
Semantics, Specification, and Bounded
Verification of Concurrent Libraries

in Replicated Systems

Kartik Nagar1(B), Prasita Mukherjee2, and Suresh Jagannathan2

1 IIT Madras, Chennai, India
nagark@cse.iitm.ac.in

2 Purdue University, West Lafayette, USA
mukher39@purdue.edu, suresh@cs.purdue.edu

Abstract. Geo-replicated systems provide a number of desirable prop-
erties such as globally low latency, high availability, scalability, and built-
in fault tolerance. Unfortunately, programming correct applications on
top of such systems has proven to be very challenging, in large part
because of the weak consistency guarantees they offer. These complex-
ities are exacerbated when we try to adapt existing highly-performant
concurrent libraries developed for shared-memory environments to this
setting. The use of these libraries, developed with performance and scal-
ability in mind, is highly desirable. But, identifying a suitable notion of
correctness to check their validity under a weakly consistent execution
model has not been well-studied, in large part because it is problem-
atic to näıvely transplant criteria such as linearizability that has a useful
interpretation in a shared-memory context to a distributed one where the
cost of imposing a (logical) global ordering on all actions is prohibitive.
In this paper, we tackle these issues by proposing appropriate semantics
and specifications for highly-concurrent libraries in a weakly-consistent,
replicated setting. We use these specifications to develop a static analysis
framework that can automatically detect correctness violations of library
implementations parameterized with respect to the different consistency
policies provided by the underlying system. We use our framework to
analyze the behavior of a number of highly non-trivial library imple-
mentations of stacks, queues, and exchangers. Our results provide the
first demonstration that automated correctness checking of concurrent
libraries in a weakly geo-replicated setting is both feasible and practical.

1 Introduction

Geo-replicated systems maintain multiple copies of data at different locations
and provide a number of attractive properties such as globally uniform low
access-latency, always-on availability, fault tolerance, and improved scalability.
Applications with a geo-distributed user base need to necessarily run on top of
replicated systems to ensure fast and always-available service. On the other hand,
due to concurrent updates at different replicas and the possibility of arbitrary
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 251–274, 2020.
https://doi.org/10.1007/978-3-030-53288-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-53288-8_13

252 K. Nagar et al.

re-ordering of updates by the underlying network, replicated systems typically
guarantee a very weak form of consistency called eventual consistency [4], that
only requires replicas which have received the same set of updates to exhibit
the same state. Because this guarantee is often too weak to satisfy an appli-
cation’s correctness requirements, a number of (stronger) consistency policies
have emerged in recent years; these policies offer session [39], causality [27] or
transactional [13] guarantees, and constrain system behavior by imposing addi-
tional synchronization on actions. Nonetheless, writing correct applications in
this environment using these policies remains a challenging problem.

Having a library of performant and correct data structure implementations
developed with replication and geo-distribution in mind can significantly allevi-
ate the problem of writing correct applications, as demonstrated by the availabil-
ity of highly popular concurrent library implementations developed for shared-
memory systems [21,33]. CRDTs [36] (Conflict-Free Replicated Data Types)
offer an analog of such implementations for geo-replicated environments. How-
ever, using CRDTS to build useful data structure libraries is challenging because
the strong requirements imposed by CRDTs (namely that all operations com-
mute with each other) appears satisfiable only for simple objects such as sets,
lists, or maps. Important data structures such as stacks, queues, or exchangers
that serve as building blocks for many concurrent and distributed algorithms
have eluded implementations using CRDTs. Even when a data structure can
be expressed in this way, reasoning about its correctness is typically given in
terms of non-standard criteria such as replicated data type specifications [12],
convergence [31] or replication-aware linearizability [41], concepts that are likely
to be difficult for programmers to grasp, especially when contrasted with well-
established notions such as linearizability used to reason about shared-memory
concurrency. This state of affairs has made it difficult to seamlessly adapt and
exploit ongoing progress in the development of scalable and correct concurrent
algorithms used in the shared-memory world to a geo-replicated setting.

In order to bridge this gap, we study how to automatically transplant concur-
rent library implementations developed for shared memory systems to replicated
ones. Doing so would allow us to use carefully-crafted implementations which
have been proven to run correctly in shared memory environments, thereby sim-
plifying the task of building distributed replication-aware applications. How-
ever, realizing this goal poses a number of challenges, the most critical of which
is the widely different memory consistency models used in the two domains:
the eventually consistent memory model typically provided by a replicated sys-
tem is significantly weaker than the sequential consistency guarantees offered
by shared-memory. Consistency policies offering session, causal, or transactional
guarantees must be additionally considered to facilitate correct behavior. This
requires enriching the semantics of existing library implementations to take into
account the consistency policy of the underlying replicated system. Furthermore,
the de facto correctness criterion for concurrent library implementations is lin-
earizability, which is clearly too restrictive to be directly applied to this much
weaker setting, since it demands that any correct execution be equivalent to
some sequential execution of a reference implementation. Such a requirement

Bounded Verification of Concurrent Libraries in Replicated Systems 253

is problematic in a geo-replicated environment where the cost of coordination
to enforce a global ordering of all actions is prohibitive. These observations are
similar to those made by Raad et al. [34] who considered the applicability of lin-
earizability in a weak memory context, a scenario that faces similar challenges
to our own. To address these issues, we therefore consider alternative declara-
tive specifications of data structures, based on axiomatic definitions [17], that
are roughly equivalent to the guarantees provided by linearizability (and hence
familiar to programmers), but suitably relaxed to take into account the weak
behaviors admitted by replicated systems.

We then propose an automated approach to find bounded violations of these
declarative specifications given an implementation and a consistency policy. Due
to the non-deterministic nature of replicated systems, manifesting violations in
actual executions requires (1) a specific combination of library methods to be
called (2) with specific argument values and (3) a specific interaction of low-level
read/write events. Indeed, existing approaches to checking application safety
under weak consistency [24] potentially involve long (on the order of hours) and
costly execution runs to offer meaningful assurance on application correctness
given the large space of possible behaviors that can be exhibited.

In contrast to testing approaches, our analysis framework directly searches
for an execution violating a specification, and in the process constructs the com-
bination of library methods to be called as well as their argument values, and
the low-level read/writes which can lead to the violation. Moreover, because our
analysis is parametric in the choice of consistency policy, we can constrain the
search for violating executions on-demand as per the chosen policy. We addi-
tionally show how our technique is capable of expressing complex correctness
specifications of libraries (see Sect. 3.4) and how it can be used to automati-
cally find violations in the face of this complexity. The analysis is sound in that
it only reports actual violations. Notably, our experiments manifest a number
of non-trivial and complex violating executions for realistic concurrent libraries
which require intricate interaction with library methods. We were also able to
analyse application behavior under different consistency policies, and in partic-
ular, were able to find the weakest consistency policy to eliminate a particular
violation. Our analysis is based on developing an efficient encoding of the imple-
mentation, the consistency policy, and the correctness specification as first-order
logic formulae which can be dispatched to off-the-shelf SMT solvers to find viola-
tions. Unlike random testing approaches, our technique is capable of identifying
non-trivial subtle safety violations in the order of minutes, making it feasible to
use not only for finding violations, but also for checking the feasibility of any
proposed remediations. We make the following major contributions:

1. We propose a novel operational semantics for replicated systems parameter-
ized under realistic consistency policies which can be used to describe execu-
tions of sophisticated concurrent library implementations.

2. We demonstrate how to adapt existing specification frameworks developed
for concurrent libraries on shared memory systems to replicated systems with
minimal changes.

254 K. Nagar et al.

3. We describe an automated bounded verification procedure to detect violations
of such specifications for implementations intended to execute under a given
consistency policy.

4. We catalog the results of applying our analysis on a number of well-studied
implementations including stacks, queues and exchangers, on a commercial
replicated store (Cassandra), demonstrating empirically that our correctness
checking procedure is useful in practice.

The remainder of the paper is organized as follows. In the next section, we pro-
vide a motivating example to illustrate the challenges of reasoning about concur-
rent libraries in a weakly-consistent replicated environment. Section 3 formalizes
the language used to write library implementations and the specifications that
characterize their intended behavior. Section 4 describes our bounded verifica-
tion procedure and provides details about how we encode extracted verification
conditions. Section 5 describes experimental results and presents case studies to
illustrate the effectiveness of our approach. Related work and conclusions are
given in Sect. 6.

2 Illustrative Example

push(v){

1: n = New(Node);

2: n.Val = v;

while(true){

3: t = Top;

4: n.Next = t;

5: if (CAS(Top , t, n))

break;

}

}

pop(v){

while(true){

6: t = Top;

if (t == NULL)

return EMPTY;

7: v = t.Val;

8: n = t.Next;

9: if (CAS(Top , t, n))

return v;}

}

Fig. 1. Treiber Stack

In this section, we illustrate the various issues that arise when running stan-
dard concurrent library implementations on replicated systems. Figure 1 shows
the implementation of a Treiber stack, suitably adapted to execute in a replicated
environment. The Treiber stack provides two methods (push and pop) to clients,
and stores the elements of the stack in a linked list, with the order of elements
in the list corresponding to the order in which elements are pushed. Since repli-
cated stores typically offer a database or a key-value store interface, we store the
linked list as a table of type Node with columns Val and Next, where each row
stores a node of the linked list, with Val storing the value and Next storing the id
of the next node. Top contains the id of the Node row which is current top of the
stack (Top is initialized with the special value NULL indicating an empty stack).

Bounded Verification of Concurrent Libraries in Replicated Systems 255

In Fig. 1, variables denoted by lower-case letters are assumed to be stored locally
and are not replicated. New(Node) returns the id of a new row in the Node table.
CAS(Top, t, n) is the typical Compare-And-Swap operation which atomically
compares Top to t, and if it is equal to t then updates it to n1.

Fig. 2. An execution of Treiber Stack on a replicated
store

Clients of concurrent libraries
issue invocations of a data
structure’s methods, possi-
bly at different replicas, with
invocations being grouped
together into sessions, with
each session containing invo-
cations issued by the same
client. Whenever a method
is invoked, the underlying
implementation of the method
is executed; we assume the
various reads and writes per-
formed by the method may possibly be executed at different replicas. All low-
level operations performed by the same invocation are defined to be in the same
session (i.e. the session of the parent invocation). Notice that the implementation
stores data across a number of locations (e.g. Top or a cell in the Node table), each
of which are operated independently through low-level read/write/CAS opera-
tions. The replicated store only guarantees eventual consistency, which means
that the values stored at all locations eventually converge across all replicas.
However, users expect the behavior of the library to conform to the specifica-
tion of the stack data structure, regardless of when and how updates propagate
across replicas.

Consider the following basic specification (adapted from the AddRem axiom
in [17]), which simply says that any value returned by a POP operation must
have been pushed by some PUSH operation in the execution; observe that the
specification does not allude to any specific system-level issues related to repli-
cation or weak consistency:

∀γ.meth(γ) = POP ∧ ret(γ) �= EMPTY ⇒ ∃γ′.meth(γ′) = PUSH ∧ arg(γ′) = ret(γ)

Consider the execution shown in Fig. 2 that involves an invocation of PUSH(1)
and POP from two different replicas. Among the many operations that the imple-
mentation of PUSH performs, we show only two write operations in the figure
(along with line numbers referring to the implementation in Fig. 1), namely the
write to the Val field of location L (L is the id of the new Node), and the write
to Top as a result of the successful CAS. Similarly, for the POP operation, we
show the read to Top, and then the read to the Val field. In the execution, the
write to Top propagates from replica R1 to R2 before the read, but the write to
1 CAS operations are typically supported in replicated systems by providing trans-

actional guarantees to a group of operations; e.g., lightweight transaction support
provided in Cassandra [26].

256 K. Nagar et al.

Val does not, so that POP sees that a new node has been pushed but does not
read the value that was actually pushed, instead returning the initial value of the
location, thus breaking the specification described above. Eventual consistency
only guarantees that eventually, the write to Val will also be propagated to R2,
which is not sufficient to guarantee the specification holds under all executions.

One way to avoid this counterexample would be to ensure that the write to
Val field by PUSH is propagated to another replica before the write to Top, thus
guaranteeing that it would be available to the read of Val by POP. Notice that
the write to Val occurs before the write to Top in the same session, and hence we
can use session guarantees to ensure the required behavior. In particular, under
a Monotonic Writes (MW) consistency policy, writes are always propagated in
their session order to all replicas [1]. However, MW is not sufficient by itself
to eliminate the counterexample since the reads to Top and Val by POP may
occur at different replicas, so that the read to Val may occur at a replica in
which none of the writes by PUSH have propagated. Hence, we also need to have
these operations execute under a Monotonic Reads (MR) consistency policy that
mandates all writes witnessed by an operation will also be witnessed by later
operations in the same session.2

PUSH(1) PUSH(2) POP : 2 POP : 0

2 : W (L1.Val, 1) 3 : R(Top) : L1 6 : R(Top) : L2 6 : R(Top) : L1

5 : W (Top, L1) 5 : W (Top, L2) 9 : W (Top) : L1 7 : R(L1.Val) : 0

Fig. 3. A violation of AddRem by Treiber Stack under MW+MR

Hence, a combination of MW+MR prevents the counterexample in Fig. 2,
but it is unfortunately not enough to guarantee the AddRem specification is
correctly enforced. Consider the execution in Fig. 3 which involves four method
invocations (2 Pushes and 2 Pops), where each invocation occurs on a different
replica. Again, we only show some relevant low-level operations performed by
these invocations, with arrows from write to read operations showing reads-from
(rf) dependencies. In the execution, after the two pushes, 2 is stored on the top
of stack at Node L2. Thus, the first Pop operation returns 2 and sets the Top
to point at L1, which is then read by the second Pop. However, MW+MR only
guarantees that all write operations performed by the first Pop will be witnessed
by the second Pop. Hence, just like in Fig. 2, the second Pop operation may see
the node at location L1 but not the write to the Val field (which was performed
by PUSH(1)), resulting in violation of the specification. To avoid this, it must be
guaranteed that the write to L1.Val by Push(1) must be visible to its read by
the second Pop (depicted by the two boxes in Fig. 3). This can be guaranteed
by the Write Follows Read (WFR) policy, which analogously to MW, ensures

2 We formalize all consistency policies used in the paper in the next section.

Bounded Verification of Concurrent Libraries in Replicated Systems 257

that writes witnessed in a session are propagated to all replicas before writes of
the session itself (as opposed to MW which only ensures that writes performed
in a session are propagated in session order). We note that both the violations
described above (along with their repairs) were automatically discovered using
our proposed methods, which devised solutions significantly less expensive than
imposing strong consistency (aka global coordination) on all accesses.

While MW+MR+WFR is required to ensure AddRem in a Treiber Stack, we
found that weaker consistency policies (including Eventual Consistency) were
sufficient for other properties and benchmarks (more details are provided in
Sect. 5).

3 Semantics and Specifications

In this section, we define a simple language to write library implementations
that is nonetheless powerful enough to express a number of real-world imple-
mentations. We then define an operational semantics to express executions of
any implementation written in this language on top of a replicated store. A key
feature of this operational semantics is that it is parametric in the consistency
policies available to the store. Thus, instantiating the semantics with different
consistency policy definitions allows us to reason about library behavior under
replicated stores providing different consistency guarantees. Another important
feature of the semantics is that it abstracts out low-level operational details such
as the number of replicas, the specific manifestation of how message sends and
receives are implemented, etc., and instead uses a succinct representation involv-
ing read and write events (and various binary relations among them) to capture
salient characteristics sufficient to reason about library correctness with respect
to consistency properties. The proposed semantics facilitates a bounded verifi-
cation approach that is parametric in the consistency policy, and also matches
very well with existing axiomatic approaches to specify correctness of library
implementations in shared memory systems.

First, we define a simple imperative language in which implementations can
be written:

v ∈ LocalVar l ∈ Locations n ∈ V

⊕ ∈ {+, −, ×, /} � ∈ {<, ≤, ==, >, ≥} ◦ ∈ {∧, ∨}
e := e ⊕ e | v | n
b := b ◦ b | e � e
c := v = e | v = l | l = e | If b then c else c

| c; c | while b do c | v = CAS(l, e1, e2)
| return e | return

The only difference between standard shared-memory programs and those
written in the above language is that read and write operations can now be
performed on either Locations, which are replicated, or local variables which
are not. As we saw in Sect. 2, replicated Locations can in general refer to

258 K. Nagar et al.

any field in any table. Let P be the set of programs (c) generated using the
above grammar. A library L = (M, I) consists of a set of methods (M) and an
implementation function I : M → P. For simplicity, we assume that each method
takes as input one argument. Assume that I(m) contains the free variable a that
stores the input argument. Let V be the value domain for arguments and return
values. We designate a special value ⊥ ∈ V for the cases where the argument or
return value is empty.

The methods of a library implementation L can be invoked any number of
times by multiple clients. Invocations from the same client are grouped together
into sessions, where each session consists of a sequence of method invocations.
Following standard terminology, given a set of sessions S, an interaction between
clients and the library is expressed as a history, h : S → (M ×V)∗, which simply
associates a sequence of methods invocations to each session. An execution of
the history corresponds to executing the library implementation of each method
in the history on the replicated store. The store constrains the behavior of reads,
writes and CAS operations to replicated Locations through its consistency
policy.

We now formally define the operational semantics of a history on a replicated
store that is parametric in a consistency policy Ψ . While the history only asso-
ciates arguments with method invocations, executing it on the replicated store
will give rise to an abstract execution, which will also associate return values
with invocations, and whose correctness we are interested in checking. Given a
history h, library L, and consistency policy Ψ , we define our semantics in terms
of a labeled transition system (LTS) Ωh,L,Ψ = (Φ, E ,→), where Φ denotes a set
of states, E denotes a set of events (also used as labels) and →⊆ Φ×E ×Φ defines
a transition relation over states and events.

Each state in Φ is specified as a tuple (χ, h′, μ, c, α). χ denotes the replicated
store state and consists of read/write/update events to Locations and various
relations among them (described in detail later); h′ : S → (M × V)∗ denotes
the continuation of the history, i.e., the remaining history yet to be executed;
μ : S → (LocalVar → V) denotes the local variables map for each session;
c : S → P denotes the continuation of the current invocation for each session,
i.e., the implementation of the current invocation for each session that is yet to
be executed and α denotes the abstract execution. Each event σ ∈ E is a tuple
(i, s, a), where i is a unique event-id, s ∈ S is the session from which the event
originated, and a is the action to the replicated store (either read R(l, n), write
W(l, n) or update U(l,m, n)). Given an event σ = (i, s, a), act(σ) denotes the
action a, loc(σ) denotes the location that is the subject of the action.

3.1 Language Semantics

To simplify the presentation, we decouple the semantics of the language from
the semantics of the replicated store. The language is defined via a standard
imperative semantics except that there are no constraints on reads to replicated
locations (i.e., we do not mandate a specific replica that is targeted by the
read), and every operation to a replicated location generates an event. These

Bounded Verification of Concurrent Libraries in Replicated Systems 259

rules do not concern the replicated store state, and hence are of the form
(h1, μ1, c1, α1)

σ−→ (h2, μ2, c2, α2) (i.e. omitting χ from Φ). We essentially pick
any session and then execute the next operation from the current invocation in
the session, or initiate the next invocation in the session if there is no invocation
currently running. As an illustration, consider the following rule L-Read:

c(s) ≡ v = l; c′ σ = (i, s,R(l, n)) fresh i

(h′, μ, c, α) σ−→ (h′, μ[s → μ(s)[v → n]], c[s → c′], α)

The rule picks the next operation in session s which is a read operation to
location l, and generates the read event σ reading value n from l. It updates
the local variable v to this value, leaving the yet-to-be-executed history (h′)
and abstract execution (α) unchanged. Write statements (i.e. l = n) generate
write events (W(l, n)), successful CAS statements (i.e. v = CAS(l,m, n) gen-
erate update events (U(l,m, n)), and unsuccessful CAS generates read events
(R(l,m′)). The complete set of rules can be found in the technical report [32].

3.2 Abstract Execution Semantics

An abstract execution α = (Γ, soΓ) maintains a set of method invocation
events in Γ and a session order relation soΓ among these events. Each method
invocation event γ ∈ Γ is a tuple (i,m, a, r, s) where i is a unique event-id,
m ∈ M is a method of the library, a, r ∈ V are the method argument and
return values respectively and s ∈ S is the session from which the method was
called. We use the notation Γ s for the subset of Γ which only contains method
invocation events that originate in session s. The following rule (L-Return-
Val) describes the generation of a method invocation event, which occurs on
encountering a return statement during execution, and which is added to the
abstract execution.

c(s) ≡ return e; c′ h′(s) = m(k) · h′′ �e�μ(s) = n
α = (Γ, soΓ) γ = (i,m, k, n, s) α′ = (Γ ∪ {γ}, soΓ ∪ Γ s × {γ})

(h′, μ, c, α) → (h′[s → h′′], μ, c[s → ε], α′)

The rule updates the yet-to-be executed history h′ by removing the current
invocation m(k) (since this invocation has now completed), updates the abstract
execution α to now include the newly completed invocation, and updates the
current invocation implementation to empty. Note that �e�μ(s) denotes the eval-
uation of the expression e under the local variable map μ(s). When the history
h′ becomes empty, i.e. there are no more method invocations to be executed, the
abstract execution becomes complete and would include all method instances
present in the original history h. Note that this rule does not generate any
read/write/update event.

3.3 Replicated Store Semantics

The replicated store state χ = (Σ, vis, ar, so) consists of the set of replicated store
events (Σ) and various relations on Σ. Events can either be read, write or update

260 K. Nagar et al.

events, and depending on the type of event, Σ is partitioned into ΣR, ΣW and
ΣU . The visibility relation vis ⊆ Σ × Σ denotes the events visible to an event
and is used to determine the output of read events. The arbitration relation
ar ⊆ (ΣW ∪ ΣU) × (ΣW ∪ ΣU) provides a total ordering on write or update
events to the same location. Finally, the session order relation so ⊆ Σ × Σ
provides a total ordering on events originating from the same session. All events
generated by statements in the same method invocation would belong to the
same session and hence would be related by so. We also define a happens-before
relation hb = (vis ∪ so)+ in the usual way.

We use Ψ to refer to a consistency policy supported by the store. Ψ is a
predicate on the store state, which must be maintained at every step of the
execution. Ψ essentially controls the visibility relation on events based on session
or happens-before order. The following table illustrates the various consistency
policies that we consider in our work; all of these policies can be implementation
without the need for global coordination [1].3 (all σi belong to Σ):

Table 1. Axiomatic characterization of various weak consistency policies.

Consistency policy Ψ(Σ, vis, ar, so)

Read Your Writes [39] so(σ1, σ2) ⇒ vis(σ1, σ2)

Monotonic Writes [39] so(σ1, σ2) ∧ vis(σ2, σ3) ⇒ vis(σ1, σ3)

Monotonic Reads [39] vis(σ1, σ2) ∧ so(σ2, σ3) ⇒ vis(σ1, σ3)

Write Follow Read [39] vis(σ1, σ2) ∧ so(σ2, σ3) ∧ vis(σ3, σ4) ⇒ vis(σ1, σ4)

Causal Visibility [27] hb(σ1, σ2) ∧ vis(σ2, σ3) ⇒ vis(σ1, σ3)

Causal Consistency [27] hb(σ1, σ2) ⇒ vis(σ1, σ2)

As we saw earlier in Sect. 2, MonotonicWrites enforces the constraint that if
an event is visible, then all events before it in session order must also be visible.
MonotonicReads requires that if an event is visible, it will continue to remain
visible to all operations later in the session. On the other hand, WriteFollowsRead
enforces that all events visible to a prior event in a session will continue to remain
visible to other events which witness a later event of the session.

We use the notation Σl to denote the subset of events pertaining to location
l, and Σs to denote the subset of events of session s. Given a set of events Σ′,
MAXl

ar(Σ
′) denotes the maximal events in Σ′ according to the relation ar which

write to location l. Given events σ ∈ Σl
R, σ′ ∈ Σl

W , we define the Reads-From
relation rf in terms of vis and ar relations as follows:

rf(σ′, σ) ⇔ vis(σ′, σ) ∧ ∀σ′′ ∈ Σl.(vis(σ′′, σ) ∧ σ′′ �= σ) ⇒ ar(σ′′, σ′))

3 Note that the lack of any constraints (i.e. Ψ = true) corresponds to Strong Even-
tual Consistency [18]. Since we assume SEC, our definition of Causal Consistency
corresponds to Causal Convergence (CCv) as defined by [8].

Bounded Verification of Concurrent Libraries in Replicated Systems 261

The rf relation essentially encodes the ‘last writer wins’ nature of the store,
whereby the most recent visible write event according to ar becomes the event
supplying the value available to subsequent reads. The replicated store state
evolves by the addition of new events. On addition of a write/update event,
the arbitration order is appropriately modified to ensure that it remains a total
order on events targeting the same location. In addition, we also ensure causal
arbitration [11] by enforcing that ar and hb do not disagree with each other. For
update and read events, the values that these events read depend upon the most
recent write event to the same location visible to the events, which in turn is
controlled by the consistency policy. To elaborate, consider the rule R-CAS:

Σ′ ⊆ Σ σ′ ∈ MAXl
ar(Σ

′) ar ⊆ ar′
act(σ′) = W(l, m) ∨ act(σ′) = U(l, , m) σ = (i, s, U(l, m, n)) ∀τ ∈ Σl

U .¬(rf(σ′, τ))
ar′ is a total order on Σl

W ∪ Σl
U ∪ {σ} ∀σ1, σ2.¬(hb(σ1, σ2) ∧ ar′(σ2, σ1))

vis′ = vis ∪ Σ′ × {σ} so′ = so ∪ Σs × {σ} Ψ(Σ ∪ {σ}, vis′, ar′, so′)

(Σ, vis, ar, so)
σ−→ (Σ ∪ {σ}, vis′, ar′, so′)

Here, we want to add a new update event to location l. First, an arbitrary
subset (Σ′) of events of Σ is selected. This step essentially corresponds to the
creation of a new replica on which the events in Σ′ have been applied. Then,
we select the most recent write event (σ′) from Σ′ which ensures atomicity of
the update event (and hence the CAS statement responsible for the update). In
particular, we require that no other update event must have read from (rf) σ′.
The value written by σ′ (i.e. m) would be the read value of the update event.
vis, so and ar are appropriately updated, and the new store state must satisfy
the consistency policy Ψ , which in turn will govern the selection of the initial
subset Σ′. The formal rules for read and write events can be found in [32].

Note that enforcing the above rule would in essence prohibit two CAS oper-
ations to be executed concurrently, and hence would establish a global ordering
among the CAS operations. However, unlike in shared memory systems where
this is sufficient to establish a global ordering among all operations thus ensur-
ing linearizability, in replicated systems, this does not constrain the behavior of
other read and write operations (as we saw in Sect. 2, and hence more constraints
must be enforced through the consistency policy.

We can now combine the language, abstract execution, and replicated store
rules to describe transitions of the LTS Ωh,L,Ψ , which simply requires the lan-
guage rules and the replicated store rules to agree on the structure of all repli-
cated store events:

(h′, μ, c, α) σ−→ (h′′, μ′, c′, α) χ
σ−→ χ′

(χ, h′, μ, c, α) σ−→ (χ′, h′′, μ′, c′, α)

(h′, μ, c, α) → (h′′, μ′, c′, α′)
(χ, h′, μ, c, α) → (χ, h′′, μ′, c′, α′)

Example: Let us revisit the Treiber Stack and in particular the violating exe-
cution described in Fig. 2. The violating history consists of two sessions, with

262 K. Nagar et al.

one session containing the invocation push(1) and another containing pop. The
execution of push(1), following the language semantics, creates the events σ1

and σ2 such that act(σ1) = W(L.Val, 1) and act(σ2) = U(Top, NULL, L) which
are both added to the store state. The execution of pop generates the read event
to Top, which following the store semantics picks the set Σ′ = {σ2}, resulting
in read event σ3 such that act(σ3) = R(Top, L). Under EC, the following read
to L.Val by pop is unconstrained and hence simply picks Σ′ = φ, resulting in
the event σ4 such that act(σ4) = R(L.Val, 0) where 0 is the initial value. This
results in violation of the AddRem specification.

Notice that so(σ1, σ2) and vis(σ2, σ3). Hence, under MW+MR, while generat-
ing the read event to L.Val by pop, the store must pick Σ′ = {σ1, σ2} to satisfy
the axioms of MW+MR, so that the event must read the value 1, which prevents
the violation from occurring.

3.4 Correctness Specification

Given an abstract execution obtained after executing a history on a replicated
store under some consistency policy, how do we decide if it correctly obeys the
semantics of the data structure implemented by the library? Linearization would
require us to demonstrate a total order on all method invocations which would
be admissible by a sequential reference implementation of the data structure.
However, since the consistency model of a replicated system is substantially
weaker than sequential consistency, it becomes necessary to also weaken correct-
ness requirements [34,37]. We use the axiomatic specifications of data structure
correctness as proposed by Emmi et al. [17], which are equivalent to standard
linearizability, as our basis, and then weaken them systematically to adapt them
to be useful in a replicated environment. Axiomatic specifications do not require
a total order to be established on method invocations, do not refer back to a
reference implementation, and also match the axiomatic, declarative nature of
the semantics of the replicated store.

First, we define all abstract executions that can be generated given a library
implementation, a history and a consistency policy. The initial state of the repli-
cated store is assumed to be empty, i.e. χInit = (φ, φ, φ, φ). Let hε be the empty
history which associates an empty sequence (ε) of invocations to each session.
Let cInit be the initial implementation state which simply associates the empty
program ε to each session.

Definition 1. Given a set of sessions S, a history h, a library implementation
L and a consistency policy Ψ , the abstract executions generated by Ωh,L,Ψ are
defined as : �Ωh,L,Ψ �= {Γ | (χInit, h, (φ, φ), cInit) →∗ (, hε, Γ,)}

Thus, executing all invocations in the history under a given consistency policy
and library implementation gives rise to the set of final abstract executions. Due
to the non-deterministic nature of the semantics, multiple abstract executions
could be generated. Correctness of an abstract execution is specified in terms of

Bounded Verification of Concurrent Libraries in Replicated Systems 263

various axioms that it must obey. An implementation is correct under a consis-
tency policy if for all possible histories, all final abstract executions generated
by the implementation obey the axioms.

To illustrate, let us consider the Stack data structure. It has two methods
M = {Push, Pop}. Given a method invocation event γ = (i,m, a, r, s), we assume
projection functions for all the respective components (e.g., m, a, and r). Further,
we assume a match predicate relating two method invocation events defined thus:

match(γ1, γ2) ⇔ m(γ1) = Push ∧ m(γ2) = Pop ∧ a(γ1) = r(γ2)

Let EMPTY denote a special value signifying the empty return value (see, e.g. the
Treiber Stack impl. in Fig. 1). Consider an abstract execution α = (Γ, soΓ). We
define the happens-before relation for method invocations as hbΓ = (match ∪
soΓ)+. Then, the correctness of α can be specified in terms of the following
axioms:

– AddRem : ∀γ ∈ Γ.m(γ) = Pop ∧ r(γ) �= EMPTY ⇒ ∃γ′ ∈ Γ.match(γ′, γ)
– Injective : ∀γ1, γ2, γ3 ∈ Γ.match(γ1, γ2) ∧ match(γ1, γ3) ⇒ γ2 = γ3
– Empty : ∀γ1, γ2, γ3 ∈ Γ.m(γ1) = Pop ∧ r(γ1) = EMPTY ∧ m(γ2) = Push ∧

hbΓ (γ2, γ1) ⇒ ∃γ3 ∈ Γ.match(γ2, γ3)
– LIFO − 1 : ∀γ1, γ2, γ3 ∈ Γ.m(γ1) = Push ∧ match(γ2, γ3) ∧ hb(γ2, γ1) ∧

hb(γ1, γ3) ⇒ ∃γ4 ∈ Γ.match(γ1, γ4)
– LIFO − 2 : ∀γ1, γ2, γ3, γ4 ∈ Γ.¬(match(γ1, γ4) ∧ match(γ2, γ3) ∧ hb(γ2, γ1) ∧

hb(γ3, γ4) ∧ hb(γ1, γ3))

These axioms follow from those given in [17], except that instead of using a
linearization order as done in [17], we use a weaker happens-before hbΓ order.
It is also possible to use the even weaker session order soΓ in place of hbΓ . We
have already seen the AddRem axiom in §2. The Injective axiom enforces that
an element pushed onto the stack is not popped more than once4. The Empty
axiom says that if a pop invocation (γ1) returns EMPTY and if there is a push
invocation (γ2) that happens-before it, then γ2 must be matched to another
pop. This reflects the expected stack-like behavior from the point of view of
a client who observes these invocations. The LIFO − 1 property specifies that
if a push invocation γ2 happens-before another push invocation γ1, with both
of them happening-before a pop invocation γ3, and if γ2 is matched with γ3,
then to respect the LIFO order, γ1 must also be matched (to some γ4). LIFO − 2
complements LIFO − 1 by requiring that γ3 cannot happen-before such a γ4. The
specifications for other data structures we have considered, including Queue and
Exchanger can be found in [32].

4 Bounded Verification

We now present an automated bounded verification procedure capable of gen-
erating abstract executions that violate data structure correctness specifications
4 Note that we assume all methods are called with distinct arguments.

264 K. Nagar et al.

under a given consistency policy. We take advantage of the axiomatic nature of
both the semantics and specification and reduce the problem to that of checking
the satisfiability of a collection of formulae in first-order logic (FOL), which can
be dispatched to an off-the-shelf SMT solver. In particular, our strategy is to
instantiate a bounded number of invocations (k) without specifying their method
types, arguments, or session information, and instead leave it upto the solver to
search efficiently among all histories of length k.

4.1 Vocabulary

Given a library L = (M, Impl), we first take each method implementation and
unroll loops upto a constant bound5, and give a label to each program statement
that interacts with a replicated location (e.g. see the Treiber Stack impl. in
Fig. 1). Let L denote this set of labels.

We use an uninterpreted, finite sort I to represent invocations in the history
that we wish to construct, and then constrain this sort to contain only the
distinct elements INV1, . . . , INVk. In addition, we use uninterpreted sorts E and
V to represent the set of replicated store events and values that are read or
written by them. We define the function meth : I → M to associate a method
type with each invocation. We use an uninterpreted sort S to denote the set of
sessions involved in the history. The function sess : I → S associates a session
with each invocation.

For each method m ∈ M and each program statement labeled n in the imple-
mentation Impl(m), we define the function Pmn : I → E to associates the event
generated by the program statement to an invocation. In addition, functions
arg, ret : I → V associate the argument and return values to each invocation. For
every local variable v used in a program, function ρv : I → V denotes the value
of the local variable in that invocation. The predicate soI : I× I → B denotes the
session order relation among invocation instances.

We define functions loc, rval,wval : E → V to associate locations, values
read and values written by events resp. We use the uninterpreted, finite sort E

containing elements R,W,U to denote various event types. The function Etype :
E → E associates the type with each event. Finally, predicates vis, ar, soE, rf :
E×E → B denote the visibility, arbitration, session order, and read-from relations
resp. among events.

For every replicated location, we also instantiate a distinct value referring to
the location. For example, for the Treiber Stack implementation (Fig. 1), we have
distinct values for Top and for the Val and Next fields of each New Node generated
by an invocation. Since the number of invocations is fixed (k), the number of
such locations to be instantiated can also be pre-determined statically. We also
define a function Initval : V → V which fixes an initial value for every location,
and assigns initial values to all locations used in the execution.

5 Loops are typically only used to busy wait for a successful CAS operation in the
applications we consider.

Bounded Verification of Concurrent Libraries in Replicated Systems 265

4.2 Implementation Constraints

We now describe constraints on the events imposed by the implementation. First,
note that even though the set of functions {Pmn|m ∈ M, n ∈ L} are defined
for every invocation, an invocation i will only have a fixed method type meth(i),
and hence will only generate events corresponding to program statements in the
implementation of meth(i). We designate a special event ⊥ : E and associate it for
program statements of every other method type using the following constraint:

∀i ∈ I ∀m ∈ M ∀n ∈ L. m �= meth(i) ⇒ Pmn(i) = ⊥
For program statements in the implementation of meth(i), we add constraints for
every statement based on its type. Note that loops have already been unrolled
and for every statement labeled n in method m, we collect the conditionals of
any if statement enclosing the statement and replace any local variable v used
in those conditionals with the corresponding function ρv(i) (for invocation i) to
obtain the formulae�φmn�i. To illustrate the constraints added for different types
of statements, consider the rule for reads:

Impl(m) : n : v = l

∀i ∈ I. (meth(i) = m ∧�φmn�i) ⇒ (Etype(Pmn(i)) = R ∧ loc(Pmn(i)) = l
∧rval(Pmn(i)) = ρv(i)

)

The rule essentially specifies the constraint for statement labeled n in the
implementation of method m if it is a read operation. The constraint appropri-
ately sets the Etype, loc and rval functions of event Pmn(i) for every invocation
i, if the invocation has a method type of m and the enclosing if conditionals (if
any) are satisfied. The rules for write and CAS statements are similar (they also
set the wval function and additionally CAS also checks whether the value read is
equal to its first argument) and can be found in [32]. In addition, we also relate
adjacent events of the same invocation with the session order relation soE.

4.3 Abstract Execution Constraints

On encountering a return statement, we record the returned value using the
following constraint:

Impl(m) : n : return v

∀i ∈ I. (meth(i) = m ∧ �φmn�i) ⇒ (ret(i) = ρv(i) ∧ completed(i))

Apart from setting the ret value, we also use another unary predicate
completed to encode that the invocation has completed and reached the return
statement. This is needed because we are unrolling loops upto a fixed bound.
Since we know the last program statement statically, if we encounter this state-
ment without reaching return for an invocation, then completed will be set to
false.

266 K. Nagar et al.

We also encode the constraint that the session order relation (soI) among
invocations of the same session is a total order. Finally, we also encode that if
two invocations i1 and i2 are in session order (soI(i1, i2)), then the last event of
i1 and the first event of i2 are in event session order (soE).

4.4 Replicated Store Constraints

We must also encode constraints ensuring that the semantics of the replicated
store are preserved. First, we capture various properties of relations on events,
viz. vis is anti-symmetric and irreflexive, ar among write events to the same
location is a total order, vis and soI do not clash with each other, ar does not clash
with vis and soI. All these constraints are implicitly enforced by the semantics
of the replicated store, so that the state of the store reached after any number
of execution steps must obey them.

The various consistency policies in Table 1 can be directly encoded using the
relations defined in the vocabulary. We now turn to encoding the last-writer-wins
nature of the data store, which relates the vis and ar relations with the read and
write values (rval and wval) of the events.

∀e1, e2 ∈ E.rf(e1, e2) ⇒ vis(e1, e2) ∧ wval(e1) = rval(e2)∧
∀e3 ∈ E

loc(e2)
W .(vis(e3, e2) ⇒ e3 = e1 ∨ ar(e3, e1))

∀e1 ∈ ER.(∀e2 ∈ E.¬rf(e2, e1)) ⇒ rval(e1) = Initval(loc(e1))

In the above constraints, we use the notation El
W to indicate only those events

that write to location l, and ER for read events. The first constraint enforces the
reads-from event to be the most recent visible event according to the arbitration
order, and also constrains the read value. The second constraint disallows out-
of-thin-air reads by enforcing that if there are no rf events, then the value read
must be the initial value. As an optimization, while encoding this constraint in
our tool, we enumerate all possible write events to the same location (which
are guaranteed to be finite since we only have k invocations) in the antecedent,
instead of the universal quantification used above.

For CAS operations which generate update events, we encode the constraint
(as derived from the semantics rule R-CAS) that two update events should not
read from the same event:

∀e, e1, e2 ∈ E. Etype(e1) = U ∧ Etype(e2) = U ∧ rf(e, e1) ∧ rf(e, e2) ⇒ e1 = e2

4.5 Specification Constraints

The axioms of correctness for data structures only use an invocation’s argu-
ment and return values, and the session order relation among invocations in the
abstract execution. Thus, they can be directly encoded using our vocabulary.
Given an axion θ, we encode its negation to find histories which have abstract
executions that violate the axiom.

Bounded Verification of Concurrent Libraries in Replicated Systems 267

For example, to find violations of the AddRem axiom, we add the following
constraint:

∃i1 ∈ I. meth(i1) = POP ∧ ret(i1) �= EMPTY ∧ ∀i2 ∈ I. ¬match(i2, i1)

where we use the predicate match : I × I → B defined in a similar manner as in
Sect. 3.4. This completes the entire description of our encoding.

Our main soundness result can be formalized thus6

Theorem 1. Given a library implementation L, consistency policy Ψ and a cor-
rectness axiom θ, if the collection of formulae described above are satisfiable, then
there exists a history h and an abstract execution Γ ∈ �Ωh,L,Ψ � which violates θ.

5 Experimental Evaluation

Table 2. Consistency policies required for various implementations and specifications.

Benchmark AddRem Injective Empty[SO] Empty[HB] FIFO-1/LIFO-

1/Exchange

FIFO-2/LIFO-2 Max time

(s)

2Lock Queue

[29]

MW+MR MW+MR

+WFR

CC CC MW+MR MW+MR 269

LockFree Queue

[29]

MW+MR EC CC CC MW+MR EC 152

HW Queue [22] EC EC RMW MW+MR

+RMW

CC MW+MR

61

Treiber Stack

[40]

MW+MR

+WFR

EC CC CC MW+MR +WFR EC 245

Elimination Stack

[20]

MW+MR

+WFR

EC CC CC MW+MR +WFR MW

65

Exchanger [20] MW EC -NA- -NA- MW -NA-

40

We have implemented our bounded verification procedure and applied it to
a number of library implementations that have been widely-used in the world
of shared-memory systems. We generate FOL formulae for each implementation
as described in Sect. 4 and dispatch them to Z3 to determine their satisfiability.
For queues, we have used the 2LockQueue, LockFree Queue and Herlihy and Wing
(HW) Queue implementations, while for stacks, we have applied our approach
on the Treiber and Elimination Stack implementations. The Elimination stack uses
the exchanger implementation, and so we have also checked the correctness of
the exchanger.

Since our analysis takes as input the bound on the number of invocations (k),
the consistency policy, and the specification, we deploy the system as follows:
For each implementation and specification pairing, we start with bound k = 2
and the weakest consistency policy (EC). If we do not find any violation, then we

6 A Proof Sketch can be found in [32].

268 K. Nagar et al.

increase the bound by 1 and perform the analysis again. On the other hand, if
we do find a violation, then by Theorem-1, we know that it is guaranteed to be
an actual violation. We record its structure from the satisfiable model returned
by Z3, and then increase the consistency policy to the next higher level. We
continue this process until we exhaust our verification time budget (of 1 hour
per benchmark implementation). Note that all the consistency policies that we
consider can be arranged in a lattice [38] whereby the higher one goes up the
lattice, the consistency policies become stronger, which means they allow only
a subset of executions that are allowed by policies weaker than them. Our tool
automatically traverses this lattice to find the weakest consistency policy at
which no bounded violation is found.

Table 2 summarizes the results of this process. For each pair of benchmark
implementation and correctness specification, it shows the weakest consistency
policy at which we did not find any violations. This means that at every con-
sistency policy weaker than the one specified in the table, violations were dis-
covered. For each benchmark, we also note the maximum time needed to find a
violation for any specification by Z3. Some specifications were discussed in §3.4,
with Empty[SO] meaning we replace the relation hbΓ with soΓ in the specifica-
tion; the correctness specifications for Queues and Exchangers are given in [32].
Across all benchmarks, we found that the longest history which violated any
specification within the time bound considered consisted of 6 invocations.

To empirically validate our results, we also executed all the benchmarks at the
appropriate consistency levels on Cassandra, a real-world replicated data store.
We configured Cassandra with 3 replicas running on Amazon EC2 instances at
different physical locations (all on the US East Coast). We randomly generated
client invocations at all 3 replicas and ran each implementation for 4 h (on
average 92000 invocations/benchmark). We collected the resulting traces and
checked the specifications. We did not find any violation of the specifications,
and surmise that violations, when they do occur, manifest in smaller executions
that can be systematically checked by our analysis.

The results yield a number of interesting observations. First and foremost,
note that even for the same benchmark, different correctness specifications
require different consistency policies, ranging from the weakest, Eventual Con-
sistency, (EC) to the strongest, Causal Consistency, (CC). This suggests that
depending upon the requirements of the clients of the library, there is a trade-
off between consistency and correctness that can be effectively explored. It has
long been known that Causal Consistency incurs a performance penalty [3] due
to expensive dependency tracking, significant metadata storage, and long wait
times for all causally dependent data to arrive. A number of recent approaches
[9,14,28] have looked at improving the performance of Causal Consistency,
mainly by reducing the amount of dependent data required. Our experiments
suggest that many important correctness properties of library implementations
may not require CC, but would work correctly under weaker session guarantees
or even EC. Note that as we discussed in Sect. 2, MW+MR only require all data

Bounded Verification of Concurrent Libraries in Replicated Systems 269

to be propagated from the same session, while MW+MR+WFR requires data to
be propagated across the entire causal chain.

Another interesting observation is that important properties such as Injective
and FIFO/LIFO only require EC for most benchmarks. We also notice that for the
same correctness specification, different benchmarks require different consistency
policies, especially among the various Queue benchmarks. This illustrates that
clients have flexibility in choosing an implementation, based on the properties
that they need. For example, an HW queue can satisfy the AddRem specifica-
tion at the weakest consistency policy (EC), but requires CC for FIFO-1, which
can be satisfied using just session guarantees by both 2LockQueue and LockFree-
Queue. No single queue implementation provides all correctness guarantees at
the weakest consistency level. For stacks, the Elimination Stack and the Treiber
Stack require the same consistency policies for every specification except LIFO-2,
for which the Elimination Stack requires MW for the Exchange property of the
underlying Exchanger to be satisfied. By analyzing violations, we also found that
both the access pattern of different implementations as well as the semantics of
the data structure (stack vs. queue) played a major role in determining how and
if violations occur.

Note that even though we unroll loops upto a fixed bound, for all benchmarks
except LockFree Queue, the unrolling factor does not matter because in every
loop, every iteration except the last only performs read events, and the values
read are only used in the same iteration. Hence, only the last iteration which
performs a write/update event is relevant; unrolling the loop once is sufficient.

push(1) push(3) pop : 0

5 : U(Top, NULL, L1) 5 : U(Top, L2, L3) 6 : R(Top, L2)

push(2) pop : 3 7 : R(L2.Val, 0)

5 : U(Top, L1, L2) 9 : U(Top, L3, L2) 9 : U(Top, L2, L1)

pop : 1

6 : R(Top, L1)

Fig. 4. A violation of LIFO − 1 by Treiber Stack under MW+MR involving 6 invoca-
tions

In order to illustrate the complex violations automatically generated by our
framework, consider the violation of LIFO-1 in the Treiber stack implementa-
tion under MW+MR in Fig. 4. Here, invocations in the same column are in the
same session. Following the notation as used in the specification in Sect. 3.4,
γ1 = push(2), γ2 = push(1), γ3 = pop : 1. As a concrete violation of the specifi-
cation, γ2 happens before γ1, but γ3 returns the value pushed by γ2 even though
γ1 is unmatched, thus disobeying the LIFO property. The reason behind this

270 K. Nagar et al.

violation is that another pop operation (pop:0) is actually popping the element
pushed by push(2), but it does not read the value 1 and instead reads the initial
value 0 (thus also violating AddRem). As a result, the last pop operation in the
leftmost session sees only the element 1 on the stack. We note that there is no
violation of smaller length under MW+MR. By upgrading the consistency level
to MW+MW+WFR, the violation is eliminated.

6 Related Work and Conclusion

Verifying applications under weak consistency has received significant attention
in recent years. A number of efforts [2,19,23,25,38] have looked at the prob-
lem of verifying arbitrary safety invariants while others have considered verifi-
cation with respect to distributed database applications and specific high-level
transactional properties [5–7,10,30,35]. These results are orthogonal to the work
described here, since neither consider the question of safely migrating performant
concurrent libraries to a replicated environment.

More directly related are proposals to deal with the specification and verifica-
tion of various properties of CRDTs [12,18,31,41,42]. CRDTs also offer a library
interface to clients and have been implemented for various data structures such
as set, list, map, etc. They follow a different system model than the library imple-
mentations that we have considered in our work, and typically do not require
any form of synchronization. However, this requirement imposes stringent con-
straints on their design (for example, in an op-based CRDT, all operations have
to commute with each other). We are not aware of any CRDT-like implementa-
tion of concurrent data structures such as Queue, Stack and Exchangers that we
have considered here.

Prior works [18,31] have also developed automated or semi-automated
approaches to verify the convergence of CRDTs, an important but fairly low-level
property that does not shed much insight on the correctness of libraries built
using them. High-level correctness specifications of CRDTs are either given in
terms of abstract RDT specifications [12,42] or customized specification frame-
works such as replication-aware linearizability [41]. Both of these specification
styles are closer to linearizability, but since direct linearization of all operations
an execution is not possible in a distributed environment, both approaches allow
relaxations to help decide a linearization order. These relaxations typically take
the form of allowing different per-invocation linearizations based on the type of
the invocation and the visibility relation. This can lead to complicated specifica-
tions that can be substantially different from their shared-memory counterparts,
complicating verification. In contrast, our axiomatic style also allows clients of
the library to know exactly how the relaxations in a replicated environment will
impact observable behavior. Finally, unlike other prior work, we develop a fully
automated approach for bounded verification of library implementations.

There has also been recent interest in specifying and verifying concurrent
library implementations for shared memory systems [16] and weak memory mod-
els [15,34]. While the specification style of weak memory models bears some

Bounded Verification of Concurrent Libraries in Replicated Systems 271

superficial resemblance to that of weak consistency, the underlying system model
is quite different, and weak consistency models allows relaxed behaviors which
are not allowed by weak memory models. They also offer more fine-grained con-
trol than possible under weak memory given their ability to provide session-level
as well as system-wide consistency guarantees to individual low-level operations.
[34] proposes axiomatic specifications of libraries using happens-before and pro-
gram orders. Our specifications, while similar in spirit, are more fine-grained and
better suited to replicated systems.

To conclude, we tackle the problem of migrating concurrent library implemen-
tations from shared-memory systems to replicated, distributed ones. We define a
sensible semantics for such implementations on a replicated store parametric in
the consistency policy of the store and describe how to migrate the correctness
specifications for such libraries with minimal changes. Our verification framework
automatically finds bounded violations of these specifications. Parametericity of
consistency policies in the analysis allows us to find the weakest policy that
eliminates a discovered violation. Our experiments have demonstrated that the
proposed framework is effective in finding non-trivial violations in a number of
challenging and diverse benchmarks. We also find that the spectrum of weak
consistency policies in replicated systems can be effectively explored to tradeoff
correctness and performance.

Acknowledgments. We thank the anonymous reviewers for their insightful com-
ments. This material is based upon work supported by the National Science Foundation
under Grant No. CCF-SHF 1717741.

References

1. Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.:
Highly available transactions: virtues and limitations. PVLDB 7(3), 181–192
(2013). https://doi.org/10.14778/2732232.2732237. http://www.vldb.org/pvldb/
vol7/p181-bailis.pdf

2. Bailis, P., Fekete, A., Franklin, M.J., Ghodsi, A., Hellerstein, J.M., Stoica,I.: Coor-
dination avoidance in database systems. PVLDB 8(3), 185–196 (2014). https://doi.
org/10.14778/2735508.2735509. http://www.vldb.org/pvldb/vol8/p185-bailis.pdf

3. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: The potential dangers
of causal consistency and an explicit solution. In: ACM Symposium on Cloud
Computing, SOCC 2012, San Jose, CA, USA, 14–17 October 2012, p. 22 (2012).
https://doi.org/10.1145/2391229.2391251

4. Bailis, P., Ghodsi, A.: Eventual consistency today: limitations, extensions, and
beyond. Commun. ACM 56(5), 55–63 (2013). https://doi.org/10.1145/2447976.
2447992

5. Beillahi, S.M., Bouajjani, A., Enea, C.: Checking robustness against snapshot isola-
tion. In: Computer Aided Verification - 31st International Conference, CAV 2019,
New York City, NY, USA, 15–18 July 2019, Proceedings, Part II, pp. 286–304
(2019). https://doi.org/10.1007/978-3-030-25543-5 17

https://doi.org/10.14778/2732232.2732237
http://www.vldb.org/pvldb/vol7/p181-bailis.pdf
http://www.vldb.org/pvldb/vol7/p181-bailis.pdf
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.14778/2735508.2735509
http://www.vldb.org/pvldb/vol8/p185-bailis.pdf
https://doi.org/10.1145/2391229.2391251
https://doi.org/10.1145/2447976.2447992
https://doi.org/10.1145/2447976.2447992
https://doi.org/10.1007/978-3-030-25543-5_17

272 K. Nagar et al.

6. Beillahi, S.M., Bouajjani, A., Enea, C.: Robustness against transactional causal
consistency. In: 30th International Conference on Concurrency Theory, CONCUR
2019, Amsterdam, The Netherlands, 27–30 August 2019, pp. 30:1–30:18 (2019).
https://doi.org/10.4230/LIPIcs.CONCUR.2019.30

7. Bernardi, G., Gotsman, A.: Robustness against consistency models with atomic
visibility. In: 27th International Conference on Concurrency Theory, CONCUR
2016, Québec City, Canada, 23–26 August 2016, pp. 7:1–7:15 (2016). https://doi.
org/10.4230/LIPIcs.CONCUR.2016.7

8. Bouajjani, A., Enea, C., Guerraoui, R., Hamza, J.: On verifying causal consistency.
In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
18–20 January 2017, pp. 626–638. ACM (2017). http://dl.acm.org/citation.cfm?
id=3009888

9. Bravo, M., Rodrigues, L.E.T., Roy, P.V.: Saturn: a distributed metadata service
for causal consistency. In: Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys 2017, Belgrade, Serbia, 23–26 April 2017, pp. 111–
126 (2017). https://doi.org/10.1145/3064176.3064210

10. Brutschy, L., Dimitrov, D., Müller, P., Vechev, M.T.: Static serializability analysis
for causal consistency. In: Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, 18–22 June 2018, pp. 90–104 (2018). https://doi.org/10.1145/3192366.
3192415

11. Burckhardt, S.: Principles of eventual consistency. Found. Trends Program. Lang.
1(1–2), 1–150 (2014). https://doi.org/10.1561/2500000011

12. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2014, San Diego, CA,
USA, 20–21 January 2014, pp. 271–284 (2014). https://doi.org/10.1145/2535838.
2535848

13. Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional consistency
models with atomic visibility. In: 26th International Conference on Concurrency
Theory, CONCUR 2015, Madrid, Spain, 1.4 September 2015, pp. 58–71 (2015).
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58

14. Didona, D., Guerraoui, R., Wang, J., Zwaenepoel, W.: Causal consistency and
latency optimality: friend or foe? PVLDB 11(11), 1618–1632 (2018). https://doi.
org/10.14778/3236187.3236210. http://www.vldb.org/pvldb/vol11/p1618-didona.
pdf

15. Doherty, S., Dongol, B., Wehrheim, H., Derrick, J.: Making linearizability com-
positional for partially ordered executions. In: Integrated Formal Methods - 14th
International Conference, IFM 2018, Maynooth, Ireland, 5–7 September 2018, Pro-
ceedings, pp. 110–129 (2018). https://doi.org/10.1007/978-3-319-98938-9 7

16. Emmi, M., Enea, C.: Weak-consistency specification via visibility relaxation.
Proc. ACM Program. Lang. 3(POPL), 60:1–60:28 (2019). https://doi.org/10.1145/
3290373

17. Emmi, M., Enea, C., Hamza, J.: Monitoring refinement via symbolic reasoning. In:
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, Portland, OR, USA, 15–17 June 2015, pp. 260–269
(2015). https://doi.org/10.1145/2737924.2737983

18. Gomes, V.B.F., Kleppmann, M., Mulligan, D.P., Beresford, A.R.: Verifying strong
eventual consistency in distributed systems. PACMPL 1(OOPSLA), 109:1–109:28
(2017). https://doi.org/10.1145/3133933

https://doi.org/10.4230/LIPIcs.CONCUR.2019.30
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
http://dl.acm.org/citation.cfm?id=3009888
http://dl.acm.org/citation.cfm?id=3009888
https://doi.org/10.1145/3064176.3064210
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1561/2500000011
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.14778/3236187.3236210
https://doi.org/10.14778/3236187.3236210
http://www.vldb.org/pvldb/vol11/p1618-didona.pdf
http://www.vldb.org/pvldb/vol11/p1618-didona.pdf
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1145/3290373
https://doi.org/10.1145/3290373
https://doi.org/10.1145/2737924.2737983
https://doi.org/10.1145/3133933

Bounded Verification of Concurrent Libraries in Replicated Systems 273

19. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ’cause i’m strong
enough: reasoning about consistency choices in distributed systems. In: Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, 20–22 January
2016, pp. 371–384 (2016). https://doi.org/10.1145/2837614.2837625

20. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
SPAA 2004: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, Barcelona, Spain, 27–30 June 2004, pp. 206–215
(2004). https://doi.org/10.1145/1007912.1007944

21. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco (2008)

22. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990). https://doi.
org/10.1145/78969.78972

23. Houshmand, F., Lesani, M.: Hamsaz: replication coordination analysis and syn-
thesis. PACMPL 3(POPL), 74:1–74:32 (2019). https://dl.acm.org/citation.cfm?
id=3290387

24. Jepsen. https://jepsen.io. Accessed 27 Jan 2019
25. Kaki, G., Earanky, K., Sivaramakrishnan, K.C., Jagannathan, S.: Safe replication

through bounded concurrency verification. PACMPL 2(OOPSLA), 164:1–164:27
(2018). https://doi.org/10.1145/3276534

26. Lightweight transactions in cassandra. https://docs.datastax.com/en/cql/3.3/cql/
cql using/useInsertLWT.html. Accessed 2 Dec 2019

27. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: scalable causal consistency for wide-area storage with COPS. In: Proceedings
of the 23rd ACM Symposium on Operating Systems Principles 2011, SOSP 2011,
Cascais, Portugal, 23–26 October 2011, pp. 401–416 (2011). https://doi.org/10.
1145/2043556.2043593

28. Mehdi, S.A., Littley, C., Crooks, N., Alvisi, L., Bronson, N., Lloyd, W.: I can’t
believe it’s not causal! scalable causal consistency with no slowdown cascades. In:
14th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2017, Boston, MA, USA, 27–29 March 2017, pp. 453–468 (2017). https://
www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi

29. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing, Philadelphia, Pennsylvania, USA,
23–26 May 1996, pp. 267–275 (1996). https://doi.org/10.1145/248052.248106

30. Nagar, K., Jagannathan, S.: Automated detection of serializability violations under
weak consistency. In: 29th International Conference on Concurrency Theory, CON-
CUR 2018, Beijing, China, 4–7 September 2018, pp. 41:1–41:18 (2018). https://
doi.org/10.4230/LIPIcs.CONCUR.2018.41

31. Nagar, K., Jagannathan, S.: Automated parameterized verification of CRDTs. In:
Computer Aided Verification - 31st International Conference, CAV 2019, New York
City, NY, USA, 15–18 July 2019, Proceedings, Part II, pp. 459–477 (2019). https://
doi.org/10.1007/978-3-030-25543-5 26

32. Nagar, K., Mukherjee, P., Jagannathan, S.: Semantics, Specification and Bounded
Verification of Concurrent Libraries in Replicated Systems (Extended Version).
https://arxiv.org/abs/2004.10158

33. Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., Holmes, D.: Java Concur-
rency in Practice. Addison-Wesley Professional, Reading (2005)

https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://dl.acm.org/citation.cfm?id=3290387
https://dl.acm.org/citation.cfm?id=3290387
https://jepsen.io
https://doi.org/10.1145/3276534
https://docs.datastax.com/en/cql/3.3/cql/cql_using/useInsertLWT.html
https://docs.datastax.com/en/cql/3.3/cql/cql_using/useInsertLWT.html
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2043556.2043593
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi
https://doi.org/10.1145/248052.248106
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.1007/978-3-030-25543-5_26
https://doi.org/10.1007/978-3-030-25543-5_26
https://arxiv.org/abs/2004.10158

274 K. Nagar et al.

34. Raad, A., Doko, M., Rozic, L., Lahav, O., Vafeiadis, V.: On library correctness
under weak memory consistency: specifying and verifying concurrent libraries
under declarative consistency models. PACMPL 3(POPL), 68:1–68:31 (2019).
https://doi.org/10.1145/3290381

35. Rahmani, K., Nagar, K., Delaware, B., Jagannathan, S.: CLOTHO: directed test
generation for weakly consistent database systems. PACMPL 3(OOPSLA), 117:1–
117:28 (2019). https://doi.org/10.1145/3360543

36. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
Convergent and Commutative Replicated Data Types. Technical report, RR-7506,
INRIA, Inria - Centre Paris-Rocquencourt (2011)

37. Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84
(2011). https://doi.org/10.1145/1897852.1897873

38. Sivaramakrishnan, K.C., Kaki, G., Jagannathan, S.: Declarative programming
over eventually consistent data stores. In: Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, Port-
land, OR, USA, 15–17 June 2015, pp. 413–424 (2015). https://doi.org/10.1145/
2737924.2737981

39. Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M., Theimer, M., Welch, B.B.:
Session guarantees for weakly consistent replicated data. In: Proceedings of the
Third International Conference on Parallel and Distributed Information Systems
(PDIS 94), Austin, Texas, USA, 28–30 September 1994, pp. 140–149 (1994).
https://doi.org/10.1109/PDIS.1994.331722

40. Treiber, R.K.: Systems programming: coping with parallelism. International Busi-
ness Machines Incorporated, Thomas J. Watson Research (1986)

41. Wang, C., Enea, C., Mutluergil, S.O., Petri, G.: Replication-aware linearizability.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, 22–26 June 2019, pp.
980–993 (2019). https://doi.org/10.1145/3314221.3314617

42. Zeller, P., Bieniusa, A., Poetzsch-Heffter, A.: Formal specification and verification
of CRDTs. In: Formal Techniques for Distributed Objects, Components, and Sys-
tems - 34th IFIP WG 6.1 International Conference, FORTE 2014, Held as Part of
the 9th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2014, Berlin, Germany, 3–5 June 2014, Proceedings, pp. 33–48 (2014).
https://doi.org/10.1007/978-3-662-43613-4 3

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3290381
https://doi.org/10.1145/3360543
https://doi.org/10.1145/1897852.1897873
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1007/978-3-662-43613-4_3
http://creativecommons.org/licenses/by/4.0/

	Semantics, Specification, and Bounded Verification of Concurrent Libraries in Replicated Systems
	1 Introduction
	2 Illustrative Example
	3 Semantics and Specifications
	3.1 Language Semantics
	3.2 Abstract Execution Semantics
	3.3 Replicated Store Semantics
	3.4 Correctness Specification

	4 Bounded Verification
	4.1 Vocabulary
	4.2 Implementation Constraints
	4.3 Abstract Execution Constraints
	4.4 Replicated Store Constraints
	4.5 Specification Constraints

	5 Experimental Evaluation
	6 Related Work and Conclusion
	References

