . . . L navg ) K . navg I
by expected ranks since we must compute the rank distributig, jicate higher similarity between and, and larger values
rank(¢;) for everyt; € D in order to determine the medianindiCate lower similarity.
ranks. To do this we rely on dynamic programs with quadratic In Figures 15(a) and 15(b) we compare the similarity

complexities. However, it has been commonly observed talyeen the to- results returned from the median ranks

f:alculatlng the medlan or quantﬂe values for a d_'Str'hmt'Oand expected ranks for both the attribute-level and tuplell
is more expensive than computing the expectation of t

uncertainty models, using the normalized averaging Kendal
distribution. 4 g ging

distance. It is clear from the results in Figure 15(a) and}lL5
We also compared the similarity between the fofists %; g @ 1S(

o
Ny
o
=

o
s
o
Ny

Normalized Avg. Kendall Distance

Normalized Avg. Kendall Distance

Kavg(TlaTQ) (18)

hat the topk lists produced by the median ranks and the
pected ranks are rather different for both the attrilbexet
d the tuple-level uncertainty models, especially wheis
small for the synthetic data sets. In general, the simylarit
between their toge lists increases whilek increases, but
still maintains a clear difference. This shows that rankiyg
Kavg(m1,72) = Z KZ-(Z;-)(Tl,TQ),fOI'p: 0.5 (17) mediaq and qu_antile ranks or by expectgd rapks will give
- us a different view of the top- This result is quite natural
since median (quantile) ranks and expected ranks chaicter
wheref(i(f'}) (m1,2) is defined as a penalty over the pairs in thdifferent characteristics of the rank distributionsk(t;) for
setP(r1, ) = {{i,j}li #j andi,j € mUTs}, i.e. P(m,72) allt; € D, i.e. the 0.50-quantile (or other quantile values) and
is the set of unordered pairs of distinct elementsinu 7.  expectation ofrank(t;).
The exact details of how the penalfg’/i(’;.)(n,m) is assigned In Figures 16(a) and 16(b) we compare the similarity
for different pairs in the setP are found in [5]. A larger between the top- results returned from the median ranks
Kavg(m1,m2) value indicates a highedissimilarity between and different quantile ranks for theovie data set for both
two top+ lists 1 and 7. By examining the assignmentthe attribute-level and tuple-level uncertainty modelgaia
of the penalty to possible pairs i, we can show that using the normalized averaging Kendall distance. Fromethes

returned by ranking with the median ranks and ranking wi
the expected ranks. We adopted the techniques from [5]
this purpose. Specifically, for two top-ists m, and , we
use theaveraging Kendall distanc® measure their similarity,
denoted ag\ .4 (71, 72). Kaug(T1,72) is computed as

{i.5}eP(r1,7m2)
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results we see that the similarity of the tégists produced

by different quantile ranks and median ranks behaves in a
very stable manner. A% increases from O to about 200
the similarity decreases quadratically between the differ
guantile ranks and the median ranks and when 200 we see
that the similarity between the median ranks and the differe
guantile ranks remains roughly the same. Also notice that fo
all values ofk, as the quantile approaches the median the
normalized averaging Kendall distance approaches 0.
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