
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Semantics of Ranking Queries for Probabilistic Data
Jeffrey Jestes, Graham Cormode, Feifei Li, and Ke Yi

Abstract —Recently, there have been several attempts to propose definitions and algorithms for ranking queries on probabilistic data.
However, these lack many intuitive properties of a top-k over deterministic data. We define several fundamental properties, including
exact-k, containment, unique-rank, value-invariance, and stability, which are satisfied by ranking queries on certain data. We argue
these properties should also be carefully studied in defining ranking queries in probabilistic data, and fulfilled by definition for ranking
uncertain data for most applications. We propose an intuitive new ranking definition based on the observation that the ranks of a tuple
across all possible worlds represent a well-founded rank distribution. We studied the ranking definitions based on the expectation,
the median and other statistics of this rank distribution for a tuple and derived the expected rank, median rank and quantile rank
correspondingly. We are able to prove that the expected rank, median rank and quantile rank satisfy all these properties for a ranking
query. We provide efficient solutions to compute such rankings across the major models of uncertain data, such as attribute-level and
tuple-level uncertainty. Finally, a comprehensive experimental study confirms the effectiveness of our approach.

Index Terms —probabilistic data, ranking queries, top-k queries, uncertain database.

✦

1 INTRODUCTION

Ranking queries are a powerful concept in focusing attention
on the most important answers to a query. To deal with massive
quantities of data, such as multimedia search, streaming data,
web data and distributed systems, tuples from the underlying
database are ranked by a score, usually computed based
on a user-defined scoring function. Only the top-k tuples
with the highest scores are returned for further inspection.
Following the seminal work by Faginet al. [11], such queries
have received considerable attention in traditional relational
databases, including [23], [19], [40] and many others. See
the excellent survey by Ilyaset al. [20] for a more complete
overview of the many important studies in this area.

Within these motivating application domains—distributed,
streaming, web and multimedia applications—data arrives in
massive quantities, underlining the need for ordering by score.
But an additional challenge is data is typically inherentlyfuzzy
or uncertain. For instance, multimedia and unstructured web
data frequently require data integration or schema mapping
[15], [7], [16]. Data items in the output of such operations are
usually associated with a confidence, reflecting how well they
are matched with other records from different data sources.
In applications that handle measurement data, e.g., sensor
readings and distances to a query point, the data is inherently
noisy, and is better represented by a probability distribution
rather than a single deterministic value [8], [10]. In recog-
nition of this aspect of the data, there have been significant
research efforts devoted to producingprobabilistic database
management systems, which can represent and manage data
with explicit probabilistic models of uncertainty. Some notable
examples of such systems include MystiQ [9], Trio [1], Orion
[34] and MayBMS [2].

With a probabilistic database, it is possible to compactly

Jeffrey Jestes and Feifei Li are with the Computer Science Department, Florida
State Unviersity. ({jestes,lifeifei}@cs.fsu.edu)
Graham Cormode is with AT&T Labs-Research. (graham@research.att.com)
Ke Yi is with the Department of Computer Science and Engineering, Hong
Kong University of Science and Technology. (yike@cse.ust.hk)

represent a huge number of possible (deterministic) realiza-
tions of the (probabilistic) data—an exponential blow-up from
the size of the relation representing the data. A key problemin
such databases is how to extend the familiar semantics of the
top-k query to this setting, and how to answer such queries
efficiently. To this end, there have been several recent works
outlining possible definitions, and associated algorithms. Réet
al. [29] base their ranking on the confidence associated with
each query result. Solimanet al. [37] extend the semantics of
ranking queries from certain data and study the problem of
ranking tuples when there is both a score and probability for
each tuple. Subsequently, there have been several other ap-
proaches to ranking based on combining score and likelihood
[43], [38], [41], [18] (discussed in detail in Appendix A).

For certain data with a single score value, there is a clear
total ordering based on their scores from which the top-k is
derived, which leads to clean and intuitive semantics. Thisis
particularly natural, by analogy with the many occurrencesof
top-k lists in daily life: movies ranked by box-office receipts,
athletes ranked by race times, researchers ranked by number
of publications (or other metrics), and so on. With uncertain
data, there are two distinct orders to work with: ordering by
score, and ordering by probability. There are many possible
ways of combining these two, leading to quite different results,
as evidenced by the multiple definitions which have been
proposed in the literature, such as U-Topk [37], U-kRanks
[37], Global-Topk [43] and PT-k [18]. In choosing a definition,
we must ask, what conditions do we want the resulting query
answer to satisfy. We address this following a principled
approach, returning to ranking query properties on certaindata.
We provide the following properties which are desirable on the
output of a ranking query as a minimum:

• Exact-k: The top-k list should contain exactlyk items;
• Containment:The top-(k+1) list should contain all items

in the top-k;
• Unique-ranking:Within the top-k, each reported item

should be assigned exactly one position: the same item

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

should not be listed multiple times within the top-k.
• Stability: Making an item in the top-k list more likely or

more important should not remove it from the list.
• Value-invariance:The scores only determine the relative

behavior of the tuples: changing the score values without
altering the relative ordering should not change the top-k;

We define these properties more formally in Section 4.1.
These properties are satisfied for certain data, and capture
much of our intuition on how a “ranking” query should behave.
A general axiom of work on extending data management
from certain data to the uncertain domain has been that basic
properties of query semantics should be preserved to the best
extent possible [9], [4]. But, as we demonstrate, none of
the prior works on ranking queries for probabilistic data has
systematically examined these properties and studied whether
a ranking definition satisfies them. It should be noted these five
ranking properties are by no means a complete characterization
for ranking uncertain data. Nevertheless, it is an interesting
and important problem to search for meaningful definitions
that satisfy at least these properties.

Lastly, we note prior work stated results primarily in the
tuple-levelmodel [1], [9]; here, we show results for bothtuple-
level andattribute-levelmodels [8], [39].

Our contributions. To remedy the shortcomings we identify,
we propose an intuitive new approach for ranking based on
the rank distribution of a tuple’s ranks across all possible
worlds. Using this well-founded rank distribution as the basis
of the ranking, we study ranking definitions based on typical
statistical values over a distribution. Specifically,

• We formalize some important semantics of ranking
queries on certain data and migrate them to probabilistic
data (Section 4.1), systematically examine the character-
istics of existing approaches for this problem with respect
to these properties (Appendix A), and summarize these
characteristics (Section 4.2).

• We propose a new approach based on the distribution of
each tuple’s ranks across all possible worlds. By leverag-
ing statistical properties on such a rank distribution, such
as the expectation, the median and the quantile, we derive
the expected rank, the median rank and quantile rank.
We are able to show that the new definitions provably
satisfy these requirements. These new definitions work
seamlessly with both theattribute-leveland tuple-level
uncertainty models (Section 4.3).

• We provide efficient algorithms for expected ranks in
both models. For an uncertain relation ofN constant-
sized tuples, the processing cost of expected ranks is
O(N logN) for both models. In settings where there
is a high cost for accessing tuples, we show pruning
techniques based on probabilistic tail bounds that can
terminate the search early and guarantee that the top-k

has been found (Section 5 and 6).
• We study additional properties guaranteed by median

and quantile ranks and present dynamic programs for
computing them. The formulations are different in the
attribute-leveland thetuple-levelmodels, however, they
are similar for the median and different quantile values.

For an uncertain relation ofN tuples, the processing cost
of our algorithm isO(N3) in the attribute-levelmodel,
andO(NM2) in the tuple-levelmodel whereM is the
number of rules in the database (Section 7).

• We present a comprehensive experimental study that
confirms the effectiveness of our approach for various
ranking definitions (Section 8).

• We discuss other issues related to this work in Appendix
B, e.g., continuous functions, further properties of a rank-
ing and the interesting relationship between our study and
[24] which proposes a general framework for imposing
different ranking definitions in probabilistic data.

2 BACKGROUND

Much effort has been devoted to modeling and processing
uncertain data, so we survey only the most related work. TRIO
[1], [4], [30], MayBMS [2], Orion [34], [33] and MystiQ
[9] are promising systems currently being developed. General
query processing techniques have been extensively studied
under the possible worlds semantics [8], [9], [13], [21], and
important query types with specific semantics are explored
in more depth, skyline queries [28] and heavy hitters [42].
Indexing and nearest neighbor queries under the attribute-level
model have also been explored [26], [35], [39], [6], [8], [27].

Appendix A discusses the most closely related works on
answering top-k queries on uncertain databases [18], [37],
[43], [41]. Techniques have included the Monte Carlo ap-
proach of sampling possible worlds [29], AI-style branch-
and-bound search of the probability state space [37], dynamic
programming approaches [41], [43], [17], and applying tail
(Chernoff) bounds to determine when to prune [18]. There
is ongoing work to understand semantics of top-k queries
in a variety of contexts. For example, the work of Lian
and Chen [25] deals with ranking objects based on spatial
uncertainty, and ranking based on linear functions. Geet al.
[14] presented a detailed study on finding the typical vectors
that effectively sample the score distribution from the top-
k query results in uncertain databases. Recently, Solimanet
al. [38] extended their study on top-k queries [37] to Group-
By aggregate queries, and to the case when scores give a
partial order, instead of a total order [36]. A general framework
for imposing various ranking definitions in probabilistic data
was recently proposed by Liet al. [24]. We discussed the
relationship between this study and that work in Appendix B.

Our study on the tuple-level model limits us to considering
correlations in the form of mutual exclusions. More advanced
rules and processing may be needed for complex correlations.
Recent works based on graphical probabilistic models and
Bayesian networks have shown promising results in both
offline [31] and streaming data [22]. In these situations, initial
approaches are based on Monte-Carlo simulations [21], [29].

3 UNCERTAIN DATA MODELS

Many models for describing uncertain data have been pre-
sented in the literature. The work by Das Sarmaet al. [30]
describes the main features and contrasts their properties
and descriptive ability. Each model describes a probability

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

distribution overpossible worlds, where each possible world
corresponds to a single deterministic data instance. The most
expressive approach is to explicitly list each possible world
and its associated probability; such a method is referred toas
complete, as it can capture all possible correlations. However,
complete models are very costly to describe and manipulate
since there can be exponentially many combinations of tuples
each generating a distinct possible world [30].

Typically, we are able to make certainindependence as-
sumptions, that unless correlations are explicitly described,
events are assumed to be independent. Consequently, likeli-
hoods can be computed using standard probability calculations
(i.e. multiplication of probabilities of independent events). The
strongest independence assumptions lead to thebasic model,
where each tuple has a probability of occurrence, and all
tuples are assumed fully independent of each other. This is
typically too strong an assumption, and so intermediate models
allow the description of simple correlations between tuples.
This extends the expressiveness of the models, while keeping
computations of probability tractable. We consider two models
that have been used frequently within the database community.
In our discussion, without loss of generality, a probabilistic
database contains simply one relation.

Attribute-level uncertainty model. In this model, the prob-
abilistic database is a table ofN tuples. Each tuple has one
attribute whose value is uncertain (together with other certain
attributes). This uncertain attribute has a (finite) discrete pdf
describing its value distribution. When instantiating this un-
certain relation to a certain instance, each tuple draws a value
for its uncertain attribute based on the associated discrete pdf
and the choice is independent among tuples. This model has
many practical applications such as sensor readings [22], [10],
spatial objects with fuzzy locations [39], [8], [6], [27], [26],
etc. More important, it is very easy to represent this model
using the traditional relational database model, as observed
by Antovaet al. [3]. For the purpose of ranking queries, the
important case is when the uncertain attribute represents the
score for the tuple, and we would like to rank the tuples based
on this score attribute. LetXi be the random variable denoting
the score of tupleti. We assume thatXi has a discrete pdf
with bounded sizesi. This is a realistic assumption for many
practical applications, including movie ratings [9], and string
matching [7]. The general, continuous pdf case is discussed
in Appendix B. In this model we are essentially ranking the
set of independent random variablesX1, . . . , XN . A relation
following this model is illustrated in Figure 1. For tupleti, the
score takes the valuevi,j with probabilitypi,j for 1 ≤ j ≤ si.

tuples score
t1 {(v1,1, p1,1), (v1,2, p1,2), . . . , (v1,s1

, p1,s1
)}

t2 {(v2,1, p2,1), . . . , (v2,s2
, p2,s2

)}
...

...
tN {(vN,1, pN,1), . . . , (vN,sN

, pN,sN
)}

Fig. 1. Attribute-level uncertainty model.

Tuple-level uncertainty model. In the second model, the
attributes of each tuple are fixed, but the entire tuple may or
may not appear. In the basic model, each tuplet appears with

tuples score
t1 {(100, 0.4), (70, 0.6)}
t2 {(92, 0.6), (80, 0.4)}
t3 {(85, 1)}

world W Pr[W]
{t1 = 100, t2 = 92, t3 = 85} 0.4 × 0.6 × 1 = 0.24
{t1 = 100, t3 = 85, t2 = 80} 0.4 × 0.4 × 1 = 0.16
{t2 = 92, t3 = 85, t1 = 70} 0.6 × 0.6 × 1 = 0.36
{t3 = 85, t2 = 80, t1 = 70} 0.6 × 0.4 × 1 = 0.24

Fig. 2. An example of possible worlds for attribute-level
uncertainty model.

probabilityp(t) independently. In more complex models, there
are dependencies among the tuples, which can be specified
by a set ofgeneration rules. These can be in the form of
x-relations[1], [4], complex events [9], or other forms.

All previous work concerned with ranking queries in un-
certain data has focused on the tuple-level uncertainty model
with exclusion rules[18], [37], [43], [41] where each tuple
appears in a single ruleτ . Each ruleτ lists a set of tuples that
are mutually exclusive so that at most one of these can appear
in any possible world. Arbitrary generation rules have been
discussed in [37], [38], but they have been shown to require
exponential processing complexity [18], [41]. Hence, as with
many other works in the literature [37], [18], [41], [42], we
primarily consider exclusion rules in this model, where each
exclusion rule has a constant number of choices. In addition,
each tuple appears in at most one rule. The total probability
for all tuples in one rule must be less or equal to one, so that
it can be properly interpreted as a probability distribution. To
simplify our discussion, we allow rules containing only one
tuple and require that all tuples appear in (exactly) one of the
rules. This is essentially equivalent to the popular x-relations
model [1]. This tuple-level model is a good fit for applications
where it is important to capture correlations between tuples;
this model has been used to fit a large number of real-life
examples [4], [9], [37], [18], [42]. Examples of a relation in
this model are shown in Figures 3 and 4. This relation has
N tuples andM rules. The second rule says thatt2 and t4
cannot appear together in any certain instance of this relation.
It also constrains thatp(t2) + p(t4) ≤ 1.

tuples score p(t)
t1 v1 p(t1)
t2 v2 p(t2)
...

...
tN vN p(tN)

rules
τ1 {t1}
τ2 {t2, t4}
...

...
τM {t5, t8, tN}

Fig. 3. Tuple-level uncertainty model.

tuples score p(t)
t1 100 0.4
t2 92 0.5
t3 80 1
t4 70 0.5

rules
τ1 {t1}
τ2 {t2, t4}
τ3 {t3}

world W Pr[W]
{t1, t2, t3} p(t1)p(t2)p(t3) = 0.2
{t1, t3, t4} p(t1)p(t3)p(t4) = 0.2
{t2, t3} (1 − p(t1))p(t2)p(t3) = 0.3
{t3, t4} (1 − p(t1))p(t3)p(t4) = 0.3

Fig. 4. An example of possible worlds for tuple-level
uncertainty model.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

The possible world semantics. We denote the uncertain
relation asD. In the attribute-level uncertainty model, an
uncertain relation is instantiated into apossible worldby tak-
ing one independent value for each tuple’s uncertain attribute
according to its distribution. Denote a possible world asW

and the value forti’s uncertain attribute inW as wti
. In

the attribute-level uncertainty model, the probability that W
occurs isPr[W] =

∏N

j=1 pj,x, wherex satisfiesvj,x = wtj
. It

is worth mentioning that in the attribute-level case we always
have ∀W ∈ W , |W | = N , where W is the space of all
the possible worlds. The example in Figure 2 illustrates the
possible worlds for an uncertain relation in this model.

For the tuple-level uncertainty model, a possible worldW
from W is now asubsetof tuples from the uncertain relation
D. The probability ofW occurring isPr[W] =

∏M

j=1 pW (τj),
where for any ruleτ that applies toD, pW (τ) is defined as

pW (τ) =







p(t), if τ ∩W = {t};
1 −

∑

ti∈τ p(ti), if τ ∩W = ∅;
0, otherwise.

A notable difference for the tuple-level uncertain model is
that given a random possible worldW , not all tuples fromD
will appear. Hence, the size of the possible world can range
from 0 to N . The example in Figure 4 illustrates the possible
worlds for an uncertain relation in this model.

We iterate that every uncertain data model can be seen as a
succinct description of a distribution over possible worlds W .
Each possible world is a certain table on which we can evaluate
any traditional query. The focus of uncertain query processing
is (1) how to “combine” the query results from all the possible
worlds into a meaningful result for the query; and (2) how
to process such a combination efficiently without explicitly
materializing the exponentially many possible worlds.

Difference of the two models under ranking queries. We
emphasize that there is a significant difference for the two
models in the context ofranking tuples. More specifically, the
goal of ranking queries in uncertain databases is to derive a
meaningful ordering for all tuples in the databaseD. Note that
this is not equivalent to deriving an ordering for all valuesthat
tuples inD may take. In the attribute-level model, all tuples
in D will participate in the ranking process in every possible
world. In contrast, in the tuple-level model only a subset of
tuples inD will participate in the ranking process for a given
possible world. In particular, although there are mappings
between relations in the attribute-level and tuple-level models,
these have different sets of tuples to rank (often, with different
cardinalities). As such, this means that there is no simple
reduction between the two cases, and different algorithmic
solutions are needed for each. It remains a tantalizing prospect
to make further use of structural similarities between the two
models to design a unified approach for ranking in both. We
hope this can be addressed in future work.

4 RANKING QUERY SEMANTICS

4.1 Properties of Ranking Queries

We now define a set of properties for ranking tuples. These
are chosen to describe key properties of ranking certain data,

and hence give properties which a user would naturally expect
of a ranking over uncertain data. These properties should be
seen largely asdesirable but by no meanssufficient for a
ranking. Our main purpose in introducing them is to make
them explicit, demonstrate prior definitions do not adhere
to them all, and provoke discussion about which properties
should hold in general for proposed ranking methods.

The first property is very natural, and is also used in [43].
Definition 1 (Exact-k): Let Rk be the set of tuples (asso-

ciated with their ranks) in the top-k query result. If|D| ≥ k,
then |Rk| = k.

The second property captures the intuition that if an item
is in the top-k, it should be in the top-k′ for any k′ > k.
Equivalently, the choice ofk is simply a slider that chooses
how many results are to be returned to the user, and changing
k should only change the number of results returned, not the
underlying set of results.

Definition 2 (Containment):For anyk, Rk ⊂ Rk+1.
Replacing “⊂” with “ ⊆”, gives theweak containmentproperty.

The next property stipulates that the rank assigned to each
tuple in the top-k list should be unique.

Definition 3 (Unique ranking):Let rk(i) be the identity of
the tuple from the input assigned ranki in the output of the
ranking procedure. Theunique rankingproperty requires that
∀i 6= j, rk(i) 6= rk(j).

Recently, Zhang and Chomicki [43] proposed thestability
condition in the tuple-level uncertainty model. We adopt this
property and generalize it to the attribute-level model:

Definition 4 (Stability): In the tuple-level model, given a
tuple ti = (vi, p(ti)) from D, if we replaceti with t

↑
i =

(v↑i , p(t
↑
i)) wherev↑i ≥ vi, p(t

↑
i) ≥ p(ti), then

ti ∈ Rk(D) ⇒ t
↑
i ∈ Rk(D′),

whereD′ is obtained by replacingti with t
↑
i in D.

For the attribute-level model, the statement for stability
remains the same but witht↑i defined as follows. Given a
tuple ti whose score is a random variableXi, we obtaint↑i by
replacingXi with a random variableX↑

i that isstochastically
greater or equal than[32] Xi, denoted asX↑

i � Xi, meaning
Pr(X↑

i ≥ x) ≥ Pr(Xi ≥ x) for all x ∈ (−∞,∞).
Stability captures the intuition that if a tuple is already

in the top-k, making it “probabilistically larger” should not
eject it. Stability also implies that making a non-top-k tuple
probabilistically smaller should not bring it into the top-k.

The final property captures the semantics that the score
function is assumed to only give a relative ordering, and is
not an absolute measure of the value of a tuple.

Definition 5 (Value invariance):Let D denote the relation
which includes score valuesv1 ≤ v2 ≤ Let s′i be any set
of score values satisfyingv′1 ≤ v′2 ≤ . . ., and defineD′ to be
D with all scoresvi replaced withv′i. The value invariance
property requires thatRk(D) = Rk(D′) for any k.

Discussion of Value Invariance. The value-invariance prop-
erty is defined as it (trivially) holds in the deterministic
setting. It is more debatable if it should always be enforced
over uncertain data. The argument against value-invariance
notably arises when the score may have an intuitive linear
interpretation (e.g. when measuring financial profits, twice the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Ranking method Exact-k Containment Unique-Rank Value-Invariant Stability
U-topk [37] × × X X X

U-kRanks [37], [25] X X × X ×
PT-k [18] × weak X X X

Global-topk [43] X × X X X

Expected score X X X × X

Expected rank X X X X X

Fig. 5. Summary of Ranking Methods for Uncertain Data

profit is considered twice as good). In such scenarios, value
invariance can ignore the “common sense” meaning of the
scores and lead to counter-intuitive results. For these cases, it
is clearly preferable to choose a method which doesnot obey
this property, and instead define an appropriate requirement
which captures the given semantics of the score value.

Nevertheless, we argue this property is important to consider
for a number of reasons. There are many cases when the score
has no such linear interpretation. For example, consider the
general case where there is no explicit score value revealedto
the algorithm; instead, for any pair of (deterministic) tuples,
there is an “oracle” which reports which ranks above the
other. This encodes a total order. Then any method which can
operate in this setting must necessarily obey value invariance,
whereas methods which rely on being given a score value
will be unable to operate. Other examples arise when scores
arise from outputs from the sum of classification algorithms,
and so have no linear property. Instead, we only have that a
larger total score is preferable. Here (as in the deterministic
ranking case), the ranking should be invariant under different
score values which give the same total ordering. For example,
consider the relation with tuple-level uncertainty illustrated in
Figure 4. Here, the scores are70 ≤ 80 ≤ 92 ≤ 100. The
value invariance property demands that we could replace these
scores with, say,1 ≤ 2 ≤ 3 ≤ 1000, and the result of the
ranking would still be the same.

Whether or not value invariance is considered desirable in a
given ranking situation, it is important to know if a proposed
ranking method will guarantee the property or not. It is perhaps
surprising to note thatall existing ranking definitions [37],
[18], [25], [43] for probabilistic data have this property.

Properties and Probabilities. Observe that these conditions
make little explicit reference to probability models, and can
apply to almost any ranking setting. They trivially hold for
the top-k semantics over certain data. It should neverthe-
less be noted that these properties are not meant to be a
complete characterization of ranking queries in probabilistic
data. Indeed, in some cases, a specific application may only
require a subset of these conditions. However, in order to
choose a ranking definition to work with for different domain
requirements, it is imperative to examine the semantics of
ranking queries for probabilistic data, especially in the context
of real-world applications, and to understand which ranking
definitions provide which properties. The intricate interplay
between the score and the probability attributes indicates
that no single definition will be a universal best choice for
all applications. Nevertheless, we believe that many natural
situations will require all these five simple properties to hold.

4.2 Top-k Queries on Probabilistic Data

We now consider how to extend ranking queries to uncertain
data. The two uncertainty models require different approaches:
In the attribute-level model, a tuple has a random score but it
always exists in any random possible world, i.e., every tuple
participates in the ranking process in all possible worlds,and
we rank theseN tuples based on their score distribution. In
contrast, in the tuple-level model, a tuple has a fixed score
but it may not always appear, i.e., it may not participate in
the ranking process in some possible worlds. We still aim to
produce a ranking on allN tuples, taking this into account.

Considering the tuple-level model, the difficulty of extend-
ing ranking queries to probabilistic data is that there are now
two distinct orderings present in the data: that given by the
score, and that given by the probabilities. These two types of
information need to be combined in some meaningful way to
produce the top-k (this can be orthogonal to the model used to
describe the uncertainty in the data). In Appendix A we detail
a variety of approaches that have been taken, and discuss their
shortcomings with respect to the conditions we have defined.
The key properties are summarized in Figure 5.

4.3 The Rank Distribution and Expected Ranks

Motivated by deficiencies of existing definitions, we propose
a new ranking framework that depends on the ranks of a
tuple across all possible worlds and we refer to these ranks
(for a given tuplet), together with the corresponding possible
worlds’ probabilities, ast’s rank distribution. Our intuition is
that top-k over certain data is defined by first providing a total
ordering of the tuples, and then selecting thek “best” tuples
under the ordering. Any such definition immediately provides
the containment and unique-ranking properties. After rejecting
expected score due to its sensitivity to the score values (i.e.
it does not provide value invariance), a natural candidate is to
consider the orderings based on theranks of the tuple over
the possible worlds. More formally,

Definition 6 (Ranks of a tuple in all possible worlds):
The rank of tupleti in a possible worldW is defined to be
the number of tuples whose score is higher thanti (the top
tuple has rank 0), i.e.,rankW (ti) = |{tj ∈ W |vj > vi}|.
In the tuple-level model, for a worldW where ti does not
appear, we definerankW (ti) = |W |, i.e. it follows after all
appearing tuples.

The ranks of a tupleti in all possible worlds and the
probabilities of all worlds constitute a proper probabil-
ity distribution function (pdf): rank(ti), i.e., rank(ti) =
{(rankW (ti),Pr[W])} for ∀W ∈ W , since

∑

W∈W Pr[W] =
1. Note to form a well-defined pdf we need to combine (sum
up the corresponding probabilities) the ranks from different

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

possible worlds that have the same value (i.e.,rankW (ti))
from the above set. Formally, letR(ti) be a random variable
for the rank of tupleti in a random selected possible world,

Definition 7 (Rank Distribution):The rank distribution of a
tuple ti, rank(ti), is a proper probability distribution function
(pdf) for the random variableR(ti) defined as:

rank(ti) : Pr[R(ti) = V] =
∑

W∈W|rankW (ti)=V

Pr[W],

∀V ∈ [0, N]

The rank distribution for a tuple captures important infor-
mation on how a tuple behaves in terms of ranking across
all possible worlds. Applying statistical operators to each
distribution to generate a single statistic is a natural wayto
summarize the rank distribution, and can be used as the basis
for ranking. We first study theexpectation, which leads to a
new ranking method, which we call theexpected rank.

Definition 8 (Expected Rank):The expected rank of tuple
ti is the expectation ofrank(ti). The smaller rank(ti)’s
expectation, the smallerti’s final rank, denoted asr(ti).

In the attribute-level model, the expected rankr(ti) can be
computed as the expectation onrankW (ti)’s, then the top-k
tuples with the lowestr(ti) can be returned. More precisely,

r(ti) = E[R(ti)] =
∑

W∈W,ti∈W

Pr[W] · rankW (ti) (1)

In the tuple-level model, in a worldW whereti does not
appear,rankW (ti) = |W |, i.e. we imagine it follows after all
the tuples which do appear (as per Definition 6 above). So,

r(ti) =
∑

W∈W

Pr[W] rankW (ti), (2)

where the definition ofrankW (ti) is extended so that
rankW (ti) = |W | if ti 6∈W . (Proof in Appendix C).

For the example in Figure 2, the expected rank fort2 is
r(t2) = 0.24 × 1 + 0.16 × 2 + 0.36 × 0 + 0.24 × 1 = 0.8.
Similarly r(t1) = 1.2, r(t3) = 1, and so the final ranking is
(t2, t3, t1). For the example in Figure 4,r(t2) = 0.2 × 1 +
0.2 × 3 + 0.3 × 0 + 0.3 × 2 = 1.4. Note t2 does not appear
in the second and the fourth worlds, so its ranks are taken to
be 3 and 2, respectively. Similarlyr(t1) = 1.2, r(t3) = 0.9,
r(t4) = 1.9. So the final ranking is(t3, t1, t2, t4).

We prove expected ranks satisfies all five fundamental
properties in Appendix C. Specifically,

Theorem 1:Expected rank satisfies exact-k, containment,
unique ranking, value invariance, and stability.

5 ATTRIBUTE-LEVEL UNCERTAINTY MODEL

This section presents efficient algorithms for calculatingthe
expected rank of an uncertain relationD with N tuples in
the attribute-level uncertainty model. We first show an exact
algorithm that can calculate the expected ranks of all tuples
in D with O(N logN) processing cost. We then propose an
algorithm that can terminate the search as soon as the top-k

tuples with thek smallest expected ranks are guaranteed to be
found without accessing all tuples.

5.1 Exact Computation

By Definition 8 and the linearity of expectation, we have

r(ti) =
∑

j 6=i

Pr[Xj > Xi]. (3)

The brute-force search (BFS) approach requiresO(N) time to
computer(ti) for one tuple andO(N2) time to compute ranks
of all tuples. The quadratic dependence onN is prohibitive for
largeN . Below we present an improved algorithm requiring
O(N logN) time. We observe that (3) can be written as:

r(ti) =

si
∑

ℓ=1

pi,ℓ

(

q(vi,ℓ) − Pr[Xi > vi,ℓ]
)

, (4)

where we defineq(v) =
∑

j Pr[Xj > v] (Proof in Appendix
C). Let U be the universe of all possible values of allXi,
i = 1, . . . , N . Because we assume each pdf has size bounded
by s, we have|U | ≤ |sN |. When s is a constant, we have
|U | = O(N).

Now observe that we can precomputeq(v) for all v ∈ U

with a linear pass over the input after sortingU which has a
cost ofO(N logN). Following (4), exact computation of the
expected rank for a single tuple can now be done in constant
time givenq(v) for all v ∈ U . While computing these expected
ranks, we maintain a priority queue of sizek that stores
the k tuples with smallest expected ranks dynamically. When
all tuples have been processed, the contents of the priority
queue are returned as the final answer. Computingq(v) takes
time O(N logN); getting expected ranks of all tuples while
maintaining the priority queue takesO(N log k) time. Hence,
the overall cost of this approach isO(N logN). We denote
this algorithm asA-ERrankand describe it in Appendix D.

5.2 Pruning by Expected Scores

A-ERank is very efficient even for largeN values. However,
in certain scenarios accessing a tuple is considerably expensive
(if it requires significant IO access). It then becomes desirable
to reduce the number of tuples accessed in order to find
the answer. It is possible to find a set of (possibly more
than k tuples) which is guaranteed to include the true top-
k expected ranks, by pruning based on tail bounds of the
score distribution. If tuples are sorted in decreasing order of
their expected scores, i.e.E[Xi]’s, we can terminate the search
early. In the following discussion, we assume that ifi < j,
then E[Xi] ≥ E[Xj] for all 1 ≤ i, j ≤ N . Equivalently, we
can think of this as an interface which generates each tuple in
turn, in decreasing order ofE[Xi].

The pruning algorithm scans these tuples, and maintains an
upper bound onr(ti), denotedr+(ti), for eachti seen so far,
and a lower bound onr(tu) for any unseen tupletu, denoted
r−. The algorithm halts when there are at leastk r+(ti)’s that
are smaller thanr−. Supposen tuples t1, . . . , tn have been
scanned. For∀i ∈ [1, n], we have (Proof in Appendix C):

r(ti) ≤
∑

j≤n,j 6=i

Pr[Xj > Xi] + (N − n)

si
∑

ℓ=1

pi,ℓ

E[Xn]

vi,ℓ

. (5)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

The first term in (5) can be computed using only seen tuples
t1, . . . , tn. The second term could be computed usingXi and
Xn. Hence, from scanned tuples, we can maintain an upper
bound onr(ti) for each tuple in{t1, . . . , tn}, i.e., we can set
r+(ti) to be (5) for i = 1, . . . , n. r+(ti)’s second term is
updated for every newtn (as well as the first term fortn).

Now we provide the lower boundr−. Consider any unseen
tuple tu, u > n, we have (Proof in Appendix C):

r(tu) ≥ n−
∑

j≤n

sj
∑

ℓ=1

pj,ℓ

E[Xn]

vj,ℓ

. (6)

This holds for any unseen tuple. Hence, we setr− to be (6).
Note that (6) only depends on the seen tuples. It is updated
with every new tupletn.

These bounds lead immediately to an algorithm that main-
tains r+(ti)’s for all tuplest1, . . . , tn and r−. For each new
tuple tn, the r+(ti)’s and r− are updated. From these, we
find the kth largestr+(ti) value, and compare this tor−. If
it is less, then we know for sure that thek tuples with the
smallest expected ranksglobally are among the firstn tuples,
and can stop retrieving tuples. Otherwise, we move on to the
next tuple. We refer to this algorithm asA-ERank-Prune.

A remaining challenge is how to find thek tuples with the
smallest expected ranks using the firstn tuples alone. This
is difficult as it is not possible to obtain a precise order on
their final ranks without inspecting allN tuples inD. Instead,
we use the curtailed databaseD′ = {t1, . . . , tn}, and compute
exact expected rankr′(ti) for every tuple (fori ∈ [1, n]) ti
in D′. The rankr′(ti) turns out to be an excellent surrogate
for r(ti) for i ∈ [1, n] in D (when the pruning algorithm
terminates after processingn tuples). Hence, we return the top-
k of these as the result of the query. We show an evaluation
of the quality of this approach in our experimental study.

A straightforward implementation ofA-ERrank-Prunere-
quiresO(n2) time. After seeingtn, the bounds in both (5) and
(6) can be updated in constant time, by retaining

∑sj

ℓ=1
pi,ℓ

vi,ℓ
for

each seen tuple. The challenge is updating the first term in (5)
for all i ≤ n. A basic approach requires linear time, for adding
Pr[Xn > Xi] to the already computed

∑

j≤n−1,j 6=i Pr[Xj >

Xi] for all i’s as well as computing
∑

i≤n−1 Pr[Xi > Xn].
This leads to a complexity ofO(n2) for algorithm A-ERrank-
Prune. Using a similar idea in designing algorithm A-ERank,
it is possible to utilize value universeU ′ of all seen tuples and
maintain prefix sums of theq(v) values, which would drive
down the cost of this step toO(n log n).

6 TUPLE-LEVEL UNCERTAINTY MODEL

We now consider ranking an uncertain databaseD in thetuple-
level uncertainty model. ForD with N tuples andM rules, the
aim is to retrieve thek tuples with the smallest expected ranks.
Recall each ruleτj is a set of tuples, where

∑

ti∈τj
p(ti) ≤ 1.

Without loss of generality we assume the tuplest1, . . . , tn are
already sorted by the ranking attribute andt1 is the tuple with
the highest score. We useti ⋄ tj to denoteti andtj are in the
same exclusion rule andti 6= tj ; we useti⋄̄tj to denoteti and
tj are not in the same exclusion rule. We first give an exact
O(N logN) algorithm which accesses every tuple. Secondly,

we show anO(n log n) pruning algorithm, which only reads
the firstn tuples, assuming theexpectednumber of tuples in
D is known to the algorithm.

6.1 Exact computation

From Definition 8, in particular (2), given tuples that are sorted
by their score attribute, we have:

r(ti) =p(ti) ·
∑

tj ⋄̄ti,j<i

p(tj) + (1 − p(ti))

·





∑

tj⋄ti
p(tj)

1 − p(ti)
+

∑

tj ⋄̄ti

p(tj)





The first term computesti’s expected rank for random worlds
when it appears, and the second term computes the expected
size of a random worldW whenti does not appear inW . The

term
P

tj⋄ti
p(tj)

1−p(ti)
is the expected number of appearing tuples

in the same rule asti, conditioned onti not appearing, while
∑

tj ⋄̄ti
p(tj) accounts for the rest of the tuples. Rewriting,

r(ti) =p(ti) ·
∑

tj ⋄̄ti,j<i

p(tj)

+
∑

tj⋄ti

p(tj) + (1 − p(ti)) ·
∑

tj ⋄̄ti

p(tj). (7)

Let qi =
∑

j<i p(tj). We first computeqi in O(N) time.
At the same time, we find the expected number of tuples,
E[|W |] =

∑N
j=1 p(tj). Now (7) can be rewritten as:

r(ti) =p(ti) · (qi −
∑

tj⋄ti,j<i

p(tj)) +
∑

tj⋄ti

p(tj)

+ (1 − p(ti))(E[|W |] − p(ti) −
∑

tj⋄ti

p(tj)). (8)

By keeping the auxiliary information
∑

tj⋄ti,j<i p(tj) (i.e., the
sum of probabilities of tuples that have score values higher
than ti in the same rule asti) and

∑

tj⋄ti
p(tj) (i.e., the

sum of probabilities of tuples that are in the same rule as
ti) for each tupleti in D, r(ti) can be computed inO(1)
time. By maintaining a priority queue of sizek that keeps
the k tuples with the smallestr(ti)’s, we can select the top-k
tuples inO(N log k) time. Note that both

∑

tj⋄ti,j<i p(tj) and
∑

tj⋄ti
p(tj) are cheap to calculate initially given all the rules

in a single scan of the relation (taking timeO(N), since each
tuple appears in exactly one rule). WhenD is not presorted
by ti’s score attribute, the running time of this algorithm is
dominated by the sorting step,O(N logN). The pseudo-code
for T-ERank is presented in Appendix D.

6.2 Pruning

Provided that the expected number of tuplesE[|W |] is known,
we can answer top-k queries more efficiently using pruning
techniques without accessing all tuples. Note thatE[|W |] can
be efficiently maintained inO(1) time whenD is updated with
deletion or insertion of tuples. AsE[|W |] is simply the sum of
all the probabilities (note that it does not depend on the rules),
it is reasonable to assume that it is always available. Similar to

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

the attribute-level uncertainty case, we assume thatD provides
an interface to retrieve tuples in order of their score attribute
from the highest to the lowest.

The pruning algorithm scans the tuples in order. After seeing
tn, it can computer(tn) exactly usingE[|W |] andqn in O(1)
time based on (8). It also maintainsr(k), the k-th smallest
r(ti) among all the tuples that have been retrieved. This can
be done with a priority queue inO(log k) time per tuple. A
lower bound onr(tℓ) for any ℓ > n is computed as follows
(Proof in Appendix C):

r(tℓ) ≥ qℓ − 1 ≥ qn − 1. (9)

Thus, whenr(k) ≤ qn − 1, we know for sure there are at
leastk tuples amongst the firstn with expected ranks smaller
than all unseen tuples. At this point, we can safely terminate
the search. In addition, recall that for all the scanned tuples,
their expected ranks are calculatedexactlyby (8). Hence this
algorithm—which we dubT-ERank-Prune—can simply return
the current top-k tuples. From the above analysis, its time cost
is O(n log k) wheren is potentially much smaller thanN .

7 MEDIAN AND QUANTILE RANKS

Our expected rank definition uses the expectation as the basis
of ranking, i.e., the absolute ranks of each tuple from all
possible worlds are represented by their mean. It is well known
that the mean (or equivalently, the expectation) is statistically
sensitive to the distribution of the underlying values (in our
case, the absolute ranks of the tuple from all possible worlds),
especially when there are outliers in the distribution. It is
natural to consider alternate statistical operators as thebasis
of the ranking, such as the median of the rank distribution
instead of the mean. This can be further generalized to any
quantile for the distribution of absolute ranks for a tuple across
all possible worlds. We can then derive the final ranking based
on such quantiles. Furthermore, the rank distributionrank(ti)
for a tupleti reflects important characteristics ofti’s rank in
any random possible world. Studying these critical statistics
(median and general quantiles) for this rank distribution is of
independent interest. This section formalizes these ideasand
presents efficient algorithms to compute the median and quan-
tile ranks for uncertain databases in both the attribute-level and
tuple-level uncertainty models. Similarly to the approachtaken
for the expected rank, we first present the definitions for these
ranks and discuss the efficient, polynomial-time algorithms
that compute such ranks; then we improve the efficiency of
our algorithms by designing necessary pruning techniques.

7.1 Definitions and Properties

We formally define the median and quantile rank as,
Definition 9: For tupleti ∈ D, its median rankrm(ti) is the

median value fromti’s rank distributionrank(ti), i.e., it is the
value in the cumulative distributive function (cdf) ofrank(ti),
denoted ascdf(rank(ti)), that has a cumulative probability of
0.5; For any user-definedφ-quantile whereφ ∈ (0, 1), theφ-
quantile rank ofti is the value in thecdf(rank(ti)) that has
a cumulative probability ofφ, denoted asrφ(ti).

For the attribute-level uncertainty model example
in Figure 2, t1’s rank distribution rank(t1) is
{(0, 0.4), (1, 0), (2, 0.6)}. Therefore, t1’s median rank
rm(t1) is 2. Similarly, rm(t2) = 1 and rm(t3) = 1. Hence,
the final ranking is(t2, t3, t1), which is identical to the final
ranking obtained from the expected ranks. For the tuple-level
uncertainty model example in Figure 4,t4’s rank distribution
rank(t4) is {(0, 0), (1, 0.3), (2, 0.5), (3, 0.2)}. t4’s median
rank rm(t4) is 2. Similarly, rm(t1) = 2, rm(t2) = 1, and
rm(t3) = 1. The final ranking is(t2, t3, t1, t4) whereas the
final ranking from the expected ranks was(t3, t1, t2, t4).

Clearly, the median rank is a special case ofφ-quantile rank
where φ = 0.5. Ranking by the median or theφ-quantile
ranks of all tuples is straightforward. We first derive a total
ordering of all tuples in theascendingorder of theirrm(ti)’s
(or rφ(ti)’s); and thek tuples with the smallest values of
rm(ti)’s (or rφ(ti)’s) are returned as the top-k. We can show
that ranking by the median rank (or the general quantile rank)
offers all properties satisfied by the expected rank. Formally,

Theorem 2:Ranking by median and quantile ranks satisfies
all properties in Figure 5. The proof is quite similar to the
proof of Theorem 1, so we omit it.

The next important problem is whether we can calculate
rm(ti) or rφ(ti) efficiently for a tupleti. Note, besides for
ranking purposes, these values themselves are important statis-
tics to characterize the rank distribution ofti in all possible
worlds, rank(ti). In the sequel, in a random possible world
if ti and tj are tied ranking by their scores,ti ranks before
tj if i < j. In general, other tie-breaking mechanisms could
be easily substituted. Also, our algorithms work the same way
for median and quantile ranks for any quantile values. Hence,
for brevity, we focus on discussing median ranks and extend
it to quantile ranks at the end of each case. Recall that for any
tuple t, R(t) is a random variable that denotest’s rank in a
random possible world.R(t)’s distribution is represented by
t’s rank distributionrank(t).

7.2 Attribute-Level Uncertainty Model

In the attribute-level uncertainty model, given a tupleti, its
uncertain score attribute is represented by the random variable
Xi = {(vi,1, pi,1), . . . , (vi,si

, pi,si
)} for some constantsi.

WhenXi takes the valuevi,1 (denote this as a special tuple
t1i), tuple ti’s rank in all possible worlds could be described
by a probability distributionrank(t1i) = rank(ti|ti = vi,1)
where ‘|’ means “given that”. We concentrate on calculating
rank(t1i) first. Note that rank(t1i) ≡ Pr[R(t1i) = ℓ] for
ℓ = 0, . . . , N−1 (that is, the distribution gives the probability
of the random variableR(tli) taking on each of theN possible
rank values). For any other tupletj ∈ D∧ j 6= i, we calculate
Pr[tj > t1i] =

∑sj

ℓ=1 pj,ℓ|vj,ℓ > vi,1, and Pr[tj < t1i],
Pr[tj = t1i] similarly. Then whenj < i,

Pr[R(tj) < R(t1i)] = Pr[tj > t1i] + Pr[tj = t1i] and

Pr[R(tj) > R(t1i)] = Pr[tj < t1i]

and whenj > i,

Pr[R(tj) < R(t1i)] = Pr[tj > t1i] and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

Pr[R(tj) > R(t1i)] = Pr[tj < t1i] + Pr[tj = t1i].

In short, for anytj , we can calculate bothPr[R(tj) <

R(t1i)], denoted asp↑j , andPr[R(tj) > R(t1i)], denoted asp↓j ,
efficiently. Now, for each tupletj there are two possible out-
comes, either it ranks higher thant1i with probabilityp↑j or it
ranks lower thant1i with probabilityp↓j . There are(N−1) such
independent events (one for eachtj for j ∈ {1, . . . , N}−{i}).
This could be viewed as ageneralized binomial distribution. In
the jth trial, the head probability isp↑j and the tail probability
is p↓j . The possible ranks oft1i (essentially it is(ti|ti = vi,1))
are simply the possible number of heads from this distri-
bution. Then,rank(t1i) is the probability distribution on the
number of heads in this generalized binomial distribution,i.e.,
rank(t1i) = Pr[number of heads= ℓ] for ℓ = 1, . . . , N − 1.
For the binomial distribution, there is a compact closed-form
formula to calculatePr[number of heads= ℓ] for any ℓ.
This no longer holds for the generalized binomial distribution.
However, one can efficiently computePr[number of heads=
ℓ] for all ℓ in this case as follows. LetEγ,j be the probability
that in the firstj trials there areγ number of heads. Then,

Eγ,j = Eγ−1,j−1 × p
↑
j + Eγ,j−1 × p

↓
j (10)

From equation 10, the rank distributionrank(t1i) is defined by
Pr[number of heads= ℓ] for ℓ ∈ {0, 1, . . . , N − 1}, which is
given byEℓ,N−1’s for ℓ ∈ {0, 1, . . . , N−1}. This observation
and Equation 10 immediately give us a dynamic programming
formulation to calculate the rank distributionrank(t1i).

We can carry out the similar procedure to obtain the
distributionsrank(t1i), . . . , rank(tsi

i), one for each choice of
ti. Finally,rank(ti) ≡ Pr[R(ti) = ℓ] for ℓ ∈ {0, 1, . . . , N−1},
where Pr[R(ti) = ℓ] =

∑si

κ=1 pi,κ × Pr[R(tκi) = ℓ] and
Pr[R(tκi) = ℓ] is given byrank(tκi), i.e, the rank distribution
of ti, rank(ti), is simply the weighted sum of the distributions
rank(t1i), . . . , rank(tsi

i). With rank(ti), one can easily getti’s
median rankrm(ti) or any φ-quantile rankrφ(ti). Given a
query parameterk, the final step is to simply retrieve thek
tuples with the smallest median (or quantile) rank values. We
denote this algorithm asA-MQRank.

Example 1:For the attribute-level uncertainty model ex-
ample in Figure 2, t12’s rank distribution rank(t12) =
rank(t2|t2 = 92) is {(0, 0.6), (1, 0.4), (2, 0)} and t22’s
rank distribution rank(t22) = rank(t2|t2 = 80) is
{(0, 0), (1, 0.6), (2, 0.4)}. Therefore, t2’s rank distribution
rank(t2) is {(0, 0.36), (1, 0.48), (2, 0.16)}. �

We observe that the same principle could be applied for the
case of continuous distributions. Essentially, for a tupleti, we
need to computep↑j = Pr[Xj > Xi] andp↓j = Pr[Xj < Xi]
for any other tupletj ∈ D, whereXj andXi are two random
variables with continuous distributions. Oncep↑j and p↓j are
available, the rest is the same as discussed above.

The Complexity of A-MQRank. For an uncertain databaseD
with N tuples and assuming that each tuple takes on at most
s possible choices, the cost of one dynamic program for one
choice of a tuple (i.e. applying (10)) isO(N2). We have to
do this for each choice of every tuple. Hence, the cost of the
algorithm A-MQRankis O(sN3). When s is a constant, the
complexity ofA-MQRankis O(N3).

Pruning Techniques. In practice, the number of choices of
each tuple could be large. The contribution by the factor of
s in the overall computation cost for the algorithmO(sN3)
may be non-negligible. To remedy this problem, an important
observation is that if we rank the score values of all choicesfor
a tuple in decreasing order, then the median (or any quantile)
rank value for a tuple after seeing more choices will only
increase. This intuition gives us a way to lower-bound the
median (or any quantile) rank value in any intermediate steps
after seeing any number of choices for a tuple. Specifically,
after calculating the rank distributionsrank(tℓi)’s for the first
x number of choices for a tupleti, we denote the lower-bound
onrm(ti) asrx

m(ti) (or rx
φ(ti) for a quantile rankrφ(ti) with a

quantile valueφ). We would like to maintainrx
m(ti) such that

(a) for ∀ℓ1, ℓ2 ∈ [1, si], if ℓ1 < ℓ2, thenrℓ1
m(ti) ≤ rℓ2

m(ti); and
(b) rsi

m(ti) = rm(ti). The same holds for the quantile ranks.
Assume we can achieve the above, an immediate pruning

technique is to maintain a priority queue of sizek for the first
ℓ (ℓ ∈ [1, N)) tuples whose exact median ranks (or quantile
ranks) have already been calculated. The priority queue is or-
dered by increasing order of the tuple’s exact median rank (or
quantile rank) and we denote thekth tuple’s rank asrk. When
processing the(ℓ+ 1)-th tuple, after calculatingrank(tiℓ+1)’s
for i = 1, . . . , x-th choices oftℓ+1, if rx

m(ti) ≥ rk (or
rx
φ(ti) ≥ rk), we can stop processing the remaining choices of
tℓ+1 and safely claimtℓ+1 has no chance to be in the final top-
k answer. If one has to exhaust all choices fortℓ+1, then the
exact rankrm(tℓ+1) (or rφ(tℓ+1)) is obtained and the priority
queue is updated if necessary: iftℓ+1’s rank is smaller than
rk, it will be inserted into the queue with its rank and the last
(the kth) element of the queue will be deleted.

The remaining challenge is how to calculate the lower-
bound rx

m(ti) for a tuple ti after processing its firstx
choices. A key observation is each tuple’s choices are sorted
by descending order of their score values, i.e., for∀ti and
∀ℓ1, ℓ2 ∈ [1, si], if ℓ1 < ℓ2, thenvi,ℓ1 > vi,ℓ2 . After processing
the first x (x < si) choices ofti, we have obtainedx rank
distributions, rank(t1i), . . . , rank(txi). At this point, we can
construct a (notional) tupleti,x with (x+1) choices as follows:
{(vi,1, pi,1), . . . , (vi,x, pi,x), (vi,x, 1−

∑x

ℓ=1 pi,ℓ)}. The firstx
choices ofti,x are identical to the firstx choices ofti; and
the last choice ofti,x has the same score value,vi,x with
probability as1−

∑x

ℓ=1 pi,ℓ — we aggregate the probability of
all remaining choices (ofti) into one choice and make its score
value the same as the last processed choice (thexth one) from
ti. We can write the rank distribution for constructed tupleti,x
as follows, which follows immediately from its construction:

Lemma 1:We have∀ℓ ∈ [1, x], rank(tℓi,x) = rank(tℓi);
rank(tx+1

i,x) = rank(txi,x); and rank(ti,x) =
∑x

ℓ=1 pi,ℓ ×
rank(tℓi) + (1 −

∑x

ℓ=1 pi,ℓ) × rank(txi).
The next result is the median (quantile) value from dis-

tribution rank(ti,x) will not be larger than the median (or
corresponding quantile) value in distributionrank(ti), i.e.,

Lemma 2:∀x ∈ [1, si) and∀φ ∈ [0, 1], rφ(ti,x) ≤ rφ(ti).
A special case is thatrm(ti,x) ≤ rm(ti).

This follows immediately from Lemma 1 and the definition
of rφ(t) and rm(t) for any tuplet. Lemma 2 indicates that
by constructingti,x after processing the firstx choices of the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

tuple ti, we can efficiently obtain a lower bound onrφ(ti) or
rm(ti). This can be done after processing each choice ofti
and it perfectly satisfies our pruning framework. Note Lemma
1 shows that after processing the firstx choices of the tupleti,
rank(ti,x) can be obtained immediately (and hence itsrφ(ti,x)
or rm(ti,x) is immediate). We denote this pruning technique
as theA-MQRank-Prunealgorithm.

7.3 Tuple-level Uncertainty Model

In the tuple-level model, we have additional challenges due
to the presence of exclusion rules. We leverage the dynamic
programming formulation that is similar in spirit to some of
the existing work in the tuple-level model [41], [5].

Our approach begins by sorting all tuples by thedescending
order of their score values. Without loss of generality, we
assume that for anyti, tj ∈ D, i 6= j, if i < j, then ti’s
score value is greater or equal thantj ’s score value. Ties are
broken arbitrarily or can be otherwise specified.

Let Di be the database whenD is restricted (both the
tuples and the rules) on the firsti tuples {t1, . . . , ti} for
i = 1, . . . , N , i.e., for eachτ ∈ D, τ ′ = τ

⋂

{t1, . . . , ti}
is included inDi. We first discuss the simplified tuple-level
model where each rule contains just one tuple, i.e., every tuple
is independent from all other tuples in the database. In this
case, our idea is based on the following simple intuition. The
probability that a tupleti appears at rankj depends only on
the event that exactlyj tuples from the firsti−1 tuples appear,
no matterwhich tuples appear. Now, letRi,j be the probability
that a randomly generated world fromDi has exactlyj tuples,
i.e., Ri,j =

∑

|W |=j Pr[W |Di], andR0,0 = 1, Ri,j = 0 if
j > i. Also, let R−i

N−1,j be the probability that a randomly
generated world fromD − {ti} has exactlyj tuples. Then,
based on Definition 6, it is clear that the probability thatti’s
rank equals toj in a randomly generated world fromD is:

Pr[R(ti) = j] = p(ti) · Ri−1,j + (1 − p(ti)) · R
−i
N−1,j, (11)

recallingR(ti) is a random variable denoting the rank forti in
a random possible world. The final rank distributionrank(ti)
is simply represented by the pairs,(j,Pr[R(ti) = j]), for j =
0, . . . , N−1. For any tupleti, it is straightforward to calculate
R−i

N−1,j for all j’s in a similar fashion as we computeRi,j ’s.
Our job is then to computeRi,j ’s, which in this case is:

Ri,j = p(ti)Ri−1,j−1 + (1 − p(ti))Ri−1,j . (12)

This gives us a dynamic programming formulation to calculate
theRi,j ’s. We can then effectively compute the rank distribu-
tion rank(ti) for the tupleti. Consequently, both the median
rank and theφ-quantile rank for the tupleti can be easily
obtained. We do this for each tuple in the database and return
the k tuples with the smallest median ranks or theφ-quantile
ranks as the answer to the top-k query.

The general case when there are multiple tuples in one rule
is more complex. Nevertheless, in this case, the probability
that ti’s rank is equal toj in a randomly generated world
from D still follows the principle outlined in (11). However,
Ri,j can no longer be calculated as in (12), because ifti has
some preceding tuples from the same rule, the event thatti

appears is no longer independent of the event exactlyj − 1
tuples inDi−1 appear. Similarly, for the second term in (11),
whenti does not appear in a random world withj tuples, we
may not simply multiply(1− p(ti)) by the probability of this
event: it could be one tuple from the same rule containingti
has already appeared, which assertsti cannot appear at all.

To overcome this difficulty, we first convertDi to a database
D̄i where all rules contain only one tuple and apply the
above algorithm onD̄i to computeRi,j ’s. We constructD̄i

as follows: For each ruleτ ∈ Di and tuples inτ , we
create one tuplet and one ruleτ = {t} ∈ D̄i, where
p(t) =

∑

t∈τ p(t), with all of t’s other attributes set to null.
Essentially,t represents all tuples in a ruleτ ∈ Di. Now the
Ri,j computed fromD̄i is the same as the probability that
exactly j tuples inDi appear, because forRi,j we only care
about the number of tuples appearing, merging does not affect
anything since the probability thatt appears is the same as the
probability that one of the tuples inτ appears.

Now, we can compute all theRi,j ’s, but another difficulty is
the probabilityti’s rank is equal toj if it appears is no longer
simply p(ti) · Ri−1,j . This happens ifti has some preceding
tuples from the same rule inDi−1. Then the existence of
ti has to exclude all these tuples, whileRi−1,j includes the
probability of the possible worlds that contain one of them.
To handle this case, one can defineD−

i−1 = Di−1 − {t|t ∈
Di−1 andt ∈ τ and ti ∈ τ}, i.e.,D−

i−1 is the version ofDi−1

that excludes all tuples from the same ruleτ which contains
ti. Just asRi−1,j is defined with respect toDi−1, let R−

i−1,j

be the probability exactlyj tuples fromD−
i−1 have appeared in

a random possible world. We constructD̄−
i−1 as follows: For

each ruleτ ∈ D−
i−1 and tuples inτ , we create one tuplet and

one ruleτ = {t} ∈ D̄−
i−1, wherep(t) =

∑

t∈τ p(t), with all
of t’s other attributes set to null. Now, computingR−

i,j from
D̄−

i−1 is done in the same fashion as (12).
For the second term in (11), to cater for the case when a

random world generated from databaseD − {ti} has exactly
j tuples andti does not appear, there are two cases. In case
one, none of thej tuples in this random world is from the
same rule that containsti, we denote this event’s probability
as R−i−

N−1,j ; In the second case, one of thej tuples in this
random world comes from the same rule which containsti,
and this event’s probability isR−i+

N−1,j . We can compute both
R−i−

N−1,j andR−i+
N−1,j similarly as we compute theRi,j ’s.

The probabilityti’s rank in a random world equalsj is:

Pr[R(ti) = j] = p(ti)·R
−
i−1,j +(1−p(ti))·R

−i−
N−1,j +R−i+

N−1,j ,

(13)
sinceR−

i−1,j already excludes all tuples from the same rule
containingti. We calculate this probability for allj’s where
j = 0, . . . , N−1; then(j,Pr[R(ti) = j])’s for j = 0, . . . , N−
1 is the rank distributionrank(ti) for tupleti. Both the median
rank and theφ-quantile rank can be easily obtained thereafter.
The top-k answer could be easily obtained after calculating
the median (or the quantile) rank for each tuple. We denote
this algorithm asT-MQRank.

Example 2:We consider tuple t4 for the tuple-level
uncertainty model example in Figure 4. Fort4 the
R−

i−1,j ’s, where i = 4 and j = 0, 1, 2, 3 in this

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

case, are{(0, 0), (1, 0.6), (2, 0.4), (3, 0)}, the R−i+
N−1,j ’s are

{(0, 0), (1, 0), (2, 0.3), (3, 0.2)}, and theR−i−
N−1,j ’s are all zero

as the probability that neithert2 or t4 appear is zero. Then,
rank(t4) is {(0, 0), (1, 0.3), (2, 0.5), (3, 0.2)}. �

Complexity of T-MQRank. In the basic case where each rule
contains only one tuple, the cost of the dynamic program to
compute theRi,j ’s is O(N2), and one can computeR−i

N−1,j ’s
for all ti’s similarly in O(N2) time. After which, for each
ti, obtaining the entire distributionrank(ti) givenRi,j ’s and
R−i

N−1,j is linear. Hence, the overall cost isO(N2).
In the second case when each rule may contain multiple

tuples, we have to invoke the dynamic programming formula-
tion for R−

i−1,j based onD̄−
i−1, which is different for eachti.

However, the size of the table for the dynamic programming
formulation is onlyO(M2), whereM ≤ N is the number of
rules in the database. The cost of calculatingR−i−

N−1,j ’s and
R−i+

N−1,j ’s is alsoO(M2) for every tupleti. Hence, the overall
cost of this algorithm isO(NM2).

8 EXPERIMENTS

We implemented our algorithms in GNU C++. All experiments
were executed on a Linux machine with a2GHz CPU and
2GB main memory. We utilized synthetic data sets to study
the impact of data sets with different characteristics on both
the score and the probability distribution. We additionally
tested our algorithms on a real data set,movie, from the
MystiQ project.movieconsists of data integrated from IMDB
and Amazon. Each record inmovie consists of an IMDB
id (imdbid), IMDB string, Amazon id (aid), Amazon string,
and a probability, where the pair (imdbid,aid) is unique. We
convertedmovie to the attribute-level and tuple-level models
by grouping records by theimdbid attribute. To obtain an
attribute-level representation we created a single tuple for each
imdbid group where the pdf consists of all of theaid in the
group. To obtain a tuple-level representation we created a
tuple for eachaid in an imdbid group and we also created
an exclusion rule (τ) for each imdbid group consisting of
all aid in the group. For both models we rank tuples by the
aid attribute. Themoviedata set consists of 246,816 unique
(imdbid, aid) pairs and there are 56,769 uniqueimdbidgroups
with an average of 4.35aid per group. For the experiments we
vary onlyN andk for movie, whereN is varied by uniformly
and randomly selecting tuples. To generate synthetic data sets,
we developed several data generators for both models. Each
generator controls the distribution on the score value as well
as the probability. For both models, these distributions refer
to the universe of score values and probabilitieswhen we
take the union of all tuples inD. The distributions used
include uniform, Zipfianand correlated bivariate. They are
abbreviated asu, zipf and cor. For each tuple, we draw
a score and probability value independently from the score
distribution and probability distribution respectively.We refer
to the result of drawing from these two distributions by the
concatenation of the short names for each distribution for score
then probability, i.e.zipfu indicates a Zipfian distribution of
scores and uniform distribution of probabilities. The default
skewness for the Zipfian distribution is1.2, and other default

0 2 4 6 8 10
10

−4

10
−2

10
0

10
2

10
4

N: number of tuples × 104 (s=5)

R
un

ni
ng

 ti
m

e
(s

ec
s)

uu
movie

BFS A−ERANK

(a) Running time of exact algorithms

0 20 40 60 80 100
0.6

0.7

0.8

0.9

1

k (N=105, s=5)

R
ec

al
l a

nd
 p

re
ci

si
on

 in
 to

p−
k

uu uzipf

zipfu zipfzipf movie

(b) A-ERank-Prune’s Precision/Recall.

Fig. 6. Attribute-level model: performance analysis.

values arek = 100,N = 10, 000, s = 5, tuples in an exclusion
rule (τ) is ψ = 5, and tuples sharing aτ is ζ = 30%.

8.1 Expected Ranks

8.1.1 Attribute-level Uncertainty Model
We first studied the performance of the exact algorithm A-
ERank by comparing it to the basic brute-force search (BFS)
approach onuu andmovie. The distribution on the probability
universe does not affect the performance of either algorithm,
since both algorithms calculate the expected ranks of all tuples.
The score value distribution has no impact on BFS, but does
affect A-ERank: the uniform score distribution results in the
worst performance given a fixed number of tuples, as it leads
to a large set of possible values. So, amongst the synthetic
data sets we only consideruu for this experiment, to give the
toughest test for this algorithm.

Figure 6(a) shows the total running time of these algorithms
as the size ofD (the number of tuples,N) is varied, up to
100, 000 tuples. Note we can only varymovie up to N =
56, 769 for this and the following attribute-level experiments.
A-ERank outperforms BFS by up to six orders of magnitude.
This gap grows steadily asN gets larger. A-ERank has very
low query cost: it takes only about 10ms to find the expected
ranks of all tuples forN = 100, 000, while the brute force
approach takes ten minutes. Results are similar for other values
of s.

As discussed in Section 5.2, A-ERank-Prune is an approx-
imate algorithm, in that it may not find the exact top-k.
Figure 6(b) reports its approximation quality on various data
sets using the standardprecisionandrecall metrics. Since A-
ERank-Prune always returnsk tuples, its recall and precision
are always the same. Figure 6(b) shows it achieves high
approximation quality: recall and precision are near the 100th
percentile formovie and in the 90th percentile when the score
is distributed uniformly for the synthetic data sets. The worst
case occurs when the data is skewed on both dimensions,
where the potential for pruning is greatest. The reason for this
is that as more tuples are pruned, these unseen tuples have
a greater chance to affect the expected ranks of the observed
tuples. Even though the pruned tuples all have low expected
scores, they could still have values with high probability to
be ranked above some seen tuples, because of the heavy tail
of their distribution. Even in this worst case, the recall and
precision of T-ERank-Prune is about80%.

We also evaluate the pruning power of A-ERank-Prune in
Appendix E.1.1. The results show A-ERank-Prune is more ef-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

N: number of tuples × 104

R
un

ni
ng

 ti
m

e
(s

ec
s)

uu
movie

T−ERank T−ERank−Prune

(a) Running times

0 20 40 60 80 100
90

92

94

96

98

100

k (N=105,30% tuples in rules)

%
 o

f t
up

le
s

pr
un

ed

uu uzipf

zipfu zipfzipf movie

(b) Pruning of T-ERank-Prune.

Fig. 7. Tuple-level model: performance analysis.

ficient for skewed distributions. However, there is still enough
information from expected scores to prune even for more
uniform distributions.

8.1.2 Tuple-level Uncertainty Model

For our experiments in the tuple-level model, we first inves-
tigate the performance of our algorithms. As before, there
is a brute-force search based approach which is much more
expensive than our algorithms, so we do not show these results.

A notable difference in this model is the pruning algorithm
is able to output the exact top-k, providedE[|W |], the expected
number of tuples ofD, is known. Figure 7(a) shows the total
running time for the T-ERank and T-ERank-Prune algorithms
on uu and movie. Both algorithms are extremely efficient.
For 100, 000 tuples, the T-ERank algorithm takes less than
100 milliseconds to compute the expected ranks of all tuples;
applying pruning, T-ERank-Prune finds the samek smallest
ranks in just 1 millisecond. However, T-ERank is still highly
efficient, and is the best solution whenE[|W |] is unavailable.

Figure 7(b) shows the pruning power of T-ERank-Prune for
different data sets. We fixN = 100, 000 and varyk. T-ERank-
Prune prunes more than98% of tuples for all k for movie
which shows T-ERank-Prune may be very effective at pruning
real data for certain applications. We also see a skewed dis-
tribution on either dimension increases the pruning capability
of T-ERank-Prune. Even in the worst case of processinguu,
T-ERank-Prune is able to prune more than90% of tuples.

Our next experiments study the impact of correlations
between a tuple’s score value and probability. We say the two
are positively correlated when a tuple with a higher score value
also has a higher probability; a negative correlation meansa
tuple with a higher score value has a lower probability. Such
correlations have no impact on the performance of T-ERank
as it computes the expected ranks for all tuples. However,
correlation does have an interesting effect on the pruning
capability of T-ERrank-Prune. Using correlated bivariatedata
sets of different correlation degrees, Figure 8(a) repeatsthe
pruning experiment for T-ERank-Prune withN = 100, 000.
The strongly positively correlated data set with a+0.8 correla-
tion degree allows the highest amount of pruning, whereas the
strongly negatively correlated data set with a−0.8 correlation
degree results in the worst pruning power. But even in the
worst case, T-ERank-Prune still pruned more than75% of
tuples. Figure 8(b) reflects the running time of the same
experiment. T-ERank-Prune consumes between 0.1 and 5
milliseconds to process100, 000 tuples.

0 20 40 60 80 100
70

75

80

85

90

95

100

k (N=105,30% tuples in rules)

%
 o

f t
up

le
s

pr
un

ed

cor=+0.8
cor=0.0
cor=−0.8

(a) Pruning power.

0 20 40 60 80 100
10

−4

10
−3

10
−2

k (N=105,30% tuples in rules)

R
un

ni
ng

 ti
m

e
(s

ec
s)

cor=+0.8
cor=0.0
cor=−0.8

(b) Running time.

Fig. 8. Impact of different correlations on T-ERank-Prune.

8.2 Median and Quantile Ranks

Our primary concern when evaluating A-MQRank, A-
MQRank-Prune, and T-MQRank was the time necessary to
retrieve the top-k from an uncertain database. To evaluate
the query time for A-MQRank and T-MQRank we utilize
uu and movie. The results for other data sets are similar
as the computational effort imposed by A-MQRank and T-
MQRank are the same regardless of the distribution as both
algorithms compute the median or quantile rank for every
tuple in the database. We utilizemovie, uu, uzipf , zipfzipf ,
and zipfu to show the effect different distributions have on
the pruning power of A-MQRank-Prune. We also analyze the
effect positively correlated and negatively correlated data sets
have on the processing time of A-MQRank-Prune. For all
experiments we present the results from calculating the median
ranks of all tuples, as other general quantiles perform similarly.

8.2.1 Attribute-Level Uncertainty Model

We first analyze the effects of varying the number of tuples
N with respect to the processing time for A-MQRank and
A-MQRank-Prune in Figure 9(a). Recall A-MQRank and A-
MQRank-Prune are bothO(sN3). However, the pruning tech-
niques utilized in A-MQRank-Prune could allow the algorithm
to avoid performing theO(N2) dynamic program for all thes
unique entries in the pdf of a tuple. The effects of this pruning
are apparent in Figure 9(a). We utilizemovie anduu and vary
N from 2,000 to 12,000. The processing time formovie is
less than that ofuu for both algorithms ass is on average 4
in movie whereas inuu s = 5 for all tuples. In all cases A-
MQRank-Prune requires less processing time. In Figure 9(b)
we analyze the effect of varyings for A-MQRank and A-
MQRank-Prune. Here we use onlyuu as we cannot varys in
movie. In this experiment,s is varied from 2 to 10. Again
we see the pruning of A-MQRank-Prune performs very well
effectively reducing the constant in theO(sN3) complexity
of A-MQRank.

We next analyze the effect different distributions have on
the pruning power of A-MQRank-Prune. In Figure 9(c) we
study the effects of varyingk over movie, uu, zipfzipf ,
uzipf , and zipfu on A-MQRank-Prune. We see in general
the processing time grows almost linearly with respect to
k. It is apparent the pruning utilized by A-MQRank-Prune
works best for scores which are uniformly distributed and
probabilities which follow a zipfian distribution. Regardless of
the distribution A-MQRank-Prune shows excellent scalability
with respect tok. In Figure 9(d) we analyze the effect of

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

0 2 4 6 8 10 12
0

1

2

3

4

5

6

x 10
4

Number of Tuples (x103)

T
im

e
(s

ec
on

ds
)

uu
movie

A−MQRank A−MQRank−Prune

(a) Effect of N.

0 2 4 6 8 10
0

2

4

6

8

10x 10
4

Number of choices in pdf

T
im

e
(s

ec
on

ds
)

A−MQRank
A−MQRank−Prune

(b) Effect of s.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3x 10
4

k

T
im

e
(s

ec
on

ds
)

uu uzipf

zipfu zipfzipf movie

(c) Effect of k: vary distributions for
A-MQRank-Prune.

0 200 400 600 800 1000
1

1.5

2

2.5

3x 10
4

k

T
im

e
(s

ec
on

ds
)

cor=+0.8
cor=0.0
cor=−0.8

(d) Effect of k: vary correlated dis-
tributions for A-MQRank-Prune.

Fig. 9. Attribute-level model: median and quantile ranks performance analysis.

0 5000 10000 15000
0

2000

4000

6000

8000

10000

12000

Number of Tuples

T
im

e
(s

ec
on

ds
)

uu
movie

(a) Effect of N.

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Percentage of tuples sharing a rule

T
im

e
(s

ec
on

ds
)

T−MQRank

(b) Effect of ζ.

Fig. 10. Tuple-level model: median and quantile ranks
performance analysis.

varying k over the positively and negatively correlated data
sets. In general we see correlations of the data set do not
affect the pruning of A-MQRank-Prune.

8.2.2 Tuple-Level Uncertainty Model
We evaluate the effect of varying the number of tuplesN in
the database and the percentage of tuples from the database
which share a rule with another tupleζ in Figure 10. Note
the value selected fork is irrelevant as the quantile rank for
every tuple is computed. In Figure 10(a) we see the amount
of time required to determine the median ranks increases
quadratically with respect to the number of exclusion rules
M in the database, sinceM clearly increases asN increases.
This quadratic relationship makes sense as the running time
for T-MQRank isO(NM2). Also, notemovie has about 3
times as many rules asuu which explains why it is about 9
times more expensive. We also evaluate the effect of varying
the percentage of tuples which share a rule with another tuple
in Figure 10(b). As expected, the amount of time required
to calculate the median ranks drops quadratically as the
percentage increases. This is clear since as the percentageof
tuples which share a rule increases, there are fewer tuples
in rules by themselves, and therefore M decreases. We also
analyze the effect of varying the maximum number of tuples
in an exclusion ruleτ , denoted asψ, in Appendix E.1.2. In
general, asψ increases whileζ = 30% the amount of time
necessary to compute the median ranks decreases.

8.3 Comparison of Expected and Median Ranks

We also studied the similarity of top-k lists for the expected
and median ranks on different data sets ask varies. We
extend theaveraging Kendall distancefrom [12] and define
the normalized averaging Kendall distancewhich we use in

our comparisons. In general, our results show the top-k lists
for both median and expected ranks are rather different which
shows median and expected ranks enable us to emphasize
different characteristics of a rank distribution. We also study
the similarity of the top-k lists of the median ranks and
different quantile ranks ask varies. We observe this similarity
is very stable, with quantiles closer to the median having more
similar top-k lists. The complete details of our results appear
in Appendix E.2.

9 CONCLUSION

We have studied semantics of ranking queries in probabilistic
data. We adapt important properties that guide the definition
of ranking queries in deterministic databases and analyze char-
acteristics of existing top-k ranking queries for probabilistic
data. These properties naturally lead to the ranking approach
that is based on the rank distribution for a tuple across all
possible worlds in an uncertain domain. Efficient algorithms
for two major uncertainty models ensure the practicality of
our approach. Our experiments demonstrate that ranking by
expected ranks, median ranks and quantile ranks is efficient
in both attribute-level and tuple-level uncertainty models.

10 ACKNOWLEDGMENT

Jeffrey Jestes was supported by the GAANN Fellowship from
the US Department of Education. Feifei Li was partially sup-
ported by the NSF Grant IIS-0916488. Ke Yi was supported
in part by Hong Kong Direct Allocation Grant DAG07/08.

REFERENCES

[1] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar,
T. Sugihara, and J. Widom, “Trio: A system for data, uncertainty, and
lineage,” inVLDB, 2006.

[2] L. Antova, C. Koch, and D. Olteanu, “10
10

6

worlds and beyond:
Efficient representation and processing of incomplete information,” in
ICDE, 2007.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu, “Fast and simple
relational processing of uncertain data,” inICDE, 2008.

[4] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom, “ULDBs:
databases with uncertainty and lineage,” inVLDB, 2006.

[5] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Zuefle,
“Probabilistic frequent itemset mining in uncertain databases,” inKDD,
2009.

[6] G. Beskales, M. A. Soliman, and I. F. Ilyas, “Efficient search for the top-
k probable nearest neighbors in uncertain databases,” inVLDB, 2008.

[7] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust and
efficient fuzzy match for online data cleaning,” inSIGMOD, 2003.

[8] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluatingprobabilistic
queries over imprecise data,” inSIGMOD, 2003.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[9] N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic
databases,”VLDB Journal, vol. 16, no. 4, pp. 523–544, 2007.

[10] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong,
“Model-driven data acquisition in sensor networks,” inVLDB, 2004.

[11] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” inPODS, 2001.

[12] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” in
ACM-SIAM Symposium on Discrete Algorithms, 2003.

[13] A. Fuxman, E. Fazli, and R. J. Miller, “ConQuer: efficient management
of inconsistent databases,” inSIGMOD, 2005.

[14] T. Ge, S. Zdonik, and S. Madden, “Top-k queries on uncertain data: on
score distribution and typical answers,” inSIGMOD, 2009.

[15] A. Halevy, A. Rajaraman, and J. Ordille, “Data integration: the teenage
year,” in VLDB, 2006.

[16] M. A. Hernandez and S. J. Stolfo, “Real-world data is dirty: Data
cleansing and the merge/purge problem,”Data Mining and Knowledge
Discovery, vol. 2, no. 1, pp. 9–37, 1998.

[17] M. Hua, J. Pei, W. Zhang, and X. Lin, “Efficiently answering proba-
bilistic threshold top-k queries on uncertain data,” inICDE, 2008.

[18] M. Hua, J. Pei, W. Zhang, and X. Lin, “Ranking queries on uncertain
data: A probabilistic threshold approach,” inSIGMOD, 2008.

[19] I. F. Ilyas, W. G. Aref, A. K. Elmagarmid, H. Elmongui, R.Shah,
and J. S. Vitter, “Adaptive rank-aware query optimization in relational
databases,”TODS, vol. 31, 2006.

[20] I. F. Ilyas, G. Beskales, and M. A. Soliman, “Survey of top-k query
processing techniques in relational database systems,”ACM Computing
Surveys, 2008.

[21] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J.
Haas, “MCDB: a monte carlo approach to managing uncertain data,” in
SIGMOD, 2008.

[22] B. Kanagal and A. Deshpande, “Online filtering, smoothing and proba-
bilistic modeling of streaming data,” inICDE, 2008.

[23] C. Li, K. C.-C. Chang, I. Ilyas, and S. Song, “RankSQL: Query algebra
and optimization for relational top-k queries,” inSIGMOD, 2005.

[24] J. Li, B. Saha, and A. Deshpande, “A unified approach to ranking in
probabilistic databases,”PVLDB, vol. 2, no. 1, pp. 502–513, 2009.

[25] X. Lian and L. Chen, “Probabilistic ranked queries in uncertain
databases,” inEDBT, 2008.

[26] V. Ljosa and A. Singh, “APLA: Indexing arbitrary probability distribu-
tions,” in ICDE, 2007.

[27] V. Ljosa and A. K. Singh, “Top-k spatial joins of probabilistic objects,”
in ICDE, 2008.

[28] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on uncertain
data,” in VLDB, 2007.

[29] C. Re, N. Dalvi, and D. Suciu, “Efficient top-k query evaluation on
probabilistic databases,” inICDE, 2007.

[30] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom, “Working models
for uncertain data,” inICDE, 2006.

[31] P. Sen and A. Deshpande, “Representing and querying correlated tuples
in probabilistic databases,” inICDE, 2007.

[32] J. G. Shanthikumar and M. Shaked,Stochastic Orders and Their
Applications. Academic Press, 1994.

[33] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. Hambrusch, and
R. Shah, “Orion 2.0: native support for uncertain data,” inSIGMOD
’08: Proceedings of the 2008 ACM SIGMOD international conference
on Management of data, 2008, pp. 1239–1242.

[34] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. E. Hambrusch, and
R. Shah, “The orion uncertain data management system,” inCOMAD,
2008.

[35] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. Hambrusch,
“Indexing uncertain categorical data,” inICDE, 2007.

[36] M. A. Soliman and I. F. Ilyas, “Ranking with uncertain scores,” inICDE,
2009.

[37] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang, “Top-k query processing
in uncertain databases,” inICDE, 2007.

[38] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang, “Probabilistic top-k and
ranking-aggregate queries,”TODS, vol. 33, no. 3, 2008.

[39] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar,
“Indexing multi-dimensional uncertain data with arbitrary probability
density functions,” inVLDB, 2005.

[40] D. Xin, J. Han, and K. C.-C. Chang, “Progressive and selective merge:
Computing top-k with ad-hoc ranking functions,” inSIGMOD, 2007.

[41] K. Yi, F. Li, D. Srivastava, and G. Kollios, “Efficient processing of top-k
queries in uncertain databases with x-relations,”IEEE TKDE, vol. 20,
no. 12, pp. 1669–1682, 2008.

[42] Q. Zhang, F. Li, and K. Yi, “Finding frequent items in probabilistic
data,” in SIGMOD, 2008.

[43] X. Zhang and J. Chomicki, “On the semantics and evaluation of top-k
queries in probabilistic databases,” inDBRank, 2008.

Jeffrey Jestes received the BS degree in com-
puter science from Florida State University in
2008. He has been a PhD student in the Com-
puter Science Department, Florida State Univer-
sity, since 2008. He has received support since
2008 from a GAANN fellowship awarded by
the U.S. Department of Education. His research
interests include databases and data manage-
ment, probabilistic data, parallel and distributed
query processing, and string similarity.

Graham Cormode is a Principal Member of
Technical Staff in the Database Management
Group at AT&T Shannon Laboratories in New
Jersey. Previously, he was at Bell Labs, after
postdoctoral study at the DIMACS center in Rut-
gers University from 2002-2004. His PhD was
granted by the University of Warwick in 2002.
He works on data stream algorithms, large-scale
data mining, and applied algorithms, with appli-
cations to databases, networks, and fundamen-
tals of communications and computation.

Feifei Li received the BS degree in computer
engineering from Nanyang Technological Uni-
versity in 2002 and the PhD degree in computer
science from Boston University in 2007. He has
been an assistant professor in the Computer
Science Department, Florida State University,
since 2007. His research interests include data
management, data structures, and databases,
as well as security issues in data management.

Ke Yi received his B.E. from Tsinghua University
and Ph.D. from Duke University, in 2001 and
2006 respectively, both in computer science.
After spending one year at AT&T Labs as a
researcher, he has been an Assistant Professor
in the Department of Computer Science and
Engineering at Hong Kong University of Science
and Technology since 2007. His research in-
terests include algorithms, data structures, and
databases.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Electronic Appendix to “Semantics of Ranking Queries for
Probabilistic Data”

Jeffrey Jestes, Graham Cormode, Feifei Li, and Ke Yi

✦

APPENDIX A
TOP-k QUERIES ON PROBABILISTIC DATA

Here we detail a variety of previous approaches for answering
a top-k query over probabilistic data. We observe that none
of the definitions proposed by previous works satisfy all of
the five fundamental properties of a ranking query discussed
in Section 4.1. A summary of our observations here appars in
Figure 5.

Ignore one dimension. A baseline approach is to ignore one
dimension (score or likelihood). If we ignore likelihood it
becomes an instance of ranking certain data. The work of
Ré et al. [10] studies the case where there is no score, and
instead ranks the results of a query solely by their probability
(across all possible worlds). However, when there is both score
and probability information available, ignoring one dimension
is insufficient for most purposes. Such simple methods may
trivially satisfy the above five basic properties, but they fail
to meaningfully combine information in the input. They are
easily shown to lead to undesirable features, such as ranking
very low probability tuples above much more probable ones.

Combine two rankings. There has been much work on taking
multiple rankings and combining them (e.g. taking the top 50
query web search results from multiple search engines, and
combining them to get an overall ranking) based on minimiz-
ing disagreements [4], [5]. Likewise, skyline-based approaches
extract points which do not dominate each other, and are not
themselves dominated, under multiple ordered dimensions [1].
But such approaches fail to account for the inherent semantics
of the probability distribution: it is insufficient to treatit simply
as an ordinal attribute, as this loses the meaning of the relative
likelihoods, and does not guarantee our required properties.

Most likely top-k. Since a probabilistic relation can define
exponentially many possible worlds, one approach to the top-
k problem finds the top-k set that has the highest support
over all possible worlds. In other words, (conceptually) extract
the top-k from each possible world, and compute the support
(probability) of each distinct top-k set found. TheU-Topk
approach [11] reports the most likely top-k as the answer to
the ranking query (that is, the top-k set with the highest total

Jeffrey Jestes and Feifei Li are with the Computer Science Department, Florida
State Unviersity. ({jestes,lifeifei}@cs.fsu.edu)
Graham Cormode is with AT&T Labs-Research. (graham@research.att.com)
Ke Yi is with the Department of Computer Science and Engineering, Hong
Kong University of Science and Technology. (yike@cse.ust.hk)

probability across all worlds). This method has the advantage
that it more directly incorporates the likelihood information,
and satisfies unique ranking, value invariance, and stability.
But it may not always returnk tuples whenD is small,
as also pointed out in [12]. More importantly, it violates
the containment property. In fact, there are simple examples
where the top-k can be completely disjoint from the top-
(k+1). Consider the attribute-level model example in Figure 2.
The top-1 result under the U-Topk definition is t1, since its
probability of having the highest score in a random possible
world is 0.24 + 0.16 = 0.4, larger than that oft2 or t3.
However, the top-2 result is(t2, t3), whose probability of
being the top-2 is0.36, larger than that of(t1, t2) or (t1, t3).
Thus, the top-2 list is completely disjoint from the top-1.
Similarly one can verify that for the tuple-level model example
in Figure 4, the top-1 result ist1 but the top-2 is(t2, t3) or
(t3, t4). No matter what tie-breaking rule is used, the top-2 is
completely disjoint from the top-1.

Most likely tuple at each rank. The previous approach fails
because it deals with top-k sets as immutable objects. Instead,
we could consider the property of a certain tuple being ranked
kth in a possible world. In particular, letXi,j be the event
that tuplej is rankedi within a possible world. Computing
Pr[Xi,j] for all i, j pairs, this approach reports theith result
as arg maxj Pr[Xi,j], i.e., the tuple that is most likely to be
ranked ith over all possible worlds. This is theU-kRanks
approach [11]; essentially the same definition is proposed as
PRankin [9] and analyzed in the context of distributions over
spatial data. This definition overcomes the shortcomings ofU-
Topk and satisfies exact-k and containment. However, it fails
on unique ranking, as one tuple may dominate multiple ranks
at the same time. A related issue is that some tuples may be
quite likely, but never get reported. So in Figure 2, the top-
3 under this definition ist1, t3, t1: t1 appears twice andt2
never; for Figure 4, there is a tie for the third position, and
there is no fourth placed tuple, even thoughN = 4. These
issues have also been pointed out in [7], [12]. In addition, it
fails on stability, as shown in [12], since when the score of a
tuple becomes larger, it may leave its original rank but cannot
take over any higher ranks as the dominating winner.

Rank by top-k probability. Attempting to patch the previous
definition, we can replace the event “tuplei is at rankk” with
the event “tuplei is at rankk or better”, and reason about the
probability of this event. That is, define the top-k probability

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

of a tuple as the probability that it is in the top-k over all
possible worlds. Theprobabilistic threshold top-k query (PT-
k for short) returns the set of all tuples whose top-k probability
exceeds a user-specified probabilityp [7]. However, for a
user specifiedp, the “top-k” list may not containk tuples,
violating exact-k. If we fix p and increasek, the top-k lists do
expand, but they only satisfy the weak containment property.
For instance consider the tuple-level example in Figure 2. If
we setp = 0.4, then the top-1 list is(t1). But both the top-
2 and top-3 lists contain the same set of tuples:t1, t2, t3. A
further drawback of using PT-k for ranking is that the user
has to specify the thresholdp which greatly affects the result.

Similarly, theGlobal-Topk method ranks the tuples by their
top-k probability, and then takes the top-k of these [12] based
on this probability. This makes sure that exactlyk tuples are
returned, but it again fails on containment. In Figure 2, under
the Global-Topk definition, the top-1 ist1, but the top-2 is
(t2, t3). In Figure 4, the top-1 ist1, but the top-2 is(t3, t2).

Further, note that ask increases towardsN , then the impor-
tance of the score diminishes, so these two methods reduce to
simply ranking the reported top-k items by probability alone.

Expected score. The above approaches all differ from tra-
ditional ranking queries, in that they do not define a single
ordering of the tuples from which the top-k is taken—in other
words, they do not resemble “top-k” in the literal interpretation
of the term. A simple approach in this direction is to just
compute the expected score of each tuple, and rank by this
score, then take the top-k. This method may be desirable when
the score has a strong linear interpretation (e.g. it represents
a financial profit), but it does not apply in the “oracle model”
where only the relative ordering of each pair of tuples is given.
It is easy to check that the expected score approach directly
implies exact-k, containment, unique ranking, and stability.
However, this is very dependent on the values of the scores:
consider a tuple which has very low probability but a score
that is orders of magnitude higher than others—then it gets
propelled to the top of the ranking, since it has the highest
expected score, even though it is unlikely. But if we reduce
this score to being just greater than the next highest score,the
tuple will drop down the ranking. It therefore violates value
invariance. Furthermore, in the tuple-level model, simplyusing
the expected score ignores all the correlation rules completely.

APPENDIX B
OTHER ISSUES

Variance of the rank distribution: connection of expected
ranks, median ranks and quantile ranks. Implicit in all our
discussions so far is that for any uncertain tuplet, there is a
well-defined probability distributionrank(t) over its possible
ranks within the uncertain relation. Within this setting, the
expected rank, median rank and quantile rank oft are the
expectation, median, and quantile of this distribution respec-
tively. It is certainly meaningful to study other properties of
these distributions. In particular, we next discuss the variance
of the rank distributionrank(t), which we denote asvar(t). A
first observation is thatvar(t) is a good indicator to gauge the
difference amongr(t) (expected rank),rm(t) (median rank)

andrφ(t) (quantile rank) for any quantile valueφ. Intuitively,
a small var(t) suggests thatr(t) and rm(t) will be similar
(in the extreme case, an extremely smallvar(t) suggests that
evenrφ(t) for anyφ value will be similar tor(t)). If all tuples
in the database have smallvar(t)’s, then ranking by expected
ranks probably is a good choice. On the other hand, if a large
number of tuples have largevar(t) values, then ranking by
expected ranks does not provide a good reflection on the ranks
of various tuples. Rather, ranking by median ranks or some
quantile ranks should be used.

It remains to show how to computevar(t) given an un-
certain tuplet. Clearly, this task is trivial if one is provided
with the rank distributionrank(t). Recall that our algorithms
for ranking by median ranks or quantile ranks in Section
7, in both uncertain models, work by firstly computing the
rank distribution for any given tuple in the database, then
deriving the median (or the quantile) from the computed
rank distribution. So, as a straightforward extension, these
algorithms can easily support the calculation ofvar(t) for any
tuple t as well. It is an open problem to find more direct ways
to computevar(t), but the existence of correlations between
tuples suggests that this may not be more efficient than simply
computing the rank distribution.

Scoring functions. Our analysis has assumed that the score is
a fixed value. In general, the score can be specified at query
time by a user defined function. Note that all of our offline
algorithms (for expected ranks, median and quantile ranks)
also work under this setting, as long as the scores can be
computed. If the system has some interface that allows us to
retrieve tuples in the score order (for the tuple-level order) or
in the expected score order (for the attribute-level model), our
pruning algorithms for expected ranks are applicable as well.

A main application of a query-dependent scoring function is
k-nearest-neighbor queries, which is the top-k query instan-
tiated in spatial databases. Here, the score is implicitly the
distance of a data point to a query point. When the data points
are uncertain, the distance to the query is a random variable,
which can be modeled as an attribute-level uncertainty relation.
Existing works [3], [9] essentially adopt U-kRanks semantics
to definek-nearest-neighbor queries in spatial databases. We
believe that our ranking definition makes a lot of sense in
this context, and may have similar benefits over previous
definitions of uncertain nearest neighbors.

When a relation has multiple (certain and uncertain) at-
tributes on which a ranking query is to be performed, the user
typically will give some function that combines these multiple
attributes together and then rank on the output of the function.
When at least one of the attributes is uncertain, the output of
the function is also uncertain. This gives us another instance
where our ranking semantics and algorithms could be applied.

Continuous distributions. When the input data in the
attribute-level uncertainty model is specified by a continuous
distribution (e.g. a Gaussian or Poisson), it is often hard to
compute the probability that one variable exceeds another.
However, by discretizing the distributions to an appropriate
level of granularity (i.e., represented by a histogram), we
can reduce to an instance of the discrete pdf problem. The

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

0.18
t2 2
t1 1

0.09
t3 3
t2 2

0.09
t4 4
t2 2

0.09
t5 5
t2 2

0.22
t1 1

0.11
t3 3

0.11
t4 4

0.11
t5 5

Fig. 11. Possible worlds for the example where all previ-
ous definitions fail to satisfy the faithfulness.

tuples score p(t)
t1 1 0.3
t2 2 0.35
t3 0.5 0.65

rules
τ1 {t1}
τ2 {t2, t3}

0.105
t2 2
t1 1

0.195
t1 1
t3 0.5

0.245
t2 2

0.455
t3 0.5

Fig. 12. A database D and its possible worlds where the
expected rank does not satisfy the faithfulness.

error in this approach is directly related to the granularity of
the discretization. Moreover, observe that our pruning-based
methods initially require only information about expected
values of the distributions. Since continuous distributions are
typically described by their expected value (e.g., a Gaussian
distribution is specified by its mean and variance), we can run
the pruning algorithm on these parameters directly.

Further properties of a ranking. It is certainly reasonable
to define further properties and analyze when they hold.
However, formulating the right properties can be tricky. For
example, Zhang and Chomicki [12] defined a property of
“faithfulness”, which demands that (in the tuple-level model),
given two tuplest1 = (v1, p(t1)) and t2 = (v2, p(t2)) with
v1 < v2 and p(t1) < p(t2), then t1 ∈ Rk ⇒ t2 ∈ Rk.
This intuitive property basically says that ift2 “dominates”t1,
thent2 should always be ranked at least as high ast1. It was
claimed that the Global-Topk definition satisfies this property,
however this only holds in the absence of exclusion rules.
There are cases with exclusions where all existing definitions
fail on faithfulness. Consider the following example:

ti t1 t2 t3 t4 t5
vi 1 2 3 4 5
p(ti) 0.4 0.45 0.2 0.2 0.2

with rulesτ1 = {t1, t3, t4, t5}, τ2 = {t2}. The possible worlds
of this relation is shown in Figure 11. Here,t2 “dominates”
t1, but all of the previous definitions (U-Topk, U-kRanks,
Global-Topk, and PT-k) will select t1 as the top-1. On this
example, ranking by expected ranks will rankt2 as the top-
1, hence, satisfying the “faithfulness” requirement. But it is
easy to construct other examples where the expected rank will
also rank a dominating tuple lower than a dominated tuple.
Consider the example shown in Figure 12, the expected rank
of t1 is 0.105 × 1 + 0.245 × 1 + 0.455 × 1 = 0.805. But
the expected rank oft2 is 0.195 × 2 + 0.455 × 1 = 0.845.
Hence,t2 ranks aftert1 even thought2 dominatest1. Our
initial study suggests that “faithfulness” defined this waymay
not be achievable, and one has to somehow take rules (i.e.,
correlations) into consideration in order to make it a viable.

Rank of missing tuples. In the tuple-level uncertainty model,

we chose to determine the rank of tuples not present in a
world W as |W |. This is an intuitive choice (the missing
tuples were all ranked “equal last”), but other choices are
possible. A different approach is to compute the rank of a
tuple only over those worldsW where it does appear, and
then to scale this by the probability that it appears. This can
be understood in terms of conditional probabilities: for the
expected rank definition, we compute the rank of a tuplet
by summing the probabilities that other tuples appear which
score more highly thant. This can be viewed as the probability
that each tuplet′ outranks t and t appears; dividing this
by p(t) gives the conditional probabilityt′ outrankst given
that t appears. Accordingly, we can call this the “conditional
expected rank” ofti, e(ti). Formally, adopting the convention
that the tuples are indexed in decreasing order of their score,
e(ti) = 1

p(ti)
(1 +

∑

j<i,tj ⋄̄ti
p(tj)), which can be computed

in constant time for eachti after computing prefix sums on
the p(ti)’s and on the probabilities associated with each rule.
On the example in Figure 4, we obtaine(t1) = 1/0.4 = 2.5,
e(t2) = (1 + 0.4)/0.5 = 2.8, e(t3) = (1 + 0.4 + 0.5)/1 = 1.9
and e(t4) = (1 + 0.4 + 1)/0.5 = 4.8. This yields the
ranking (t3, t1, t2, t4), the same as under the expected rank
semantics. Likewise, the properties of exact-k, containment,
unique-rank and value-invariance follow immediately. Stability
also follows easily: increasing the score of a tuplet cannot
increase the sum of probabilities of tuples with lower scores,
while increasing its probability drives down1/p(t), so either
way e(t) cannot increase, ensuring that if it was in the top-k
before it will remain so after. We leave further study of this
alternate semantics to future work.

Parametrized Ranking Function. In parallel to this work, a
new ranking framework for probabilistic data was proposed
[8], namely, the parametrized ranking function (PRF). It is
interesting to note that PRF adopts a similar basis to that
shown in this work for ranking probabilistic data. Essentially,
the basis of ranking in PRF is also the rank distributions
for different tuples. However, instead of using the expecta-
tions, medians or quantiles of these ranking distributionsto
derive a total ordering of tuples, Li et al. proposed that any
parametrized function may be defined over the rank distribu-
tions of tuples, i.e., the final rank value of a tuplet ∈ D, where
|D| = N , could be defined as

∑N−1
i=0 ω(t, i) Pr[R(t) = i],

where {ω(t, 0), . . . , ω(t,N − 1)} is a set of(N − 1) user-
defined parametrized functions. Clearly, the basis for the above
ranking definition isPr[R(t) = i] for i = {0, . . . , N − 1},
which is nothing else but the rank distribution oft, rank(t).
Note that the PRF is a framework for ranking, but not a ranking
definition by itself. Many ranking definitions are possible to
be defined in the PRF framework, for example, it is indeed
possible to define the expected rank in this paper under the
PRF framework. However, it is not feasible to directly define
the median and quantile ranks using the PRF mechanism.
Nevertheless, one may extend the PRF framework to support
the median and quantile ranks when its ranking definitions are
no longer constrained by using only parametrized functions.

Since the ranking basis is the rank distributions for tuples,
whenω(t, i) is independent fromt for all i ∈ {0, . . . , N − 1}

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

(which is prevalent as also noted in [8]), all such rankings
within the PRF framework necessarily follow value-invariance.
Different instantiations of the parametrized functionω(t, i) in
the PRF framework introduces quite different definitions. It is
an intriguing and challenging open problem to further study
the rich semantics and properties the PRF framework imposes
on various ranking definitions extended from it.

Approximate expected ranks. The rank distribution of an
uncertain tuple follows the Poisson Binomial distribution. It
follows from standard results in statistics [2], [6] the expected
rank of a tuplet is approximated by the sum of probabilities
of the tuples ranked beforet in the tuple-level model. Since
the focus of this work is to rank the uncertain tuples based on
their exactexpected ranks (or median or quantile ranks for that
purpose), i.e., we are interested at computing theexacttop-k
results in each framework (be it expected ranks, median ranks
or quantile ranks), we do not pursue this observation further
in this presentation. We leave further study of approximate
top-k ranks of uncertain data to future work. We observe
the key challenges to address are to design approximation
schemes for broader models of uncertain data, and to quantify
the quality of the approximation over all possible uncertain
relations, or else to describe particular cases of uncertain
relations which are guaranteed to be well-approximated. The
hope is an approximation which compromises on finding the
exact answer can compensate with computational efficiency.

APPENDIX C
PROOFS

Proof of Equation 2

r(ti) =
∑

ti∈W

Pr[W] rankW (ti) +
∑

ti 6∈W

Pr[W] · |W |

=
∑

W∈W

Pr[W] rankW (ti)

Proof of Theorem 1 For simplicity, we assume the expected
ranks are unique, and so the ranking forms a total ordering.
In practice, ties can be broken arbitrarily e.g. based on having
the lexicographically smaller identifier. The same tie-breaking
issues affect the ranking of certain data as well.

The first three properties follow immediately from the fact
that the expected rank is used to give an ordering. Value
invariance follows by observing that changing the score values
will not change the rankings in possible worlds, and therefore
does not change the expected ranks.

For stability we show that when we change a tupleti to
t↑i (as in Definition 4), its expected rank will not increase,
while the expected rank of any other tuple will not decrease.
Let r′ be the expected rank in the uncertain relationD′ after
changingti to t↑i . We need to show thatr(ti) ≥ r′(t↑i) and
r(ti′) ≤ r′(ti′) for any i′ 6= i.

Consider the attribute-level model first. By Definition 8 and
linearity of expectation, we have

r(ti) =
∑

j 6=i

Pr[Xi < Xj] =
∑

j 6=i

∑

ℓ

pj,ℓ Pr[Xi < vj,ℓ]

≥
∑

j 6=i

∑

ℓ

pj,ℓ Pr[X↑
i < vj,ℓ] (becauseXi � X↑

i)

=
∑

j 6=i

Pr[X↑
i < Xj] = r′(t↑i).

For anyi′ 6= i,

r(ti′) = Pr[Xi′ < Xi] +
∑

j 6=i′,j 6=i

Pr[Xi′ < Xj]

=
∑

ℓ

pi′,ℓ Pr[vi′,ℓ < Xi] +
∑

j 6=i′,j 6=i

Pr[Xi′ < Xj]

≤
∑

ℓ

pi′,ℓ Pr[vi′,ℓ < X↑
i] +

∑

j 6=i′,j 6=i

Pr[Xi′ < Xj]

= Pr[Xi′ < X↑
i] +

∑

j 6=i′,j 6=i

Pr[Xi′ < Xj] = r′(ti′)

Next consider the tuple-level model. Ift↑i has a larger score
than ti but the same probability, thenr(ti) ≥ r′(t↑i) follows
easily from (2) sincerankW (ti) can only get smaller while
the second term of (2) remains unchanged. For similar reasons,
r(ti′) ≤ r′(ti′) for any i′ 6= i.

If t↑i has the same score asti but a larger probability,
rankW (ti) stays the same for any possible worldW , but
Pr[W] may change. We divide all the possible worlds into
three categories: (a) those containingti, (b) those containing
one of the tuples in the exclusion rule ofti (other thanti), and
(c) all other possible worlds. Note thatPr[W] does not change
for any W in category (b), so we only focus on categories
(a) and (c). Sincer(ti) is nothing but a weighted average
of the ranks in all the possible worlds, where the weight
of W is Pr[W], it is sufficient to consider the changes in
the contribution of the possible worlds in categories (a) and
(c). Observe that there is a one-to-one mapping between the
possible worlds in category (c) and (a):W ↔ W ∪ {ti}. For
each such pair, its contribution tor(ti) is

Pr[W] · |W | + Pr[W ∪ {ti}] · rankW∪{ti}(ti). (14)

Suppose the tuples in the exclusion rule ofti areti,1, . . . , ti,s.
Note thatW andW ∪ {ti} differs only in the inclusion of
ti, so we can writePr[W] = π (1 −

∑

ℓ p(ti,ℓ) − p(ti)) and
Pr[W ∪ {ti}] = πp(ti) for someπ. Whenp(ti) increases to
p(t↑i), the increase in (14) is

π(p(ti) − p(t↑i))|W | + π(p(t↑i) − p(ti)) rankW∪{ti}(ti)

= π(p(ti) − p(t↑i))(|W | − rankW∪{ti}(ti)) ≤ 0.

The same holds for each pair of possible worlds in categories
(a) and (c). Therefore we haver(ti) ≥ r′(t↑i).

For anyi′ 6= i, the contribution of each pair is

Pr[W] · rankW (ti′) + Pr[W ∪ {ti}] · rankW∪{ti}(ti′). (15)

Whenp(ti) increases top(t↑i), the increase in (15) is

π(p(ti) − p(t↑i))(rankW (ti′) − rankW∪{ti}(ti′)) ≥ 0.

The same holds for each pair of possible worlds in categories
(a) and (c). Therefore we haver′(ti′) ≥ r(ti′).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Proof of Equation 4

r(ti) =
∑

j 6=i

si
∑

ℓ=1

pi,ℓ Pr[Xj > vi,ℓ] =

si
∑

ℓ=1

pi,ℓ

∑

j 6=i

Pr[Xj > vi,ℓ]

=

si
∑

ℓ=1

pi,ℓ

(

∑

j

Pr[Xj > vi,ℓ] − Pr[Xi > vi,ℓ]
)

=

si
∑

ℓ=1

pi,ℓ

(

q(vi,ℓ) − Pr[Xi > vi,ℓ]
)

where we defineq(v) =
∑

j Pr[Xj > v].

Proof of Equation 5

r(ti) =
∑

j≤n,j 6=i

Pr[Xj > Xi] +
∑

n<j≤N

Pr[Xj > Xi]

=
∑

j≤n,j 6=i

Pr[Xj > Xi] +
∑

n<j≤N

si
∑

ℓ=1

pi,ℓ Pr[Xj > vi,ℓ]

≤
∑

j≤n,j 6=i

Pr[Xj > Xi] +
∑

n<j≤N

si
∑

ℓ=1

pi,ℓ

E[Xj]

vi,ℓ

(Markov Ineq.)

≤
∑

j≤n,j 6=i

Pr[Xj > Xi] + (N − n)

si
∑

ℓ=1

pi,ℓ

E[Xn]

vi,ℓ

.

Proof of Equation 6

r(tu) ≥
∑

j≤n

Pr[Xj > Xu] = n−
∑

j≤n

Pr[Xu ≥ Xj]

= n−
∑

j≤n

sj
∑

ℓ=1

pj,ℓ Pr[Xu > vj,ℓ]

≥ n−
∑

j≤n

sj
∑

ℓ=1

pj,ℓ

E[Xn]

vj,ℓ

. (Markov Ineq.)

Proof of Equation 9

r(tℓ) =p(tℓ) ·
∑

tj ⋄̄tℓ,j<ℓ

p(tj)

+
∑

tj⋄tℓ

p(tj) + (1 − p(tℓ)) ·
∑

tj ⋄̄tℓ

p(tj) (from (7))

=p(tℓ) ·
∑

tj ⋄̄tℓ,j<ℓ

p(tj) + E[|W |] − p(tℓ) − p(tℓ) ·
∑

tj ⋄̄tℓ

p(tj)

= E[|W |] − p(tℓ) − p(tℓ) ·





∑

tj ⋄̄tℓ

p(tj) −
∑

tj ⋄̄tℓ,j<ℓ

p(tj)





= E[|W |] − p(tℓ) − p(tℓ) ·
∑

tj ⋄̄tℓ,j>ℓ

p(tj). (16)

In the second step, we used the fact that
∑

tj⋄tℓ
p(tj) +

∑

tj ⋄̄tℓ
p(tj) = E[|W |] − p(tℓ).

Now, sinceqℓ =
∑

j<ℓ p(tj), we observe that

E[|W |] − qℓ =
∑

j>ℓ

p(tj) + p(tℓ) ≥
∑

tj ⋄̄tℓ,j>ℓ

p(tj).

Continuing with (16), we have:

r(tℓ) ≥ E[|W |] − p(tℓ) − p(tℓ) · (E[|W |] − qℓ)

≥ qℓ − 1 ≥ qn − 1.

The last step uses the monotonicity ofqi—by definition,qn ≤
qℓ if n ≤ ℓ. Since tuples are scanned in order, obviouslyℓ > n.

APPENDIX D
ALGORITHM PSEUDO CODE

Algorithm 1: A-ERank(D, k)
CreateU containing values fromt1.X1, . . . , tN .XN , in order;1
Computeq(v) ∀v ∈ U by one pass overU ;2
Initialize a priority queueA sorted by expected rank;3
for i = 1, . . . , N do4

Computer(ti) usingq(v)’s andXi using Eqn. (4);5
Insert (ti, r(ti)) into A;6
if |A| > k then Drop element with largest expected rank7
from A;

return A;8

Algorithm 2: T-ERank(D, k)
SortD by score attribute s.t. ifti.vi ≥ tj .vj , theni ≤ j;1
Computeqi ∀i ∈ [1, N] andE[|W |] by one pass overD;2
Initialize a priority queueA sorted by expected rank;3
for i = 1, . . . , N do4

Computer(ti) using (8);5
if |A| > k then drop element with largest expected rank6
from A;

return A;7

APPENDIX E
FURTHER EXPERIMENTS

E.1 Expected Ranks

E.1.1 Expected Ranks in the Attribute-level Model

0 20 40 60 80 100
0

20

40

60

80

100

k (N=105, s=5)

%
 o

f t
up

le
s

pr
un

ed

uu uzipf

zipfu zipfzipf movie

Fig. 13. Attribute-level:
Pruning of A-ERank-
Prune.

0 2 4 6 8 10 12
650

700

750

800

850

900

950

Number of choices in rule

T
im

e
(s

ec
on

ds
)

T−MQRank

Fig. 14. Tuple-level: Ef-
fect of ψ for median and
quantile ranks.

Figure 13 shows the pruning power of A-ERank-Prune. In
this experimentN = 100, 000, s = 5, andk is varied from
10 to 100. It shows we often only need to materialize a small
number of tuples ofD (ordered by expected score) before
we can be sure we have found the top-k, across a variety
of data sets. Intuitively, a more skewed distribution on either
dimension should increase the algorithm’s pruning power. This
intuition is confirmed by results in Figure 13. When both
distributions are skewed, A-ERank-Prune could halt the scan

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

after seeing less than20% of the relation. For themovie data
set A-ERank-Prune is also effective and prunes almost50%
of the tuples. Even for more uniform distributions such asuu
expected scores hold enough information to prune.

E.1.2 Expected Ranks in the Tuple-Level Model
Figure 14 shows by increasing the number of tuples in a rule
ψ in uu, while also requiringζ = 30%, reduces the amount of
time to compute median ranks. This is explainable by the fact
that increasing the number of tuples in any ruleτ will clearly
cause the total number of exclusion rules in the database to
decrease.

E.2 Comparison of Expected and Median Ranks

We have shown retrieving the top-k from an uncertain database
following either the attribute-level or tuple-level modelmay
be computed efficiently inO(N logN) time when ranking by
expected ranks. We have also presented algorithms to com-
pute median and quantile ranks for a database following the
attribute-level and tuple-level model inO(sN3) and (NM2)
time respectively. It is evident not only from our experiments
but also from the corresponding complexities for the expected
rank and median and quantile rank algorithms that retrieving
the top-k tuples from an uncertain database using expected
ranks may require much less computational effort than median
or quantile ranks. It is clear from Figure 9 and Figure 10 that
determining the top-k from both attribute-level and tuple-level
uncertain databases using median ranks requires on the order
of 104 seconds. In comparison, from Figure 6 and Figure 7
we can see we need less than one second to determine the top-
k for both attribute-level and tuple-level uncertain databases
utilizing the expected ranks. It is not surprising ranking by
median ranks requires more computational effort than ranking
by expected ranks since we must compute the rank distribution
rank(ti) for every ti ∈ D in order to determine the median
ranks. To do this we rely on dynamic programs with quadratic
complexities. However, it has been commonly observed that
calculating the median or quantile values for a distribution
is more expensive than computing the expectation of the
distribution.

We also compared the similarity between the top-k lists
returned by ranking with the median ranks and ranking with
the expected ranks. We adopted the techniques from [5] for
this purpose. Specifically, for two top-k lists τ1 and τ2, we
use theaveraging Kendall distanceto measure their similarity,
denoted asKavg(τ1, τ2). Kavg(τ1, τ2) is computed as

Kavg(τ1, τ2) =
∑

{i,j}∈P (τ1,τ2)

K̄
(p)
i,j (τ1, τ2), for p = 0.5 (17)

whereK̄(p)
i,j (τ1, τ2) is defined as a penalty over the pairs in the

setP (τ1, τ2) = {{i, j}|i 6= j and i, j ∈ τ1∪τ2}, i.e.P (τ1, τ2)
is the set of unordered pairs of distinct elements inτ1 ∪ τ2.
The exact details of how the penaltȳK(p)

i,j (τ1, τ2) is assigned
for different pairs in the setP are found in [5]. A larger
Kavg(τ1, τ2) value indicates a higherdissimilarity between
two top-k lists τ1 and τ2. By examining the assignment
of the penalty to possible pairs inP , we can show that

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

k

N
or

m
al

iz
ed

 A
vg

. K
en

da
ll

D
is

ta
nc

e

uu uzipf

zipfu zipfzipf movie

(a) Attr.-level uncertainty model.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

k

N
or

m
al

iz
ed

 A
vg

. K
en

da
ll

D
is

ta
nc

e

uu uzipf

zipfu zipfzipf movie

(b) Tuple-level uncertainty model.

Fig. 15. Normalized averaging Kendall distance for ex-
pected and median ranks with different k values.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

k (movie)

N
or

m
al

iz
ed

 A
vg

. K
en

da
ll

D
is

ta
nc

e

0.10−quantile
0.20−quantile
0.30−quantile
0.40−quantile

(a) Attr.-level uncertainty model.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

k (movie)

N
or

m
al

iz
ed

 A
vg

. K
en

da
ll

D
is

ta
nc

e

0.10−quantile
0.20−quantile
0.30−quantile
0.40−quantile

(b) Tuple-level uncertainty model.

Fig. 16. Normalized averaging Kendall distance for me-
dian and quantile ranks with different k values.

Kavg(τ1, τ2) ∈ [0, k2 +
(

k
2

)

] for any two top-k lists τ1 and
τ2. The smallest value forKavg(τ1, τ2) happens whenτ1 and
τ2 are identical as two ordered sets; and the largest value for
Kavg(τ1, τ2) happens whenτ1 andτ2 are completely disjoint.
Hence, a meaningful way to represent the similarity between
any two top-k lists, τ1 and τ2, is to use thenormalized
averaging Kendall distance, which is defined as:

Knavg(τ1, τ2) =
Kavg(τ1, τ2)

k2 +
(

k

2

) (18)

Clearly,Knavg(τ1, τ2) ∈ [0, 1]. SmallerKnavg(τ1, τ2) values
indicate higher similarity betweenτ1 andτ2, and larger values
indicate lower similarity.

In Figures 15(a) and 15(b) we compare the similarity
between the top-k results returned from the median ranks
and expected ranks for both the attribute-level and tuple-level
uncertainty models, using the normalized averaging Kendall
distance. It is clear from the results in Figure 15(a) and 15(b)
that the top-k lists produced by the median ranks and the
expected ranks are rather different for both the attribute-level
and the tuple-level uncertainty models, especially whenk is
small for the synthetic data sets. In general, the similarity
between their top-k lists increases whilek increases, but
still maintains a clear difference. This shows that rankingby
median and quantile ranks or by expected ranks will give
us a different view of the top-k. This result is quite natural
since median (quantile) ranks and expected ranks characterize
different characteristics of the rank distributionsrank(ti) for
all ti ∈ D, i.e. the 0.50-quantile (or other quantile values) and
expectation ofrank(ti).

In Figures 16(a) and 16(b) we compare the similarity
between the top-k results returned from the median ranks
and different quantile ranks for themovie data set for both
the attribute-level and tuple-level uncertainty models, again
using the normalized averaging Kendall distance. From these

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

results we see that the similarity of the top-k lists produced
by different quantile ranks and median ranks behaves in a
very stable manner. Ask increases from 0 to about 200
the similarity decreases quadratically between the different
quantile ranks and the median ranks and whenk > 200 we see
that the similarity between the median ranks and the different
quantile ranks remains roughly the same. Also notice that for
all values ofk, as the quantile approaches the median the
normalized averaging Kendall distance approaches 0.

REFERENCES

[1] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
ICDE, 2001.

[2] L. L. Cam, “An approximation theorem for the poisson binomial
distribution,” Pacific Journal of Mathematics, vol. 10, no. 4, pp. 1181–
1197, 1960.

[3] R. Cheng, J. Chen, M. Mokbel, and C.-Y. Chow, “Probabilistic verifiers:
Evaluating constrained nearest-neighbor queries over uncertain data,” in
ICDE, 2008.

[4] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation
methods for the web,” inWWW Conference, 2001.

[5] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” in
ACM-SIAM Symposium on Discrete Algorithms, 2003.

[6] W. Hoeffding, “On the distribution of the number of successes in
independent trials,”Annals of Mathematical Statistics, vol. 27, no. 3,
pp. 713–721, 1956.

[7] M. Hua, J. Pei, W. Zhang, and X. Lin, “Ranking queries on uncertain
data: A probabilistic threshold approach,” inSIGMOD, 2008.

[8] J. Li, B. Saha, and A. Deshpande, “A unified approach to ranking in
probabilistic databases,”PVLDB, vol. 2, no. 1, pp. 502–513, 2009.

[9] X. Lian and L. Chen, “Probabilistic ranked queries in uncertain
databases,” inEDBT, 2008.

[10] C. Re, N. Dalvi, and D. Suciu, “Efficient top-k query evaluation on
probabilistic databases,” inICDE, 2007.

[11] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang, “Top-k query processing
in uncertain databases,” inICDE, 2007.

[12] X. Zhang and J. Chomicki, “On the semantics and evaluation of top-k
queries in probabilistic databases,” inDBRank, 2008.

