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1. INTRODUCTION

The notorious difficulty of concurrent programming stems in part from the
challenges of expressing the intended program semantics with the available
constructs for synchronization and mutual exclusion. For example, programs
with threads and locks often suffer from deadlocks and race conditions. Some
recent type systems and other program analyses aim to prevent these errors,
[Sterling 1993; Abadi et al. 2006; Naik et al. 2006]. More radically, many
researchers have been exploring the use of Software Transactional Memory
(STM) [Shavit and Touitou 1995] as a basis for language features that may
make it easier to develop and analyze concurrent programs. In one approach,
languages provide block-structured atomic sections, so a programmer may rea-
son as if each atomic section is executed as a single step, serialized with respect
to all other atomic sections [Harris and Fraser 2003; Harris et al. 2005; Carl-
strom et al. 2006]. Several other related models have been proposed; these
include Safe Futures [Welc et al. 2005], Transactions Everywhere [Kuszmaul
and Leiserson 2003], and Automatic Mutual Exclusion (AME) [Isard and Bir-
rell 2007].

Intuitively, the semantics of STM is appealingly simple. However, as re-
searchers are coming to discover, this simplicity is illusory and the actual
semantics offered by implementations are often counterintuitive—programs
that look “obviously correct” may behave in unexpected ways. The crux of
the problem is that implementations do not detect conflicts between a trans-
action running in one thread and nontransactional steps of another thread.
This property, sometimes termed “weak atomicity” [Blundell et al. 2006], is
attractive from an implementation standpoint: it means that nontransacted
code does not incur a performance overhead, and that existing libraries and
operating system interfaces can be used without recompilation in nontrans-
acted code. In contrast, “strong atomicity” requires the avoidance or detection
of those conflicts. Strong atomicity appears to be the semantics expected by
programmers but, unfortunately, it does not appear to be practical to imple-
ment using STM without restrictions and without recompiling nontransacted
code.

This article examines this problem and explores the trade-offs among se-
mantic simplicity, the use of efficient implementation strategies, and the flex-
ibility of language constructs. Concretely, we present our results focusing on
the AME programming model (Section 2). We use AME for two reasons. First,
while developing this new programming model, we hope to avoid the pitfalls
encountered in earlier work; we want to understand AME’s constructs and
which techniques we can use to implement them. Second, there is a straight-
forward mechanical translation from a program with atomic blocks into AME’s
constructs, so the results that we establish will apply more broadly; the trans-
lation in the other direction is less obvious.

We present the AME calculus as a formalization of the AME programming
model (Section 3) and define a strong semantics for this calculus that abstracts
the underlying STM (Section 4). We show that, without language restrictions,
the techniques used by practical STMs can lead to behavior that is incorrect
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under the strong semantics (Section 5). We review a series of examples from
earlier work, and show how they can behave when implemented on some
STMs [Blundell et al. 2006; Shpeisman et al. 2007]. We argue that many of
these examples are incorrectly synchronized, but that others, informally, do
not contain race conditions.

We then examine two language restrictions that enable weaker semantics
to implement the strong semantics (Section 6). First, we consider a violation-
freedom condition, which formalizes the sense in which some of the examples
of Section 5 are race-free. For programs that satisfy this condition, we show
that a semantics with weak atomicity and in-place update implements the
strong semantics (Section 7). We obtain an analogous result for a lower-level
semantics with rollback (Section 8). In this semantics, at most one transaction
executes at a time. While this semantics is still some way from an actual
implementation, it resembles a practical uni-processor STM [Manson et al.
2005]. Our second language restriction is a type system that statically separates
data according to whether or not it is accessed transactionally. With practical
STM implementations in mind, we study a semantics with weak atomicity,
in-place update, rollback, and also concurrent execution of transactions and
lazy conflict detection. We show that, for well-typed programs, this semantics
implements the strong semantics (Section 9). Violation-freedom does not suffice
for this property.

We discuss related work in Section 10. We conclude in Section 11 by consid-
ering further work, and the implications of our results to the implementation
choices made within an STM and to the design of language features based on
it. An appendix contains proofs.

2. AUTOMATIC MUTUAL EXCLUSION

The AME programming model has been outlined in a workshop paper [Isard
and Birrell 2007]. We summarize its constructs here, and refer to that paper for
supporting details and examples. Other recent papers describe aspects of our
further research on AME, our implementation, and our experience so far [Abadi
2008; Abadi et al. 2008; Abadi et al. 2008, 2009].

2.1 AME Basics

The motivation for AME is to encourage programmers to place as much of
the program text inside transactions as possible—we refer to this as “pro-
tected” code—leaving nontransacted “unprotected” code primarily for interac-
tions with legacy code. We believe that this “protected by default” style will
help programmers write concurrent programs whose semantics are clearer
than is typical with today’s languages; in particular, programs in this style
should be easier to understand and to maintain than those with lock-based
idioms, or with a straightforward translation of lock-based code to use atomic
blocks.

Running an AME program consists in executing a set of asynchronous
method calls. The AME system guarantees that the program execution is equiv-
alent to executing each of these calls (or their fragments, defined below) in some
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serialized order. AME achieves concurrency by overlapping the execution of the
calls in cases where they are nonconflicting. The program terminates when all
its asynchronous method calls have completed. Initially, the set consists of a
call of main() initiated by the AME system. As well as ordinary method calls,
code can create another asynchronous method call by executing

async MethodName(<method arguments>)

The calling code continues immediately after this call. In the conceptual se-
rialization of the program, the asynchronous callee will be executed after the
caller has completed.

In order to achieve the serialization guarantee, we envision that each asyn-
chronous method call will be executed by the AME system as a transaction, in
a thread provided by the system. If a transaction initiates other asynchronous
method calls, their execution is deferred until the initiating transaction com-
mits. If the initiating transaction aborts, they are discarded. When it commits,
they are made available for execution (in an indeterminate order). The set of
available asynchronous method calls will be executed concurrently, within the
available resources and subject to strategies that prevent excessive transaction
aborts.

2.2 Blocking an Asynchronous Method

An asynchronous method may contain any number of calls to the system-
supplied method:

blockUntil(<predicate>)

From the programmer’s perspective, the code of an asynchronous method ex-
ecutes to completion only if all the executed calls of blockUntil within the
method have predicates that evaluate to true. blockUntil’s implementation
does nothing if the predicate holds, but otherwise it aborts the current transac-
tion and reexecutes it later (at a time when it is likely to succeed). This behavior
is like that of retry in some systems [Harris et al. 2005].

2.3 Fragmenting an Asynchronous Method

A purely event-based model produces program structure that can be unpleasant
and unstable. For example, if a previously nonblocking method call is modified
to require a blocking action (e.g., a hash table is modified to use disk storage
instead of main memory), the event-based style would require that the method,
and all of its callers, gets split into two separate methods (a request and a re-
sponse handler). This splitting is sometimes referred to as “stack ripping” [Adya
et al. 2002].

In AME, we avoid the “stack ripping” by allowing an asynchronous method
call to contain one or more invocations of the system method yield(). A yield
call breaks a method into multiple atomic fragments. Importantly, these atomic
fragments are delimited dynamically by the calls of yield, not statically scoped
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Fig. 1. Syntax of the AME calculus.

like explicit atomic blocks. With this enhancement, the overall execution of
a program is guaranteed to be a serialization of its atomic fragments. We
implement yield by committing the current transaction and starting a new
one. A blockUntil call blocks execution of only the current atomic fragment
(the code that follows the most recent yield), or equivalently, it retries only the
transaction begun after the most recent yield.

2.4 External Side Effects

Actions with external side effects, such as I/O, are performed by asynchronous
calls to an I/O library interface. The actual low-level I/O operations take place
outside of transactions, either inside the AME runtime or in explicitly unpro-
tected code. In order to support this and other access to legacy nontransacted
code, we provide the following construct:

unprotected { ... }

The current atomic fragment ends before the unprotected statement, and a
new one starts after it.

The AME programming model does not stipulate how unprotected code is
written. In practice, we expect this code to be expressed in a language such
as C#, and to use the mechanisms for synchronization that exist in such a
language.

3. THE AME CALCULUS

In our formal study, we focus on a small but expressive language. The language
includes constructs for AME, as discussed above; it also includes higher-order
functions and imperative features. We call it the AME calculus, though un-
doubtedly other calculi with AME are possible.

The syntax of the AME calculus is defined in Figure 1. This syntax is un-
typed; we introduce a type system in Section 6.2. We also give several formal
semantics in the following. The syntax introduces syntactic categories of val-
ues, constants, variables, and expressions. The values are constants, variables,
and lambda abstractions (λpx : t. e). In addition to values and to expressions
of the forms async e, blockUntil e, and unprotected e, the expressions in-
clude notations for function application (e f ), allocation (ref e, which allocates
a new reference location and returns it after initializing it to the value of e),
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dereferencing (!e, which returns the contents in the reference location that is
the value of e), and assignment (e := f , which sets the reference location that
is the value of e to the value of f ).

The syntax allows arbitrary nestings of async, unprotected, and blockUntil,
and also allows async anywhere, not necessarily attached to a function call. In
particular, unprotected code can be written in this syntax, rather than in some
legacy language (cf. Section 2.4). In unprotected contexts, async e will behave
roughly like “fork e,” and blockUntil e will behave roughly like “wait until e.”
The precise meaning of this and other constructions is defined uniformly by the
semantics of Section 4. Practical embodiments of AME need not be as liberal
in these respects.

As usual there is no difficulty in including other constructs. Several are
definable:

—We abbreviate (λpx : t.e′) e to let x = e in e′. We also abbreviate let x = e in e′

to e; e′ when x does not occur free in e′.
—We treat yield as syntactic sugar for unprotected unit.
—We can express “abort and retry” as blockUntil false.
—Traditional atomic blocks typically occur in the context of unprotected ex-

pressions, and differ from asynchronous calls in that they are supposed to be
executed immediately, not in some indefinite future. We can express atomic
e as

let x = ref false in
async (e; unprotected (x := true));
blockUntil !x

where x is a fresh variable that serves for signaling e’s termination. The use
of unprotected (x := true) rather than simply (x := true) ensures that, when
this encoding is used in unprotected contexts (as intended), all accesses to
x are done in unprotected contexts, thus conforming to the type system of
Section 6.2.

4. STRONG SEMANTICS

This section defines a semantics for the AME calculus, intended to be a simple
model of the constructs’s expected behavior rather than of possible underlying
implementation techniques. To this end, the semantics provides strong atom-
icity between the execution of transacted and nontransacted code, and it does
not model rollback, optimistic concurrency, and other low-level features. In
Sections 7, 8, and 9 we consider richer and weaker semantics that add these
features.

We give two formulations of the strong semantics. They share a definition of
states (Section 4.1), but differ in their definitions of the transition relation (Sec-
tions 4.2 and 4.3). We compare them in Section 4.4. In short, they are basically
equivalent, but the first is simpler and should be easier to understand, while
the second is closer to lower-level semantics and therefore more convenient for
the technical development that follows.
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Fig. 2. State space.

Fig. 3. Evaluation contexts.

Throughout this paper, we prefer not to focus on the subtleties of unpro-
tected code, and in particular on the semantics of unprotected code with race
conditions. An abundant literature addresses this subject. We therefore rely
on simple models of memory, with strong guarantees for unprotected code,
focusing on the interaction between protected and unprotected code.

4.1 States

As described in Figure 2, a state 〈σ, T, e〉 consists of the following components:

—a reference store σ ,
—a collection of expressions T, which we call the pool,
—a distinguished active expression e.

A reference store σ is a finite mapping of reference locations to values.
Reference locations are simply special kinds of variables that can be bound
only by a reference store. We write RefLoc for the set of reference locations. We
assume that RefLoc is infinite, so RefLoc − dom(σ ) is never empty. For every
state 〈σ, T, e〉, we require that if r ∈ RefLoc occurs free in σ (r′), in T, or in e,
then r ∈ dom(σ ). This condition will be assumed for initial states and will be
preserved by computation steps.

We identify expressions with threads of computation. The semantics does not
describe stacks or other thread-specific data. Informally, the pool is intended to
hold pending work while computation progresses in the active expression. The
formulations of the strong semantics differ on what computations may take
place in the active expression, and on whether any computations may be done
directly in the pool.

4.2 Steps (First Formulation)

The evaluation of a program starts in an initial state 〈σ, e, unit〉 with a single
expression in the pool and with unit as the distinguished active expression.
Evaluation then takes place according to rules (given below) that specify the
behavior of the various constructs in the language. The execution of threads
is interleaved in a non-deterministic manner, subject to atomicity constraints.
Each evaluation step produces a new state.

The next possible operation in an expression is found by decomposing the
expression into an evaluation context and a subexpression that describes this
operation. We use the evaluation contexts defined in Figure 3. As usual, a
context is an expression with a hole [ ], and an evaluation context is a context
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Fig. 4. Transition rules of the abstract machine (strong).

of a particular kind. Given a context C and an expression e, we write C[e] for
the result of placing e in the hole in C.

Figure 4 specifies a transition relation �−→ that takes execution from one
state to the next. The string “Trans” in the names of the rules refers to “transi-
tion” rules, not to “transaction”. Rules (Trans Appl), (Trans Ref), (Trans Deref),
and (Trans Set) are the standard rules for call-by-value function application
and for manipulating reference stores. In these rules, we write e[V/x] for the
result of the capture-free substitution of V for x in e, and write σ [r �→ V] for the
store that agrees with σ except at r, which is mapped to V. Rule (Trans Async)
shows how an asynchronous computation is forked: an expression is added to
the pool. Rule (Trans Block) reduces blockUntil true. Rules (Trans Unprotect)
and (Trans Close) move the active expression to the pool when it is of the form
E[unprotected e]; in the special case where e is a value, (Trans Close) offers
the possibility of removing the occurrence of unprotected. Finally, rule (Trans
Activate) takes a new active expression from the pool.

Were yield not syntactic sugar, we could have the extra rule:

〈σ, T, E[yield]〉 �−→ 〈σ, T.E[unit], unit〉
This rule is easily derived from (Trans Close) of Figure 4 and the definition of
yield as unprotected unit.

As in most other semantics, sometimes no further evaluation is appropri-
ate in an expression, and the rules—or their absence—reflect this fact. In
particular, there are no rules to evaluate unit and blockUntil false because,
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Fig. 5. Additional evaluation contexts for strong semantics.

intuitively, evaluation should be complete in the former case and stuck in the
latter. Because expressions can have multiple decompositions, however, one
should be careful in understanding the possible applications of rules. In par-
ticular, although no rule explicitly addresses expressions of the form E[unit],
those expressions are not all alike:

—In some cases, computation is simply complete, as when E = [ ].
—In some cases, computation is stuck, as when E = [ ]e, since unit is not a

function.
—Other times, E[unit] can be decomposed in multiple ways. For instance,

(λpx :e. t) unit can be decomposed as either E1[unit] where E1 = (λpx :e. t) [ ]
or as E2[(λpx :e.t) unit] where E2 = [ ]; the latter decomposition allows further
progress in the computation.

4.3 Steps (Second Formulation)

According to the first formulation of the strong semantics, all substantial
work—both transacted and not—happens in the active expression. Next we
give an alternative definition of steps that embodies an execution model in
which the pool is not completely passive.

Informally, we may imagine that a computer includes a single special pro-
cessor for performing “protected” work, occupied by the active expression, and
an unbounded set of additional processors capable of doing “unprotected” work,
dedicated to the pool. (This informal model is somewhat independent of the de-
tails of the AME calculus; indeed, we find it valuable in our work in the context
of richer languages.) If no “unprotected” work is available, then expressions in
the pool are simply waiting for the special processor. Strong atomicity means
that expressions in the pool can take steps only when the active expression is
unit; thus, it restricts the interleaving of steps of “protected” and “unprotected”
work.

In order to formalize these ideas, we use additional kinds of evaluation
contexts, defined in Figure 5.

—P evaluation contexts are for the execution of protected code: the position for
evaluation is not under unprotected.

—U evaluation contexts are for the execution of unprotected code: the position
for evaluation is under unprotected.

We also let some evaluation contexts be sequences of expressions with a hole:

—F evaluation contexts are of the form T.U .T′, unit or of the form T,P.

Thus, F[e] is either of the form T.U[e].T′, unit or of the form T,P[e]. We write
e0.F[e1] as an abbreviation for e0.T.U[e1].T′, unit or e0.T,P[e1], respectively.
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Fig. 6. Transition rules of the abstract machine (strong, alternative version).

Figure 6 gives rules that specify a new transition relation. These rules re-
semble those of Section 4.2, except that “unprotected” work happens in the pool
rather than in the active expression. The subscript s in �−→s indicates that this
is a strong semantics. (We use other subscripts in similar symbols below. We
do not put a subscript on the symbol �−→ in Section 4.2 because �−→ is not used
beyond Section 4.)

4.4 Comparing the Two Formulations

The definitions of Figures 4 and 6 have evident superficial differences. The
former treats protected and unprotected computation steps more uniformly;
therefore, it is more elegant and we prefer it as a simple statement of the
semantics of the AME calculus. The latter draws a sharper distinction between
protected and unprotected computation steps; in this respect, it matches better
what happens in lower-level semantics, below.

Despite these superficial differences, the definitions are almost equivalent.
Formally, we have Proposition 4.1.

PROPOSITION 4.1. —If 〈σ, T, e〉 �−→ 〈σ ′, T′, e′〉 then 〈σ, T, e〉 �−→∗
s 〈σ ′, T′, e′〉.

—If 〈σ, T, e〉 �−→s 〈σ ′, T′, e′〉 then there exists T′′ such that 〈σ, T, e〉 �−→∗ 〈σ ′, T′′, e′〉
and T′′ = T′ up to reordering.
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(We write �−→∗ and �−→∗
s for the reflexive-transitive closures of �−→ and

�−→s, respectively.)

In the following we rely exclusively on the transition relation �−→s of Fig-
ure 6. Via Proposition 4.1, results about �−→s immediately translate into results
about �−→.

5. PROBLEMS WITH WEAK ATOMICITY

The strong semantics of Section 4 is intended to reflect a programmer’s intuition
about the behavior of the AME constructs, but it is unlikely to be practical to
implement in software without language restrictions. In particular, the main
purpose of using unprotected regions in AME is to interact with the operating
system and other legacy code that cannot easily be changed; implementations
that offer strong atomicity by recompiling unprotected code do not support this
purpose [Shpeisman et al. 2007; Schneider et al. 2008; Bronson et al. 2009].

In this section we discuss the ways in which implementations of STM can
give behavior that differs from the strong semantics. For the purposes of this
discussion, we write examples informally (rather than in a calculus like that
of Section 3) for convenience, and in order to emphasize the relevance of these
examples to practical code. However, we use the strong semantics as a point of
reference.

Blundell et al. [2006], Grossman et al. [2006], Shpeisman et al. [2007], and
Menon et al. [2008] describe further examples, and examine their behavior
when these examples are implemented with different TM techniques.

In this article, however, we focus on the problems that occur on the Bartok-
STM system [Harris et al. 2006], which is the basis of our present implemen-
tation of AME. Bartok-STM is based on a whole-program ahead-of-time opti-
mizing compiler for C#. Within atomic sections, the compiler introduces calls
to the Bartok-STM runtime system to perform concurrency control and logging
on each access to the heap. The Bartok-STM runtime system is implemented
in C# (albeit using low-level, unsafe features). This allows parts of the runtime
system, including the STM implementation, to be inlined into application code.
Harris et al. [2006] provide further details.

In the Bartok-STM runtime system, transactional updates are made in-place
to the heap (“eager versioning” [Moore et al. 2006]) so tentative work is visible
before a transaction commits, and conflicts may not be detected until commit
time (“lazy conflict detection”), allowing a transaction to continue running as a
“zombie” [Dice et al. 2006] after becoming conflicted. Similar implementation
choices have been made in other STM systems such as McRT-STM [Saha et al.
2006], because of their efficiency on many practical workloads.

5.1 Unsynchronized Access to Shared Locations

The first set of examples, in Figure 7, comes from work by Shpeisman et al.
[2007] on implementing strong atomicity. In the figure, code is protected (i.e.,
runs transactionally) unless it is contained in an unprotected block.
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None of these examples is implemented with strong semantics on Bartok-
STM. The NR and ILU problems occur with Bartok-STM because conflicts
between protected reads and unprotected writes are not detected. The SLU
problem occurs with Bartok-STM because the implementation of rollbacks can
overwrite concurrent nontransactional stores. The IDR and SDR problems oc-
cur with Bartok-STM because in-place updates allow the unprotected code
to see intermediate writes by a transaction—whether or not the transaction
eventually commits.

One may reasonably ask “Do these problems matter?” because they intu-
itively involve data races. However, other examples are less clear-cut, and some
examples are free from data races at the source level (both intuitively and with
respect to formal definitions below) but do not obey the strong semantics with
many STM systems.

We present three of these race-free examples in Sections 5.2–5.4. For con-
creteness, again, we focus on Bartok-STM; however, variants of these examples
affect many STM systems that allow data to be shared between protected and
unprotected code.

5.2 Zombie Transactions

This example concerns zombie transactions that access more data than would
be touched in any serialization. Consider the following two atomic actions A1
and A2 that run concurrently with the unprotected block U1:

// A1 // A2 // U1
r1 = u; u++; unprotected {
r2 = v; v++; r1 = x;
if (r1 != r2) { }
x = 42;

}

Informally, one may reason that both serialization orders for A1 and A2 will
maintain the invariant u==v, so the condition r1!=r2 should never be satisfied,
A1 will never write to x, and therefore there is no data race with U1’s read
from x.

However, with Bartok-STM, A2 may run in its entirety in between A1’s reads
from u and v, causing A1 to write to x before the conflict is detected. Despite the
conflict detection and any resulting rollback, U1 may see this write. This kind
of example is particularly problematic in native code [Wang et al. 2007]. For
instance, suppose that instead of writing to x, A1 indexes an array x[r1-r2]:
in a language without bounds checking, it may actually write to any location
dependent on the number of increments performed in A2.

5.3 Privatization

Another example illustrates a privatization problem in which a piece of data
is sometimes accessed from protected code and sometimes accessed directly.
Consider these code fragments, with one thread running A1 and then U1, and a
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Fig. 7. Example data races based on those of Shpeisman et al. All fields initially hold 0. Registers
r1 and r2 are thread-local.

second thread running A2.

// Initially: x_shared=true, x=0

// A1 // A2
x_shared = false; if (x_shared) {
// U1 x = 42;
unprotected { }

x ++;
}

Informally, one may reason that this code has no data races: x shared is always
accessed transactionally and, by the time U1 accesses x nontransactionally, A1
has already been executed and either A2 is serialized before A1 (so the accesses
to x cannot race) or A2 is serialized after A1 (so it will see that x shared is
false).

With Bartok-STM, it is possible for A1 to execute in its entirety between A2’s
read from x shared and its write to x and then for U1’s accesses to x to race
with A2. In Bartok-STM the problem is therefore similar to that of Section 5.2
in that it occurs because A2 continues to execute as a zombie.

5.4 Publication

A final example illustrates a publication problem in which a piece of data is
initially thread-private and then becomes shared.
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// Initially: x_shared=false, x=0

// U1 // A2
unprotected { r1 = -1;
x = 42; if (x_shared) {

} r1 = x;
// A1 }
x_shared = true;

Once again, one may reason informally that this code has no data races:
x shared is always accessed transactionally and, when it is set by A1, the up-
date to x has already been performed. If A1 is serialized before A2 then A2 will
see both updates.

The problem here is more subtle and relates to more of the language than
just the STM implementation: there is no indication in the source code that
the ordering between A2’s reads from x and x shared is important. If they are
reordered during compilation then the implementation of A2 may read from
x before U1, and then read from x shared after A1, leaving A2 serialized after
A1, but with r1==0. A similar lock-based program, placing A1 and A2 in regions
protected by the same lock, is correctly synchronized under the Java memory
model [Manson et al. 2005]. As with our strong semantics, it would give either
r1==-1 or r1==42.

6. VIOLATION-FREEDOM AND SEPARATION

In Section 5, we show example programs that are not executed correctly by
many STM systems. In some cases, these are programs with data races, while
in others the problems arise because (despite the absence of apparent data
races) a variable x is accessed from both protected and unprotected code in the
implementations.

In this section we present two criteria that formalize the separation of pro-
tected and unprotected code. These criteria provide precise definitions, in the
AME calculus, of whether or not a program is correctly synchronized.

—The first criterion, violation-freedom, says that, dynamically, data cannot be
accessed with and without protection at the same time. Violation-freedom is
inspired by conditions for data-race-free programming, such as those of Adve
and Hill [1990]. Violation-freedom lets us say, formally, that the examples of
Section 5.1 have data races, and that the examples of Sections 5.2–5.4 are
correctly synchronized.

—The second criterion, separation, is embodied in a static discipline that guar-
antees that protected and unprotected computations do not use the same ref-
erence locations. Separation is inspired by the type system of Haskell-STM
which distinguishes ordinary mutable state from transactionally mutable
state [Harris et al. 2005]. As we prove, separation implies violation-freedom.
None of the examples in Sections 5.1–5.4 is correctly synchronized under
this stronger criterion.
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In Sections 7, 8, and 9, we show that, by restricting ourselves to programs
that meet these criteria, we can enable the use of efficient and correct lower-
level semantics.

6.1 Violation-Free Executions

We define a condition according to which data cannot be accessed with and
without protection at the same time in different threads.

Given a state 〈σ, e1. . . . .en, e〉, there is a violation on a location r if ei = U[ f ]
for some i = 1..n and e = P[ f ′] where f and f ′ are reads or writes on r (that is,
expressions !r or r := . . .), and at least one of them is a write (r := . . .). A com-
putation is violation-free if none of its states have violations for any locations.

A possible programming discipline is to require that programs never gen-
erate violations in the strong semantics. Under this discipline, a state 〈σ, T, e〉
is good if all strong computations that start from this state are violation-free.
The use of the strong semantics is significant: programmers should not have to
understand lower-level implementations. However, analogous criteria apply to
lower-level implementations, and might be of benefit in compiler optimizations.
Some of our lemmas say that the absence of violations in the strong semantics
implies the absence of violations in certain lower-level implementations.

For example, this discipline does not allow the following two programs:

let x = ref false in
let y = ref true in
async (x := true);
unprotected y := !x

and

let x = ref false in
let y = ref true in
async (blockUntil true;

x := true);
unprotected y := !x

In the former program, the unprotected code y := !x and the protected code
x := true lead to obviously conflicting accesses to x. The latter program is
somewhat subtler. There, the protected code x := true will be executed within
a transaction that starts with the vacuous statement blockUntil true. Under
the strong semantics, no unprotected computation can happen while the trans-
action is under way, even if the unprotected computation is otherwise ready
to proceed. Nevertheless, according to our definitions, this program does gen-
erate a violation, because the strong semantics leads to a state of the form
〈σ,U[r′ := !r],P[r := true]〉, where r and r′ are the locations that x and y rep-
resent, respectively.

Violations are distinct from traditional race conditions in that violations
do not consider conflicts between unprotected computations. However, race
conditions can be defined in similar terms, [Abadi et al. 2006]. For this
purpose, one may say that a state 〈σ, e1. . . . .en, e〉 has a race if ei = U[ f ]
for some i = 1..n, e j = U ′[ f ′] for some j = 1..n, i 
= j, f and f ′ are
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reads or writes on the same location, and at least one of them is a write.
Such conflicts, while often harmful, are not violations according to our
definitions.

6.2 Separation

The type system described in this section embodies a discipline in which pro-
tected and unprotected computations do not use the same portions of the ref-
erence store. They may however communicate via variables.

The type system is defined in Figure 8, using judgments and rules for rea-
soning about the judgments. The core of the type system is the set of rules for
the judgment E ; p � e : t, which is read “e is a well-typed expression of type t in
typing environment E with effect p”. The intent is that, if this judgment holds,
then e yields values of type t with effect p, and the free variables of e are given
bindings consistent with the typing environment E. While this sort of judgment
is common in the literature on “type-and-effect systems,” our particular choice
of effects is specific to our system. When p is P, this judgment means that the
evaluation of e accesses only the part of the reference store for protected com-
putations; when p is U, this judgment means that the evaluation of e accesses
only the rest of the store. The typing environment E is organized as a sequence
of bindings, and we use ∅ to denote the empty environment. Similarly, s →p t
is the type of function that take arguments of type s and yield results of type t
with effect p.

The type system introduces a sharp distinction between “P code” and “U code.”
The type system is thus deliberately simple; various elaborations are possible,
mostly along standard lines, but we do not need them for our present purposes.

The following small example illustrates the restrictions that the type system
imposes:

let x = ref V in
let y = ref true in
async (y := false;

unprotected z := !x);
async (blockUntil !y;

x := V ′)

where V and V ′ are distinct values. Intuitively, the contents of the reference
location y indicate whether x is shared; setting that location to false amounts
to a privatization. This program is not permitted by the type system, because
the reference location that is the value of x is used in both protected and
unprotected computations.

On the other hand, the following variant of the program is permitted by the
type system.

let x = ref V in
let y = ref true in
async (y := false;

let x′ = !x in unprotected z := x′);
async (blockUntil !y;

x := V ′)
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Fig. 8. The first-order type system for separation.

Here, the reference location in question is used only in protected computations;
its value is put into a local variable x′ for use in an unprotected computation
in the same thread.

In order to prove the soundness of the type system, we extend it to states
〈σ, T, e〉. We write

E � 〈σ, e1. . . . .en, e〉
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if

—dom(σ ) = dom(E) ∩ RefLoc,
—for all r ∈ dom(σ ), there exist t and p such that E(r) = Refp t and E ; p �

σ (r) : t,
— E ; P � ei : Unit for all i = 1..n,
— E ; P � e : Unit.

We say that 〈σ, e1. . . . .en, e〉 is well-typed if E � 〈σ, e1. . . . .en, e〉 for some E. We
obtain that typability is preserved by computation (that is, by �−→∗

s ).

THEOREM 6.1 (PRESERVATION OF TYPABILITY). If 〈σ, T, e〉 is well-typed and
〈σ, T, e〉 �−→∗

s 〈σ ′, T′, e′〉, then 〈σ ′, T′, e′〉 is well-typed.

This theorem helps in relating the type system to the absence of violations,
and it serves as the basis for analogous results for lower-level semantics, see
Theorem 6.2.

We also obtain a progress result, which characterizes when a computation
may stop and implies that computations do not get stuck in unexpected ways
(for instance, by applying a boolean as though it were a function). This progress
result is partly a sanity check; stronger ones are viable.

THEOREM 6.2 (PROGRESS). If 〈σ, T, e〉 is well-typed, the only free variables in
〈σ, T, e〉 are reference locations, and 〈σ, T, e〉 �−→∗

s 〈σ ′, T′, e′〉, then:

(1) e′ is unit and T′ is empty; or
(2) e′ is of the form P[blockUntil false]; or
(3) 〈σ ′, T′, e′〉 �−→s 〈σ ′′, T′′, e′′〉 for some 〈σ ′′, T′′, e′′〉.

6.3 Comparing Separation with Violation-Freedom

Violation-freedom is a clear but undecidable dynamic criterion. The type sys-
tem for separation provides a sufficient condition for violation-freedom. As a
corollary to Theorem 6.1, we obtain the following.

COROLLARY 6.3. If 〈σ, T, e〉 is well-typed, then all strong computations that
start from 〈σ, T, e〉 are violation-free.

As suggested above, separation appears to be more robust than violation-
freedom. In particular, separation seems less fragile in the presence of compiler
optimizations: whereas it may be hard to predict whether a program transfor-
mation could introduce violations, it seems easier to tell whether it could break
separation.

7. WEAK SEMANTICS

Having introduced the violation-freedom and separation criteria in Section 6,
we can examine their impact on the use of weaker semantics that model some
of the implementation techniques used by actual STMs: if a program meets
one or other of the criteria, then which implementation techniques can be used
while respecting the strong semantics?
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Fig. 9. Additional evaluation contexts for weak semantics.

In this section we define a semantics that models weak atomicity, allowing
steps of unprotected code to be interleaved with steps of protected code. This
semantics may however be regarded as the strongest of weak semantics. It em-
bodies Single-Global-Lock Atomicity [Menon et al. 2008]. In a straightforward,
inefficient implementation of this semantics, a single global lock would be used
for mutual exclusion between atomic fragments. Unprotected code would not
access this global lock, and may execute concurrently with atomic fragments.
This semantics still serializes transactions: only one piece of protected code can
run at a time. We present it because it is an instructive, simple illustration of
weak semantics, not because of direct resemblance to actual implementations.
We consider concurrency between transactions in Section 9.

7.1 States

The states of this weak semantics are basically the same as those of the strong
semantics, as defined in Section 4.1. However, only for Section 7, we make the
following small technical restriction on expressions: in any expression of the
form async e, any occurrences of unprotected are under a λ. This technical
restriction basically ensures that an unprotected computation is not the first
thing that happens in an asynchronous computation. Thus, using our abbrevia-
tions, we can write async (unit; unprotected e′), but not async (unprotected e′).
More generally, we can write async (unit; e′), for any e′. So the restriction, while
convenient for some of our formal definitions and proofs, has only a minor
impact on the power of the language.

7.2 Steps

Figures 9 and 10 define this weak semantics. Figure 9 introduces evaluation
contexts G, defined so that G[e] includes both T.U[e].T′, e′ and T,P[e]. Since
G[e] is either T.U[e].T′, e′ or T,P[e], we write e0.G[e1] as an abbreviation for
e0.T.U[e1].T′, e′ or e0.T,P[e1], respectively. Figure 10 defines the transition re-
lation �−→w, very much as Figure 6 defines the transition relation �−→s. The
rules of Figure 10 are directly analogous to those with corresponding names in
Figure 6. Unlike the relation �−→s, however, the relation �−→w allows unpro-
tected computations to proceed even when the active expression is not unit.
Formally, this difference arises because G[e] may be of the form T.U[e].T′, e′

when e′ is not unit, while F[e] would be of this form only if e′ is unit.
Consider a transition 〈σ, e1. . . . .en, e〉 �−→w 〈σ ′, e′

1. . . . .e
′
n′ , e′〉. Unless it is an

instance of (Trans Unprotect)w or (Trans Activate)w, the transition is defined
in terms of a context that has a hole either in e1. . . . .en and in e′

1. . . . .e
′
n′ or in

e and in e′. We say that the transition is protected if the hole is in e and in e′,
and say that the transition is unprotected if the hole is in e1. . . . .en and in
e′

1. . . . .e
′
n′ . By definition, transitions that that are instances of (Trans Close)w

are always unprotected; transitions that are instances of (Trans Unprotect)w or
(Trans Activate)w are neither protected nor unprotected. We have 〈σ, T, e〉 �−→s
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Fig. 10. Transition rules of the abstract machine (weak).

〈σ ′, T′, e′〉 when 〈σ, T, e〉 �−→w 〈σ ′, T′, e′〉 and, if this transition is unprotected,
then e = unit.

7.3 Correctness

The goal of this section is to establish the correctness of the weak semantics as
an implementation of the simpler strong semantics, assuming the absence of
violations.

As the examples of Section 5 suggest, the violation-freedom hypothesis is
needed. For example, the program

let x = ref false in
let y = ref false in
async (x := true;

x := false);
unprotected y := !x

which does not obey the hypothesis, may set y to true under the weak semantics
but not under the strong semantics.

We obtain the following theorem.

THEOREM 7.1. Assume that all strong computations that start from the state
〈σ, T, unit〉 are violation-free. Consider a weak computation 〈σ, T, unit〉 �−→∗

w

〈σ ′, T′, e′〉. Then there is a strong computation 〈σ, T, unit〉 �−→∗
s 〈σ ′, T′, e′〉.
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Fig. 11. State space, with rollback.

By Corollary 6.3, we immediately derive that if 〈σ, T, unit〉 is well-typed and
〈σ, T, unit〉 �−→∗

w 〈σ ′, T′, e′〉, then 〈σ, T, unit〉 �−→∗
s 〈σ ′, T′, e′〉.

8. WEAK SEMANTICS WITH ROLLBACK

Refining the semantics of Section 7, in this section we define a semantics that
models eager versioning, in which transactions make in-place updates to the
heap and are rolled back if they abort for some reason. We show that this weak
semantics is correct for violation-free programs.

Although this weak semantics still serializes transactions, it is interesting
from a practical point of view as well as a theoretical one—for instance to pro-
vide rollback on a uni-processor real-time system [Manson et al. 2005]. We focus
on the rollbacks that one may wish to perform when a computation is blocked
on a false condition (that is, on rollbacks caused when a thread decides to
abort and retry later). Other kinds of rollbacks (in particular, those used in the
implementation of optimistic concurrency schemes) may be treated similarly,
with the possible addition of machinery for conflict detection. We consider those
in Section 9. While the two kinds of rollbacks have somewhat different moti-
vations, and the latter can be more intricate, they have substantial semantic
commonalities: the corresponding rules are quite similar.

8.1 States

Figure 11 defines states for the semantics with rollback. A state 〈σ, T, e, f, l, P〉
consists of the following components:

—σ , T, and e, which are as usual,
— f , an expression that, through computation, has yielded e (and which we call

the origin of e),
—l, a list of memory locations and their values, to be used as a log in undos,
— P, a list of “pending” threads to be forked upon commit.

Much as in Section 4.1, for every state 〈σ, T, e, f, l, P〉, we require that if
r ∈ RefLoc occurs free in σ (r′), in T, in e, in f , in l, or in P, then r ∈ dom(σ ).
This condition will be assumed for initial states and will be preserved by com-
putation steps.

We write each pair in l in the form [r �→ V], we let dom(l) be the set of
locations r for which l is defined, and when r ∈ dom(l) we write l(r) for the
value V to which r is mapped.
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8.2 Steps

Figure 12 gives the rules of this semantics. The intent is that, upon a rollback
caused by e, the origin expression f is added back to T and the undos described
in l are performed. The semantics has a few subtleties.

—As in some practical STM implementations [Saha et al. 2006; Harris et al.
2006], the undos described in l are performed individually rather than as
one atomic step. We pick an arbitrary order.
Formally, the rule (Trans Block false Undo)rw shows how one takes the last
element of the log and applies it to the reference store, and the rule (Trans
Block false Restore)rw, shows how the origin expression is added back to the
pool when the log is empty.

—Allocations are not undone. If they were, we could cause dangling pointers
in programs with race conditions—and we believe that dangling pointers
should be avoided even in programs with synchronization errors. Again, this
detail is inspired by practical STMs [Harris et al. 2005].
Formally, this detail is apparent in that no rule logs allocations, so neither
(Trans Block false Undo)rw nor any other rule could revert the allocations.

—No undo facilities are provided for unprotected computations.
—Since this is a weak semantics, unprotected computations may be interleaved

with protected computations, and even with the rollbacks of protected com-
putations.

—In the strong semantics of Section 4, there is no analogue for the list of
pending threads P. Instead, the corresponding threads are put into T, but
they cannot make immediate progress.

8.3 Correctness

Much as in Section 7.3, the goal of this section is to establish the correctness of
the weak semantics with rollback as an implementation of the simpler strong
semantics without rollback, assuming the absence of violations.

For this purpose, we consider an intermediate strong semantics with roll-
back. Figure 13 defines the transition relation of the intermediate seman-
tics. Its rules are straightforward variants of those of Figure 12. Basically,
the rules for unprotected computation in Figure 13 demand that no pro-
tected computation be in progress, while those of Figure 12 do not impose
this requirement. For instance, (Trans Ref U)rs applies to states of the form
〈σ, T.U[ref V].T′, unit, unit,∅,∅〉, while (Trans Ref U)rw applies to states of
the more general form 〈σ, T.U[ref V].T′, e, f, l, P〉.

The intermediate semantics implements the strong semantics without roll-
back:

LEMMA 8.1. If 〈σ, T, unit, unit,∅,∅〉�−→∗
rs〈σ ′, T′, unit, unit,∅,∅〉, then there

exists σ ′′ and T′′ such that σ ′ extends σ ′′, T′′ = T′ up to reordering, and
〈σ, T, unit〉 �−→∗

s 〈σ ′′, T′′, unit〉.
Note that this result does not require violation-freedom.
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Fig. 12. Transition rules of the abstract machine, with rollback (weak).
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Fig. 13. Transition rules of the abstract machine, with rollback (strong).
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Furthermore, the weak semantics with rollback implements the intermedi-
ate semantics, in the following sense.

LEMMA 8.2. Assume that all strong computations with rollback that start
from the state 〈σ, T, unit, unit,∅,∅〉 are violation-free. Consider a weak com-
putation with rollback 〈σ, T, unit, unit,∅,∅〉 �−→∗

rw 〈σ ′, T′, e′, f ′, l′, P′〉. Then
there is a strong computation with rollback 〈σ, T, unit, unit,∅,∅〉 �−→∗

rs
〈σ ′, T′, e′, f ′, l′, P′〉.
Here, we do rely on a violation-freedom hypothesis. The definition of violation-
freedom for the intermediate semantics is almost exactly that of Section 6.1,
but in terms of �−→rs rather than �−→s, and ignoring the additional state com-
ponents of the intermediate semantics (origin, log, and pending threads).

A final lemma relates the definitions of violation-freedom:

LEMMA 8.3. Assume that all strong computations that start from the state
〈σ, T, unit〉 are violation-free. Then all strong computations with rollback that
start from the state 〈σ, T, unit, unit,∅,∅〉 are violation-free.

Combining Lemmas 8.1, and 8.2, and 8.3, we obtain the following theorem.

THEOREM 8.4 (CORRECTNESS). Assume that all strong computations that start
from the state 〈σ, T, unit〉 are violation-free. Consider a weak computation with
rollback

〈σ, T, unit, unit,∅,∅〉 �−→∗
rw 〈σ ′, T′, unit, unit,∅,∅〉

Then there is a strong computation

〈σ, T, unit〉 �−→∗
s 〈σ ′′, T′′, unit〉

for some σ ′′ and T′′ such that σ ′ is an extension of σ ′′ and T′′ = T′ up to
reordering.

This theorem is restricted to computations that lead to states of a particular
form, in particular with an active expression unit. In general, when the active
expression is not unit, the intermediate store σ ′ may be one that cannot be
obtained by strong computations. Moreover, this theorem does not yield a strong
computation with exactly the same final store: intuitively, the computation
with rollbacks may allocate additional locations, and those are not deallocated.
However, the two final stores coincide at all accessible locations: our invariant
on states implies that both stores are defined (and equal) at all referenced
locations.

As in Section 7.3, we immediately derive a correctness property based on
typing by Corollary 6.3: if 〈σ, T, unit〉 is well-typed and 〈σ, T, unit, unit,∅,∅〉
�−→∗

rw 〈σ ′, T′, unit, unit,∅,∅〉, then 〈σ, T, unit〉 �−→∗
s 〈σ ′′, T′′, unit〉 for some σ ′′

and T′′ such that σ ′ is an extension of σ ′′ and T′′ = T′ up to reordering.

9. WEAK SEMANTICS WITH OPTIMISTIC CONCURRENCY

Building on the study of rollback, we treat a difficult extension of the opera-
tional semantics in which multiple active expressions are evaluated simulta-
neously, with rollbacks in case of conflict. We ground our work on important
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Fig. 14. State space, with optimistic concurrency.

aspects of Bartok-STM, as above, by using weak atomicity, in-place updates to
the reference store, and lazy conflict detection. Alternative definitions (for in-
stance, a strong semantics with optimistic concurrency, buffered updates, and
eager conflict detection) seem viable too, but generally less interesting from our
perspective and easier to analyze.

Optimistic concurrency raises further correctness issues. Interestingly, and
unlike for our semantics of Sections 7 and 8, violation-freedom is not a sufficient
condition for correctness in this case. As in our examples of Section 5.2–5.3,
a program can be violation-free under the strong semantics but have lower-
level violations because of zombie transactions. (The example of Section 5.2 is
violation-free because the statement x = 42 is not reachable under the strong
semantics. In the example of Section 5.3 the statements x ++ and x = 42 cannot
conflict under the strong semantics. Similarly, in the example of Section 5.4,
the statements x = 42 and r1 = x cannot conflict under the strong semantics.)
Nevertheless, we show that if a program is well-typed in the type system of Sec-
tion 6.2, then its weak semantics is correct with respect to the strong semantics.

9.1 States

As described in Figure 14, states become more complex for this semantics.
In addition to the components σ , T, and l that appear in the semantics with
rollback, here we have a list of tuples instead of a single active expressions e
and its origin expression f . Each of the tuples is called a try, and consists of
the following components:

—an active expression e,
—its origin expression f , as in the semantics with rollback,
—a description of the accesses that e has performed, which are used for conflict

detection and which here is simply a list of reference locations,
—a list P of threads to be forked upon commit.

Clearly these components could be refined further in more elaborate, realistic
schemes. For instance, conflict detection could distinguish reads and writes,
possibly with timestamps; moreover, the log used for undos could contain ad-
ditional information in order to support more selective undos. (Actual STM
implementations typically resolve conflicts by aborting some transactions and
committing others.) We prefer to avoid this tedious bookkeeping since it might
obscure the exposition. Even in the present form, the semantics exhibits chal-
lenging features.
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9.2 Steps

Figure 15 gives the rules of this semantics. They rely on the following defini-
tions.

—(ei, fi, ai, Pi) and (e j, f j, aj, Pj) conflict if ai and aj have at least one element
in common.

—(e, f, a, P) conflicts with O if (e, f, a, P) conflicts with some try in O.
— O conflicts if it contains two distinct tries that conflict.
—Given a log l and a list of reference locations a, l − a is the log obtained from

l by restricting to reference locations not in a.
—If O is (e1, f1, a1, P1). . . . .(en, fn, an, Pn) then origin(O) is the list f1. . . . . fn.
—σ l is the result of applying all elements of l to σ .

The rules allow for conflicts to be detected as soon as they occur, but they
do not require it. Thus, only the rules that represent commits ((Trans Done)ow

and (Trans Unprotect)ow) demand the absence of conflicts.
For simplicity, the rules do not include some secondary features sufficiently

explored in the semantics with rollback of Section 8. In particular, undos are
atomic. Moreover, there is no special treatment for blockUntil false; the rules
simply allow undo to happen at any point (possibly because of conflicts, but also
possibly because of blockUntil false). Thus, the rule (Trans Undo)ow applies
an entire log l to a reference store σ , and applies without any condition on the
protected computations (O) in progress.

In this semantics, each transition has the form

〈σ, T, O, l〉 �−→ow 〈σ ′, T′, O′, l′〉

In many cases, a transition is defined in terms of a context that has a hole
either in T and in T′ or in O and in O′. We say that the transition is protected
if the hole is in O and in O′, and say that the transition is unprotected if the
hole is in T and in T′. By definition, we have:

—transitions that are instances of (Trans . . . P)ow are always protected;
—transitions that are instances of (Trans . . . U)ow or of (Trans Close)ow are

always unprotected;
—transitions that are instances of (Trans Undo)ow, (Trans Unprotect)ow, (Trans

Done)ow, or (Trans Activate)ow are neither protected nor unprotected.

9.3 Correctness

As explained in the beginning of Section 9, the absence of high-level viola-
tions does not in general suffice for correctness. The following small program
(from Abadi et al. [2008]) illustrates this point in the context of the AME
calculus, thus confirming that problems presented in Section 5 have formal
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Fig. 15. Transition rules of the abstract machine, with optimistic concurrency (weak).
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counterparts.

let x = ref false in
let y = ref false in
let z = ref false in
async (x := true);
async (x := false;

blockUntil !x;
y := true);

unprotected (blockUntil !y;
z := true)

Under the strong semantics, execution of the code x := false; blockUntil !x;
y := true never reaches y := true, so y can never be set to true, so z can
never be set to true either. On the other hand, with optimistic concurrency, z
may be set to true if the execution of x := true is interleaved between those of
x := false and blockUntil !x, then y is set true, and z is also set to true before
the conflict on x is detected.

It is plausible that the absence of lower-level violations would suffice for cor-
rectness. Such a result could be adequate as a basis for compiler optimizations,
but would not be fully satisfactory—programmers should not be aware of the
details of this lower-level semantics. Instead, we rely on the type system for
separation.

We do not modify the source typing rules of Section 6.2, but we do extend
them to the states defined in this section. We write:

E � 〈σ, T, O, l〉
if

—dom(σ ) = dom(E) ∩ RefLoc,
—for all r ∈ dom(σ ), there exist t and p such that E(r) = Refp t and E ; p �

σ (r) : t,
—for each e′ in T, E ; P � e′ : Unit,
—for each (e, f, a, P) in O, E ; P � e : Unit and E ; P � f : Unit, and for each e′

in P, E ; P � e′ : Unit,
—for each r ∈ dom(l), there exists t such that E(r) = RefP t and E ; P � l(r) : t.

In the special case where O and l are empty, we may omit them and simply
say that 〈σ, T〉 is well-typed. This condition is equivalent to 〈σ, T, unit〉 being
well-typed according to the definition of Section 6.2. Thus, whether 〈σ, T〉 is
well-typed can be understood and proved entirely in terms of the higher-level
definitions, without any regard for optimistic concurrency.

We obtain that typability is preserved by computation ( �−→∗
ow).

THEOREM 9.1 (PRESERVATION OF TYPABILITY). If 〈σ, T, O, l〉 is well-typed and
〈σ, T, O, l〉 �−→∗

ow 〈σ ′, T′, O′, l′〉 then 〈σ ′, T′, O′, l′〉 is well-typed.

In fact, we obtain that if 〈σ, T, O, l〉 is well-typed with respect to an environ-
ment E, then 〈σ ′, T′, O′, l′〉 is well-typed with respect to an extension of E. More-
over, there exist subsets P and U of dom(σ ′) such that the protected transitions
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in 〈σ, T, O, l〉 �−→∗
ow 〈σ ′, T′, O′, l′〉 allocate, read, or write only reference locations

in P, and the unprotected transitions in 〈σ, T, O, l〉 �−→∗
ow 〈σ ′, T′, O′, l′〉 allocate,

read, or write only reference locations in U. Similarly, reference locations reset
by (Trans Undo)ow are in P. The subsets in question consist of the reference
locations declared with effects P and U, respectively, in the environment.

Using Theorem 9.1, we establish the correctness for the weak semantics
with optimistic concurrency with respect to the high-level, strong semantics.

THEOREM 9.2 (CORRECTNESS). Assume that 〈σ, T〉 is well-typed. Consider a
computation

〈σ, T,∅,∅〉 �−→∗
ow 〈σ ′, T′,∅,∅〉

Then there is a strong computation

〈σ, T, unit〉 �−→∗
s 〈σ ′′, T′′, unit〉

for some σ ′′ and T′′ such that σ ′ is an extension of σ ′′ and T′′ = T′ up to
reordering.

More generally, in the proof of this result we establish that if 〈σ, T,∅,∅〉 �−→∗
ow

〈σ ′, T′, O′, l′〉 then there is a strong computation 〈σ, T, unit〉 �−→∗
s 〈σ ′′, T′′, unit〉

where σ ′l′ is an extension of σ ′′, and T′′ = T′.origin(O′) up to reordering. We
also add some further conditions in order to permit an inductive proof.

10. RELATED WORK

This article is related to work in several areas. Work on defining weak mem-
ory models inspired the approach of considering violation-free programs (Sec-
tion 10.1). There have been informal definitions about how STM or atomic
blocks should be used by programmers (Section 10.2); Section 6 is our for-
malization of these criteria. There have also been several formal semantics
for atomic blocks (Section 10.3); our strong semantics is similar to existing
definitions, but our weaker semantics go further towards the details of actual
implementations. We believe that our semantics are the first to formally expose
problems like those of Section 5.

10.1 Memory Models

Adve and Hill [1990] introduced the idea of providing strong semantics to
programs that obey a set of formally specified constraints; our definition and
use of violation-freedom is partly inspired by their approach.

Concurrently with our work, Spear et al. [2007] identified the link between
this approach and transactional memory, proposing a hierarchy of models for
sharing data between transactional and nontransactional code, and barrier
operations to separate transactional and nontransactional uses of objects. In
subsequent work, Spear et al. [2008] describe annotations to control whether or
not sections of nontransactional code are ordered with respect to transactions.
Dalessandro and Scott [2009] describe a “transactional data-race free” (TDRF)
programming model. Informally, TDRF appears similar to violation-freedom
in combination with ordinary data-race freedom. Dalessandro and Scott argue
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that a TM with strong atomicity provides little benefit over weaker implemen-
tations for non-TDRF programs.

Nevertheless, semantics for languages such as Java and C# must consider
what guarantees to provide for programs with data races, as well as to race-
free programs. Grossman et al. [2006] have started to examine some of the
questions that arise when extending this aspect of a memory model to programs
written with atomic blocks. Menon et al. [2008] consider a series of semantics
that provide various guarantees for atomic blocks. Menon et al. relate these
to the Java memory model, and to a range of lock-based programming idioms
that typically do not work with STM-based implementations of atomic blocks.
Menon et al. methodically show how to constrain an STM to implement forms
of these idioms correctly, even in cases where the lock-based idiom involves an
apparent data race.

10.2 Informal Definitions

Several papers propose informal criteria for using atomic blocks in Java, C#,
and similar languages [Harris and Fraser 2003; Adl-Tabatabai et al. 2006;
Allen et al. 2007]. For example, Harris and Fraser [2003] provide a form of
separation rule, saying that each shared location should either be protected
by a given mutex, or be accessed in atomic blocks, or be marked volatile.
Adl-Tabatabai et al. [2006] require that “all potentially concurrent accesses
to shared memory are properly guarded by atomic regions”. In the Fortress
language, Allen et al. [2007] require that “updates to shared locations should
always be performed using an atomic expression”.

These informal definitions can be problematic. While it is clear that some
examples do not satisfy them (e.g., NR from Figure 7), it is ambiguous whether
examples like the privatization idiom from Section 5.3 are meant to be allowed.
The zombie example of Section 5.2 illustrates a further problem with such
definitions: the locations accessed by a zombie transaction depend on the STM
implementation, not just on the source program.

Several researchers identified related difficulties and proposed mechanisms
for addressing them. Thus, Dice and Shavit [2006] describe the need to let
transactional stores to an object “drain” from the system when memory passes
in and out of transactional usage. Dice et al. [2006] introduce the term “zombie
transaction” to refer to a transaction that has observed an inconsistent read-set
but has yet to abort. Wang et al. [2007] describe a privatization example and the
idea of waiting for concurrent transactions to become quiescent before accessing
privatized data nontransactionally. The particular, succinct privatization idiom
that we present in Section 5.3 was brought to our attention by Marathe.

10.3 Formal Definitions

Jagannathan et al. [2005] define TFJ, an extension to Featherweight Java
[Igarashi et al. 2001]. They model a source language where transactions include
internal fork-join parallelism, and they explore two implementations based on
optimistic concurrency control and on two-phase locking. Although steps of the
executions of transactions can be interleaved, all TFJ memory accesses are
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made transactionally so the problems we are studying do not occur.
Liblit [2006] defines a detailed operational semantics for the LogTM hard-

ware. This semantics models the creation and termination of threads, the
execution of transactional and nontransactional memory accesses, the inter-
leaving of memory accesses within transactions, and the use of open-nested
and closed-nested transactions. The semantics implements strong atomicity. A
memory access is not permitted to execute if it would conflict with a concurrent
transaction; nontransacted operations are “stalled” until they may run with-
out conflict. Commit and rollback are both modeled as single transitions. Like
Jagannathan et al.’s semantics, Liblit’s semantics does not expose the problems
that we are studying.

Harris et al. [2005] provide an operational semantics for atomic blocks in
Haskell. The semantics is split into three layers: a core layer that contains
transitions for the evaluation of pure functional code, a transactional layer
that contains STM operations and pure functional code, and an I/O layer that
contains input/output operations, pure functional code, and atomic blocks of
transactional code. In this semantics, complete transactions execute as single
steps in the I/O layer, without interleaving between transactions or between
transacted and non-transacted code.

Scott [2006] tackles another aspect of the subject: what is the sequential
specification of transactional memory as a shared object in Herlihy and Wing’s
formalism: for example, what values may a transactional read return, and un-
der what circumstances must a particular transaction commit successfully?
Extending Scott’s model to consider non-transacted accesses to the same mem-
ory would provide another way of approaching the problems of Section 5.

Moore and Grossman [2008] also study the operational semantics of trans-
actions. While our high-level goals and our techniques are similar, our studies
were started independently, and there are a number of differences in our re-
sults. In particular, Moore and Grossman focus on traditional atomic blocks,
with internal concurrency but with no yielding and no provision for unpro-
tected fragments except at the top level; they have yet to analyze schemes with
optimistic concurrency. Despite these and other differences, the works are con-
sistent in their demonstrating the viability and value of precise operational
semantics for the constructs considered.

Other recent work is addressing the problem of verifying implementations
of transactional memory [Cohen et al. 2007; Guerraoui et al. 2008a, 2008b;
Tasiran 2008]. This work generally does not consider the programming lan-
guages built on top of transactional memory. However, it should be possible to
leverage this work in the study of programming-language implementations.

11. CONCLUSION AND FURTHER WORK

The present exploration of language constructs represents the foundation for
ongoing work on programming with transactional memory. Understanding the
semantics of the constructs and the related trade-offs has proven both challeng-
ing and worthwhile. In particular, the realization that weak semantics like that
of Section 9 do not correctly execute all violation-free programs indicates that
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implementation techniques employed in Bartok-STM cannot be used without
further language restrictions or other precautions.

We have demonstrated that imposing a language restriction, static separa-
tion of mutable state, lets us give the programmer the attractive behavior of the
strong semantics even with a very permissive implementation. In hindsight,
this fact may not appear surprising, but it is worth noting that several defini-
tions of separation are possible, [Harris and Fraser 2003; Harris et al. 2005;
Moore and Grossman 2008], and that they have substantially different conse-
quences; for instance, some definitions do not suffice in the presence of zombies
(see Section 10). Although separation is appealing in a functional setting, it is
probably less palatable in an imperative language where most data is consid-
ered mutable, and would therefore require marshaling across the separation
boundary. These results suggest a number of directions for further work—
developing the type system (to allow more programs to be correctly typed), the
language constructs (perhaps to describe data transfer between protected and
unprotected modes), or the STM implementation (perhaps to support more
programs with the strong semantics). This exploration, which we are currently
pursuing [Abadi et al. 2008; Abadi et al. 2008, 2009], highlights the benefits of
codesign of these three aspects of the language and its implementation.

We have also explored several alternative semantics. Clearly there are many
others. Some of those that capture appealing implementation strategies may
be worth studying further. Moreover, incorporating some of the subtleties of
relaxed memory models may lead to further problems and assumptions.

In addition to the type system in this article, we have developed and ana-
lyzed a type system that characterizes “yielding” behavior [Isard and Birrell
2007; Abadi 2008]. With this type system, the caller of a function obtains static
information on whether the function may yield and therefore commit. Combin-
ing the two type systems is straightforward, and may be attractive if yielding
and separation are generalized (so, for example, yielding may commit only a
part of the heap).

Our initial exploration of AME includes writing example programs. At this
point, we have confidence that the constructs are interesting and useful, and in
any case we expect that some of the ideas and results of our work will be of value
whether or not particular constructs are widely adopted. Designing constructs
and designing languages are distinct activities; further research should inform
a language design based on AME.

APPENDIX

The appendix contains proofs for the results stated in the body of the paper
and some auxiliary results. A few routine arguments are omitted for brevity.

A.1 Proofs for Section 4

PROOF OF PROPOSITION 4.1. The proofs for both directions are fairly straight-
forward arguments by cases.
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—Let us assume that 〈σ, T, e〉 �−→〈σ ′, T′, e′〉. We wish to prove that 〈σ, T, e〉 �−→∗
s

〈σ ′, T′, e′〉.
By definition of �−→, e is unit or of the form E[ f ], and in the latter case e is
of the form P[ f ] or U[ f ].
—If e is of the formP[ f ], then T = T′ and immediately 〈σ, T, e〉�−→s〈σ ′, T′, e′〉.
—If e is of the form U[ f ], we argue by cases on which rule is applied in

〈σ, T, e〉 �−→ 〈σ ′, T′, e′〉.
—(Trans Appl), (Trans Ref), (Trans Deref), (Trans Set), (Trans Async),

(Trans Block):

〈σ, T, e〉 �−→s 〈σ ′, T′.e, unit〉
�−→s 〈σ ′, T.e′, unit〉
�−→s 〈σ ′, T, e′〉

by (Trans Unprotect)s, the corresponding rule (one of (Trans Appl)s,
(Trans Ref)s, (Trans Deref)s, (Trans Set)s, (Trans Async)s, (Trans
Block)s), and (Trans Activate)s.

—(Trans Unprotect): T′ = T.e, e′ = unit, and 〈σ, T, e〉 �−→s 〈σ ′, T.e, unit〉
by (Trans Unprotect)s, so 〈σ, T, e〉 �−→s 〈σ ′, T′, e′〉.

—(Trans Close): e is of the form E[unprotected V], T′ = T.E[V], e′ = unit,
and

〈σ, T, e〉 �−→s 〈σ ′, T.e, unit〉
�−→s 〈σ ′, T.E[V], unit〉

by (Trans Unprotect)s and (Trans Close)s, so 〈σ, T, e〉 �−→∗
s 〈σ ′, T′, e′〉.

—(Trans Activate): Since e is of the form U[ f ], this rule cannot apply.
—If e is unit, then 〈σ, T, e〉 �−→〈σ ′, T′, e′〉 by (Trans Activate), so 〈σ, T, e〉 �−→s

〈σ ′, T′, e′〉 by (Trans Activate)s.
—Let us assume that 〈σ, T, e〉 �−→s 〈σ ′, T′, e′〉. We wish to prove that 〈σ, T, e〉 �−→∗

〈σ ′, T′′, e′〉 for some T′′ = T′ up to reordering. We proceed by cases on which
rule is applied in 〈σ, T, e〉 �−→s 〈σ ′, T′, e′〉.
—(Trans Appl)s, (Trans Ref)s, (Trans Deref)s, (Trans Set)s, (Trans Async)s,

(Trans Block)s: Consider a transition 〈σ, T, e〉 �−→s 〈σ ′, T′, e′〉 by one of these
rules. The transition is defined in terms of a context that has a hole either
in T and in T′ or in e and in e′.
—In the former case, e = unit, T is of the form T1. f.T2, T′ is of the form

T1. f ′.T2, the hole is under unprotected in f and f ′, and

〈σ, T, unit〉 �−→ 〈σ, T1.T2, f 〉
�−→ 〈σ, T1.T2, f ′〉
�−→ 〈σ ′, T1.T2. f ′, unit〉

by (Trans Activate), the corresponding rule (one of (Trans Appl), (Trans
Ref), (Trans Deref), (Trans Set), (Trans Async), (Trans Block)), and
(Trans Unprotect), so 〈σ, T, e〉 �−→∗ 〈σ ′, T1.T2. f ′, e′〉 and T1.T2. f ′ = T′ up
to reordering.

—In the latter case, 〈σ, T, e〉 �−→ 〈σ ′, T′, e′〉 directly by the corresponding
rule.
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—(Trans Unprotect)s: e is of the form P[unprotected f ], e′ = unit, and
T′ = T.e, so 〈σ, T, e〉 �−→ 〈σ ′, T′, e′〉 by (Trans Unprotect).

—(Trans Close)s: e = e′ = unit, T is of the form T1.E[unprotected V].T2, T′

is T1.E[V].T2, and

〈σ, T1.E[unprotected V].T2, unit〉 �−→ 〈σ, T1.T2, E[unprotected V]〉
�−→ 〈σ, T1.T2.E[V], unit〉

by (Trans Activate) and (Trans Close), so 〈σ, T, e〉 �−→∗ 〈σ ′, T1.T2.E[V], e′〉
and T1.T2.E[V] = T′ up to reordering.

—(Trans Activate)s: e = unit and T is of the form T1.e′.T2, so 〈σ, T, e〉 �−→
〈σ ′, T′, e′〉 by (Trans Activate).

A.2 Proofs for Section 6

A first auxiliary result is a replacement lemma, in the style of Wright and
Felleisen [1994]. It immediately extends to typing states 〈σ, e1. . . . .en, e〉.

LEMMA A.1 (REPLACEMENT). Consider a derivation D of E ; p � E[e0] : t. As-
sume that this derivation includes, as a subderivation, a proof D0 of the judg-
ment E ; p0 � e0 : t0 for the occurrence of e0 in E[·]. Assume that we also have a
derivationD′

0 of E ; p0 � e′
0 : t0 for some e′

0. LetD′ be obtained fromD by replacing
D0 with D′

0, and e0 with e′
0 in E . Then D′ is a derivation of E ; p � E[e′

0] : t.

The next results say that values can be typed with either effect, if they can
be typed at all.

LEMMA A.2. If E ; p � V : t then E ; q � V : t.

The next result is a standard substitution lemma, restricted to values.

LEMMA A.3 (VALUE SUBSTITUTION). If E, x : s, E′ ; p � e : t and E ; q � V : s
then E, E′ ; p � e[V/x] : t.

PROOF. As usual, the proof is by induction on the derivation of E, x :
s, E′ ; p � e : t. In the case of (Exp x), we rely on Lemma A.2.

Another lemma deals with updates to the state.

LEMMA A.4. Let r ∈ dom(σ ) and E(r) = Refp0 t0. If E � 〈σ, e1. . . . .en, e〉 and
E ; p0 � V : t0, then E � 〈σ [r �→ V], e1. . . . .en, e〉.

The final lemma is a syntactic analysis of contexts.

LEMMA A.5. If E � 〈σ, T,P[e]〉 then there exists t such that E ; P � e : t. If
E � 〈σ, T.U[e′].T′, e〉 then there exists t such that E ; U � e′ : t.

PROOF. Since a state can be typed only if all of its components can be typed,
if E � 〈σ, T,P[e]〉 then there exist t and p such that E ; p � e : t, and if
E � 〈σ, T.U[e′].T′, e〉 then there exist t and p such that E ; p � e′ : t. It remains
to prove that p must be P in the former case and U in the latter case.
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Generalizing from Unit to an arbitrary t′, we show that if E ; P � P[e] : t′

then E ; P � e : t for some t, and that if E ; P � U[e′] : t′ then E ; U � e′ : t
for some t. We show in addition that if E ; U � E[e′] : t′ then E ; U � e′ : t for
some t.

The proofs are by induction on the forms of P[e], U[e′], and E[e′].

—When P[e] is e, E ; P � P[e] : Unit is E ; P � e : Unit. When P[e] is of
another form, the typing derivation of E ; P � P[e] : Unit must rely on a
proof of E ; P � P ′[e] : Unit for some smaller P ′[e], according to the typing
rules.

—Similarly, when E[e′] is e′, we are done immediately, and the cases for other
forms are immediate applications of the induction hypothesis to smaller
contexts.

—When U[e′] is unprotected E[e′], we have E ; U � E[e′] : Unit, and the previous
case applies. For other forms of U[e′], the cases are immediate applications
of the induction hypothesis to smaller contexts.

PROOF OF THEOREM 6.1. We prove that if 〈σ, e1. . . . .en, e〉 is well-typed and
〈σ, e1. . . . .en, e〉 �−→s 〈σ ′, e′

1. . . . .e
′
n′ , e′〉 then 〈σ ′, e′

1. . . . .e
′
n′ , e′〉 is well-typed. The

first claim follows immediately by induction.
The proof is by cases on the operational-semantics rule being applied. In

each case, we show that if E � 〈σ, e1. . . . .en, e〉 then E′ � 〈σ ′, e′
1. . . . .e

′
n′ , e′〉, where,

unless indicated otherwise, E′ = E and n′ = n. In several cases, we consider
the typings of certain subexpressions that occur in evaluation contexts; those
typings are with respect to E, since the holes in the contexts are never under
binders.

—(Trans Appl)s: The typing of 〈σ,F[(λpx : t. e) V]〉 must rely on (Exp Appl) and
(Exp Fun). Specifically, we must have E ; p0 � (λpx : t. e) V : t0 for some t0 and
p0, and therefore E ; p0 � λpx : t.e : t1 →p0 t0 and E ; p0 � V : t1 for some t1, and
therefore E, x : t1 ; p0 � e : t0. By Lemma A.3, we obtain E ; p0 � e[V/x] : t0.
By Lemma A.1, we obtain a typing of 〈σ,F[e[V/x]]〉.

—(Trans Ref)s: The typing of 〈σ,F[ref V]〉 must rely on (Exp Ref). Specifically,
we must have E ; p0 � ref V : Refp0 t0 for some t0 and p0, and therefore
E ; p0 � V : t0. We extend E with r : Refp0 t0. We can do this extension
because r ∈ RefLoc − dom(σ ), hence r 
∈ dom(E). By a weakening (adding
r : Refp0 t0 to E for typing 〈σ,F[ref V]〉) and Lemma A.1, we obtain a typing
of 〈σ,F[r]〉.

—(Trans Deref)s: The typing of 〈σ,F[!r]〉 must rely on (Exp Deref). Specifically,
we must have E ; p0 � !r : t0 for some t0 and p0, and therefore E ; p0 � r :
Refp0 t0. Since r is a variable, its type must come from the environment E,
so by hypothesis E ; p0 � V : t0 where V = σ (r). By Lemma A.1, we obtain a
typing for 〈σ,F[V]〉.

—(Trans Set)s: The typing of 〈σ,F[r := V]〉 must rely on (Exp Set). Specifically,
we must have E ; p0 � r := V : Unit for some p0, and therefore E ; p0 � V : t0
and E ; p0 � r : Refp0 t0 for some p0. By Lemma A.1, we can transform a typ-
ing of 〈σ,F[r := V]〉 into a typing of 〈σ,F[unit]〉, and since E ; p0 � V : t0
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and E(r) = Refp0 t0, we also obtain a typing of 〈σ [r �→ V],F[unit]〉 by
Lemma A.4.

—(Trans Async)s: The typing of 〈σ,F[async e]〉 must rely on (Exp Async).
Specifically, we must have E ; p0 � async e : Unit for some p0, and
therefore that E ; P � e : Unit. By Lemma A.1, we can transform a typ-
ing of 〈σ,F[async e]〉 into a typing of F[unit], and then into a typing of
〈σ, e.F[unit]〉, letting n′ = n + 1.

—(Trans Block)s: The typing of 〈σ,F[blockUntil true]〉 must rely on (Exp
Block), specifically on a derivation of E ; p0 � blockUntil true : Unit for
some p0. By Lemma A.1, we obtain a typing of 〈σ,F[unit]〉.

—(Trans Unprotect)s: This case requires a trivial rearrangement in the typing,
with n′ = n + 1.

—(Trans Close)s: The typing of 〈σ, T.E[unprotected V].T′, e′〉 must rely on (Exp
Unprotect). Specifically, we must have E ; p0 � unprotected V : t0 for some t0
and p0, and E ; U � V : t0, so E ; p0 � V : t0 by Lemma A.2. By Lemma A.1, we
obtain a typing of E[V] and then of 〈σ, T.E[V].T′, e′〉.

—(Trans Activate)s: This case requires a trivial rearrangement in the typing,
with n′ = n − 1.

Examining the proof, we note that if 〈σ, T, e〉 is well-typed with respect to
an environment E, then 〈σ ′, T′, e′〉 is well-typed with respect to an extension
of E. In the cases of (Trans Ref)s, (Trans Deref)s, and (Trans Set)s, which deal
with a reference location of type Refp0 t0, we also note that if the transition is
protected, then p0 must be P, and if the transition is unprotected, then p0 must
be U, by Lemma A.5. It follows that, if 〈σ, T, e〉 �−→∗

s 〈σ ′, T′, e′〉 and 〈σ, T, e〉 is
well-typed, then there exist subsets P and U of dom(σ ′) such that the protected
transitions in 〈σ, T, e〉 �−→∗

s 〈σ ′, T′, e′〉 allocate, read, or write only reference
locations in P, and the unprotected transitions in 〈σ, T, e〉�−→∗

s 〈σ ′, T′, e′〉 allocate,
read, or write only reference locations in U. The subsets in question consist
of the reference locations declared with effects P and U, respectively, in the
environment.

PROOF OF THEOREM 6.2. This proof is very similar to the proof of the progress
theorem in [Abadi 2008]. Indeed, it follows from a slight generalization of that
proof to the calculus with unprotected (which is not treated in [Abadi 2008]).
We omit the details.

PROOF OF COROLLARY 6.3. Suppose that 〈σ, T, e〉 �−→∗
s 〈σ ′, T′, e′〉. By Theo-

rem 6.1, if 〈σ, T, e〉 is well-typed then so is 〈σ ′, T′, e′〉, with some typing envi-
ronment E′. If there is a violation on a location r in 〈σ ′, T′, e′〉, then T′ includes
an expression of the form U[ f ] and e′ is of the form P[ f ′], where f and f ′ are
reads or writes on r. By Lemma A.5, there exists t such that E′ ; U � f : t and t′

such that E′ ; P � f ′ : t′. So, according to the typing rules, r must have a type of
the form RefU t0 in E′ and also a type of the form RefP t0 in E′. This conclusion
contradicts the well-formedness of E′.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 1, Article 2, Pub. date: January 2011.



2:38 • M. Abadi et al.

A.3 Proofs for Section 7

We prove a commutation lemma:

LEMMA A.6. Suppose that

〈σ, T, e〉 �−→w 〈σ ′, T′, e′〉 �−→w 〈σ ′′, T′′, e′′〉
where the first transition is an instance of (Trans Activate)w or a protected
transition and the second transition is an unprotected transition. Suppose
further that 〈σ, T, e〉 is violation-free. Then there exists 〈σ ∗, T∗, e∗〉 such that
〈σ, T, e〉 �−→w 〈σ ∗, T∗, e∗〉 �−→w 〈σ ′′, T′′, e′′〉 where the second transition is an in-
stance of (Trans Activate)w or a protected transition.

PROOF. Consider a transition that is an instance of (Trans Activate)w fol-
lowed by an unprotected transition:

〈σk, e1. . . . .ei. . . . .en.e, unit〉 �−→w 〈σk, e1. . . . .ei. . . . .en, e〉
�−→w 〈σk+1, e1. . . . .e′

i. . . . .en, e〉
(We place e at the end of e1. . . . .ei. . . . .en.e only as a notational convenience; the
argument is analogous in other cases.) We can rewrite this pair of transitions
so that the unprotected transition is before the instance of (Trans Activate)w:

〈σk, e1. . . . .ei. . . . .en.e, unit〉 �−→w 〈σk+1, e1. . . . .e′
i. . . . .en.e, unit〉

�−→w 〈σk+1, e1. . . . .e′
i. . . . .en, e〉

The unprotected transition uses the same rule as before the commuta-
tion, with only a straightforward change in the choice of evaluation con-
text that corresponds to the change from e1. . . . .ei. . . . .en, e to e1. . . . .ei. . . . .en.e,
unit.

Consider a protected transition followed by an unprotected transition:

〈σk, e1. . . . .ei. . . . .en, e〉 �−→w 〈σk+1, e1. . . . .ei. . . . .en, e′〉
�−→w 〈σk+2, e1. . . . .e′

i. . . . .en, e′〉
where the protected transition is not an instance of (Trans Async)w. We can
rewrite this pair of transitions so that the unprotected transition is before the
protected transition:

〈σk, e1. . . . .ei. . . . .en, e〉 �−→w 〈σ ∗
k+1, e1. . . . .e′

i. . . . .en, e〉
�−→w 〈σk+2, e1. . . . .e′

i. . . . .en, e′〉
for an appropriate σ ∗

k+1, which is constructed by case analysis on the protected
transition:

—In the cases of (Trans Appl)w and (Trans Block)w, we have that σk+1 = σk,
and we let σ ∗

k+1 = σk+2.
—In the case of (Trans Ref)w, we have that σk+1 = σk[r �→ V] for some r and V.

This location r is required not to be in dom(σk), and hence (by our general
requirements on states) cannot occur free in ei. Therefore, the unprotected
transition cannot read or write the contents of r, so σk+2(r) = V. Moreover,
if the unprotected transition is itself an instance of (Trans Ref)w, it can-
not allocate the same r. We let σ ∗

k+1 be the restriction of σk+2 to locations
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other than r. We have 〈σk, e1. . . . .ei. . . . .en, e〉 �−→w 〈σ ∗
k+1, e1. . . . .e′

i. . . . .en, e〉
because the unprotected transition does not allocate, read, or write r. We
have 〈σ ∗

k+1, e1. . . . .e′
i. . . . .en, e〉 �−→w 〈σk+2, e1. . . . .e′

i. . . . .en, e′〉 because the un-
protected transition does not allocate or write r.

—In the case of (Trans Deref)w, we have that σk+1 = σk, and we let
σ ∗

k+1 = σk+2. Thus, 〈σk, e1. . . . .ei. . . . .en, e〉 �−→w 〈σ ∗
k+1, e1. . . . .e′

i. . . . .en, e〉. Be-
cause 〈σk, e1. . . . .ei. . . . .en, e〉 is violation-free, this unprotected transition can-
not be a write to the location r read in (Trans Deref)w, so σk+2(r) = σk(r) and
hence 〈σ ∗

k+1, e1. . . . .e′
i. . . . .en, e〉 �−→w 〈σk+2, e1. . . . .e′

i. . . . .en, e′〉.
—In the case of (Trans Set)w, we have that σk+1 = σk[r �→ V] for some r

and V. By our general requirements on states, we have that r ∈ dom(σk).
We let σ ∗

k+1 = σk+2[r �→ V0] where V0 = σk(r). Because r ∈ dom(σk+1), the
unprotected transition cannot allocate r, and because 〈σk, e1. . . . .ei. . . . .en, e〉
is violation-free, the unprotected transition cannot read or write r, so
〈σk, e1. . . . .ei. . . . .en, e〉 �−→w 〈σ ∗

k+1, e1. . . . .e′
i. . . . .en, e〉. In addition, we obtain

〈σ ∗
k+1, e1. . . . .e′

i. . . . .en, e〉 �−→w 〈σk+2, e1. . . . .e′
i. . . . .en, e′〉 from σk+2 = σ ∗

k+1[r �→
V] and by the definition of the transition relation in the case of (Trans Set)w.

Similarly, consider a protected transition followed by an unprotected transi-
tion:

〈σk, e1. . . . .ei. . . . .en, e〉 �−→w 〈σk+1, e′′.e1. . . . .ei. . . . .en, e′〉
�−→w 〈σk+2, e′′.e1. . . . .e′

i. . . . .en, e′〉
where the protected transition is an instance of (Trans Async)w, As in the
cases of (Trans Appl)w and (Trans Block)w, we have that σk+1 = σk, and we let
σ ∗

k+1 = σk+2. Note that we cannot have:

〈σk, e1. . . . .en, e〉 �−→w 〈σk+1, e′′.e1. . . . .en, e′〉
�−→w 〈σk+2, e′′′.e1. . . . .en, e′〉

where the first transition is an instance of (Trans Async)w and the second
transition operates immediately on the expression e′′ added to the pool: this
possibility is excluded by the restriction that in, an expression of the form
async e′′, any occurrences of unprotected are under a λ.

PROOF OF THEOREM 7.1. The proof is by induction on the length of 〈σ, T, unit〉
�−→∗

w 〈σ ′, T′, e′〉. We strengthen the claim with the assertion that the strong
computation is of the same length as the original computation.

The claim is vacuously true when this length is 0. For the inductive step, sup-
pose that we have 〈σ, T, unit〉 �−→∗

w 〈σ ′, T′, e′〉 �−→w 〈σ ′′, T′′, e′′〉. By induction hy-
pothesis, 〈σ, T, unit〉�−→∗

s 〈σ ′, T′, e′〉�−→w〈σ ′′, T′′, e′′〉. If 〈σ ′, T′, e′〉�−→s〈σ ′′, T′′, e′′〉,
then we immediately obtain a strong computation 〈σ, T, unit〉 �−→∗

s 〈σ ′′, T′′, e′′〉.
On the other hand, if 〈σ ′, T′, e′〉 �−→w 〈σ ′′, T′′, e′′〉 is not strong, then there must
be a transition before it (since otherwise e′ = e = unit), in other words a
last transition in 〈σ, T, unit〉 �−→∗

s 〈σ ′, T′, e′〉. Moreover this strong transition
to 〈σ ′, T′, e′〉 cannot be an instance of (Trans Unprotect)w nor an unprotected
strong transition, for otherwise e′ = unit, so it must be an instance of (Trans
Activate)w or a protected transition. By Lemma A.6, we can commute steps in
order to obtain a strong computation 〈σ, T, unit〉 �−→∗

s 〈σ ′′, T′′, e′′〉. Specifically,
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Lemma A.6 shows how to move an unprotected transition before an instance
of (Trans Activate)w or a protected transition. By induction hypothesis, the
computation up to this unprotected transition can be made strong, and adding
back the instance of (Trans Activate)w or the protected transition yields the
desired strong computation 〈σ, T, unit〉 �−→∗

s 〈σ ′′, T′′, e′′〉.
Note that the new intermediate states generated in the proof could have

violations, and the argument would collapse, if we had not assumed that all
strong computations that start from the state 〈σ, T, unit〉 are violation-free.
Considering strong computations is fortunately enough; considering only the
given computation 〈σ, T, unit〉 �−→∗

w 〈σ ′, T′, e′〉 would not be.

A.4 Proofs for Section 8

In the weak semantics with rollback, each transition has the form

〈σ, T, e, f, l, P〉 �−→rw 〈σ ′, T′, e′, f ′, l′, P′〉
In many cases, a transition is defined in terms of a context that has a hole
either in T and in T′ or in e and in e′. Much as in Section 7, we say that the
transition is protected if the hole is in e and in e′, and say that the transition is
unprotected if the hole is in T and in T′. By definition, we have:

—transitions that are instances of (Trans . . . P)rw or (Trans Block false
Undo)rw are always protected;

—transitions that are instances of (Trans . . . U)rw or of (Trans Close)rw are
always unprotected;

—transitions that are instances of (Trans Unprotect)rw, (Trans Block false
Restore)rw, (Trans Done)rw, or (Trans Activate)rw are neither protected nor
unprotected.

LEMMA A.7. If 〈σ, T, unit, unit,∅,∅〉 �−→∗
rs 〈σ ′, T′, e, f, l, P〉, where the first

transition is an instance of (Trans Activate)rs and subsequent ones are not
unprotected transitions, nor instances of (Trans Activate)rs or (Trans Block false
. . . )rs, then 〈σ, T, unit〉 �−→∗

s 〈σ ′, T′.P, e〉.
PROOF. The proof is by induction on the length of 〈σ, T, unit, unit,∅,∅〉�−→∗

rs
〈σ ′, T′, e, f, l, P〉. Applications of (Trans Done)rs in �−→rs correspond to no tran-
sition with �−→s. In all other cases, each applicable transition rule for �−→∗

rs has
a corresponding one for �−→∗

s .

LEMMA A.8. If 〈σ, T, unit, unit,∅,∅〉�−→∗
rs〈σ ′, T′, unit, unit,∅,∅〉, where the

first transition is an instance of (Trans Activate)rs and subsequent ones are not
unprotected transitions nor instances of (Trans Activate)rs, and the computation
includes instances of (Trans Block false . . . )rs, then T = T′ up to reordering
and σ ′ extends σ .

PROOF. The computation must end with a sequence of applications of (Trans
Block false . . . )rs that undo any updates to σ (possibly followed by a sequence
of applications of (Trans Done)rs to 〈σ ′, T′, unit, unit,∅,∅〉, with no effect). The
first step takes an expression from T, while the application of Trans Block
false Restore)rs returns it.
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LEMMA A.9. If 〈σ, T, unit, unit,∅,∅〉�−→∗
rs〈σ ′, T′, unit, unit,∅,∅〉, where the

first transition is an instance of (Trans Activate)rs and subsequent ones are not
unprotected transitions, nor instances of (Trans Activate)rs, then there exist σ ′′

and T′′ such that σ ′ extends σ ′′, T′′ = T′ up to reordering, and 〈σ, T, unit〉 �−→∗
s

〈σ ′′, T′′, unit〉.

PROOF. Lemma A.7 deals with the case in which there are no occurrences of
(Trans Block false . . . )rs in the computation. Lemma A.8 deals with the case
in which there are such occurrences.

PROOF OF LEMMA 8.1. The proof is by induction on the length of

〈σ, T, unit, unit,∅,∅〉 �−→∗
rs 〈σ ′, T′, unit, unit,∅,∅〉

We distinguish three cases:

—Suppose that the computation consists of a single transition

〈σ, T, unit, unit,∅,∅〉 �−→rs 〈σ ′, T′, unit, unit,∅,∅〉
This transition could be an unprotected transition, a trivial instance of
(Trans Done)rs, or a trivial instance of (Trans Activate)rs. In all cases, we im-
mediately have 〈σ, T, unit〉 = 〈σ ′, T′, unit〉 or 〈σ, T, unit〉 �−→s 〈σ ′, T′, unit〉.

—If there is any intermediate state of the form 〈σ ∗, T∗, unit, unit,∅,∅〉, then
we conclude by applying the induction hypothesis to

〈σ, T, unit, unit,∅,∅〉 �−→∗
rs 〈σ ∗, T∗, unit, unit,∅,∅〉

and to

〈σ ∗, T∗, unit, unit,∅,∅〉 �−→∗
rs 〈σ ′, T′, unit, unit,∅,∅〉

—Otherwise, it must be that the first step in the computation is an instance
of (Trans Activate)rs, which is the only rule that can go from a state of the
form 〈σ ′′, T′′, unit, unit,∅,∅〉 to a state not of this same form. After this
initial transition, unprotected transitions and (Trans Activate)rs are never
enabled, because of the form of the intermediate states. We conclude by
Lemma A.9.

PROOF OF LEMMA 8.3. We argue by contradiction. Suppose that a state with
a violation was reachable: 〈σ, T, unit, unit,∅,∅〉 �−→∗

rs 〈σ ′, T′, e′, f ′, l′, P′〉. We
exclude any final occurrences of instances of (Trans Block false . . . )rs in this
computation, since they cannot introduce any violations not already present.
We show that 〈σ, T, unit〉 �−→∗

s 〈σ ′′, T′′, e′〉 where σ ′ extends σ ′′ and T′′ = T′.P′ up
to reordering. A violation in 〈σ ′, T′, e′, f ′, l′, P′〉 immediately implies a violation
in 〈σ ′′, T′′, e′〉.

Lemma 8.1 enables us to simulate any prefixes

〈σ, T, unit, unit,∅,∅〉 �−→∗
rs 〈·, ·, unit, unit,∅,∅〉

of 〈σ, T, unit, unit,∅,∅〉 �−→∗
rs 〈σ ′, T′, e′, f ′, l′, P′〉. After the longest such prefix,

the first transition is an instance of (Trans Activate)rs and subsequent ones
are not unprotected transitions, nor instances of (Trans Activate)rs or (Trans
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Block false . . . )rs. Lemma A.7 yields that 〈σ, T, unit〉 �−→∗
s 〈σ ′′, T′′, e′〉 where σ ′

extends σ ′′ and T′′ = T′.P′ up to reordering.

LEMMA A.10. Suppose that

〈σ, T, e, f, l, P〉 �−→rw 〈σ ′, T′, e′, f ′, l′, P′〉 �−→rw 〈σ ′′, T′′, e′′, f ′′, l′′, P′′〉
where the first transition is an instance of (Trans Activate)rw or a protected tran-
sition and the second transition is an unprotected transition. Suppose further
that 〈σ, T, e, f, l, P〉 is violation-free, and that, if r ∈ dom(l), then no element
of T is of the form U[!r] or U[r := . . .]. Then there exists 〈σ ∗, T∗, e∗, f ∗, l∗, P∗〉
such that 〈σ, T, e, f, l, P〉 �−→rw 〈σ ∗, T∗, e∗, f ∗, l∗, P∗〉 �−→rw 〈σ ′′, T′′, e′′, f ′′, l′′, P′′〉
where the second transition is an instance of (Trans Activate)rw or a protected
transition.

PROOF. The proof is analogous to that of Lemma A.6.
Consider a transition that is an instance of (Trans Activate)rw followed by an

unprotected transition. As in Lemma A.6, we can rewrite this pair of transitions
so that the unprotected transition is before the instance of (Trans Activate)rw.
The unprotected transition uses the same rule as before the commutation, with
only a straightforward change in the choice of evaluation context.

Consider a protected transition followed by an unprotected transition. As
in Lemma A.6, we can rewrite this pair of transitions so that the unprotected
transition is before the protected transition, with an intermediate state con-
structed by case analysis on the protected transition. Most of the cases of
protected transitions are as the corresponding cases in Lemma A.6.

—In the cases of (Trans Appl P)rw, (Trans Block true P)rw, (Trans Ref P)rw, and
(Trans Deref P)rw, the state components f , l, and P are constant through the
transitions, so we proceed exactly as in Lemma A.6, letting f ∗ = f , l∗ = l,
and P∗ = P.

—The case of (Trans Async P)rw is similar except that P varies, and we let
P∗ = P.

—The case of (Trans Set P)rw is also similar except that l varies, and we let
l∗ = l.

—The case of (Trans Block false Undo)rw is analogous to that of (Trans Set
P)rw, and we let l∗ = l again. We usethe hypothesis that if r ∈ dom(l), then
no element of T is of the form U[!r] or U[r := . . .], instead of the hypothesis
that the state 〈σ, T, e, f, l, P〉 is violation-free.

LEMMA A.11. Assume that all strong computations with rollback that start
from the state 〈σ, T, unit, unit,∅,∅〉 are violation-free. If 〈σ, T, unit, unit,∅,∅〉
�−→∗

rs 〈σ ′, T′, e′, f ′, l′, P′〉 then, if r ∈ dom(l′), then no element of T′ is of the form
U[!r] or U[r := . . .].

PROOF. We show that if r ∈ dom(l′), then no element of T′ is of the form
U[!r] or U[r := . . .]. We proceed by induction on the length of the computation,
and argue by cases on the last step of the computation. If l′ = ∅, then the
claim is trivially true, so it suffices to consider the cases of rules (Trans . . . P)rs

and (Trans Block false Undo)rs. In all cases except that of (Trans Set P)rs,
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we have that l′ is equal or shorter than its previous value while T′ equals its
previous value, so the induction hypothesis yields the desired result. In the
case of (Trans Set P)rs, since the previous state is violation-free and its active
expression is a write to the location r being added to l′, the expressions in T′

cannot be accessing this location.

PROOF OF LEMMA 8.2. Consider a weak computation 〈σ, T, unit, unit,∅,∅〉
�−→∗

rw 〈σ ′, T′, e′, f ′, l′, P′〉. Much as in Theorem 7.1, the proof is by induction
on the length of this computation, relying on Lemma A.10. As in Theorem 7.1,
we strengthen the claim with the assertion that the strong computation is of
the same length as the original computation.

The claim is vacuously true when this length is 0. For the inductive step,
suppose that we have

〈σ, T, unit, unit,∅,∅〉 �−→∗
rw 〈σ ′, T′, e′, f ′, l′, P′〉

�−→rw 〈σ ′′, T′′, e′′, f ′′, l′′, P′′〉
By induction hypothesis,

〈σ, T, unit, unit,∅,∅〉 �−→∗
rs 〈σ ′, T′, e′, f ′, l′, P′〉

�−→rw 〈σ ′′, T′′, e′′, f ′′, l′′, P′′〉
If 〈σ ′, T′, e′, f ′, l′, P′〉 �−→rs 〈σ ′′, T′′, e′′, f ′′, l′′, P′′〉, then we immediately obtain
a strong computation 〈σ, T, unit, unit,∅,∅〉 �−→∗

rs 〈σ ′′, T′′, e′′, f ′′, l′′, P′′〉. On the
other hand, if 〈σ ′, T′, e′, f ′, l′, P′〉 �−→rw 〈σ ′′, T′′, e′′, f ′′, l′′, P′′〉 is not strong, then
there must be a transition before it (since otherwise e′ = e = f ′ = f =
unit and l′ = l = P′ = P = ∅), in other words a last transition in
〈σ, T, unit, unit,∅,∅〉 �−→∗

rs 〈σ ′, T′, e′, f ′, l′, P′〉. Moreover this strong transition
to 〈σ ′, T′, e′, f ′, l′, P′〉 cannot be an instance of (Trans Unprotect)rs, (Trans
Block false Restore)rs, or (Trans Done)rs nor an unprotected strong transi-
tion, for otherwise e′ = f ′ = unit and l′ = P′ = ∅), so it must be an instance
of (Trans Activate)rs or a protected transition. We can apply Lemma A.10 be-
cause of Lemma A.11. By Lemma A.10, we can commute steps in order to
obtain a strong computation 〈σ, T, unit, unit,∅,∅〉 �−→∗

rs 〈σ ′′, T′′, e′′, f ′′, l′′, P′′〉.
Specifically, Lemma A.10 shows how to move an unprotected transition be-
fore an instance of (Trans Activate)rs or a protected transition. By induction
hypothesis, the computation up to this unprotected transition can be made
strong, and adding back the instance of (Trans Activate)rs or the protected
transition yields the desired strong computation 〈σ, T, unit, unit,∅,∅〉 �−→∗

rs
〈σ ′′, T′′, e′′, f ′′, l′′, P′′〉.

PROOF OF THEOREM 8.4. The theorem follows from the composition of Lem-
mas 8.1 and 8.2. Lemma 8.3 implies that all strong computations with rollback
that start from the state 〈σ, T, unit, unit,∅,∅〉 are violation-free, so Lemma 8.2
applies.

A.5 Proofs for Section 9

Lemmas A.1, A.2, and A.3 continue to hold, as they do not concern the opera-
tional semantics. The following are slight, trivial adaptations of Lemmas A.4
and A.5 that take into account the form of states used in this section.

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 1, Article 2, Pub. date: January 2011.



2:44 • M. Abadi et al.

LEMMA A.12. Assume that r ∈ dom(σ ) and E(r) = Refp0 t0. If E � 〈σ, T, O, l〉
and E ; p0 � V : t0, then E � 〈σ [r �→ V], T, O, l〉.

LEMMA A.13. If E � 〈σ, T, O.(P[e], f, a, P).O′, l〉 then there exists t such that
E ; P � e : t. If E � 〈σ, T.U[e′].T′, O, l〉 then there exists t such that E ; U � e′ : t.

PROOF OF THEOREM 9.1. The proof is an extension of that of Theorem 6.1.
The cases of (Trans Appl P)ow, (Trans Appl U)ow, (Trans Ref P)ow, (Trans

Ref U)ow, (Trans Deref P)ow, (Trans Deref U)ow, (Trans Set U)ow, (Trans Async
U)ow, (Trans Block P)ow, (Trans Block U)ow, and (Trans Close)ow are like the
corresponding cases in that proof.

In the case of (Trans Set P)ow, we also have that the updated l is well-typed,
and the location added to l has a type of the form RefP t0 by Lemma A.13, which
gives the effect P to the assignment. In the case of (Trans Async P)ow, similarly,
we also have that the updated P is well-typed, straightforwardly.

The cases of (Trans Done)ow and (Trans Unprotect)ow are directly analogous
to that of (Trans Unprotect)s.

In the case of (Trans Undo)ow, the updates to the store preserve typing by
Lemma A.12, and the origin expressions (which are added back to the pool) are
well-typed by hypothesis.

The case of (Trans Activate)ow is straightforward because the new active ex-
pression and its origin all come from the pool, which is well-typed by hypothesis,
and l and P are empty in this case.

Examining the proof again, we note that if 〈σ, T, O, l〉 is well-typed with
respect to an environment E, then 〈σ ′, T′, O′, l′〉 is well-typed with respect to
an extension of E. In the cases of (Trans Ref . . . )ow, (Trans Deref . . . )ow, and
(Trans Set . . . )ow, which deal with a reference location of type Refp0 t0, we
also note that if the transition is protected, then p0 must be P, and if the
transition is unprotected, then p0 must be U, by Lemma A.13. It follows that
there exist subsets P and U of dom(σ ′) such that the protected transitions in
〈σ, T, O, l〉 �−→∗

ow 〈σ ′, T′, O′, l′〉 allocate, read, or write only reference locations
in P, and the unprotected transitions in 〈σ, T, O, l〉 �−→∗

ow 〈σ ′, T′, O′, l′〉 allocate,
read, or write only reference locations in U. Moreover, reference locations reset
by (Trans Undo)ow are in P. As noted in the body of the article, the subsets
in question consist of the reference locations declared with effects P and U,
respectively, in the environment.

PROOF OF THEOREM 9.2. Assuming that 〈σ, T〉 is well-typed, more generally
we consider a computation 〈σ, T,∅,∅〉 �−→∗

ow 〈σ ′, T′, O′, l′〉, and we prove that:

(1) There is a strong computation 〈σ, T, unit〉 �−→∗
s 〈σ ′′, T′′, unit〉 where:

—σ ′l′ is an extension of σ ′′,
—T′′ = T′.origin(O′) up to reordering.

(2) Moreover, if O′ = O†.(e, f, a, P).O†† and (e, f, a, P) does not conflict with
O†.O††, then there is a further strong computation

〈σ ′′, T′′, unit〉 �−→s 〈σ ′′, T′′′, f 〉
�−→∗

s 〈σ ′′′, T′′′.P, e〉
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where the first transition is an instance of (Trans Activate)s and
—σ ′(l′ − a) is an extension of σ ′′′,
—T′′′ = T′.origin(O†.O††) up to reordering.

The proof is by induction on the computation 〈σ, T,∅,∅〉�−→∗
ow 〈σ ′, T′, O′, l′〉, with

a case analysis on the last rule applied. In most cases, the construction of a suit-
able strong computation 〈σ, T, unit〉 �−→∗

s 〈σ ′′, T′′, unit〉 is straightforward us-
ing the induction hypothesis and typing. The cases of (Trans Unprotect)ow and
(Trans Done)ow rely on the further strong computation of claim (2). Throughout,
we work up to reorderings in the pool. We use the sets P and U as determined
by 〈σ, T,∅,∅〉 �−→∗

ow 〈σ ′, T′, O′, l′〉 and Theorem 9.1.

—(Trans Appl P)ow, (Trans Deref P)ow, (Trans Async P)ow, (Trans Block P)ow:
(1) The desired strong computation is that given by the induction hypothesis,

since origin(O′), σ ′, and l′ do not change in these cases.
(2) The further strong computation is either that given by the induction

hypothesis (if the transition belongs to a different try) or an extension
by a corresponding application of (Trans Appl)s, (Trans Deref)s, (Trans
Async)s, or (Trans Block)s, respectively (for the try where the transition
operates).

—(Trans Ref P)ow:
(1) The desired strong computation is that given by the induction hypothesis,

since origin(O′) does not change, σ ′ is extended with a new location, and
l′ does not change in this case.

(2) The further strong computation is either that given by the induction
hypothesis (if the transition belongs to a different try) or an extension by
a corresponding transition (for the try where the transition operates). In
the latter case, we use that the reference location being allocated is not
in the domain of l′ − a.

—(Trans Set P)ow:
(1) The desired strong computation is that given by the induction hypothesis,

since origin(O′) does not change, and since σ ′l′ remains the same even if
σ ′ and l′ may change.

(2) The further strong computation is either that given by the induction
hypothesis (if the transition belongs to a different try) or an extension by
a corresponding transition (for the try where the transition operates). In
the former case, the absence of conflict implies the required commutation:
in case the instance of (Trans Set P)ow adds a reference location in l′, this
reference location is not in a, so σ ′(l′ −a) = σ ∗(l∗ −a), where σ ∗ and l∗ are
the reference store and the log before the transition. In the latter case,
we use that l′ − a = l∗ − a∗, where l∗ and a∗ are the reference store and
the list of accessed addresses of the try before the transition, and that
the reference location being set is not in the domain of l′ − a.

—(Trans Appl U)ow, (Trans Deref U)ow, (Trans Async U)ow, (Trans Block U)ow,
(Trans Close)ow:
(1) The induction hypothesis gives a strong computation that we extend

with a corresponding application of (Trans Appl)s, (Trans Deref)s, (Trans
Async)s, (Trans Block)s, or (Trans Close)s, respectively.
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(2) The further strong computation is that given by the induction hypothesis,
with straightforward changes in the pool that correspond to the applica-
tion of (Trans Appl)s, (Trans Deref)s, (Trans Async)s, (Trans Block)s, or
(Trans Close)s, respectively.

—(Trans Ref U)ow:
(1) The induction hypothesis gives a strong computation that we extend with

a corresponding application of (Trans Ref)s. Typing (and Theorem 9.1)
imply that the application of the log l′ and the allocation commute as they
are to different locations, since the domain of a log consists of reference
locations in P.

(2) The further strong computation is basically that given by the induction
hypothesis, up to an extension in U, since a try can depend only on refer-
ence locations in P, and typing implies that those cannot be allocated by
(Trans Ref U)ow.

—(Trans Set U)ow:
(1) The induction hypothesis gives a strong computation that we extend with

a corresponding application of (Trans Set)s. Typing (and Theorem 9.1)
imply that the application of the log l′ and the update commute as they
are to different locations, since the domain of a log consists of reference
locations in P.

(2) The further strong computation is basically that given by the induc-
tion hypothesis, up to a change to the initial value of a reference
location in U, since a try can depend only on reference locations in
P, and typing implies that those cannot be updated by (Trans Set
U)ow.

—(Trans Activate)ow:
(1) This case is also by a straightforward application of the induction hypoth-

esis. The strong computation is that given by the induction hypothesis,
since l′ does not change, and since the origin of the new try comes from
the pool.

(2) The further strong computation is either that given by the induction
hypothesis (if the transition belongs to a different try) or an instance of
(Trans Activate)s (for the try that the transition generates).

—(Trans Undo)ow:
(1) Suppose that 〈σ, T,∅,∅〉 �−→∗

ow 〈σ ′, T′, O′, l′〉 where the last rule applied
is an instance of (Trans Undo)ow. If the state before the transition is
〈σ ∗, T∗, O∗, l∗〉, then
—σ ′ = σ ∗l∗,
—T′ = origin(O∗).T∗,
— O′ = ∅, and
—l′ = ∅.
The induction hypothesis implies that there is a strong computation

〈σ, T, unit〉 �−→∗
s 〈σ ′′, T′′, unit〉

where σ ∗l∗ is an extension of σ ′′ and T′′ = T∗.origin(O∗) up to reordering.
In other words, σ ′l′ is an extension of σ ′′ and T′′ = T′.origin(O′) up
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to reordering. So this strong computation satisfies the claim also for
〈σ, T,∅,∅〉 �−→∗

ow 〈σ ′, T′, O′, l′〉.
(2) This claim holds vacuously because O′ is empty in this case.

—(Trans Unprotect)ow:
(1) Suppose that 〈σ, T,∅,∅〉 �−→∗

ow 〈σ ′, T′, O′, l′〉 where the last rule applied is
an instance of (Trans Unprotect)ow. If the state before the transition is
〈σ ∗, T∗, O∗.(P[unprotected e∗], f ∗, a∗, P∗).O∗∗, l∗〉, then
—σ ∗ = σ ′,
—T′ = T∗.P[unprotected e∗].P∗,
— O′ = O∗.O∗∗, and
—l′ = l∗ − a∗.
Moreover, (P[unprotected e∗], f ∗, a∗, P∗) does not conflict with O∗.O∗∗,
that is, with O′.
The induction hypothesis implies that there is a strong computation

〈σ, T, unit〉 �−→∗
s 〈σ ′′, T∗.origin(O∗.O∗∗). f ∗, unit〉

where σ ′l∗ is an extension of σ ′′. Moreover, the induction hypothesis
implies that there is a further strong computation

〈σ ′′, T∗.origin(O∗.O∗∗). f ∗, unit〉
�−→s 〈σ ′′, T∗.origin(O∗.O∗∗), f ∗〉
�−→∗

s 〈σ ′′, T∗.origin(O∗.O∗∗).P∗,P[unprotected e∗]〉
where σ ′(l∗ − a∗) is an extension of σ ′′, that is, where σ ′l′ is an exten-
sion of σ ′′. We obtain the desired strong computation by applying (Trans
Unprotect)s.

(2) The further strong computation is basically that given by the induction
hypothesis, up to changes in the initial values of reference locations in
a∗. The absence of conflict that is the hypothesis of the application of
(Trans Unprotect)ow implies that a and a∗ do not intersect, so the initial
values of reference locations in a∗ do not affect a try that accesses only
locations in a.

—(Trans Done)ow: This case is almost identical to that of (Trans Unprotect)ow

(but slightly simpler).
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