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ABSTRACT

Mathematical formulae are essential in science, but face chal-
lenges of ambiguity, due to the use of a small number of iden-
tifiers to represent an immense number of concepts. Corre-
sponding to word sense disambiguation in Natural Language
Processing, we disambiguate mathematical identifiers. By
regarding formulae and natural text as one monolithic infor-
mation source, we are able to extract the semantics of identi-
fiers in a process we term Mathematical Language Processing
(MLP). As scientific communities tend to establish standard
(identifier) notations, we use the document domain to infer
the actual meaning of an identifier. Therefore, we adapt the
software development concept of namespaces to mathemati-
cal notation. Thus, we learn namespace definitions by clus-
tering the MLP results and mapping those clusters to subject
classification schemata. In addition, this gives fundamental
insights into the usage of mathematical notations in science,
technology, engineering and mathematics. Our gold standard
based evaluation shows that MLP extracts relevant identifier-
definitions. Moreover, we discover that identifier namespaces
improve the performance of automated identifier-definition
extraction, and elevate it to a level that cannot be achieved
within the document context alone.

1. PROBLEM AND MOTIVATION

Mathematical formulae are essential in Science, Technol-
ogy, Engineering, and Mathematics (STEM). Consequently,
Mathematical Information Retrieval (MIR) continues to re-
ceive increasing research attention [13]. Current MIR ap-
proaches perform well in identifying formulae that contain
the same set of identifiers or have a similar layout tree struc-
ture [2].

However, the ambiguity of mathematical notation decreases
the retrieval effectiveness of current MIR approaches. Since
the number of mathematical concepts by far exceeds the num-
ber of established mathematical identifiers, the same identi-
fier often denotes various concepts [16]. For instance, ‘E’
may refer to ‘energy’ in physics, ‘expected value’ in statis-

135

tics or ‘elimination matrix’ in linear algebra. Analyzing the
identifier-based and structural similarity of formulae without
considering the context of a formula can therefore lead to the
retrieval of non-relevant results.

Ambiguity is a problem that mathematical notation and
natural language have in common. Since words are also often
ambiguous [6, 9, 16], Word Sense Disambiguation [15], i.e.,
identifying the meaning of an ambiguous word in a specific
context [15], is an integral part of Natural Language Pro-
cessing. Typical approaches for Word Sense Disambiguation
replace a word by its meaning [34] or append the meaning to
the word. For example, if the ambiguous word man has the
meaning human species in a specific context, one can replace
it by man_species to contrast it from the meaning male adult,
replaced by man_adult. We transfer this idea to ambiguous
mathematical identifiers. If the identifier £ has the mean-
ing energy in the context of physics, one could replace E by
E_energy given one can determine that E is indeed used as
energy in this context.

In this paper, we propose a method to semantically en-
rich mathematical identifiers by determining and assigning
the context (namespace) in which the identifier is used, e.g.,
mathematics or physics. We determine the namespace of
an identifier by analyzing the text surrounding mathemati-
cal formulae using Natural Language Processing (NLP) tech-
niques. In software development, a namespace refers to a
collection of terms that is grouped, because it shares func-
tionality or purpose. Typically, namespaces are used to pro-
vide modularity and to resolve name conflicts [7]. We extend
the concept of namespaces to mathematical identifiers and
present an automated method to learn the namespaces that
occur in a document collection.

Employing an analysis of natural language to enrich the in-
formation content of formulae is a new approach, which Pagel
and Schubotz termed Mathematical Language Process-
ing (MLP) [26]. Today’s MIR systems treat formulae and
natural language as separate information sources [2]. While
current systems offer retrieval from both sources (formulae
and text), they typically do not link them. For example,
math-aware search systems allow to search in formulae by
specifying a query using mathematical notation or special-
ized query languages. To search in the text, MIR systems
support traditional keyword search [2].

We deem the MLP approach promising for two reasons.
First, a large-scale corpus study showed that around 70 per-
cent of the symbolic elements in scientific papers are explicitly
denoted in the text [35]. Second, although almost all iden-
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Detect formulae

In pnysics, mass—energy

equivalence is a concept formulated
by Albert Einstein that explains the
relationship between mass and
energy. It states every mass has an
energy equivalent and vice
versa—expressed using the formula
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Figure 1: Overview of the document based Mathematical Language Processing pipeline (steps 1-5), and the corpus based names-
pace discovery pipeline (steps 6-8). For each step, a detailed description is available in the corresponding Subsection of Section 2.

tifiers have multiple meanings, mathematical notation obeys
conventions for choosing identifiers [5, 16]. Therefore, we pro-
pose that identifying the namespace of identifiers can improve
their disambiguation and the capabilities for machine process-
ing mathematics in general. Improved machine processing of
mathematics can benefit recommender [31] and plagiarism de-
tection systems [8, 21] for STEM literature. Likewise, formula
search engines, and assistance tools for authors and students
could benefit.

In summary, the contributions we make in this paper are:

(1) amethod toextract the semantic meaning of mathemat-
ical identifiers from the text surrounding mathematical
formulae;
a method to learn the set of mathematical namespaces
occurring in a collection;
a method that utilizes identified mathematical name-
spaces to improve the disambiguation of mathematical
identifiers; and
alarge scale analysis of identifier use as part of the math-
ematical notation in different scientific fields.

Related Work

Several approaches extract information from the surrounding
text to retrieve information about mathematical formulae [17,
36, 24, 26, 19, 11]. Quoc et al. [24] extract entire formulae and
link them to natural language descriptions from the surround-
ing text. Yokoi et al. [36] train a support vector machine to
extract mathematical expressions and their natural language

(2)
(3)

(4)
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phrase. Note, that this phrase also includes function words,
etc. In [26], we suggest a Mathematical Language Processing
framework - a statistical approach for relating identifiers to
definientia, in which they compare a pattern based approach
and the MLP approach with part-of-speech tag based dis-
tances. They find the MLP approach to be more effective.
The findings of Kristianto et al. [17] confirm these findings.
Our approach is the first that uses the concept of name-
spaces to improve the extraction of semantics regarding math-
ematical identifiers. While other approaches only use one
document at a time to extract the description of a specific
formulae [17, 36, 19], we use a large scale corpus and combine
information from different documents to extract the meaning
of a specific identifier. In contrast, our task is more specific.
We limit the extraction of mathematical expressions to iden-
tifiers and extract semantic concepts instead of descriptions.

2. OUR APPROACH

2.1 Mathematical Language Processing

The goal of Mathematical Language Processing is to ex-
tract identifier-definitions from a text that uses mathematics.
Formally, a definition consists of three parts: definiendum,
definiens and definitor. Definiendum is the expression to be
defined. Definiens is the phrase that defines the definiendum.
Definitor is the verb that links definiendum and definiens. An
identifier-definition is a definition where the definiendum is
an identifier.



According to ISO/TEC 40314: “Content identifiers repre-
sent ‘mathematical variables’ which have properties, but no
fixed value.” Identifiers have to be differentiated from sym-
bols, that refer to ‘specific, mathematically-defined concepts’
such as the operator + or the sin function. Identifier-definiens
pairs are candidates for identifier-definitions. Since we do not
use the definitor, we only extract the definiendum (identi-
fier) and the definiens (natural language term), and extract
in the following, identifier-definiens pairs as candidates for
identifier-definitions. To illustrate, we introduce the follow-
ing running example:

Example 1: Mass-energy equivalence

The relation between energy and mass is described by
the mass-energy equivalence formula E =mc?, where
E is energy, m is mass, and c is the speed of light.

This description includes the formula F =mc?, the three iden-
tifiers E, m, and ¢, and the following identifier-definitions: (F,
energy), (m, mass), and (¢, speed of light).

In our approach (see Figure 1), we divide the MLP pipeline
into the following steps:

(1) Detect formulae;

(2) Extract identifiers;

(3) Find identifiers;

(4) Find definiens candidates; and

(5) Score all identifier-definiens pairs.

@ Detect formulae

In a first step, we need to differentiate between formulae and
text. In this paper, we assume that all formulae are explic-
itly marked as mathematics and that everything marked as
mathematics actually is mathematics. However, in real world
documents such as conference papers, posters or Wikipedia
articles, some formulae are typed using the unicode symbols
instead of math mode. As this type of formula is hard to de-
tect, we decided to exclude it from our analysis. Moreover,
not all structures marked as formulae are really mathemati-
cal formulae. In some cases unmarked text like %
or chemical formulae 2 HoO —2 Hy+0O4 are also marked as
mathematics. One might develop heuristics to discover words
and chemical structures within mathematical markup, but
this is outside of the scope if this research.

@ Extract identifiers

After having identified the formulae, we extract the list of
identifiers from within the formulae. In the above example,
this means to extract the identifiers E, m, and ¢ from the
formula E =mc?®. Mostly, identifiers (in formulae and text),
are not explicitly marked as identifiers. Consequently, we
develop a heuristic to extract identifiers by assuming the fol-
lowing characteristics: an identifier consists of one variable or
a combination of a variable and one or multiple subscripts.
In the following, we will discuss advantages and limitations
of this heuristic. In this process, we delineate four limita-
tions (special notation, symbols, sub-super-script, incorrect
markup), which we will quantify in the evaluation section. We
observe that more complex expressions are sometimes used
on behalf of identifiers, such as o2 for the ‘variance’, without
mentioning o and ‘standard deviation’ at all or AS for ‘change
in entropy’. In this work, we focus on atomic identifiers and
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thus prefer to extract the pair (S, entropy) instead of (AS,
change in entropy). The disadvantage of this approach is
that we miss some special notation such as contra-variant
vector components like the coordinate functions z* in Ein-
stein notation. In this case, we are able to extract (x, coordi-
nate functions) with our approach, which is not incorrect but
less specific than (z*, coordinate functions). In addition, we
falsely extract several symbols, such as the Bessel functions
Ja,Ya, but not all symbols, i.e., we do not extract symbols
that use sub-super-scripts like the Hankel function HS).
Note that especially the superscript is not used uniformly
(e.g., it may refer to power, n-th derivative, Einstein nota-
tion, inverse function). The most prominent example is the
sin symbol, where sin?: z — (sin(z))? vs. sin~! :sin(z) — z,
for all € [—1,1]. Far less debatable, but even more common
is the problem of incorrect markup. The one variable as-
sumption tokenizes natural language words like heat into a
list of four variables h, e, a, t.

Identifiers often contain additional semantic information,
visually conveyed by special diacritical marks or font features.
Examples of diacritics are hats to denote estimates (e.g., w),
bars to denote the average (e.g., X) or arrows to denote vec-
tors (e.g., ¥). Regarding the font features, bold lower case
single characters are often used to denote vectors (e.g., w)
and bold upper case single characters denote matrices (e.g.,
X)), while double-struck fonts are used for sets (e.g., R), calli-
graphic fonts often denote spaces (e.g., H) and so on. Unfortu-
nately, there is no common notation established for diacritics
across all fields of mathematics and thus there is a lot of vari-
ance. For example, a vector can be denoted by Z, @ or x, and
the real line can be denoted either by R or R.

To decide if two identifiers are identical, we need a compar-
ison function that eliminates invariants in the input format.
For example, the inputs $c_0$ and $c_{ 0 }$ produce the
same presentation c¢o in ¥TEX and therefore have to be con-
sidered as equivalent. In this work, we compare the identifiers
based on abstract syntax trees, which eliminates most of the
complications introduced by the invariants in the input en-
coding. We considered to reduce the identifiers to their root
form by discarding all additional visual information, such that
X becomes X, w becomes w and R becomes R. The disad-
vantage of this approach is the loss of additional semantic
information about the identifier that are potentially useful.
For instance, E usually denotes the electric field, compared
to E which is often used for energy. By removing the bold
font, we would lose this semantic information. Therefore, we
decided against unsing the root form in our approach.

@ Find identifiers

In anext step, all identifiers that are part of the formulae have
to be identified in the surrounding text. Therefore, we use
mathematical formulae that only consist of a single identifier,
or textual elements that are not marked up as mathematics
(i.e., words) and are equivalent to one of the identifiers ex-
tracted in the formulae before. In the above example, the
identifiers £, m and ¢ have to be identified in the text: ‘The
relation between energy and mass is described by the mass-
energy equivalence formula [...], where E is energy, m is mass,
and c is the speed of light.’



@ Find definiens candidates

We are not only interested in the identifier, but also in its
definiens. Therefore, we extract identifier-definiens pairs (iden-
tifier, definiens) as candidates for identifier-definitions. For
example, (E, energy) is an identifier-definition, where E is an
identifier, and ‘energy’ is the definiens. In this step, we de-
scribe the methods for extracting and scoring the identifier-
definitions in three sub-steps:

(1) Math-Aware Part-of-Speech Tagging;
(2) Part-of-Speech based distances; and
(3) Scoring of definiens candidates.

Pagel and Schubotz [26] found the MLP method with a
Part-of-Speech based distance measure in a probabilistic ap-
proach to outclass a pattern based method. Thus, we use
the Part-of-Speech based distances methods here to extract
identifier-definitions. First, we define definiens candidates:

(1) noun (singular or plural);
(2) noun phrases (noun-noun, adjective-noun); and
(3) special tokens such as inner-wiki links.

We assume that successive nouns (both singular and plurals),
possibly modified by an adjective, are candidates for defini-
entia. Thus, we include noun phrases that either consist of
two successive nouns (e.g., ‘mean value’ or ‘speed of light’) or
an adjective and a noun (e.g., ‘gravitational force’).

Authors often use special markup to highlight semantic
concepts in written language. For example in Wikipedia ar-
ticles, Wiki markup, a special markup language for speci-
fying document layout elements such as headers, lists, text
formatting and tables, is used. In the Wikipedia markup pro-
cessing, we retain inner Wikipedia links that link to another
article that describes the semantic concept, which eliminates
the ambiguity in the definiens itself. This link is an exam-
ple for a definiens candidate of type special token. Part-of-
Speech Tagging (POS Tagging) assigns a tag to each word in
a given text [15]. Although the POS Tagging task is mainly
a tool for text processing, it can be adjusted to scientific
documents with mathematical expressions [29, 26]. There-
fore, we tag math-related tokens of the text with math spe-
cific tags [29]. If a math token is only one identifier, an
identifier tag is assigned rather that a formula tag. We in-
troduce another tag for inner-wiki-links. For the extrac-
tion of definiens candidates, we use common natural lan-
guage POS tags as well as the following three task specific
tags:

(1) identifiers;

(2) formulae; and

(3) special tokens.

Generally, the Cartesian product of identifiers and definiens
might serve as identifier-definition candidate.

@ Score all identifier-definiens pairs

To extract the definiens candidates, we make three assump-

tions, according to [26]:
(1)
(2)
3)

definiens are noun phrases or a special token;
definiens appear close to the identifier; and

if an identifier appears in several formulae, the definiens
can be found in a sentence in close proximity to the first
occurrence in a formula.
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The next step is to select the most probable identifier-
definition by ranking identifier-definition candidates by prob-
ability [26]. The assumption behind this approach is that
definientia occur closely to their related identifiers, and thus
the closeness can be exploited to model the probability distri-
bution over identifier-definition candidates. Thus, the score
depends on (1) the distance to the identifier of interest and
(2) the distance to the closest formula that contains this iden-
tifier. The output of this step is a list of identifier-definiens
pairs along with the score. Only the pairs with scores above
the user specified threshold are retained.

The candidates are ranked by the following formula:

Ry, (A)+BRs, (n)+ti(t)
a+B+y '

In this formula A is the number of tokens between identi-
fier and definiens candidate, Ro, (A) is a zero-mean Gaussian
that models this distance, parametrized with the variance o4,
and n is the number of sentences between the definiens can-
didate and the sentence in which the identifier occurs for the
first time. Moreover, R, (n) denotes a zero-mean Gaussian,
parameterized with o, and tf(¢) is the frequency of term ¢
in a sentence, and the weights «, /3,7y combine these quanti-
ties. Therefore, we reuse the values suggested in [26], namely
a=f=1and y=0.1.

We also tested a refined strategy, which takes into account
that the same definition might be explained multiple times
in a document and calculated a refined weighting Ryx; = (n—
17" n'R;. Thereby R; iterates over all weightings from
within one document that lead to one definition. However,
this did not lead to a significant performance increase for the
task at hand, so we dropped this approach. Note that the
idea is revived in the Namespace Discovery section, where
multiple documents are considered at the same time.

R(n,At,d)=

2.2 Namespace Discovery

In this section, we describe the adaptation of the idea of
namespaces to identifier disambiguation and the process of
namespace discovery to extract identifier-definitions in the
following steps:

(1) Automatic Namespace Discovery;

(2) Document Clustering;

(3) Building Namespaces; and

(4) Building Namespace Hierarchy.

Automatic Namespace Discovery

Namespaces in well-defined software exhibit low coupling and
high cohesion [18]. Coupling describes the degree of depen-
dence between namespaces. Low coupling means that the de-
pendencies between classes of different namespaces are mini-
mized. Cohesion refers to the dependence within the classes
of the same namespace. High cohesion principle means that
the related classes should be put together in the same names-
pace. We define a notation N as a set of pairs {(4,s)}, where i
is an identifier and s is its semantic meaning or definiens, such
that for any pair (i,s) € A there is no other pair (i’,s') € N/
with i =4'. Two notations N; and N> conflict if there exists a
pair (i1,s1) €M7 and a pair (i2,52) € N2 such that i1 =iz and
S1 75 S92.

Thus, we can define a namespace as a named notation. For
example, Nphysics can refer to the notation used in physics.
For convenience, we use the Java syntax to refer to specific
entries of a namespace [10]. If A/ is a namespace and i is an



identifier such that (i,s) € N for some s, then N.i is a fully
qualified name of the identifier ¢ that relates i to the definiens
s. For example, given a namespace Nphysics = {(F,‘energy’),
(m,‘mass’), (c,'speed of light’) }, Npnysics. E refers to ‘energy’
— the definiens of F in the namespace ‘physics’. Analogous
to definitions in programming language namespaces, one can
expect that (a) definiens in a given mathematical namespace
come from the same area of mathematics, and (b) definiens
from different namespaces do not intersect heavily. In other
words, one can expect namespaces of mathematical notation
to have the same properties as well-designed software pack-
ages, namely low coupling and high cohesion.

To precisely define these concepts for mathematical name-
spaces, we represent them via a document-centric model.
Suppose we have a collection of n documents D={dx,...,d, }
and a set of K namespaces {N1,....Nk}. A document d; can
use a namespace N} by implicitly importing identifiers from
it. Note that real-life scientific documents rarely explicitly use
import statements. However, we assume that these implicit
namespace imports exist. In this document-centric model,
a namespace exhibits low coupling, if only a small subset of
documents uses it and high cohesion if all documents in this
subset are related to the same domain.

We use the extracted identifier-definitions (see Section 2.1)
to discover the namespaces. Since manual discovery of math-
ematical namespaces is time consuming and error prone, we
use Machine Learning techniques to discover namespaces au-
tomatically.

We utilize clustering methods to find homogeneous groups
of documents within a collection. Comparable to NLP identi-
fiers can be regarded as ‘words’ in the mathematical language
and entire formulae as ‘sentences’. We use cluster analysis
techniques developed for text documents represented via the
‘bag-of-words’ model for documents with math formulae that
are represented by ‘bag-of-identifiers’. Some definientia are
used only once. Since they do not have any discriminative
power, they are not very useful and are excluded. Once the
identifiers are extracted, we discard the rest of the formula. As
a result, we have a ‘bag-of-identifiers’. Analogoe to the bag-
of-word approach, we only retain the counts of occurrences of
identifiers, but do not preserve any structural information.

@ Generate feature vectors

For clustering, documents are usually represented using the
Vector Space Models [1, 25]. We apply the same model,
but use identifiers instead of words to represent documents.
As the vocabulary, we use a set of identifier-definiens pairs
V =1® F which is an element of the vector product space of
the identifier space I and the the definiens space F'. We rep-
resent documents as m-dimensional vectors d; = (w1,...,wm),
where wy, is the weight of an identifier-definiens pair iy, in the
document d; and m=dim(I)dim(F'). We define an identifier-
document matrix D as a matrix where columns represent
document vectors and rows represent identifier-document co-
occurrences. We evaluate three ways to incorporate the ex-
tracted definientia into the model: (1) we use only identi-
fiers without definientia, which reduces the vocabulary to
Vi = PrV, where the projection operator Pr : I @ F — [
reduces the dimensions dimV; = dimI; (2) we use ‘weak’
identifier-definiens associations that include identifiers and
definientia as separate dimensions, formally Vo = PrgrV
where the projector Prgr : I ® F' — I & F' reduces the di-
mension to dimVs = dim7 + dim F'; and (3) we use ‘strong’
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| di do ds

E|l1 0 1

m|1l 1 0

cl1 1 O

energy | 1 0 1

mass | 1 1 0

speed oflight | 1 1 0

(a) identifier only.

(b) weak association.

|di da ds

E energy | 1 0 1
mmass | 1 1 0
cspeedoflight [ 1 1 0

(c) strong association.

Figure 2: Illustration of the identifier-document matrix
D for the analyzed methods to create features from
the identifiers and definientia, for the mass-energy
equivalence example and three hypothetical documents

di={E,m,c}, do={m,c}, ds={E}.

identifier-definiens associations that append a definiens to
each identifier and thus V3=V

There is some variability in the definientia: for example, the
same identifier o in one document can be assigned to ‘Cauchy
stress tensor’ and in another to ‘stress tensor’, which is almost
the same thing. To reduce this variability we perform the fol-
lowing preprocessing steps: we tokenize the definiens and use
individual tokens to index dimensions of the space. For ex-
ample, suppose we have two pairs (o, ‘Cauchy stress tensor’)
and (o, ‘stress tensor’). In the ‘weak’ association case, we will
have dimensions (o, ‘Cauchy’, ‘stress’,‘tensor’), while for the
‘strong’ association we only use the last term, i.e., (o_tensor)
as additional features.

@ Cluster feature vectors

At this stage, we aim to find clusters of documents that are
reasonable namespace candidates. We vectorize each doc-
ument using the following weighting function log(tf)/(zdf),
where tf denotes the term frequency, df the document fre-
quency and z the normalization parameter, such that the
length of each document vectoris 1. In addition, we discard all
identifiers with DF < 2. We further reduce the dimensionality
of the resulting dataset via Latent Semantic Analysis (LSA)
[6], which is implemented using randomized Singular Value
Decomposition (SVD) [14], see [12]. After the dimension-
ality reduction, we apply Mini-Batch K-Means with cosine
distance, since this algorithm showed the best performance
in our preliminary experiments (refere to [12] for further de-
tails).

Building namespaces

Once a cluster analysis algorithm assigns documents from our
collection to clusters, we need to find namespaces among these
clusters. We assume that clusters are namespace-defining,
meaning that they are not only homogeneous in the cluster
analysis sense (e.g., in the case of K-Means it means that the
within-cluster sum of squares is minimal), but also contain
topically similar documents.

To assess the purity of the clusters, we use the Wikipedia
category information, which was not used for clustering in
the first place. Since each Wikipedia article might have an



arbitrary number of categories, we find the most frequent cat-
egory of the cluster, and thus define its purity C' as

max;count(c;)
|C] 7

where the ¢;’s are cluster categories. Thus, we can select all
clusters with purity above a certain threshold and refer to
them as namespace-defining clusters. In our experiments we
achieved best results with a threshold of 0.6.

Afterwards, we convert these clusters into namespaces by
collecting all identifiers and their definiens in the documents of
each cluster. Therefore, we first collect all identifier-definiens
pairs, and then group them by identifiers. During the extrac-
tion, each definiens candidate is scored. This score is used
to determine which definiens will be assigned to an identifier
in the namespace. We group the pairs by identifier. If an
identifier has two or more identical definiens, we merge them
into one. Thus, the score of an identifier-definiens pair is the
sum of scores. There is some lexical variance in the definiens.
For example, ‘variance’ and ‘population variance’ or ‘mean’
and ‘true mean’ are closely related definiens. Thus, it is ben-
eficial to group them to form one definiens. This can be done
by fuzzy string matching (or approximate matching) [23]. We
group related identifiers and calculate the sum of their scores.
Intuitively, the closer a relation is, the higher is the score. A
high score increases the confidence that a definiens is correct.

In the last step of our pipeline, we label our namespace
defining clusters with categories from well known classifica-
tions, effectively naming the namespaces we identified. We
thus achieve two goals. First, we indirectly evaluate our
dataset. Second, we ease the use of our dataset to improve
MIR. We use the following official classifications:

purity (C) =

(1) Mathematics Subject Classification (MSC2010) [3] [Amer-

ican Mathematical Society];

(2) Physics and Astronomy Classification Scheme (PACS)
[4]; and

(3) ACM Computing Classification System [28] available
as a Simple Knowledge Organization System (SKOS)
ontology [22].

We processed the SKOS ontology graph with RDFLib. All
categories can be found on our website [30]. After obtaining
and processing the data, the three classifications are merged
into one. We map namespaces to second-level categories by
keyword matching. First, we extract all keywords from the
category. The keywords include the top level category name,
the subcategory name and all third level category names.
From each namespace, we extract the namespace category
and names of the articles that form the namespace. Finally,
we perform a keyword matching, and compute the cosine sim-
ilarity between the cluster and each category. The namespace
is assigned to the category with the largest cosine score. If
the cosine score is below 0.2 or only one keyword is matched,
the cluster is assigned to the category ‘others’.

Improve identifier-definition extraction

We used POS Tagging based distance measures (see Sec-
tion 2.1) to extract identifier-definiens pairs from the text
surrounding the formula. In a second step, we build name-
spaces of identifiers. This namespaces allows us to study the
usage of identifiers in different scientific fields. Many, but
not all definientia can be found in the text surrounding the
formulae. Thus, the namespaces can additionally be used
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to identify the definiens in cases where the definiens is not
mentioned in the text.

2.3 Implementation details

We use the Big Data framework Apache Flink, which is capa-
ble of processing our datasets in a distributed shared nothing
environment, leading to short processing times. Our source-
code, training, and testing data is openly available from our
website [30].

For the MLP part, our implementation follows the open
source implementation of the Mathematical Language Pro-
cessing Project [26], with the following improvements: rather
than converting the Wikipedia formulae via M TEXML, we now
directly extract the identifiers from the IXTEX parse tree via
Mathoid [32]. Second, we include a link to Wikidata, so that
Wikipedia links can be replaced by unique and language in-
dependent Wikidata identifiers (ids). These ids are associ-
ated with semantic concepts, which include a title, and in
many cases a short description that simplifies disambigua-
tion. For the POS Tagging, we use the Stanford Core NLP
library (StanfordNLP) [20] for POS Tagging of natural lan-
guage as well as additional math-aware tags (see Section 2.1).
In summary, we use the following tags:
identifiers (‘ID’);
formulae (‘MATH’);
inner-wiki link (‘LINK’);
singular noun (‘NN’);
plural noun (‘NNS’);
adjective (‘JJ%); and
noun phrase (‘NOUN_PHRASE’).

For the Namespace Discovery step in our pipeline (Section
2.2), we use the following implementation to discover clusters
that are suitable namespace candidates. Using ‘TfidfVector-
izer’ from scikit-learn [27], we vectorize each document. The
experiments are performed with (logTF) x IDF weighting.
Therefore, we use the following parameters: ‘use_idf=False’,
‘sublinear_tf=True’. Additionally, we discard identifiers that
occur only once by setting ‘min_df=2’. The output of ‘T'fid-
fVectorizer’ is row-normalized, i.e., all rows have unit length.

The implementation of randomized SVD is taken from [27] -
method ‘randomized_svd’. After dimensionality reduction,
we apply Mini-Batch K-Means (class ‘MiniBatchKMeans’)
from [27] with cosine distance. In our preliminary experi-
ments, this algorithm showed the best performance. To im-
plement it, we use the Python library FuzzyWuzzy. Using
fuzzy matching we group related identifiers and then sum
over their scores.

3. EVALUATION
3.1 Data set

As our test collection, we use the collection of Wikipedia
articles from the NTCIR-11 Math Wikipedia task [33] in
2014. We choose this collection instead of the latest version
of Wikipedia to be able to compare our results to previous
experiments.

After completing the MLP pipeline, we exclude all docu-
ments containing less than two identifiers. This procedure re-
sults in 22 515 documents with 12 771 distinct identifiers that
occur about 2 million times. Figure 3 shows that identifiers
follow a power law distribution, with about 3700 identifiers
occurring only once and 1 950 identifiers occurring only twice.
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Figure 3: Distribution of identifier counts. The most frequent
identifiers are x (125k), p (110k), m (105k), and n (83k).

The amount of identifiers per document also appears to fol-
low a long tail power law distribution (p < 0.001 for KS test)
as only a few articles contain a lot of identifiers, while most of
the articles do not. The largest number of identifiers in a sin-
gle document is an article with 22 766 identifiers, the second
largest has only 6 500 identifiers. The mean number of iden-
tifiers per document is 33. The distribution of the number
of distinct identifiers per document is less skewed than the
distribution of all identifiers. The largest number of distinct
identifiers in a single document is 287 followed by 194. The
median of identifiers per document is 10. For 12771 identi-
fiers, the algorithm extracted 115300 definientia. The num-
ber of found definientia follows a long tail distribution as well,
with the median of definientia per page being 4. Moreover,
we list the most common identifier-definiens pairs in Figure 3.

3.2 Gold standard

We created a gold standard from the 100 formulae patterns
included in the NTCIR-11 Wikipedia task [33] and the fol-

lowing information:

(1) identifiers within the formula;
(2) definiens of each identifier; and
(3) links to semantic concepts on Wikidata.

We compared our results with that gold standard and cal-
culated the three measures: precision, recall, and F1-score,
to evaluate the quality of our identifier-definitions. In a first
step, we evaluated the results acquired with the POS Tag-
ging based distance measures (see Section 2.1). In a second
step, we evaluated the results acquired by combining the POS
Tagging based distance measures and the results of the name-
spaces (see Section 2.2)

The gold standard (cf. Figure 4) consists of 310 identifiers,
with a maximum of 14 identifiers per formula. For 174 of those
identifiers, we could assign the corresponding semantic con-
cept in Wikidata. For 97, we assigned an individual phrase
that we could not relate to a Wikidata concept. For an ad-
ditional 27, we assigned two phrases. For example, for Topic
32 (cf. Figure 4), we assigned critical temperature in addition
to the semantic concept of the critical point, since the critical
temperature is more specific. The full list of assignments is
available from our website [30]. Note, that the identification
of the correct identifier-definition, was very time consuming.
For several cases, the process took more than 30 minutes per
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(1) Van der Waerden’s theorem: W (2,k) > 2" /k*

W Van der Waerden number
k integer : number that can be written without a
fractional or decimal component
¢ positive number (real number. . .)

(31) Modigliani-Miller theorem: T

T. tax rate : ratio (usually expressed as a percent-
age) at which a business or person is taxed

(32) Proximity effect (superconductivity): Te

Te critical temperature, critical point : critical

point where phase boundaries disappear

) . work done Q1-Q2
Engine efficiency: 1= =
(69) Engine efficiency: 7 heat absorbed Q1

7 energy efficiency
@1 heat (energy)
Q2 heat (energy)

oL d dL

(86) Lagrangian mechanics: g~ i 94,

L Lagrangian

¢; generalized coordinates

t time (...)

¢; generalized velocities, generalized coordinates

Figure 4: Selected entries from the gold standard. Bold font
indicates that the entry is linked to a language independent
semantic concept in Wikidata. The descriptions in brackets
originate from the English Wikidata label and have been
cropped to optimize the layout of this figure.

formulae, since multiple Wikipedia pages and tertiary liter-
ature had to be consumed. The gold standard was checked
by a mathematician from the Applied and Computational
Mathematics Division, National Institute of Standards and
Technology, Gaithersburg, Maryland, USA.

4. RESULTS

In this section, we describe the results of our evaluation.
First, we describe the quality of the MLP process in Sec-
tion 4.1. Afterwards, we describe the dataset statistics and
the results of the namespace evaluation in Section 4.2.

4.1 Mathematical Language Processing

4.1.1 Identifier extraction

Our gold standard consists of 310 identifiers to be extracted
from the aforementioned 100 reference formulae. We were
able to extract 294 identifiers (recall 94.8%) from the gold
standard correctly. We obtained only 16 false negatives, but
overall 57 false positives (precision 83.7%, Fi 89.0%). Falsely
detected identifiers affect 22% of the reference formulae, show-
ing that often several falsely extracted identifiers belong to
one formula. In the following, we explain why the errors can
be attributed to the shortcomings of the heuristics explained
in Section 2.1.



Classical mechanics of discrete systems 45.00 (PACS)
Categories: Physics, Mechanics, Classical mechanics
Purity: 61%, matching score: 31%,
identifiers 103, semantic concepts 50, @ 58,
Identifier-definitions:
m mass (quantitative measure of a physical object’s
resistance to acceleration by a force .. .) [s~29] @
F force (influence that causes an object to change) [s~25]
@
v velocity (rate of change of the position of an object
...and the direction of that change) [s~24] ©
t time (dimension in which events can be ordered the past
through the present into the future) s~19] @

4,? 42,X 1

[
a acceleration (rate at which the velocity...) [sx~17] ©
r position (Euclidean vector ...) [s~14] ©
i particle [s~12]
E energy (physical
quantity representing the capacity to do work) [s~11] @
v speed (magnitude of velocity) [s~10] @
a acceleration [s~10] @
V velocity [s~9] ?
u flow velocity [s~8] @
r radius [s~8]
E electric field (. ..representing
the force applied to a charged test particle) [s~6] @

c ;beed of light (speed at which all massless
particles and associated fields travel in vacuum) [s~3] @

Stochastic analysis 60Hxx (MSC)

Categories: Stochastic processes, Probability theory

Purity: 92%, matching score: 62%, identifiers 54, semantic
concepts 32, @18, 0, ? 30, X0

Identifier-definitions:

a stochastic process (...random variables) [s~12] ©
X stochastic process (...random variables) [s~10] ©
E expected value [s~2] @

E expected value s<1
v function s<1

Theory of data 68Pxx (MSC)

Categories: Information theory, Theoretical computer science
Purity: 86%, matching score: 35%, identifiers 58, semantic
concepts 10

Identifier-definitions:

R rate [s~12] @
X posterior probability [s~10] @
n length [s~8] @

H Information entropy (expected value of the amount
of information delivered by a message) [s~5] @

I mutal information [s~5] @

[s~5] @

a program

a codeword s< 1
Ex expected value s<1

Table 1: Identifier-definitions for selected identifiers and namespaces extracted from the English Wikipedia, the accumulated
score s and the human relevance rankings confirmed (@), partly confirmed (- ), not sure (?) and incorrect (X). Discovered
semantic concepts are printed using bold font. The descriptions were fetched from Wikidata. To improve readability of the

table, we manually shortened some long description texts.

Incorrect markup. Errors relating to 8 formulae (33 false
positive and 8 false negative identifiers), were caused by the
incorrect use of ¥TEX, especially the use of math mode for
text or the missing usage of math mode for part of the for-
mula. An identifier Q1 that is falsely marked as Q1 (cf. Fig-
ure 4, Topic 69) in a formula, can easily be identified correctly
by a human since it looks very similar in the output. Asobvi-
ously @1 is meant in the formula, we took Q1 as gold standard
for this identifier. But in the MLP process it is impossible
to extract the identifier correctly, as @1 implies @ times 1.

Symbols. For 8 formulae (9 false positive identifiers), Math-
oid [32] misclassified symbols as identifiers, such as d in
-4 Two formulae (2 false positive identifiers) are substitu-
tions (abbreviations that improve the readability of formulae
without specific meaning).

Sub-super-script. Two formulae (3 false positive, 2 false
negative identifiers), used sub-super-script such as ai.

Special notation. For 2 formulae (10 false positive, 2 false
negative identifiers), use special notation like the Einstein
sum convention.

We excluded incorrectly extracted identifiers from the follow-
ing processing steps. Thus the upper bound for recall and
precision are set by the identifier extraction step.

4.1.2  Definition extraction

In a first step, we only assess the definitions that matched
exactly the semantic concepts materialized as Wikidata item
in the gold standard. Thus, we found 88 exact matches (recall
28.4%), but also obtained 337 false negatives, which results
in a precision of 20.7% (F1 23.9%).

In addition, we evaluated the performance of partially rele-
vant matches by manually deciding the relevance for each en-
try. For example, integer (number that can be written with-
out a fractional or decimal component) would be classified as
highly relevant, but the string integers was classified as rel-
evant. Although this classification is mathematically incor-
rect, it provides valuable information for a human regarding
the formulae. With this evaluation, we obtain 208 matches
(recall 67.1%) and 217 false negatives (precision 48.9%, Fi
56.6%). To interprete these results, we differentiate between
definitions that have not been extracted, although all nec-
essary information is present in the information source, and
definitions that do not completely exist in the information
source. Wolska and Grigore [35] found that around 70% of
objects denoting symbolic expressions are explicitly denoted
in scientific papers. Since in our data source only 73% of
the identifiers are explained in the text, 73% represents the
highest achievable recall for systems that do not use world
knowledge to deduce the most likely meaning of the remain-
ing identifiers. Considering this upper limit, we view a recall
of 67.1% that was achieved when including partly relevant re-
sults, as a good result. These results also confirm the findings
of Kristianto et al. [17]. Although these overall results match
with the results of Wolska and Grigore [35], we found major
differences between different scientific fields. In pure mathe-
matics, the identifiers usually do not link to a specific concept
and the formulae do not relate to specific real-life-scenarios.
In contrast, in physics the definientia of the identifiers are
usually mentioned in the surrounding text, like in the mass-
energy-equivalence example.
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4.2 Namespace Discovery

The evaluation of the namespace discovery performance is
twofold. First, we apply the same procedure as in the eval-
uation of the MLP process. In a second step, we perform a
manual quality assessment of the final namespaces.

We obtain the following results with regard to the extrac-
tion performance. For the strict relevance criterion, the recall
improved by 18% (0.048) to 33.2% (103 exactly correct def-
initions), and the precision declined only slightly with 420
false positives to 19.7% (F1 24.7%). In the end, 30 identi-
fiers (9.6%) reached the ultimate goal and were identified as a
semantic concept on Wikidata. For the non strict relevant cri-
terion, we could measure a recall performance gain of 19.4%,
while maintaining the precision level. This exceeds the upper
limit for recall achievable by exclusively analyzing the text of
a single document of (73%) and extracts 250 definitions cor-
rectly (recall 80.6%) with only 273 false positives (precision
47.8%, F1 60.0%).

The second part of the evaluation assesses the quality of the
discovered namespaces. While a detailed performance eval-
uation of the clustering methods was already carried out in
[12], we focus on the contents of the discovered namespaces
here. For evaluating the Namespace Discovery, we evaluated
6 randomly sampled subject classes. T'wo independent judges
rated the categorized identifier-definiens pairs regarding their
assignment to subject classes using the four categories: ‘con-
firmed’ (@), ‘partly confirmed’ (), ‘not sure’ (?) and ‘incor-
rect’ (X), regarding their assignment to the subject class by
two independent raters. All cases of disagreement (mostly
? vs. @) could be resolved in consensus.

With strong coupling and a minimal purity of 0.6, 250 clus-
ters were obtained of which 167 could be mapped to name-
spaces in the official classification schemes (MSC 135, PACS
22, ACM 8). The purity distribution is as follows: 0.6-0.7: 98,
0.7-0.8: 57, 0.8-0.9: 44, 0.9-1.0: 51.

Those namespaces contain 5 618 definitions with an overall
score >1, of which 2124 (37.8%) link to semantic concepts.
We evaluated the recall of 6 discovered namespaces exem-
plary. The purity of the selected namespaces ranged from 0.6
to 1. with an average of 0.8. They contained between 14 and
103 identifiers (with a score >1). Here, relevance means that
the definition is commonly used in that field. This was de-
cided by domain experts. However, since this question is not
always trivial to judge, we introduced an unknown response
(?). In total, 129 (43%) of the 278 discovered definitions
matched the expectation (@) of the implicit namespaces ex-
pected by the domain experts. For 7 definitions (3%), they
were clearly wrong (X), for 8 (3%), the definitor was not spe-
cific enough and for the remaining 144 (52%), the reviewers
could not assess the relevance (?). Note that the quality of
namespaces varied. For example cluster (33Cxx, Hypergeo-
metric functions) had significantly more clearly wrong results,
because symbols were classified as identifiers, compared to the
investigated clusters in physics where the definition of specific
symbols is less common.

In general, this result was expected, since it is hard to as-
sess the namespaces that have not been spelled out explicitly
before. Especially, the recall could not be evaluated, since
to the best of our knowledge, there is no reference list with
typical identifiers in a specific mathematical field. For details
regarding implementation choices, visit our website [30], and
contribute to our open source software mathosphere.
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5. CONCLUSION AND OUTLOOK

We investigated the semantification of identifiers in math-
ematics based on the NTCIR-11 Math Wikipedia test collec-
tion using Mathematical Language Processing and Names-
pace Discovery. Previous approaches have already shown
good performance in extracting descriptions for mathemat-
ical formulae from the surrounding text in individual docu-
ments.

We achieved even better performance (80% recall, while
maintaining the same level of precision) in the extraction
of relevant identifier-definitions. In cases where identifier-
definitions were absent in the document, we used our fall back
mechanism of identifier-definitions from the namespace that
we learned from the collection at large. This way, we could
break the theoretical limit for systems (about 70% recall cf.
Section 4) that take into account only one document at a time.
Moreover, the descriptions extracted by other systems are
language dependent and do not have a specific data structure.

In contrast, we organized our extracted identifier-definitions
in a hierarchical data structure (i.e., namespaces) which sim-
plifies subsequent data processing tasks such as exploitative
data analysis.

For about 10% of the identifiers, we were able to assign the
correct semantic concept on the collaborative knowledge base
Wikidata. Note, that this allowed extracting even more se-
mantics beside a natural language description as spelled out in
Table 1. Namely, one can find labels and descriptions in multi-
ple languages, links to relevant Wikipedia articles in different
languages, as well as statements. For example, for the iden-
tifier speed of light, 100 translations exist. As statements
one can, for example, retrieve the numeric value (3 x 103m/s),
and the fact that the speed of light is a unit of measurement.
We observed that identifier clusters in physics and computer
science are more useful in the sense that they more often link
to real-world semantic objects than identifier clusters in pure
mathematics, which often solely specify the type of the vari-
able.

During the construction of the gold standard, we noticed
that even experienced mathematicians often require much
time to manually gather this kind of semantic information for
identifiers. We assume that a significant percentage of the 500
million visitors to Wikipedia every day face similar problems.
Our approach is a first step to facilitate this task for users.

The largest obstacle for obtaining semantic information for
identifiers from Wikidata is the quality of the Wikidata re-
source itself. For 44% of the identifiers in the gold standard,
Wikidata contains only rather unspecific hypernyms for the
semantic concept expressed by the identifier. We see two op-
tions to remedy this problem in future research. The first
option is to use a different semantic net containing more fine-
grained semantic concepts. The second option is to identify
unspecific semantic concepts in Wikidata and to split them
into more specific Wikidata items related to mathematics and
science.

Our identifier extraction has been rolled out to the Wikime-
dia production environment. However, at the time of writing,
incorrect markup is still a major source of errors. To overcome
this problem, the implementation of procedures that recog-
nize and highlight incorrect markup for Wikipedia editors is
scheduled and will encourage editors to improve the markup
quality. In addition, symbols falsely classified as identifiers
have a noticeable negative impact on the quality of the clus-
tering step. Improving the recognition of symbols is therefore



an issue that future research should address. Moreover, in the
future our method should be expanded to other datasets be-
side Wikipedia.

With regard to math information retrieval applicationsi.e.,
math search, we have shown that the discovered namespaces
can be used to disambiguate identifiers. Exposing name-
spaces to users is one application of identifier namespaces.
Using them as internal data structure for math information
retrieval applications, such as math search, math understand-
ing or academic plagiarism detection is another. Regarding
MIR tasks, identifier namespaces allow for quiz like topics
such as “At constant temperature, is volume directly or in-
versely related to pressure?”. This simplifies comparing tradi-
tional word based question and answering systems with math
aware methods.

In conclusion, we regard our namespace concept as a signif-
icant innovation, which will allow users to better express their
mathematical information needs, and search engines to dis-
ambiguate identifiers according to their semantics. However,
more research needs to be done to better understand the in-
fluence of each individual augmentation step of our presented
pipeline for MIR applications.
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