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Abstract—When dealing with massive quantities of data, top-
k queries are a powerful technique for returning only the k
most relevant tuples for inspection, based on a scoring function.
The problem of efficiently answering such ranking queries has
been studied and analyzed extensively within traditional database
settings. The importance of the top-k is perhaps even greater in
probabilistic databases, where a relation can encode exponentially
many possible worlds. There have been several recent attempts
to propose definitions and algorithms for ranking queries over
probabilistic data. However, these all lack many of the intuitive
properties of a top-k over deterministic data. Specifically, we
define a number of fundamental properties, including exact-k,
containment, unique-rank, value-invariance, and stability, which
are all satisfied by ranking queries on certain data. We argue
that all these conditions should also be fulfilled by any reasonable
definition for ranking uncertain data. Unfortunately, none of the
existing definitions is able to achieve this.

To remedy this shortcoming, this work proposes an intuitive
new approach of expected rank. This uses the well-founded notion
of the expected rank of each tuple across all possible worlds
as the basis of the ranking. We are able to prove that, in
contrast to all existing approaches, the expected rank satisfies

all the required properties for a ranking query. We provide
efficient solutions to compute this ranking across the major
models of uncertain data, such as attribute-level and tuple-level
uncertainty. For an uncertain relation of N tuples, the processing
cost is O(N log N)—no worse than simply sorting the relation.
In settings where there is a high cost for generating each tuple in
turn, we provide pruning techniques based on probabilistic tail
bounds that can terminate the search early and guarantee that
the top-k has been found. Finally, a comprehensive experimental
study confirms the effectiveness of our approach.

I. INTRODUCTION

Ranking queries are a powerful concept in focusing attention

on the most important answers to a query. To deal with massive

quantities of data, such as multimedia search, streaming data,

web data and distributed systems, tuples from the underlying

database are ranked by a score, usually computed based

on a user-defined scoring function. Only the top-k tuples

with the highest scores are returned for further inspection.

Following the seminal work by Fagin et al. [13], such queries

have received considerable attention in traditional relational

databases, including [23], [19], [36] and many others. See

the excellent survey by Ilyas et al. [20] for a more complete

overview of the many important studies in this area.

Within these motivating application domains—distributed,

streaming, web and multimedia applications—data arrives in

massive quantities, underlining the need for ordering by score.

But an additional challenge is that the data is also typically

inherently fuzzy or uncertain. For instance, multimedia and

unstructured web data frequently require data integration or

schema mapping [15], [7], [16]. Data items in the output

of such operations are usually associated with a confidence,

reflecting how well they are matched with other records from

different data sources. In applications that handle measurement

data, e.g., sensor readings and distances to a query point,

the data is inherently noisy, and is better represented by a

probability distribution rather than a single deterministic value

[9], [11]. In recognition of this aspect of the data, there

have been significant research efforts devoted to producing

probabilistic database management systems, which can rep-

resent and manage data with explicit probabilistic models of

uncertainty. The notable examples of such systems include

MystiQ [10], Trio [1], and MayBMS [2].

With a probabilistic database, it is possible to represent a

huge number of possible (deterministic) realizations of the

(probabilistic) data—an exponential blow-up from the size of

the relation representing the data. A key problem in such

databases is how to extend the familiar semantics of the

top-k query to this setting, and how to answer such queries

efficiently. To this end, there has been several recent works

outlining possible definitions, and associated algorithms. Ré et

al. [28] base their ranking on the confidence associated with

each query result. Soliman et al. [33] extend the semantics of

ranking queries from certain data and study the problem of

ranking tuples when there is both a score and probability for

each tuple. Subsequently, there have been several other ap-

proaches to ranking based on combining score and likelihood

[39], [34], [37], [18] (discussed in detail in Section III-B).

For certain data with a single score value, there is a

clear total ordering based on score from which the top-k is

derived, which leads to a clean and intuitive semantics. This is

particularly natural, by analogy with the many occurrences of

top-k lists in daily life: movies ranked by box-office receipts,

athletes ranked by race times, researchers ranked by number of

publications (or other metrics), and so on. With uncertain data,

there are two distinct orders to work with: ordering by score,

and ordering by probability. There are many possible ways

of combining these two, leading to quite different results, as

evidenced by the multiple definitions that have been proposed

in the literature, such as U-Topk [33], U-kRanks [33], Global-

Topk [39] and PT-k [18]. In choosing a definition to work with,



we must ask, what are the conditions that we want the resulting

query answer to satisfy. We address this issue following a

principled approach and return to the properties of ranking

queries on certain data. We define the following properties

that should hold on the output of such a ranking query:

• Exact-k: The top-k list should contain exactly k items;

• Containment: The top-(k+1) list should contain all items
in the top-k;

• Unique-ranking: Within the top-k, each reported item

should be assigned exactly one position: the same item

should not be listed multiple times within the top-k.

• Value-invariance: The scores only determine the relative

behavior of the tuples: changing the score values without

altering the relative ordering should not change the top-k;

• Stability: Making an item in the top-k list more likely or

more important should not remove it from the list.

We define these properties more formally in Section III-A.

These properties are clearly satisfied for certain data, and

capture much of our intuition on how a “ranking” query should

behave. Moreover, they should seem intuitive and natural

(indeed, they should appear almost obvious). A general axiom

of work on extending data management from certain data to

the uncertain domain has been that basic properties of query

semantics should be preserved to the extent possible [10], [4].

But, as we subsequently demonstrate, none of the prior works

on ranking queries for probabilistic data satisfies all of these

“obvious” properties. Lastly, we note that prior work stated

results primarily in the tuple-level uncertainty model [1], [10];

here, we show our results for both the tuple-level and attribute-

level uncertainty models [9], [35].

Our contributions. To remedy the shortcomings we identify,

this work proposes an intuitive new approach for ranking

based on expected rank. It uses the well-founded notion

of the expected value of the rank of each tuple across all

possible worlds as the basis of the ranking. We are able to

prove that, in contrast to all existing approaches, the expected

rank satisfies all the required properties for a ranking query

across major models of uncertain data. Furthermore, these nice

properties do not come at a price of higher computational

costs. On the contrary, we design efficient O(N log N)-time
exact algorithms to compute under both the attribute-level

model and the tuple-level model, while most of the previous

top-k definitions rely on dynamic programming and require

Ω(N2) time to compute the results exactly, and errors have to
be tolerated if one wants to process the queries faster by using

random sampling or other approximation techniques [17]. In

summary, our contributions are the followings:

• We formalize the necessary semantics of ranking queries

in certain data and migrate them to probabilistic data

(Section III-A), and show that no existing approaches for

this problem achieve all these properties (Section III-B).

• We propose a new approach based on the expected rank

of each tuple across all possible worlds that provably

satisfies these requirements. The expected rank definition

works seamlessly with both the attribute-level and tuple-

level uncertainty models (Section III-C).

• We provide efficient algorithms for expected ranks in

both models. For an uncertain relation of N tuples,

the processing cost of our approach is O(N log N). In
settings where there is a high cost for accessing tuples,

we show pruning techniques based on probabilistic tail

bounds that can terminate the search early and guarantee

that the top-k has been found (Section IV and V).

• We present a comprehensive experimental study that

confirms the effectiveness of our approach (Section VII).

II. UNCERTAIN DATA MODELS W.R.T RANKING QUERIES

Many models for describing uncertain data have been

presented in the literature. The work by Sarma et al. [29]

describes the main features and contrasts their properties

and descriptive ability. Each model describes a probability

distribution over possible worlds, where each possible world

corresponds to a single deterministic data instance. The most

expressive approach is to explicitly list each possible world

and its associated probability; such a method is referred to as

complete, as it can capture all possible correlations. However,

complete models are very costly to describe and manipulate

since there can be exponentially many combinations of tuples

each generating a distinct possible world [29].

Typically, we are able to make certain independence as-

sumptions, that unless correlations are explicitly described,

events are assumed to be independent. Consequently, likeli-

hoods can be computed using standard probability calculations

(i.e. multiplication of probabilities of independent events). The

strongest independence assumptions lead to the basic model,

where each tuple has a probability of occurrence, and all

tuples are assumed fully independent of each other. This is

typically too strong an assumption, and so intermediate models

allow the description of simple correlations between tuples.

This extends the expressiveness of the models, while keeping

computations of probability tractable. We consider two models

that have been used frequently within the database community.

In our discussion, without loss of generality, a probabilistic

database contains simply one relation.

Attribute-level uncertainty model. In this model, the prob-

abilistic database is a table of N tuples. Each tuple has one

attribute whose value is uncertain (together with other certain

attributes). This uncertain attribute has a discrete pdf describ-

ing its value distribution. When instantiating this uncertain

relation to a certain instance, each tuple draws a value for its

uncertain attribute based on the associated discrete pdf and

the choice is independent among tuples. This model has many

practical applications such as sensor readings [22], [11], spatial

objects with fuzzy locations [35], [9], [5], [26], [25], etc. More

important, it is very easy to represent this model using the

traditional, relational database, as observed by Antova et al.

[3]. For the purpose of ranking queries, the important case

is when the uncertain attribute represents the score for the

tuple, and we would like to rank the tuples based on this

score attribute. Let Xi be the random variable denoting the

score of tuple ti. We assume that Xi has a discrete pdf with



tuples score
t1 {(v1,1, p1,1), (v1,2, p1,2), . . . , (v1,s1

, p1,s1
)}

t2 {(v2,1, p2,1), . . . , v2,s2
, p2,s2

)}
...

...
tN {(vN,1, pN,1), . . . , (vN,sN

, pN,sN
)}

Fig. 1. Attribute-level uncertainty model.

tuples score
t1 {(100, 0.4), (70, 0.6)}
t2 {(92, 0.6), (80, 0.4)}
t3 {(85, 1)}

world W Pr[W ]
{t1 = 100, t2 = 92, t3 = 85} 0.4 × 0.6 × 1 = 0.24
{t1 = 100, t3 = 85, t2 = 80} 0.4 × 0.4 × 1 = 0.16
{t2 = 92, t3 = 85, t1 = 70} 0.6 × 0.6 × 1 = 0.36
{t3 = 85, t2 = 80, t1 = 70} 0.6 × 0.4 × 1 = 0.24

Fig. 2. An example of possible worlds for attribute-level uncertainty model.

bounded size. This is a realistic assumption for many practical

applications, including movie ratings [10], and string matching

[7]. The general, continuous pdf case is discussed briefly

in Section VI. In this model we are essentially ranking the

set of independent random variables X1, . . . , XN . A relation

following this model is illustrated in Figure 1. For tuple ti, the

score takes the value vi,j with probability pi,j for 1 ≤ j ≤ si.

Tuple-level uncertainty model. In the second model, the

attributes of each tuple are fixed, but the entire tuple may or

may not appear. In the basic model, each tuple t appears with

probability p(t) independently. In more complex models, there
are dependencies among the tuples, which can be specified

by a set of generation rules. These can be in the form of

x-relations [1], [4], complex events [10], or other forms.

All previous work concerned with ranking queries in un-

certain data has focused on the tuple-level uncertainty model

with exclusion rules [18], [33], [39], [37] where each tuple

appears in a single rule τ . Arbitrary generation rules have been

discussed in [33], [34], but they have been shown to require

exponential processing complexity [18], [37]. Hence, as with

many other works in the literature [33], [18], [37], [38], we

primarily consider exclusion rules in this model, where each

exclusion rule has a constant number of choices. In addition,

each tuple appears in at most one rule. The total probability

for all tuples in one rule must be less or equal than one, so that

it can be properly interpreted as a probability distribution. To

simplify our discussion, we allow rules containing only one

tuple and require that all tuples must appear in one of the

rules. This is essentially equivalent to the popular x-relations

model [1]. This tuple-level uncertainty model is a good fit for

applications where it is important to capture the correlations

between tuples; this model has been used to fit a large number

of real-life examples [4], [10], [33], [18], [38]. An example

of a relation in this uncertainty model is shown in Figure 3.

This relation has N tuples and M rules. The second rule says

that t2 and t4 cannot appear together in any certain instance

of this relation. It also constrains that p(t2) + p(t4) ≤ 1.

tuples score p(t)
t1 v1 p(t1)
t2 v2 p(t2)
...

...
tN vN p(tN)

rules
τ1 {t1}
τ2 {t2, t4}
...

...
τM {t5, t8, tN}

Fig. 3. Tuple-level uncertainty model.

tuples score p(t)
t1 100 0.4
t2 92 0.5
t3 80 1
t4 70 0.5

rules
τ1 {t1}
τ2 {t2, t4}
τ3 {t3}

world W Pr[W ]
{t1, t2, t3} p(t1)p(t2)p(t3) = 0.2
{t1, t3, t4} p(t1)p(t3)p(t4) = 0.2
{t2, t3} (1 − p(t1))p(t2)p(t3) = 0.3
{t3, t4} (1 − p(t1))p(t3)p(t4) = 0.3

Fig. 4. An example of possible worlds for tuple-level uncertainty model.

The possible world semantics. We denote the uncertain

relation as D. In the attribute-level uncertainty model, an
uncertain relation is instantiated into a possible world by tak-

ing one independent value for each tuple’s uncertain attribute

according to its distribution. Denote a possible world as W

and the value for ti’s uncertain attribute in W as wti
. In

the attribute-level uncertainty model, the probability that W

occurs is Pr[W ] =
∏N

j=1 pj,x, where x satisfies vj,x = wtj
. It

is worth mentioning that in the attribute-level case we always

have ∀W ∈ W , |W | = N , where W is the space of all

the possible worlds. The example in Figure 2 illustrates the

possible worlds for an uncertain relation in this model.

For the tuple-level uncertainty model, a possible world W

from W is now a subset of tuples from the uncertain relation

D. The probability ofW occurring is Pr[W ] =
∏M

j=1 pW (τj),
where for any τ ∈ D, pW (τ) is defined as

pW (τ) =







p(t), if τ ∩ W = {t};
1 −

∑

ti∈τ p(ti), if τ ∩ W = ∅;
0, otherwise.

A notable difference for the tuple-level uncertain model is

that given a random possible world W , not all tuples from D
will appear. Hence, the size of the possible world can range

from 0 to N . The example in Figure 4 illustrates the possible

worlds for an uncertain relation in this model.

We iterate that every uncertain data model can be seen as a

succinct description of a distribution over possible worlds W .
Each possible world is a certain table on which we can evaluate

any traditional query. The focus of uncertain query processing

is (1) how to “combine” the query results from all the possible

worlds into a meaningful result for the query; and (2) how

to process such a combination efficiently without explicitly

materializing the exponentially many possible worlds.

Difference of the two models under ranking queries. We

would like to emphasize that there is a significant difference

for the two models in the context of ranking tuples. More



specifically, the semantic of ranking queries in uncertain

databases is to derive a meaningful ordering for all tuples in

the database D. Note that this is not equivalent to deriving
an ordering for all values that tuples in D may take. In the
attribute-level model, all tuples in D will participate in the
ranking process in every possible world. In contrast, in the

tuple-level model only a subset of tuples in D will participate
in the ranking process for a given possible world.

III. RANKING QUERY SEMANTICS

A. Properties of Ranking Queries

We now define a set of properties for ranking tuples. These

are chosen to describe the key properties of ranking certain

data, and hence to give properties which a user would naturally

expect of a ranking over uncertain data to have.

The first property is very natural, and is also used in [39].

Definition 1 (Exact-k): Let Rk be the set of tuples (asso-

ciated with their ranks) in the top-k query result. If |D| ≥ k,

then |Rk| = k.

The second property captures the intuition that if an item

is in the top-k, it should be in the top-k′ for any k′ > k.

Equivalently, the choice of k is simply a slider that chooses

how many results are to be returned to the user, and changing

k should only change the number of results returned, not the

underlying set of results.

Definition 2 (Containment): For any k, Rk ⊂ Rk+1.

Replacing “⊂” with “⊆”, gives the weak containment property.
The next property stipulates that the rank assigned to each

tuple in the top-k list should be unique.

Definition 3 (Unique ranking): Let rk(i) be the identity of
the tuple from the input assigned rank i in the output of the

ranking procedure. The unique ranking property requires that

∀i 6= j.rk(i) 6= rk(j).
The next property captures the semantics that the score

function is assumed to only give a relative ordering, and is

not an absolute measure of the value of a tuple.

Definition 4 (Value invariance): Let D denote the relation
which includes score values v1 ≤ v2 ≤ . . .. Let s′i be any set

of score values satisfying v′1 ≤ v′2 ≤ . . ., and define D′ to be

D with all scores vi replaced with v′i. The value invariance

property requires that Rk(D) = Rk(D′) for any k.

For example, consider the relation with tuple-level uncer-

tainty illustrated in Figure 4. Here, the scores are 70 ≤ 80 ≤
92 ≤ 100. The value invariance property demands that we
could replace these scores with, say, 1 ≤ 2 ≤ 3 ≤ 1000, and
the result of the ranking would still be the same.

Finally, Zhang and Chomicki [39] proposed the stability

condition in the tuple-level uncertainty model1. We adopt this

property and generalize it to the attribute-level model:

Definition 5 (Stability): In the tuple-level model, given a

tuple ti = (vi, p(ti)) from D, if we replace ti with t
↑
i =

(v↑i , p(t↑i )) where v
↑
i ≥ vi, p(t↑i ) ≥ p(ti), then

ti ∈ Rk(D) ⇒ t
↑
i ∈ Rk(D′),

where D′ is obtained by replacing ti with t
↑
i in D.

1The faithfulness property from [39] is discussed in Section VI.

For the attribute-level model, the statement for stability

remains the same but with t
↑
i defined as follows. Given a

tuple ti whose score is a random variable Xi, we obtain t
↑
i by

replacing Xi with a random variable X
↑
i that is stochastically

greater or equal than [31] Xi, denoted as X
↑
i � Xi.

Stability captures the intuition that if a tuple is already in the

top-k, making it “probabilistically larger” should not eject it.

Stability also implies that making a non-top-k probabilistically

smaller should not bring it into the top-k.

Note, these conditions make little explicit reference to prob-

ability models, and can apply to almost any ranking setting.

They trivially hold for the top-k semantics over certain data.

Yet perhaps surprisingly, none of the existing definitions for

top-k over uncertain data satisfy these natural requirements!

B. Top-k Queries on Probabilistic Data

We now consider how to extend ranking queries to uncertain

data. Details differ slightly for the two uncertainty models: In

the attribute-level model, a tuple has a random score but it

always exists in any random possible world, i.e., every tuple

participates in the ranking process in all possible worlds, and

we rank these N tuples based on their score distribution. In

contrast, in the tuple-level model, a tuple has a fixed score

but it may not always appear, i.e., it may not participate in

the ranking process in some possible worlds. We still aim to

produce a ranking on all N tuples, taking this into account.

Considering the tuple-level model, the difficulty of extend-

ing ranking queries to probabilistic data is that there are now

two distinct orderings present in the data: that given by the

score, and that given by the probabilities. These two types of

information need to be combined in some way to produce the

top-k (this can be orthogonal to the model used to describe the

uncertainty in the data). We now detail a variety of approaches

that have been taken, and discuss their shortcomings with

respect to the conditions we have defined. The key properties

are summarized in Figure 5.

Combine two rankings. There has been much work on taking

multiple rankings and combining them (e.g. taking the top 50

query web search results from multiple search engines, and

combining them to get an overall ranking) based on minimiz-

ing disagreements [12]. Likewise, skyline-based approaches

extract points which do not dominate each other, and are not

themselves dominated, under multiple ordered dimensions [6].

But such approaches fail to account for the inherent semantics

of the probability distribution: it is insufficient to treat it simply

as an ordinal attribute, as this loses the meaning of the relative

likelihoods, and does not guarantee our required properties.

Most likely top-k. Since a probabilistic relation can define

exponentially many possible worlds, one approach to the top-

k problem finds the top-k set that has the highest support

over all possible worlds. In other words, (conceptually) extract

the top-k from each possible world, and compute the support

(probability) of each distinct top-k set found. The U-Topk

approach [33] reports the most likely top-k as the answer to

the ranking query. This method has the advantage that it more
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U-topk [33] × × X X X

U-kRanks [33], [24] X X × X ×
PT-k [18] × weak X X X

Global-topk [39] X × X X X

Expected score X X X × X

Expected rank X X X X X

Fig. 5. Summary of Ranking Methods for Uncertain Data

directly incorporates the likelihood information, and satisfies

unique ranking, value invariance, and stability. But it may not

always return k tuples when D is small, as also pointed out in
[39]. More importantly, it violates the containment property.

In fact, there are simple examples where the top-k can be

completely disjoint from the top-(k+1). Consider the attribute-
level model example in Figure 2. The top-1 result under the

U-Topk definition is t1, since its probability of having the

highest score in a random possible world is 0.24+0.16=0.4,

larger than that of t2 or t3. However, the top-2 result is (t2, t3),
whose probability of being the top-2 is 0.36, larger than that

of (t1, t2) or (t1, t3). Thus, the top-2 list is completely disjoint
from the top-1. Similarly one can verify that for the tuple-level

model example in Figure 4, the top-1 result is t1 but the top-2

is (t2, t3) or (t3, t4). No matter what tie-breaking rule is used,
the top-2 is completely disjoint from the top-1.

Most likely tuple at each rank. The previous approach fails

because it deals with top-k sets as immutable objects. Instead,

we could consider the property of a certain tuple being ranked

kth in a possible world. In particular, let Xi,j be the event

that tuple j is ranked i within a possible world. Computing

Pr[Xi,j ] for all i, j pairs, this approach reports the ith result

as argmaxj Pr[Xi,j ], i.e., the tuple that is most likely to be
ranked ith over all possible worlds. This is the U-kRanks

approach [33]; essentially the same definition is proposed as

PRank in [24] and analyzed in the context of distributions

over spatial data. This definition overcomes the shortcomings

of U-Topk and satisfies exact-k and containment. However, it

fails on unique ranking, as one tuple may dominate multiple

ranks at the same time. A related issue is that some tuples

may be quite likely, but never get reported. So in Figure 2,

the top-3 under this definition is t1, t3, t1: t1 appears twice

and t2 never; for Figure 4, there is a tie for the third position,

and there is no fourth placed tuple, even though N = 4. These
issues have also been pointed out in [18], [39]. In addition, it

fails on stability, as shown in [39], since when the score of a

tuple becomes larger, it may leave its original rank but cannot

take over any higher ranks as the dominating winner.

Rank by top-k probability. Attempting to patch the previous

definition, we can replace the event “tuple i is at rank k” with

the event “tuple i is at rank k or better”, and reason about the

probability of this event. That is, define the top-k probability

of a tuple as the probability that it is in the top-k over all

possible worlds. The probabilistic threshold top-k query (PT-

k for short) returns the set of all tuples whose top-k probability

exceeds a user-specified probability p [18]. However, for a

user specified p, the “top-k” list may not contain k tuples,

violating exact-k. If we fix p and increase k, the top-k lists do

expand, but they only satisfy the weak containment property.

For instance consider the tuple-level example in Figure 2. If

we set p = 0.4, then the top-1 list is (t1). But both the top-
2 and top-3 lists contain the same set of tuples: t1, t2, t3. A

further drawback of using PT-k for ranking is that user has to

specify the threshold p which greatly affects the result.

Similarly, the Global-Topk method ranks the tuples by their

top-k probability, and then takes the top-k of these [39] based

on this probability. This makes sure that exactly k tuples are

returned, but it again fails on containment. In Figure 2, under

the Global-Topk definition, the top-1 is t1, but the top-2 is

(t2, t3). In Figure 4, the top-1 is t1, but the top-2 is (t3, t2).

Further, note that as k increases towards N , then the im-

portance of the score approaches zero, and these two methods

reduce to simply ranking by probability alone.

Expected score. The above approaches all differ from tra-

ditional ranking queries, in that they do not define a single

ordering of the tuples from which the top-k is taken—in other

words, they do not resemble “top-k” in the literal interpretation

of the term. A simple approach in this direction is to just

compute the expected score of each tuple, and rank by this

score, then take the top-k. It is easy to check that such

an approach directly implies exact-k, containment, unique

ranking, and stability. However, this is very dependent on the

values of the scores: consider a tuple which has very low

probability but a score that is orders of magnitude higher than

others—then it gets propelled to the top of the ranking, since

it has the highest expected score, even though it is unlikely.

But if we reduce this score to being just greater than the

next highest score, the tuple will drop down the ranking. It

therefore violates value invariance. Furthermore, in the tuple-

level model, simply using the expected score ignores all the

correlation rules completely.

C. Ranking by Expected Ranks

Motivated by the deficiencies of existing definitions, we

propose a new ranking method which we call expected rank.

The intuition is that top-k over certain data is defined by first

providing a total ordering of the tuples, and then selecting

the k “best” tuples under the ordering. Any such definition

immediately provides the containment and unique-ranking

properties. After rejecting expected score due to its sensitivity

to the score values, a natural candidate is the expected rank

of the tuple over the possible worlds. More formally,

Definition 6 (Expected Rank): The rank of a tuple ti in a

possible worldW is defined to be the number of tuples whose

score is higher than ti (so the top tuple has rank 0), i.e.,

rankW (ti) = |{tj ∈ W |vj > vi}|
In the attribute-level uncertain model, we compute the

expected rank r(ti) as above and then return the top-k tuples



with the lowest r(ti). More precisely,

r(ti) =
∑

W∈W,ti∈W

Pr[W ] · rankW (ti) (1)

In the tuple-level model, we have to define how to handle

possible worlds where ti does not appear. For such a world

W where ti does not appear, we define rankW (ti) = |W |, i.e.
we imagine that it follows after all the appearing tuples. So,

r(ti) =
∑

ti∈W

Pr[W ] rankW (ti) +
∑

ti 6∈W

Pr[W ] · |W | (2)

=
∑

W∈W

Pr[W ] rankW (ti),

where rankW (ti) is defined to be |W | if ti 6∈ W .

For the example in Figure 2, the expected rank for t2 is

r(t2) = 0.24×1+0.16×2+0.36×0+0.24×1 = 0.8. Similarly
r(t1) = 1.2, r(t3) = 1. So the final ranking is (t2, t3, t1). For
the example in Figure 4, r(t2) = 0.2 × 1 + 0.2 × 3 + 0.3 ×
0 + 0.3× 2 = 1.4. Note that t2 does not appear in the second
and the fourth worlds, so its ranks are taken to be 3 and 2,

respectively. Similarly r(t1) = 1.2, r(t3) = 0.9, r(t4) = 1.9.
So the final ranking is (t3, t1, t2, t4).
We now prove some properties of this definition. For

simplicity, we assume that the expected ranks are unique, and

so the ranking forms a total ordering. In practice, ties can be

broken arbitrarily e.g. based on having the lexicographically

smaller id. The same tie-breaking issues affect the ranking of

certain data as well.

Theorem 1: Expected rank satisfies exact-k, containment,

unique ranking, value invariance, and stability.

Proof: The first three properties follow immediately from

the fact that the expected rank is used to give an ordering.

Value invariance follows by observing that changing the score

values will not change the rankings in possible worlds, and

therefore does not change the expected ranks.

For stability we show that when we change a tuple ti to t
↑
i ,

its expected rank will not increase, while the expected rank of

any other tuple will not decrease. Let r′ be the expected rank

in the uncertain relation D′ after changing ti to t
↑
i . We need

to show that r(ti) ≥ r′(t↑i ) and r(ti′ ) ≤ r′(ti′) for any i′ 6= i.

Consider the attribute-level model first. By definition 6 and

linearity of expectation, we have

r(ti) =
∑

j 6=i

Pr[Xi < Xj ] =
∑

j 6=i

∑

ℓ

pj,ℓ Pr[Xi < vj,ℓ]

≥
∑

j 6=i

∑

ℓ

pj,ℓ Pr[X↑
i < vj,ℓ] (because Xi � X

↑
i )

=
∑

j 6=i

Pr[X↑
i < Xj ] = r′(t↑i ).

For any i′ 6= i,

r(ti′ ) = Pr[Xi′ < Xi] +
∑

j 6=i′,j 6=i

Pr[Xi′ < Xj ]

=
∑

ℓ

pi′,ℓ Pr[vi′,ℓ < Xi] +
∑

j 6=i′,j 6=i

Pr[Xi′ < Xj ]

≤
∑

ℓ

pi′,ℓ Pr[vi′,ℓ < X
↑
i ] +

∑

j 6=i′,j 6=i

Pr[Xi′ < Xj]

= Pr[Xi′ < X
↑
i ] +

∑

j 6=i′,j 6=i

Pr[Xi′ < Xj ] = r′(ti′ )

Next consider the tuple-level model. If t
↑
i has a larger score

than ti but the same probability, then r(ti) ≥ r′(t↑i ) follows
easily from (2) since rankW (ti) can only get smaller while
the second term of (2) remains unchanged. For similar reasons,

r(ti′ ) ≤ r′(ti′) for any i′ 6= i.

If t
↑
i has the same score as ti but a larger probability,

rankW (ti) stays the same for any possible world W , but

Pr[W ] may change. We divide all the possible worlds into
three categories: (a) those containing ti, (b) those containing

one of the tuples in the exclusion rule of ti (other than ti), and

(c) all other possible worlds. Note that Pr[W ] does not change
for any W in category (b), so we only focus on categories (a)

and (c). Observe that there is a one-to-one mapping between

the possible worlds in category (a) and (c): W → W ∪ {ti}.
For each such pair, its contribution to r(ti) is

Pr[W ] · |W | + Pr[W ∪ {ti}] · rankW (ti). (3)

Suppose the tuples in the exclusion rule of ti are ti,1, . . . , ti,s.

Note that W and W ∪ {ti} differs only in the inclusion of
ti, so we can write Pr[W ] = π (1 −

∑

ℓ p(ti,ℓ) − p(ti)) and
Pr[W ∪ {ti}] = πp(ti) for some π. When p(ti) increases to
p(t↑i ), the increase in (3) is

π(p(ti) − p(t↑i ))|W | + π(p(t↑i ) − p(ti)) rankW (ti)

= π(p(ti) − p(t↑i ))(|W | − rankW (ti)) ≤ 0.

The same holds for each pair of possible worlds in categories

(a) and (c). Therefore we have r(ti) ≥ r′(t↑i ).

For any i′ 6= i, the contribution of each pair is

Pr[W ] · rankW (ti′) + Pr[W ∪ {ti}] · rankW∪{ti}(ti′). (4)

When p(ti) increases to p(t↑i ), the increase in (4) is

π(p(ti) − p(t↑i ))(rankW (ti′ ) − rankW∪{ti}(ti′)) ≥ 0.

The same holds for each pair of possible worlds in categories

(a) and (c). Therefore we have r′(ti′) ≥ r(ti′ ).

IV. EXPECTED RANKS IN THE ATTRIBUTE-LEVEL

UNCERTAINTY MODEL

This section presents efficient algorithms for calculating the

expected rank of an uncertain relation D with N tuples in

the attribute-level uncertain model. We first show an exact

algorithm that can calculate the expected ranks of all tuples

in D with O(N log N) processing cost. We then propose an
approximate algorithm that can terminate the search as soon

as the top-k tuples with the k smallest expected ranks are

guaranteed to be found without accessing all tuples.



Algorithm 1: A-ERank(D, k)

Create U containing values from t1.X1, . . . , tN .XN , in order;1

Compute q(v) ∀v ∈ U by one pass over U ;2

Initialize a priority queue A sorted by expected rank;3

for i = 1, . . . , N do4

Compute r(ti) using q(v)’s and Xi using Eqn. (6);5

Insert (ti, r(ti)) into A;6

if |A| > k then Drop element with largest expected rank7

from A;

return A;8

A. Exact Computation

By Definition 6 and linearity of expectation, we have

r(ti) =
∑

i6=j

Pr[Xj > Xi]. (5)

The brute-force search (BFS) approach requires O(N) time
to compute r(ti) for one tuple and O(N2) time to compute
the ranks of all tuples. The quadratic dependence on N is

prohibitive when N is large. Below we present an improved

algorithm that runs in O(N log N) time. We observe that (5)
can be written as:

r(ti) =
∑

i6=j

si
∑

ℓ=1

pi,ℓ Pr[Xj > vi,ℓ] =

si
∑

ℓ=1

pi,ℓ

∑

j 6=i

Pr[Xj > vi,ℓ]

=

si
∑

ℓ=1

pi,ℓ

(

∑

j

Pr[Xj > vi,ℓ] − Pr[Xi > vi,ℓ]
)

=

si
∑

ℓ=1

pi,ℓ

(

q(vi,ℓ) − Pr[Xi > vi,ℓ]
)

, (6)

where we define q(v) =
∑

j Pr[Xj > v]. Let U be the

universe of all possible values of Xi, i = 1, . . . , N . Because

we assume each pdf has constant size bounded by s, we have

|U | ≤ |sN |. When s is a constant, we have |U | = O(N).
Now observe that we can precompute q(v) for all v ∈ U

with a linear pass over the input after sorting U which has a

cost of O(N log N). Following (6), exact computation of the
expected rank for a single tuple can now be done in constant

time given q(v) for all v ∈ U . While computing these expected

ranks, we maintain a priority queue of size k that stores

the k tuples with smallest expected ranks dynamically. When

all tuples have been processed, the contents of the priority

queue are returned as the final answer. Computing q(v) takes
time O(N log N); getting expected ranks of all tuples while
maintaining the priority queue takes O(N log k) time. Hence,
the overall cost of this approach is O(N log N). We denote
this algorithm as A-ERrank and describe it in Algorithm 1.

B. Pruning by Expected Scores

A-ERank is very efficient even for largeN values. However,

in certain scenarios accessing a tuple is considerably expensive

(if it requires significant IO access). It then becomes desirable

to reduce the number of tuples accessed in order to find

the answer. It is possible to find a set of (possibly more

than k tuples) which is guaranteed to include the true top-

k expected ranks, by pruning based on tail bounds of the

score distribution. If tuples are sorted in decreasing order of

their expected scores, i.e. E[Xi]’s, we can terminate the search
early. In the following discussion, we assume that if i < j,

then E[Xi] ≥ E[Xj ] for all 1 ≤ i, j ≤ N . Equivalently, we

can think of this as an interface which generates each tuple in

turn, in decreasing order of E[Xi].
The pruning algorithm scans these tuples, and maintains an

upper bound on r(ti), denoted r+(ti), for each ti seen so far,

and a lower bound on r(tu) for any unseen tuple tu, denoted

r−. The algorithm halts when there are at least k r+(Xi)’s
that are smaller than r−. Suppose n tuples t1, . . . , tn have

been scanned. For ∀i ∈ [1, n], we have:

r(ti) =
∑

j≤n,j 6=i

Pr[Xj > Xi] +
∑

n<j≤N

Pr[Xj > Xi]

=
∑

j≤n,j 6=i

Pr[Xj > Xi] +
∑

n<j≤N

si
∑

ℓ=1

pi,ℓ Pr[Xj > vi,ℓ]

≤
∑

j≤n,j 6=i

Pr[Xj > Xi] +
∑

n<j≤N

si
∑

ℓ=1

pi,ℓ

E[Xj]

vi,ℓ

(Markov Inequality)

≤
∑

j≤n,j 6=i

Pr[Xj > Xi] + (N − n)

si
∑

ℓ=1

pi,ℓ

E[Xn]

vi,ℓ

. (7)

The first term in (7) can be computed using only the seen

tuples t1, . . . , tn. The second term could be computed using

Xi and Xn. Hence, from the scanned tuples, we can maintain

an upper bound on r(ti) for each tuple in {t1, . . . , tn}, i.e.,
we can set r+(ti) to be (7) for i = 1, . . . , n. The second term

in r+(ti) is updated for every newly scanned tuple tn (as well

as the first term for tn).

Now we provide the lower bound r−. Consider any unseen

tuple tu, u > n, we have:

r(tu) ≥
∑

j≤n

Pr[Xj > Xu] = n −
∑

j≤n

Pr[Xu ≥ Xj ]

= n −
∑

j≤n

sj
∑

ℓ=1

pj,ℓ Pr[Xu > vj,ℓ]

≥ n −
∑

j≤n

sj
∑

ℓ=1

pj,ℓ

E[Xn]

vj,ℓ

. (Markov Ineq.) (8)

This holds for any unseen tuple. Hence, we set r− to be (8).

Note that (8) only depends on the seen tuples. It is updated

with every new tuple tn.

These bounds lead immediately to an algorithm that main-

tains r+(ti)’s for all tuples t1, . . . , tn and r−. For each new

tuple tn, the r+(ti)’s and r− are updated. From these, we

find the kth largest r+(ti) value, and compare this to r−. If

it is less, then we know for sure that k tuples with smallest

expected ranks globally are among the first n tuples, and can

stop retrieving tuples. Otherwise, we move on to the next tuple.

We refer to this algorithm as A-ERank-Prune.



A remaining challenge is how to find the k tuples with the

smallest expected ranks using the first n tuples alone. This

turns out to be difficult as it is not possible to obtain a precise

order on their final ranks without inspecting all the N tuples in

D. Instead, we use the curtailed database D′ = {t1, . . . , tn},
and compute the exact expected rank r′(ti) of every tuple (for
i ∈ [1, n]) ti in D′. The rank r′(ti) turns out to be an excellent
surrogate for r(ti) for i ∈ [1, n] in D (when the pruning
algorithm terminates after processing n tuples). Hence, we

return the top-k of these as the result of the query. We omit a

detailed analysis of the quality of this approach, and instead

show an empirical evaluation in our experimental study.

A straightforward implementation of A-ERrank-Prune re-

quires O(n2) time. After seeing tn, the bounds in both (7) and

(8) can be updated in constant time, by retaining
∑sj

ℓ=1
pi,ℓ

vi,ℓ
for

each seen tuple. The challenge is to update the first term in (7)

for all i ≤ n. A basic approach requires linear time, for adding

Pr[Xn > Xi] to the already computed
∑

j≤n−1,j 6=i Pr[Xj >

Xi] for all i’s as well as computing
∑

i≤n−1 Pr[Xi > Xn]).
This leads to a total running time of O(n2) for algorithm A-
ERrank-Prune. Using a similar idea in designing algorithm

A-ERank, we could utilize the value universe U ′ of all the

seen tuples and maintain prefix sums of the q(v) values, which
would drive down the cost of this step to O(n log n). We omit
full details for space reasons.

V. EXPECTED RANKS IN THE TUPLE-LEVEL

UNCERTAINTY MODEL

We now consider ranking an uncertain database D in the
tuple-level uncertainty model . For D with N tuples and M

rules, the aim is to retrieve the k tuples with the smallest

expected ranks. Recall that each rule τj is a set of tuples, where
∑

ti∈τj
p(ti) ≤ 1. Without loss of generality we assume the

tuples t1, . . . , tn are already sorted by the ranking attribute

and t1 is the tuple with the highest score. We use ti ⋄ tj
to denote that ti and tj are in the same exclusion rule and

ti 6= tj ; we use ti⋄̄tj to denote that ti and tj are not in the

same exclusion rule. We first give an exact algorithm with

O(N log N) complexity that accesses every tuple. Secondly,
we show a pruning algorithm with O(n log n) complexity,
that only reads the first n tuples, assuming that the expected

number of tuples in D is known to the algorithm.

A. Exact computation

From Definition 6, in particular (2), given tuples that are

sorted by their score attribute, we have:

r(ti) = p(ti) ·
∑

tj ⋄̄ti,j<i

p(tj)

+(1 − p(ti)) ·





∑

tj⋄ti
p(tj)

1 − p(ti)
+

∑

tj ⋄̄ti

p(tj)



 .

The first term computes ti’s expected rank for random worlds

when it appears, and the second term computes the expected

size of a random worldW when ti does not appear inW . The

term

P

tj⋄ti
p(tj)

1−p(ti)
is the expected number of appearing tuples

Algorithm 2: T-ERank(D, k)

Sort D by score attribute s.t. if ti.vi ≥ tj .vj , then i ≤ j;1

Compute qi ∀i ∈ [1, N ] and E[|W |] by one pass over D;2

Initialize a priority queue A sorted by expected rank;3

for i = 1, . . . , N do4

Compute r(ti) using (10);5

if |A| > k then drop element with largest expected rank6

from A;

return A;7

in the same rule as ti, conditioned on ti not appearing, while
∑

tj ⋄̄ti
p(tj) accounts for the rest of the tuples. Rewriting,

r(ti) = p(ti) ·
∑

tj ⋄̄ti,j<i

p(tj)

+
∑

tj⋄ti

p(tj) + (1 − p(ti)) ·
∑

tj ⋄̄ti

p(tj). (9)

Let qi =
∑

j<i p(tj). We first compute qi in O(N) time.
At the same time, we find the expected number of tuples,

E[|W |] =
∑N

j=1 p(tj). Now (9) can be rewritten as:

r(ti) =p(ti) · (qi −
∑

tj⋄ti,j<i

p(tj)) +
∑

tj⋄ti

p(tj)

+ (1 − p(ti))(E[|W |] − p(ti) −
∑

tj⋄ti

p(tj)). (10)

By keeping the auxiliary information
∑

tj⋄ti,j<i p(tj) (i.e., the
sum of probabilities of tuples that have score values higher

than ti in the same rule as ti) and
∑

tj⋄ti
p(tj) (i.e., the

sum of probabilities of tuples that are in the same rule as

ti) for each tuple ti in D, r(ti) can be computed in O(1)
time. By maintaining a priority queue of size k that keeps

the k tuples with the smallest r(ti)’s, we can select the top-
k tuples in O(N log k) time. Note that both

∑

tj⋄ti,j<i p(tj)

and
∑

tj⋄ti
p(tj) are cheap to calculate initially given all the

rules in a single scan of the relation (time O(N)). When D
is not presorted by ti’s score attribute, the running time of

this algorithm is dominated by the sorting step, O(N log N).
Algorithm 2 gives pseudo-code for this algorithm, T-ERrank.

B. Pruning

Provided that the expected number of tuples E[|W |] is
known, we can answer top-k queries more efficiently using

pruning techniques without accessing all tuples. Note that

E[|W |] can be efficiently maintained in O(1) time when D
is updated with deletion or insertion of tuples. As E[|W |]
is simply the sum of all the probabilities (note that it does

not depend on the rules), it is reasonable to assume that it

is always available. Similar to the attribute-level uncertainty

case, we assume that D provides an interface to retrieve tuples
in order of their score attribute from the highest to the lowest.

The pruning algorithm scans the tuples in order. After seeing

tn, it can compute r(tn) exactly using E[|W |] and qn in O(1)
time based on (10). It also maintains r(k), the k-th smallest

r(ti) among all the tuples that have been retrieved. This can



be done with a priority queue in O(log k) time per tuple. A
lower bound on r(tℓ) for any ℓ > n is computed as follows:

r(tℓ) =p(tℓ) ·
∑

tj ⋄̄tℓ,j<ℓ

p(tj)

+
∑

tj⋄tℓ

p(tj) + (1 − p(tℓ)) ·
∑

tj ⋄̄tℓ

p(tj) (from (9))

=p(tℓ) ·
∑

tj ⋄̄tℓ,j<ℓ

p(tj) + E[|W |] − p(tℓ) − p(tℓ) ·
∑

tj ⋄̄tℓ

p(tj)

= E[|W |] − p(tℓ) − p(tℓ) ·





∑

tj ⋄̄tℓ

p(tj) −
∑

tj ⋄̄tℓ,j<ℓ

p(tj)





= E[|W |] − p(tℓ) − p(tℓ) ·
∑

tj ⋄̄tℓ,j>ℓ

p(tj). (11)

In the second step, we used the fact that
∑

tj⋄tℓ
p(tj) +

∑

tj ⋄̄tℓ
p(tj) = E[|W |] − p(tℓ).

Now, since qℓ =
∑

j<ℓ p(tj), we observe that

E[|W |] − qℓ =
∑

j>ℓ

p(tj) + p(tℓ) ≥
∑

tj ⋄̄tℓ,j>ℓ

p(tj).

Continuing with (11), we have:

r(tℓ) ≥ E[|W |] − p(tℓ) − p(tℓ) · (E[|W |] − qℓ)

≥ qℓ − 1 ≥ qn − 1. (12)

The last step uses the monotonicity of qi—by definition, qn ≤
qℓ if n ≤ ℓ. Since tuples are scanned in order, obviously ℓ > n.

Thus, when r(k) ≤ qn − 1, we know for sure there are at
least k tuples amongst the first n with expected ranks smaller

than all unseen tuples. At this point, we can safely terminate

the search. In addition, recall that for all the scanned tuples,

their expected ranks are calculated exactly by (10). Hence this

algorithm—which we dub T-ERank-Prune—can simply return

the current top-k tuples. From the above analysis, its time cost

is O(n log k) where n is potentially much smaller than N .

VI. EXTENSIONS

Scoring functions. Our analysis has assumed that the score

is a fixed value. In general, the score can be specified at

query time by a user defined function. Note that our offline

algorithms also work under this setting, as long as the scores

can be computed. If the system has some interface that allows

us to retrieve tuples in the score order (for the tuple-level

order) or in the expected score order (for the attribute-level

model), our pruning algorithms are applicable as well.

A main application of a query-dependent scoring function is

k-nearest-neighbor queries, which is the top-k query instan-

tiated in spatial databases. Here, the score is implicitly the

distance of a data point to a query point. When the data points

are uncertain, the distance to the query is a random variable,

which can be modeled as an attribute-level uncertainty relation.

Existing works [8], [24] essentially adopt U-kRanks semantics

to define k-nearest-neighbor queries in spatial databases. We

believe that the expected rank definition makes a lot of sense

in this context, and may have similar benefits over previous

definitions of uncertain nearest neighbors.

When a relation has multiple (certain and uncertain) at-

tributes on which a ranking query is to be performed, the user

typically will give some function that combines this multiple

attributes together and then rank on the output of the function.

When at least one of the attributes is uncertain, the output of

the function is also uncertain. This gives us another instance

where our ranking semantics and algorithms could be applied.

Continuous distributions. When the input data in the

attribute-level uncertainty model is specified by a continuous

distribution (e.g. a Gaussian or Poisson), it is often hard

compute the probability that one variable exceeds another.

However, by discretizing the distributions to an appropriate

level of granularity (i.e., represented by a histogram), we

can reduce to an instance of the discrete pdf problem. The

error in this approach is directly related to the granularity of

the discretization. Moreover, observe that our pruning-based

methods initially require only information about expected

values of the distributions. Since continuous distributions are

typically described by their expected value (e.g., a Gaussian

distribution is specified by its mean and variance), we can run

the pruning algorithm on these parameters directly.

Further properties of a ranking. The ranking properties we

define and study in Section III-A are by no means a complete

characterization; rather, we argue that they are a minimum

requirement for a ranking. Further properties can be defined

and analyzed, although care is needed in their formulation. For

example, Zhang and Chomicki [39] define the “faithfulness”

property, which demands that (in the tuple-level model), given

two tuples t1 = (v1, p(t1)) and t2 = (v2, p(t2)) with v1 < v2

and p(t1) < p(t2), then t1 ∈ Rk ⇒ t2 ∈ Rk. This intuitive

property implies that if t2 “dominates” t1, then t2 should

always be ranked higher than t1. However, there are examples

where all existing definitions fail to guarantee faithfulness.

Consider the relation:
ti t1 t2 t3 t4 t5
vi 1 2 3 4 5

p(ti) 0.4 0.45 0.2 0.2 0.2

with rules τ1 = {t1, t3, t4, t5}, τ2 = {t2}. Here, t2 “domi-

nates” t1, but all prior definitions (U-topk, U-kranks, Global-

topk, and PT-k) select t1 is as the top-1. On this example,

the expected rank definition will rank t2 as the top-1, but

unfortunately there are other examples where expected rank

will also rank a dominating tuple lower than a dominated tuple.

Our interpretation is that “faithfulness” defined this way may

not be an achievable property, and one has to somehow take

rules into consideration in order to make it a viable property.

Limitation of expected ranks. Our expected rank definition

uses the expectation as the basis of ranking, i.e., the absolute

ranks of each tuple from all possible worlds are represented

by their mean. It is well known that the mean is statistically

sensitive to the distribution of the underlying values (in our

case, the absolute ranks of the tuple from all possible worlds).

Hence, a more general and statistically more stable approach

might be to use the median instead of the mean. This can be



generalized to any quantile of the collection of absolute ranks

for a tuple and derive the final ranking based on such quantiles.

It remains an open problem to efficiently compute both the

median-rank and the quantile-rank (for any quantile value).

Likewise, it will also be important to study the semantics of

these definitions, and how they compare to expected rank.

VII. EXPERIMENTS

We implemented our algorithms in GNU C++. All ex-

periments were executed on a Linux machine with a 2GHz
CPU and 2GB main memory. In order to study the impact
of data sets with different characteristics on both the score

value distribution and the probability distribution, we focused

on synthetic data sets. We additionally tested our algorithms

on real data sets from the MystiQ project, and the trends

there were similar to those reported here on synthetic data.

We developed several data generators for both attribute-level

and tuple-level uncertain models. Each generator controls the

distribution on the score value as well as the probability.

For both models, these distributions refer to the universe

of score values and probabilities when we take the union

of all tuples in D.2 The distributions used include uniform,
Zipfian and correlated bivariate. They are abbreviated as u,

zipf and cor. For each tuple, we draw a score and probability

value independently from the score distribution and probability

distribution respectively. We refer to the result of drawing from

these two distributions by the concatenation of the short names

for each distribution for score then probability. For example,

uu indicates a data set with uniform distributions for both score

values and probabilities; zipfu indicates a Zipfian distribution

of score values and uniform distribution on the probabilities.

The default the skewness parameter for the Zipfian distribution

is 1.2, and the default value of k = 100.

A. Attribute-level Uncertainty Model

We first studied the performance of the exact algorithm A-

ERank by comparing it to the basic brute-force search (BFS)

approach. The distribution on the probability universe does

not affect the performance of both algorithms, since both

algorithms calculate the expected ranks of all tuples. The score

value distribution has no impact on BFS, but does affect A-

ERank: the uniform score distribution results in the worst

performance given a fixed number of tuples, as it leads to

a large set of possible values. So we used uu data sets for this

experiment, to give the toughest test for this algorithm.

The score of each tuple is given by a pdf with 5 unique
choices (i.e., s = 5). Figure 6(a) shows the total running time
of these two algorithms as the size of D (i.e. the number
of tuples, N ) is varied, up to 100, 000 tuples. A-ERank
outperforms BFS by up to six orders of magnitude. This gap

grows steadily as N gets larger. A-ERank has very low query

cost: it takes only about 10ms to find all tuples expected ranks

for N = 100, 000, while the brute force approach takes ten
minutes. Results are similar for other values of s.

2For the attribute-level model, this includes all the value and probability
pairs that a tuple’s pdf has on its uncertain attribute.

Figure 6(b) shows the pruning power of A-ERank-Prune. In

this experimentN is set to 100, 000, with s = 5 and k is varied

from 10 to 100. It shows that we often only need to materialize

a small number of tuples of D (ordered by expected score)
before we can be sure that we have found the top-k, across

a variety of data sets. Intuitively, a more skewed distribution

on either dimension should increase the algorithm’s pruning

power. This intuition is confirmed by the results in Figure 6(b).

When both distributions are skewed, A-ERank-Prune could

halt the scan after seeing less than 20% of the relation. Overall,
this shows that expected scores hold enough information to

prune, even for more uniform distributions.

As discussed in Section IV-B, A-ERank-Prune is an ap-

proximate algorithm, in that it may not find the exact top-

k. Figure 6 reports its approximation quality on various data

sets using the standard precision and recall metrics. Since A-

ERank-Prune always returns k tuples, its recall and precision

are always the same. Figure 6 shows that it achieves high

approximation quality: recall and precision are both in the

90th percentile when the score is distributed uniformly. The

worst case occurs when the data is skewed on both dimensions,

where the potential for pruning is greatest. The reason for this

is that as more tuples are pruned, these unseen tuples have

a greater chance to affect the expected ranks of the observed

tuples. Even though the pruned tuples all have low expected

scores, they could still have values with high probability to

be ranked above some seen tuples, because of the heavy tail

of their distribution. Even in this worst case, the recall and

precision of T-ERank-Prune is about 80%.

B. Tuple-level Uncertainty Model

For our experiments in the tuple-level uncertainty model,

where rules determine exclusions between tuples, we show

results on data sets where 30% of tuples are involved in

rules with other tuples. Experiments with a greater or lesser

degree of correlation gave similar results. We first investigate

the performance of our algorithms. As before, there is also a

brute-force search based approach, and it is also much more

expensive than our algorithms, so we do not show these results.

A notable difference in this model is that the pruning algo-

rithm is able to output the exact top-k, provided that E[|W |],
the expected number of tuples of D, is known. Figure 7(a)
shows the total running time for the T-ERank and T-ERank-

Prune algorithms using uu data. Both algorithms are extremely

efficient. For 100, 000 tuples, the T-ERank algorithm takes
10 milliseconds to compute the expected ranks of all tuples;

applying pruning, T-ERank-Prune finds the same k smallest

ranks in just 1 millisecond. However, T-ERank is still highly

efficient, and is the best solution when E[|W |] is unavailable.

Figure 7(b) shows the pruning power of T-ERank-Prune for

different data sets. We fix N = 100, 000 and vary the k values.

Clearly, a skewed distribution on either dimension increases

the pruning capability of T-ERank-Prune. More importantly,

even in the worst case of processing the uu data set, T-ERank-

Prune is able to prune more than 90% of tuples.
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Fig. 6. Attribute-level uncertain model: performance analysis.
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Fig. 7. Tuple-level uncertain model: performance analysis.

Our final set of experiments studies the impact of corre-

lations between tuple’s score value and probability. We say

that the two are positively correlated when a tuple with

higher score value also has a higher probability; a negative

correlation means that higher score means lower probability.

Such correlations have no impact on the performance of

T-ERank as it computes the expected ranks for all tuples.

However, correlation does have an interesting effect on the

pruning capability of T-ERrank-Prune. Using correlated bi-

variate data sets of different correlation degrees, Figure 8(a)

repeats the pruning experiment for T-ERank-Prune with N =
100, 000. The strongly positively correlated data set with a
+0.8 correlation degree allows the highest amount of pruning,
whereas the strongly negatively correlated data set with a

−0.8 correlation degree results in the worst pruning power.
But even in that worst case, T-ERank-Prune still pruned more

than 75% of tuples. Figure 8(b) reflects the running time of
the same experiment. T-ERank-Prune consumes between 0.1

and 5 milliseconds to process 100, 000 uncertain tuples.

VIII. BACKGROUND ON QUERYING UNCERTAIN DATA

Much effort has been devoted to modeling and processing

uncertain data, so we survey only the most related work. TRIO

[1], [4], [29], MayBMS [2] and MystiQ [10] are promising

systems that are currently being developed. General query

processing techniques have been extensively studied under the

possible worlds semantics [9], [10], [14], [21], and important

query types with specific query semantics are explored in more

depth, skyline queries [27] and heavy hitters [38]. Indexing

and nearest neighbor queries under the attribute-level uncertain

model have also been explored [25], [32], [35], [5], [9], [26].

Section III-B discusses the most closely related works on

answering top-k queries on uncertain databases [18], [33],

[39], [37]. Techniques used have included the Monte Carlo

approach of sampling possible worlds [28], AI-style branch-

and-bound search of the probability state space [33], dynamic

programming approaches [37], [39], [17], and applying tail

(Chernoff) bounds to determine when to prune [18]. There

is ongoing work to understand semantics of top-k queries

in a variety of contexts. For example, the work of Lian

and Chen [24] deals with ranking objects based on spatial

uncertainty, and ranking based on linear functions. Recently,

Soliman et al. [34] have extended their study on top-k queries

[33] to Group-By aggregate queries.

Our study on the tuple-level uncertainty model limits us

to considering correlations in the form of mutual exclusions.

More advanced rules and processing techniques may be needed

for complex correlations. Recent works based on graphi-

cal probabilistic models and Bayesian networks have shown

promising results in both offline [30] and streaming data [22].

In these situations, initial approaches are based on Monte-

Carlo simulations [21], [28].
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Fig. 8. Impact of tuple’s core and probability correlations on T-ERank-Prune.

IX. CONCLUSION

We have studied the semantics of ranking queries in prob-

abilistic data. We adapt important properties that guide the

definition of ranking queries in traditional, relational databases

and analyze the limitations of existing top-k ranking queries

for probabilistic data. These properties naturally lead to the ex-

pected rank approach in uncertain domain. Efficient algorithms

for two major models of uncertain data ensure the practicality

of the expected rank. Our experiments convincingly demon-

strate that ranking by expected ranks is very efficient in both

attribute-level and tuple-level uncertainty models.
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