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Abstract. The Business Process Modeling Notation (BPMN) is an
emerging standard for capturing business processes. Like its predeces-
sors, BPMN lacks a formal semantics and many of its features are sub-
ject to interpretation. One construct of BPMN that has an ambiguous
semantics is the OR-join. Several formal semantics of this construct have
been proposed for similar languages such as EPCs and YAWL. However,
these existing semantics are computationally expensive. This paper for-
mulates a semantics of the OR-join in BPMN for which enablement of an
OR-join in a process model can be evaluated in quadratic time in terms
of the total number of elements in the model. This complexity can be
reduced down to linear-time after materializing a quadratic-sized data
structure at design-time. The paper also shows how to efficiently detect
the enablement of an OR-join incrementally as the execution of a process
instance unfolds.

1 Introduction

Business process management as a discipline has traditionally suffered from a
proliferation of process definition languages based on similar but subtly differ-
ent concepts and constructs. After numerous attempts, standardization efforts
in this space have converged towards two languages: the Business Process Mod-
eling Notation (BPMN) [13], which is intended for modeling business processes
primarily during the analysis and design phases, and the Business Process Execu-
tion Language (BPEL) [9], which is intended for implementation and execution of
business processes in a service-oriented architecture. The standard specifications
of both of these languages are given in a narrative, informal style. In the case of
BPEL, a number of formalizations have been proposed [3]. On the other hand,
virtually no attempt has been made to attach a formal semantics to BPMN,
barring recent work on formalizing subsets thereof [17,7]. Compounded with the
fact that executability has not been a major concern during the standardization
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of BPMN, this has led to a standard specification with numerous ambiguities.
This situation raises the risk that different tools adopt different interpretations
of BPMN, especially those tools supporting process simulation and automated
generation of executable process definitions which start to emerge [16].

In separate work, we formalized a subset of BPMN [7]. One of the constructs
left aside in this formalization, as well as in reference [17], is the inclusive merge
gateway (hereafter called the OR-join). This construct corresponds to a workflow
pattern called “Synchronizing Merge” [2]. An OR-join is a point in a process
where several branches converge. For each of its incoming branch, the OR-join
will normally wait for a token indicating its completion; but if at some point in
time it can be determined that no token will ever arrive along a given incoming
branch, the OR-join will not wait for a token along that branch.

Figure 1 shows a use case of the OR-join. The first time this process frag-
ment is executed, both tasks “Abstract Variability” and “Specify Integrated
Subsystem” are executed in parallel. This parallel execution is captured by the
AND-split gateway (a lozenge with a “+” symbol). The OR-join (lozenge with an
“O” symbol) will then wait for both tasks to complete. Thereafter, the execution
proceeds along task “Generate Significant Paths” followed by “Generate Opti-
mal Path Combination”. After completion of this latter task, a choice is made
between repeating task “Specify Integrated Subsystem” or proceeding with the
rest of the process (not shown in the figure). When the second execution of
“Specify Integrated Subsystem” completes, the OR-join receives a token along
one of its incoming branches. The OR-join can fire at this point without waiting
for a token from task “Abstract Variability”, because this task is not executed
in the second round. In other words, the branch coming from task “Abstract
Variability” into the OR-join is not “active”, and thus the OR-join will not wait
for a token along this branch.

Fig. 1. Process fragment with an OR-join (example inspired from [14])

Formalizing the OR-join is challenging as highlighted by previous experi-
ences in defining semantics for languages that incorporate this construct, such
as EPCs [10] and YAWL [19]. Unlike other routing constructs, the OR-join has a
non-local semantics: in order to determine whether or not an OR-join is enabled,
it is not sufficient to examine the presence of tokens in its immediate vicinity.
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Instead, enablement of an OR-join may depend on the presence or absence of
tokens in places far away in the model. Not surprisingly, the evaluation of en-
ablement for OR-joins using existing semantics is computationally expensive.

Another issue when defining a semantics for the OR-join, is that the state
of enablement of an OR-join (i.e. its ability to fire at a given point during the
execution) may depend on the state of enablement of another OR-join in the
model and vice-versa. In other words, two OR-joins may end up waiting for one
another, a situation known as a vicious circle [1]. An example of a vicious circle
is given in Figure 2. One may argue that such scenarios are hypothetical and
there is no harm in excluding them or giving them an arbitrary semantics that
generates deadlocks. However, in this paper we show that, without adding to
the complexity, we can define a semantics for the OR-join in BPMN that is able
to deal with such scenarios without generating deadlocks.

Fig. 2. Example of a vicious circle. Tokens are represented as black dots.

The contribution of this paper is a semantics of the OR-join in BPMN that
strikes a balance between precision in determining when an OR-join should fire,
and the computational complexity of determining whether or not an OR-join is
enabled. After formulating this semantics, the paper presents an algorithm that
allows enablement of a given OR-join in a model to be determined in quadratic
time in terms of the total number of elements in the model. This complexity
can be reduced to linear time if a quadratic-sized data structure is materialized
at design-time for each OR-join in the model. Furthermore, we show that the
proposed algorithm can be adapted to an incremental evaluation mode.

The rest of the paper is structured as follows. Some background on BPMN
is given in Section 2. Next, the semantics of BPMN models with OR-joins is
presented in Section 3, while Section 4 describes an algorithm for evaluating
enablement of an OR-join in a given state. Section 5 introduces an incremental
version of the algorithm that provides some additional optimization. Finally,
Section 6 discusses related work while Section 7 concludes.

2 Syntax of BPMN

This section introduces the BPMN notation and provides an abstract syntax for
BPMN process models.
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2.1 BPMN overview

A process model in BPMN is represented as a Business Process Diagram (BPD).
A BPD is a graph in which nodes correspond to activities or routing steps
(collectively called objects), while edges correspond to flows of control or flows
of messages. Objects and flows can be grouped into pools and swimlanes to
capture domains of responsibility. They can also be associated with artifacts
that capture non-functional information. In this paper, we concentrate on the
control-flow semantics of BPMN and thus we leave aside pools, swimlanes and
artifacts. Also, since we only consider the semantics of one process model at a
time, as opposed to the semantics of multiple communicating processes, we leave
aside message flows. Figure 3 summarizes the constructs we focus upon.

Fig. 3. BPMN graphical elements

An object can be an event, an activity or a gateway. An event, depicted as
a circle, represents something that can affect a process execution. Events are
classified based on their position in the graph into start events (events that
are source in the graph), end events (events that are sink in the graph) and
intermediate events. Events are also classified based on their triggering cause into
timer events, message events, etc. Given that the cause of an event is not relevant
from a control-flow perspective, we do not consider this latter classification.

An activity, depicted as a rounded rectangle, represents a unit of work. An
activity may correspond to an undecomposed task or to a subprocess invocation.
In this paper, we capture the execution of one individual process at a time. If
this process invokes another one, the invoked subprocess is seen as a black-box,
and accordingly, we treat its execution as that of an undecomposed task.

A gateway is used to control branching, forking, merging, and joining of paths
and is represented using a diamond. There are different gateway types: (i) exclu-
sive gateways for selecting one branch among a set of alternative branches based
on data or events (XOR-split), or for merging a number of alternative branches
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(XOR-join); (ii) parallel gateways for forking one branch into multiple concur-
rent branches (AND-split) or for merging multiple concurrent branches into one
(AND-join) using a barrier-synchronization policy; (iii) inclusive gateways for
choosing one or multiple branches based on boolean expressions (OR-split), or
for synchronizing multiple branches while waiting only for those branches that
are active (OR-join); and (iv) complex gateway for modeling complex branching
conditions and synchronization policies (e.g., wait for 3 branches out of 5).

Objects in a BPD are related by means of sequence flows and exception flows.
A sequence flow captures a sequential dependency: when the task completes
normally, a token is placed on each of its outgoing sequence flows. Meanwhile, if
an error occurs during the performance of an activity, the activity is interrupted
and a token is placed in the exception flow corresponding to that error.

2.2 Abstract Syntax

Abstracting from its concrete syntax, a BPD can be thought of as containing
various types of objects and flows as captured by the following definition.

Definition 1 (Business Process Diagram (BPD)). A BPD is a tuple
BPD=(O, A, G, E, GX , GP , GI , GC, GE , ES , EI , EE , F , abf ), where

– O is a set of objects which can be partitioned into disjoint sets of activities
A, gateways G and events E,

– G is a set of gateways which can be partitioned into disjoint sets of exclusive
OR gateways GX , parallel AND gateways GP , inclusive OR gateways GI ,
complex gateways GC and event-based gateways GE ,

– E is a set of events which can be partitioned into disjoint sets of start events
ES , intermediate events EI and end events EE ,

– F ⊆ O ×O is the flow relation between objects.
– abf : GC → O is a function capturing the preconditions for a complex gateway

to be enabled, as discussed later in Section 3.2.

The relation F defines a directed graph over the set of objects O. For any
object x ∈ O, the set of direct predecessors is given by pred(x) = {y ∈ O|yFx}
and analogously the set of direct successors is given by succ(x) = {y ∈ O|xFy}.
F∗ is the reflexive transitive closure of F . The set of all direct and transitive
predecessors of an object x is given by function pred∗(x) = {y ∈ O|yF∗x}.

A BPD as defined in Definition 1 has no structural requirements in terms
of a starting point or an end point. Typically, a business process model has one
starting point, one or more end points and all the objects used in the modeled are
connected. Definition 2 defines minimal structural requirements for a (connected)
BPD, i.e., there is a start event, there is one or more end events and every object
is on a path from the start event to an end event.

Definition 2 (Connected BPD). A BPD = (O, A, . . . ) is connected if it
satisfies the following conditions:



6 Marlon Dumas, Alexander Grosskopf, Thomas Hettel, Moe Wynn

– there is exactly one start event with zero incoming flow and at least one
outgoing flow: |ES | = 1 ∧ ∃s ∈ ESpred(s) = ∅ ∧ |succ(s)| ≥ 1

– there is one or more end events with incoming flows and zero outgoing flow:
|EE | ≥ 1 ∧ ∀e ∈ EE |pred(e)| ≥ 1 ∧ succ(e) = ∅

– every object (other than the start and end events) is on a path from a start
event to an end event: ∀x ∈ O \ (ES ∪ EE) ∃s ∈ ES ∃e ∈ EE sF∗x ∧ xF∗e.

We assume that all BPDs are connected. We also assume, without loss of gen-
erality, that every gateway in a BPD is either a split gateway (it has one incoming
flow and multiple outgoing flows) or a join gateway (multiple incoming flows and
one outgoing flow). Similarly, we assume that activities and intermediate events
have only one incoming flow and one outgoing flow. It is straightforward to ex-
pand a BPD that does not satisfy these conditions into one that does by applying
simple expansion rules. For example, if an activity has multiple incoming flows
it is equivalent to a structure where these flows lead to an XOR-join gateway
and this gateway has a flow that leads into the activity in question. The above
conditions together with the connectedness requirement entail that no activity
or event in a BPD is both the source and target of the same flow.

We have excluded exception flows from the abstract syntax. To simplify the
presentation of the proposed OR-join semantics and without loss of generality, we
assume that a BPD is pre-processed as follows in order to replace all exception
flows with gateways and sequence flows. If an activity contains at least one
exception flow, all the outgoing flows of this activity are deleted and replaced
by one single sequence flow that leads to an exclusive decision gateway (i.e. an
XOR-split). This XOR-split has multiple branches: one branch corresponds to
the sequence flow going out of the activity, and the other branches correspond to
the various exception flows, and these exception flows are replaced with normal
sequence flows. The idea is that once an activity completes (whether normally
or abnormally) a decision is made to determine if the sequence flow is taken
(if the task completed normally), or one of the exception flows is taken (if the
task completed due to an error). This decision is captured by such a decision
gateway, and in doing so, all the exception flows are replaced with sequence
flows. Hereafter, we will use the term flow to refer to a sequence flow.

3 Semantics of BPMN models

This section formulates a semantics for the OR-join in BPMN. After some con-
siderations regarding the notion of the OR-join, the section introduces a formal
definition of enablement of objects in BPMN process models with OR-joins.

3.1 Informal definition

The BPMN specification makes vague statements about the meaning of the
OR-join, such as: “the Inclusive Gateway [...] will wait for (synchronize) all
Tokens that have been produced upstream. It does not require that all incoming
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Sequence Flow produce a Token (as the Parallel Gateway does). It requires that
all [Tokens] that were actually produced by an upstream [object arrive].”5 The
clarity of this statement is hampered by the fact that the term “upstream” is
not defined, and its meaning is unclear if there are cycles in the graph. Also, this
statement does not clarify how many tokens from each incoming flow should the
OR-join wait for.

From a detailed reading of the BPMN specification, and from the definition
of the Synchronizing Merge pattern [2] to which the BPMN specification refers
to, we can distill the following characteristics of the OR-join:

– In line with the definition of all other gateways in BPMN, a necessary con-
dition for an OR-join to be enabled is that there is at least one token in at
least one of its incoming flows.

– A sufficient condition for an OR-join to be enabled is that there is at least
one token in each of its incoming flows, i.e. all branches have “completed”.

– If an incoming flow of the OR-join has no token, a necessary condition for
the OR-join to be enabled is that it is not possible for a token to reach this
flow. This captures the notion of waiting for tokens produced “upstream”.

Thus an OR-join has a behavior in-between the XOR-join and the AND-join.
The XOR-join waits for one token in one of its incoming flows, while the AND-
join waits for one token in each of its incoming flows. The OR-join may behave
like an XOR-join, or like an AND-join, or like something in-between depending
on the state of the process instance. Another characteristic of the OR-join is
that it only waits for tokens that will eventually arrive. As a result, an OR-join
will not deadlock in situations where an AND-join would. For example, if we
replaced the OR-join in Figure 1 with an AND-join, a deadlock would occur if
task “Specify Integrated Subsystem” was repeated.

We decompose the control-flow semantics of objects in BPMN into an en-
ablement rule and a firing rule. The enablement rule determines if the object is
ready to fire in a given state. If one or more objects are enabled, the execution
environment may select any one of them and fire it. The firing rule determines
what happens then. For example, when an AND-join fires, it consumes one to-
ken from each of its incoming flows and it produces one token in its outgoing
flow. On the other hand, when an OR-join fires, it consumes one token from
each incoming flow that has a token, and it produces a token in the outgoing
flow. The definition of firing rules for the various types of BPMN objects, in-
cluding gateways, does not pose major challenges. Accordingly, we focus on the
enablement rules, especially the one for the OR-join.

Given the above characteristic of the OR-join, we propose the following OR-
join enablement rule:

An OR-join o is enabled if there is at least one token in one of its incoming
flows, and for each of its incoming flows f , either f has at least one token
or, taking as an assumption that o will not fire, no token will arrive to
flow f through a sequence of firings starting from the current state.

5 This sentence is incomplete in the specification, so we have added the last two words.
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One variable in this informal definition is how to determine that no token will
ever arrive to flow f . In the semantics of the OR-join for YAWL [18], a far-
sighted approach is taken. Conceptually, the entire set of possible future states is
computed to determine if, in any of these possible states, there will be at least one
token in the incoming flow in question. This far-sighted approach ensures that
the OR-join is enabled as early as possible. But its computational complexity
is proportional to the number of possible states, as opposed to the number
of elements in the model. To avoid this computational problem, we propose a
“myopic” (or “short-sighted”) approach: we can determine that no token will
ever arrive to flow f , if we can determine that none of the direct or indirect
predecessors of f is enabled.

This definition also needs some refinement to deal with cycles containing
OR-joins. Hereafter, we say that two OR-joins are in structural conflict if one
is a predecessor of the other and vice-versa. At a given state, two OR-joins are
said to be in partial conflict if they are in structural conflict and each of them
has at least one token in at least one of its incoming flows. Finally, two OR-joins
are said to be in full conflict iff they are in structural conflict and they are only
waiting for each other to fire first so that they can become enabled. This scenario
was illustrated in Figure 2. Also, if an OR-join is part of a loop, this OR-join is
in structural conflict with itself, and if some of its input flows contain a token,
the OR-join may end up being in full conflict with itself.

With respect to the above enablement rule, partial and full conflicts raise the
following issue: In the process of determining whether the OR-join o1 is enabled,
we may need to recursively ask ourselves the question of whether o1 is enabled;
or in the process of determining whether o1 is enabled, we ask the question
of whether another OR-join o′1 is enabled, and in determining whether o′1 is
enabled we ask the question of whether o1 is enabled. At least two approaches
are possible to break such vicious circles [19]. We could be “optimistic” and say
that o1 is enabled if it has at least one of its input flow marked. Or we can be
“pessimistic” and say that o1 is enabled if and only if tokens are present at each
of its incoming branches. Adopting an optimistic strategy can lead to deadlocks
[20], for example in the full conflict depicted in Figure 2. Accordingly, in this
paper, we adopt a pessimistic strategy: in the case of a partial or full conflict
between o1 and o′1, gateway o1 will treat o′1 as not enabled, and reciprocally, o′1
will treat o1 as not enabled. Consequently, both o1 and o′1 will be enabled if they
are in full conflict.

3.2 Formal definition of enablement

From a control-flow perspective, the state of an instance of a BPD can be cap-
tured as a set of tokens distributed among the flows composing the BPD. We
can think of a flow f ∈ F as a place where tokens are stored. Initially, one token
is located in each of the flows emanating from the start event of a BPD. As the
execution of the BPD proceeds, tokens are removed from certain flows and added
to other flows according to the firing rules. Hence, the state of a process instance
at a given state can be captured using a token count function tc : F → N that
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takes as input a flow and returns the number of tokens stored in that flow. Flows
are represented as pairs of objects (o1, o2).

Definition 3 formalizes the conditions for enablement of different types of
objects. It defines a function that takes as parameter an object, a state of a
BPD execution and a set of “visited objects” V .

Definition 3 (Object Enablement). Given a BPD and a token count func-
tion tc, an object o is enabled in the state represented by tc iff enabled(o, tc, ∅)
is true, where: enabled: O × (F → N)× (℘(O) → B) is defined as follows:

enabled(o1, tc, V ) =
o1 ∈ GX ∧ ∃o2 ∈ pred(o1)tc((o2, o1)) ≥ 1 ∨
o1 ∈ (A ∪ EI)∧ ∃o2 ∈ pred(o1) \ GE tc((o2, o1)) ≥ 1 ∧

∃o2 ∈ pred(o1) ∩ GE ∃o3 ∈ pred(o2) tc((o3, o2)) ≥ 1 ∨
o1 ∈ GP ∧ ∀o2 ∈ pred(o1) tc((o2, o1)) ≥ 1 ∨
o1 ∈ GC ∧ ∃s ∈ abf (o1) ∀o2 ∈ s tc(o2, o1) ≥ 1 ∨
o1 ∈ GI ∧ o1 6∈ V ∧ ∃o2 ∈ pred(o1) tc(o2, o1) ≥ 1∧

∀o2 ∈ pred(o1) tc(o2, o1) = 0 ⇒
¬∃o3 ∈ pred∗(o2) enabled(o3, tc, V ∪ {o1})

For objects other than OR-joins, it is straightforward to determine if they are
enabled. For example, an exclusive gateway (GX ) is enabled if there is at least
one token in at least one of its incoming flows.6 Activities (A) and intermediate
events (EI) are also enabled if there is at least one token in their incoming
flow. An exception to this latter rule occurs if one of the predecessor of the
activity or event in question is an event-driven choice gateway. In this case, the
activity/event is enabled if there is at least one token in one of the incoming
flows of that event-driven choice gateway. A parallel gateway (GP) requires all
incoming flows to carry a token for enablement. For the complex gateway (GC),
a subset of the incoming flows need to all contain at least one token. In the
concrete syntax of BPMN, a boolean condition over sequence flows is given to
capture under which situations is a complex gateway enabled, i.e. which are the
possible subsets of incoming flows that need to contain tokens for the complex
gateway to fire. Here, we abstract away from the concrete syntax and we assume
the existence of a function abf which given a complex gateway o1 in a BPD,
retrieves the set of possible subsets of predecessors of o2, such that a token
needs to be present in each flow (o2, o1) for the complex gateway to be enabled.

For inclusive OR Gateways (GI), specifically those with more than one in-
coming flow (i.e. OR-joins), the semantics is more complicated. The informal
semantics is such that if any object in the set of predecessors of an OR-join is
enabled, the OR-join should wait. If there is at least one token at each of the
incoming flows of an OR-join, the OR-join is clearly enabled. Otherwise, it is
necessary to explore some or all of the predecessors of the OR-join, to detect
whether the OR-join needs to wait for them or not. This may lead to a recur-
sive definition if an OR-join is its own set of predecessors. To avoid an infinite
6 Event-driven choice gateways (GE) are never enabled. Their presence however deter-

mines whether or not the objects that immediately succeed them are enabled.
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recursion, the definition of enablement keeps track of the set of OR-joins that
have been visited. This is the role of parameter V .

The first time an OR-join is visited, its semantics is treated as non-local: the
OR-join is enabled if and only if there is at least one token in one of the incoming
flows and all predecessors along incoming flows with no tokens are disabled. For
example, Figure 4 shows an OR-join with three incoming flows. The flow coming
from A contains a token (shown as a black dot). To determine if this OR-join is
enabled, we inspect the set of predecessors along the other flows (which have no
tokens in the current state) and we check that none of them is enabled.

Fig. 4. Checking if a non-visited OR-join is enabled

Meanwhile, if an OR-join has already been visited, it is necessarily in partial
or full conflict with another OR-join. Indeed, an object o is only added to the
set of visited objects V by a recursive call to function enabled , with the first
parameter of this call being a predecessor of o along an empty flow. So if o
has already been visited, it means that there is an OR-join o′1 such that o′1 ∈
pred*(o1) ∧ o1 ∈ pred*(o′1) and such that function enabled has been previously
called with o′1 as first parameter and this call generated a call to enabled with
o1 as first parameter.7 Thus, we have a situation where, to determine if o′1 is
enabled, we ask the question of whether or not o1 is enabled, and vice-versa as
depicted in Figure 2. To resolve this conflict, we treat o1 as not enabled with
respect to o′1. Accordingly, if o1 ∈ V , the function evaluates to false.

4 Algorithm for determining enablement of an OR-join

A naive implementation of the formal definition of enablement is computationally
expensive. To determine whether an OR-join is enabled, a naive algorithm needs
to potentially visit every predecessor of the OR-join (transitive or not), and
for each non-visited OR-join in this set of predecessors, it needs to make a
recursive call. In the worst-case, each object is a predecessor of each other and
then, the number of recursive calls of the enablement function is equal to the
number of objects in the BPD minus the number of visited objects. Thus, the
complexity of the naive algorithm is captured by the following recursive function:
7 Here, o1 and o′1 may be the same object.
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c(T,X) = (N−X)×c(N,X−1) where N is the number of objects in the BPD and
X is the number of visited objects. Given a BPD with T tasks, the complexity
of the function call enabled(o, tc, { }) is thus in the order O(T !).

The problem with the naive algorithm is that each object is examined a
repeated number of times, and each time, the same question is asked, namely
“is the object enabled?” If the BPD is primarily composed of OR-joins and all
these OR-joins are in structural conflict, this leads to a combinatorial explosion.

Below we present an algorithm that overcomes this combinatorial explosion
by avoiding the recursion. We achieve this by making the following observation:
An OR-join for which enablement needs to be determined (say gateway o1) does
not actually need to know whether a preceding OR-join (say o′1) is enabled or
not. What is important is to determine if o1 must wait for o′1 assuming that o1

is not waiting for any other of its precedessors. Indeed, the algorithm will visit
all relevant predecessors of o1, and if it determines that o1 needs to wait for any
of them, the algorithm will return false. Under this assumption gateway o1 must
wait for o′1 if the following conditions hold:

1. There is at least one token in at least one incoming flow of o′1.
2. There is at least one token in each incoming flow of o′1 that is part of a path

starting at o1 and finishing at o′1.
8

The first condition is a necessary condition for enablement of an OR-join,
and thus it is a necessary condition for o1 to have to wait for o′1. The second
condition is also necessary. If this condition was false for a given path from o1 to
o′1, then o1 and o′1 are in full conflict, thus entailing that o1 must not wait for o′1.
Indeed, we are assuming that o1 is not waiting for any other of its predecessors
to fire. We can then conclude that o′1 is not waiting for any of its predecessors
neither (apart from o1) since all predecessors of o′1 are also predecessors of o1.
So o1 and o′1 are waiting only for one another, and hence they are in full conflict.

The two conditions are also sufficient for o1 to have to wait for o′1. Indeed,
one of the characteristics of the definition of the OR-join is that if there is a
token in one of the incoming flows of this OR-join (o′1 in this case), this OR-join
will eventually fire. Hence, if the first condition is true then o1 must wait for
o′1 unless there is a possibility of a full conflict between the two gateways. This
latter case is excluded if the second condition also holds.

We split the proposed algorithm into two functions: one for determining
the enablement of any object except an OR-join, and the other for OR-joins.
Accordingly, we first define a function IsObjectEnabled that determines if a given
object is enabled for a BPD (see Figure 5). This function implicitly takes as input
a BPD, but for simplicity, the BPD is not shown as a parameter; instead, the
components of the BPD (e.g. GI) are referred to in the body of the function.

Function call IsObjectEnabled(o, tc) returns true iff object o is enabled in
state tc. Unlike the enablement function in Section 3.2, IsObjectEnabled does

8 Importantly, if there is no path from o1 and o′1, meaning that there is no cycle
involving both o1 and o′1, this condition is true.
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1 FUNCTION IsObjectEnabled(o1 : O, tc : F → N): B
2 case
3 o1 ∈ (GX ∪ GE):
4 return ∃o2 ∈ pred(o1) tc(o2, o1) ≥ 1;
5 . . . (other cases except o1 ∈ GI treated as per Definition 3)
6 o1 ∈ GI :
7 return IsOREnabled(o1, tc);
8 end case;

Fig. 5. Algorithm to determine whether an object is enabled

not maintain a set of visited objects, as it is not recursive. This function han-
dles all gateways except the OR-join. Enablement of an OR-join is determined
by another function, namely IsOREnabled – see Figure 6. The function call
IsOREnabled(o, tc) returns true iff OR-join o is enabled in state tc.

The algorithm first checks that the OR-join o has at least one token in at
least one of its incoming flows. If so, it iterates over the set of predecessors of the
OR-join along an empty incoming flow (i.e. an incoming flow of o that has no
token). For each of these predecessor objects, the function returns false if either
the object in question is an OR-join and it satisfies the above two conditions
(cf. lines 7 and 8 respectively), or it is not an OR-join and it is enabled as
determined by function IsObjectEnabled (cf. line 10). If all the predecessors of
the OR-join are visited and none satisfies any of these conditions, it means the
OR-join should not wait for anything and thus the function returns true.

1 FUNCTION IsOREnabled(o : GI , tc : F → N) : B
2 if ¬∃po ∈ pred(o) tc((po, o)) ≥ 1 then
3 return false;
4 else
5 PredAlongEmptyFlows := {o′ ∈ pred*(po) | ∃po ∈ pred(o) tc((po, o)) = 0}
6 foreach o′ ∈ PredAlongEmptyFlows do
7 if o′ ∈ GI ∧ ∃po′ ∈ pred(o′) tc((po′, o′)) ≥ 1 ∧
8 ∀po′ ∈ pred(o′) o ∈ pred*(po′) ⇒ tc((po′, o′)) ≥ 1 then
9 return false
10 else if o′ 6∈ GI ∧ IsObjectEnabled(o′, tc) then
11 return false;
12 end if
13 end foreach;
14 return true;

Fig. 6. Optimized algorithm to determine if an OR-join is enabled.
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To analyze the algorithm’s complexity, we first observe that function pred*
involves computing a transitive closure which has a complexity of O(|V |+|E|), E
being the set of edges (flows in the BPD) and V the set of vertices (i.e. objects).
Thus, the complexity of one invocation to this function is O(N) where N is the
total number of elements in the BPD. After computing the set of predecessors
along each empty incoming flow of o, the algorithm iterates over this set of
predecessors, which in the worst case includes all objects in the model except for
end events. If one of these predecessors (o′) is itself an OR-join, the algorithm
checks if there is a path between o and o′. This latter step involves invoking
function pred* for each incoming flow of o′. We can thus bound the worst-case
complexity of the algorithm by O(N2), as function pred* is potentially invoked
for each element in the model, and each invocation has a cost of O(N).

A substantial reduction in time complexity can be achieved by computing at
design-time the set of predecessors of each object in the model, and storing the
result in such a way that the set of predecessors of an object can be retrieved in
constant time, e.g. using a hash table where the keys are objects in the BPD and
the values are sets of predecessors. The size of this data structure is O(T ×N),
where T is the number of objects in the model (excluding flows). Once the data
structure is materialized and the invocations to pred* are replaced by constant-
time lookups, the complexity of the algorithm is reduced to O(N).

5 Incremental evaluation

Since the complexity of evaluating enablement for OR-joins is still higher than
that for other gateways, it is desirable to further optimize the evaluation proce-
dure. We therefore reuse the result of the evaluation of an OR-join’s enablement
in one state, when determining enablement of this OR-join in the next state. In
other words, we would like to materialize the results of evaluating the enable-
ment of each OR-join, so that after a state change (e.g. after an enabled object
in the BPD fires), we only need to examine objects affected by the change. We
call this incremental evaluation.

We assume a state change is represented as a set of flows in which tokens
have been either added or removed. We capture all information pertaining to
the enablement of each OR-join in a global (hash) table, namely mustWaitFor,
which associates to each OR-join in the model, the set of predecessors for which
this OR-join would have to wait if it was partially enabled, i.e. if it had at least
one token in one of its incoming flows. For convenience, we write mustWaitFor [o]
to refer to the entry in this table corresponding to object o, i.e. the set of pre-
decessors that o must wait for as evaluated in the state prior to the change.

The incremental evaluation function is algorithmically described in Figure 7.
The function takes as input an OR-join, the current state of the execution (after
the change), and the state change ∆. The function should be called each time a
state change occurs.

The first part of the algorithm (lines 2-11) updates the set mustWaitFor [o].
For each predecessor o′ of o such that one of the incoming flows of o′ has changed,
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the algorithm evaluates the new state of enablement of o′ and, if necessary, it
adds or removes o′ from set mustWaitFor [o]. For this purpose, we reuse lines 7
and 8 of the IsOrEnabled algorithm, as well as function IsObjectEnabled , but
we only call this latter function for objects other than OR-joins. In this “updat-
ing” phase of the algorithm, we consider predecessors of o along flows with no
tokens as well as predecessors of o along flows that already contain tokens. The
rationale is that all changes have to be accounted for, even if they do not have
an immediate influence on the enablement of the OR-join o. Indeed, if o already
has a token in one of its incoming flows, it will eventually fire, and when this
happens, tokens will be removed from some of its incoming flows. As a result,
some incoming flows may switch from having one token to having no token, and
previously irrelevant changes may become relevant again.

1 FUNCTION IsOREnabledInc(o : GI , tc : F → N, ∆ : ℘(O ×O)) : B
2 foreach (o′′, o′) ∈ ∆ where o′ ∈ pred*(o) \ {o} do
3 if o′ ∈ GI ∧ ∃po′ ∈ pred(o′) tc(po′, o′) ≥ 1 ∧
4 ∀w ∈ pred(o′) o ∈ pred*(w) ⇒ tc(w, o′) ≥ 1 then
5 mustWaitFor[o] := mustWaitFor[o] ∪ {o′};
6 else if o′ 6∈ GI ∧ IsObjectEnabled(o′, tc) then
7 mustWaitFor[o] := mustWaitFor[o] ∪ {o′};
8 else
9 mustWaitFor[o] := mustWaitFor[o] \ {o′};
10 end if ;
11 end foreach;
12 if ∃po ∈ pred(o) tc(po, o) ≥ 1 then
13 foreach po ∈ pred(o) where tc(po, o) = 0 do
14 if ∃o′ ∈ pred*(po) o′ ∈ mustWaitFor [o] then return false;
15 end foreach
16 return true;
17 else
18 return false;
19 end if

Fig. 7. Algorithm for incrementally evaluating OR-join enablement.

Once all changes are accounted for, the status of the OR-join has to be re-
evaluated (lines 12-19). Here, all predecessors along empty flows are checked. If
at least one of them object is in the set mustWaitFor [o], then o is not enabled.

6 Related work

An assessment of fourteen state of the art commercial offerings in [15] revealed
that only a handful of them support the OR-join construct without imposing
syntactic restrictions. Many other languages support the OR-join but only in
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restricted settings. For example, in BPEL [9] it is only possible to define an OR-
join in the context of acyclic networks of activities connected through so-called
control links. In such restricted settings, the semantics of the OR-join becomes
easier to define. Similarly, workflow management systems like InConcert, ePro-
cess, and WebSphere MQ Workflow have avoided the problems related to defining
the OR-join semantics by introducing syntactic restrictions. Eastman supports
an OR-join with non-local semantics, but it is acknowledged in the Eastman
manual that the use of OR-joins may result in poor performance [8].

There are several proposals to formally define a semantics for the OR-join
in Event Process Chains (EPCs) without introducing syntactic restrictions. In
van der Aalst et al [1], the problems with the OR-join semantics in EPCs, es-
pecially that of vicious circles, are highlighted. It is suggested that any formal
OR-join semantics will impose some restrictions or will deviate from the informal
semantics to some extent. This leads to a proposal by Kindler [10,11] to define a
non-local semantics in EPCs (including the OR-join) in terms of a pair of transi-
tion relations using techniques from fixed point theory. Kindler’s semantics can
be considered as the most general and precise semantics of the OR-join, but as
acknowledged by the author in subsequent papers, such fixed-point techniques
are “very inefficient and intractable in practise” [5,6]

To address this computational complexity hurdle, Kindler proposed the use
of binary decision diagrams (BDDs) to represent large sets of states and large
transition relations in a compact manner [11]. Cuntz et al [4] later proposed a
concrete method to calculate these transition systems using Kleene’s fix-point
theorem and techniques from symbolic model checking, instead of using a fixed-
point iteration as in Kindler’s original proposal. Specifically, Cuntz et al outline
a technique for calculating the semantics of EPCs that combines a forward con-
struction of the transition system with a backwards marking algorithm. Unfortu-
nately, this optimized algorithm is not complete, meaning that it does not work
on all EPC models. Also, despite these optimizations, the complexity of their
approach is still proportional to the size of the transition system and hence, the
approach only works for EPCs with small state spaces. In contrast, the OR-join
semantics we have put forward can be evaluated in linear time on the number
of elements in the process model, making it more scalable.

Mendling et al. [12] explore another approach to formally define the semantics
of OR-joins in syntactically correct EPCs. This new semantics is inspired by the
semantics of the OR-join in BPEL, but it can be applied to process models with
arbitrary cycles. The semantics of Mendling et al. relies on the notion of state
(i.e., tokens attached to arcs as in our approach) in combination with a notion of
context (i.e., special tokens indicating if a given arc is in a “wait” or in a “dead”
status). The context of an input arc to an OR-join is then used to determine
whether an OR-join should be enabled at a given state. The evaluation of this
OR-join semantics requires that both “normal” tokens, as well as “wait status”
and “dead status” tokens are propagated during the execution of the process
model. In contrast, our approach does not require the propagation of additional
types of tokens. Also, in the semantics proposed by Mendling et al., an OR-join
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may “wait forever” if there is a deadlock preceding an OR-join. Specifically, if
an AND-join connector “upstream” can not propagate tokens due to a deadlock,
an OR-join connector “downstream” will continue to wait for a token forever.
In contrast, our semantics will detect the deadlock situation upstream and the
OR-join will be enabled rather than waiting for a token that will never arrive.
In other words, the semantics of the OR-join presented in this paper detects
deadlock situation and allows the OR-join to fire despite such deadlocks.

Wynn [19] proposed a general OR-join semantics for the YAWL workflow
language that takes into account the “cancellation region” construct supported
by this language. A concrete algorithm based on the backwards coverability of
reset nets together with two optimization techniques are given to support the
implementation in the YAWL workflow environment [18]. In line with Kindler’s
semantics, the OR-join semantics in YAWL is far-sighted: As soon as it is pos-
sible to conclude that an unmarked branch leading into an OR-join will not be
reached, the OR-join will detect this situation and not wait anymore for tokens
along that branch. In contrast, the semantics proposed in this paper is more
short-sighted: only when no state change whatsoever can occur among the set
of predecessors leading into an incoming branch of an OR-join, will the OR-join
fire. This choice constitutes a tradeoff between precision (i.e. how early do we
detect that an OR-join can fire) and the efficiency of evaluating the enablement
of an OR-join. Another difference is that the semantics proposed in this paper
does not lead to deadlocks in the presence of vicious circles, while the YAWL
semantics does. A major issue addressed by the OR-join semantics of YAWL is
that of dealing with the notion of “cancellation feature”. This is similar to the
notion of “exception handler” in BPMN. However, in YAWL it is possible to can-
cel certain parts of a (sub)-process without canceling the entire (sub)-process.
This leads to an interference between the OR-join behavior and the cancellation
behavior. In BPMN, this type of cancellation behavior is impossible. Exception
handling behavior in BPMN is attached to a sub-process and when an exception
occurs, all the tokens from this sub-process are removed at once (and therefore
all the OR-joins inside the sub-process are disabled). Therefore, the OR-join
construct and the exception handling construct in BPMN do not interfere with
one another.

In conclusion, our major contribution with respect to previous related work
has been to define a semantics of the OR-join which has a linear computational
complexity and can be evaluated incrementally, while at the same time not im-
posing syntactic restrictions on the process models and maintaining the desirable
properties of a non-local OR-join semantics.

7 Conclusion

We have proposed a formalization of the enablement rules for a subset of BPMN
objects, including the OR-join gateway, with the following characteristics:

– It does not impose restrictions on the topology of the process models, other
than the minimal restrictions imposed by the syntax of BPMN itself.
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– It has a relatively low computational complexity: determining if an OR-
join is enabled can be computed in O(N2) where N is the total number of
elements (objects + flows) in the model. This complexity can be reduced to
O(N) after materializing a data structure of size O(N2) at design-time. In
addition, the semantics lends itself to an incremental evaluation mode.

– It does not generate deadlocks in the presence of cycles in the model involving
multiple OR-joins.

The proposed OR-join semantics can be labeled as operational as it captures
how an execution of a process model moves from one state to another. For static
analysis purposes, it is desirable to have a semantics defined by translation of
BPMN to a formalism (e.g. Petri nets) for which static analysis tools are avail-
able. In future, we plan to extend our mapping from BPMN to Petri nets [7] with
the ability to deal with OR-joins. This would involve defining rules to transform
BPMN models that contain OR-joins, into models that do not, since Petri nets
do not directly support this construct. As a by-product, such transformation
rules could be useful in building simulation engines for BPMN, as they would
replace all OR-joins with constructs that are easier to simulate.
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