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Abstract

SemEval-2 Task 8 focuses on Multi-way
classification of semantic relations between
pairs of nominals. The task was designed
to compare different approaches to seman-
tic relation classification and to provide a
standard testbed for future research. This
paper defines the task, describes the train-
ing and test data and the process of their
creation, lists the participating systems (10
teams, 28 runs), and discusses their results.

1 Introduction

SemEval-2010 Task 8 focused on semantic rela-
tions between pairs of nominals. For example, tea
and ginseng are in an ENTITY-ORIGIN relation in
“The cup contained tea from dried ginseng.”. The
automatic recognition of semantic relations has
many applications, such as information extraction,
document summarization, machine translation, or
construction of thesauri and semantic networks.
It can also facilitate auxiliary tasks such as word
sense disambiguation, language modeling, para-
phrasing, and recognizing textual entailment.

Our goal was to create a testbed for automatic
classification of semantic relations. In developing
the task we met several challenges: selecting a
suitable set of relations, specifying the annotation
procedure, and deciding on the details of the task
itself. They are discussed briefly in Section 2; see
also Hendrickx et al. (2009), which includes a sur-
vey of related work. The direct predecessor of Task
8 was Classification of semantic relations between
nominals, Task 4 at SemEval-1 (Girju et al., 2009),
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which had a separate binary-labeled dataset for
each of seven relations. We have defined SemEval-
2010 Task 8 as a multi-way classification task in
which the label for each example must be chosen
from the complete set of ten relations and the map-
ping from nouns to argument slots is not provided
in advance. We also provide more data: 10,717 an-
notated examples, compared to 1,529 in SemEval-1
Task 4.

2 Dataset Creation

2.1 The Inventory of Semantic Relations

We first decided on an inventory of semantic rela-
tions. Ideally, it should be exhaustive (enable the
description of relations between any pair of nomi-
nals) and mutually exclusive (each pair of nominals
in context should map onto only one relation). The
literature, however, suggests that no relation inven-
tory satisfies both needs, and, in practice, some
trade-off between them must be accepted.

As a pragmatic compromise, we selected nine
relations with coverage sufficiently broad to be of
general and practical interest. We aimed at avoid-
ing semantic overlap as much as possible. We
included, however, two groups of strongly related
relations (ENTITY-ORIGIN / ENTITY-DESTINA-
TION and CONTENT-CONTAINER / COMPONENT-
WHOLE / MEMBER-COLLECTION) to assess mod-
els’ ability to make such fine-grained distinctions.
Our inventory is given below. The first four were
also used in SemEval-1 Task 4, but the annotation
guidelines have been revised, and thus no complete
continuity should be assumed.

Cause-Effect (CE). An event or object leads to an
effect. Example: those cancers were caused
by radiation exposures

Instrument-Agency (IA). An agent uses an in-
strument. Example: phone operator

Product-Producer (PP). A producer causes a
product to exist. Example: a factory manu-
factures suits



Content-Container (CC). An object is physically
stored in a delineated area of space. Example:
a bottle full of honey was weighed

Entity-Origin (EO). An entity is coming or is de-
rived from an origin (e.g., position or mate-
rial). Example: letters from foreign countries

Entity-Destination (ED). An entity is moving to-
wards a destination. Example: the boy went
to bed

Component-Whole (CW). An object is a com-
ponent of a larger whole. Example: my
apartment has a large kitchen

Member-Collection (MC). A member forms a
nonfunctional part of a collection. Example:
there are many trees in the forest

Message-Topic (MT). A message, written or spo-
ken, is about a topic. Example: the lecture
was about semantics

2.2 Annotation Guidelines
We defined a set of general annotation guidelines
as well as detailed guidelines for each semantic
relation. Here, we describe the general guidelines,
which delineate the scope of the data to be col-
lected and state general principles relevant to the
annotation of all relations.1

Our objective is to annotate instances of seman-
tic relations which are true in the sense of hold-
ing in the most plausible truth-conditional inter-
pretation of the sentence. This is in the tradition
of the Textual Entailment or Information Valida-
tion paradigm (Dagan et al., 2009), and in con-
trast to “aboutness” annotation such as semantic
roles (Carreras and Màrquez, 2004) or the BioNLP
2009 task (Kim et al., 2009) where negated rela-
tions are also labelled as positive. Similarly, we
exclude instances of semantic relations which hold
only in speculative or counterfactural scenarios. In
practice, this means disallowing annotations within
the scope of modals or negations, e.g., “Smoking
may/may not have caused cancer in this case.”

We accept as relation arguments only noun
phrases with common-noun heads. This distin-
guishes our task from much work in Information
Extraction, which tends to focus on specific classes
of named entities and on considerably more fine-
grained relations than we do. Named entities are a
specific category of nominal expressions best dealt

1The full task guidelines are available at http://docs.
google.com/View?id=dfhkmm46_0f63mfvf7

with using techniques which do not apply to com-
mon nouns. We only mark up the semantic heads of
nominals, which usually span a single word, except
for lexicalized terms such as science fiction.

We also impose a syntactic locality requirement
on example candidates, thus excluding instances
where the relation arguments occur in separate sen-
tential clauses. Permissible syntactic patterns in-
clude simple and relative clauses, compounds, and
pre- and post-nominal modification. In addition,
we did not annotate examples whose interpretation
relied on discourse knowledge, which led to the
exclusion of pronouns as arguments. Please see
the guidelines for details on other issues, includ-
ing noun compounds, aspectual phenomena and
temporal relations.

2.3 The Annotation Process

The annotation took place in three rounds. First,
we manually collected around 1,200 sentences for
each relation through pattern-based Web search. In
order to ensure a wide variety of example sentences,
we used a substantial number of patterns for each
relation, typically between one hundred and several
hundred. Importantly, in the first round, the relation
itself was not annotated: the goal was merely to
collect positive and near-miss candidate instances.
A rough aim was to have 90% of candidates which
instantiate the target relation (“positive instances”).

In the second round, the collected candidates for
each relation went to two independent annotators
for labeling. Since we have a multi-way classifi-
cation task, the annotators used the full inventory
of nine relations plus OTHER. The annotation was
made easier by the fact that the cases of overlap
were largely systematic, arising from general phe-
nomena like metaphorical use and situations where
more than one relation holds. For example, there is
a systematic potential overlap between CONTENT-
CONTAINER and ENTITY-DESTINATION depend-
ing on whether the situation described in the sen-
tence is static or dynamic, e.g., “When I came,
the <e1>apples</e1> were already put in the
<e2>basket</e2>.” is CC(e1, e2), while “Then,
the <e1>apples</e1> were quickly put in the
<e2>basket</e2>.” is ED(e1, e2).

In the third round, the remaining disagreements
were resolved, and, if no consensus could be
achieved, the examples were removed. Finally, we
merged all nine datasets to create a set of 10,717
instances. We released 8,000 for training and kept



the rest for testing.2

Table 1 shows some statistics about the dataset.
The first column (Freq) shows the absolute and rel-
ative frequencies of each relation. The second col-
umn (Pos) shows that the average share of positive
instances was closer to 75% than to 90%, indicating
that the patterns catch a substantial amount of “near-
miss” cases. However, this effect varies a lot across
relations, causing the non-uniform relation distribu-
tion in the dataset (first column).3 After the second
round, we also computed inter-annotator agreement
(third column, IAA). Inter-annotator agreement
was computed on the sentence level, as the per-
centage of sentences for which the two annotations
were identical. That is, these figures can be inter-
preted as exact-match accuracies. We do not report
Kappa, since chance agreement on preselected can-
didates is difficult to estimate.4 IAA is between
60% and 95%, again with large relation-dependent
variation. Some of the relations were particularly
easy to annotate, notably CONTENT-CONTAINER,
which can be resolved through relatively clear cri-
teria, despite the systematic ambiguity mentioned
above. ENTITY-ORIGIN was the hardest relation to
annotate. We encountered ontological difficulties
in defining both Entity (e.g., in contrast to Effect)
and Origin (as opposed to Cause). Our numbers
are on average around 10% higher than those re-
ported by Girju et al. (2009). This may be a side
effect of our data collection method. To gather
1,200 examples in realistic time, we had to seek
productive search query patterns, which invited
certain homogeneity. For example, many queries
for CONTENT-CONTAINER centered on “usual sus-
pect” such as box or suitcase. Many instances of
MEMBER-COLLECTION were collected on the ba-
sis of from available lists of collective names.

3 The Task

The participating systems had to solve the follow-
ing task: given a sentence and two tagged nominals,
predict the relation between those nominals and the
direction of the relation.

We released a detailed scorer which outputs (1) a
confusion matrix, (2) accuracy and coverage, (3)

2This set includes 891 examples from SemEval-1 Task 4.
We re-annotated them and assigned them as the last examples
of our training dataset to ensure that the test set was unseen.

3To what extent our candidate selection produces a biased
sample is a question that we cannot address within this paper.

4We do not report Pos or IAA for OTHER, since OTHER is
a pseudo-relation that was not annotated in its own right. The
numbers would therefore not be comparable to other relations.

Relation Freq Pos IAA
Cause-Effect 1331 (12.4%) 91.2% 79.0%
Component-Whole 1253 (11.7%) 84.3% 70.0%
Entity-Destination 1137 (10.6%) 80.1% 75.2%
Entity-Origin 974 (9.1%) 69.2% 58.2%
Product-Producer 948 (8.8%) 66.3% 84.8%
Member-Collection 923 (8.6%) 74.7% 68.2%
Message-Topic 895 (8.4%) 74.4% 72.4%
Content-Container 732 (6.8%) 59.3% 95.8%
Instrument-Agency 660 (6.2%) 60.8% 65.0%
Other 1864 (17.4%) N/A4 N/A4

Total 10717 (100%)

Table 1: Annotation Statistics. Freq: Absolute and
relative frequency in the dataset; Pos: percentage
of “positive” relation instances in the candidate set;
IAA: inter-annotator agreement

precision (P), recall (R), and F1-Score for each
relation, (4) micro-averaged P, R, F1, (5) macro-
averaged P, R, F1. For (4) and (5), the calculations
ignored the OTHER relation. Our official scoring
metric is macro-averaged F1-Score for (9+1)-way
classification, taking directionality into account.

The teams were asked to submit test data pre-
dictions for varying fractions of the training data.
Specifically, we requested results for the first 1000,
2000, 4000, and 8000 training instances, called
TD1 through TD4. TD4 was the full training set.

4 Participants and Results

Table 2 lists the participants and provides a rough
overview of the system features. Table 3 shows the
results. Unless noted otherwise, all quoted numbers
are F1-Scores.

Overall Ranking and Training Data. We rank
the teams by the performance of their best system
on TD4, since a per-system ranking would favor
teams with many submitted runs. UTD submit-
ted the best system, with a performance of over
82%, more than 4% better than the second-best
system. FBK IRST places second, with 77.62%,
a tiny margin ahead of ISI (77.57%). Notably, the
ISI system outperforms the FBK IRST system for
TD1 to TD3, where it was second-best. The accu-
racy numbers for TD4 (Acc TD4) lead to the same
overall ranking: micro- versus macro-averaging
does not appear to make much difference either.
A random baseline gives an uninteresting score of
6%. Our competitive baseline system is a simple
Naive Bayes classifier which relies on words in the
sentential context only; two systems scored below
this baseline.



System Institution Team Description Res. Class.
Baseline Task organizers local context of 2 words only BN
ECNU-SR-1 East China Normal

University
Man Lan, Yuan
Chen, Zhimin
Zhou, Yu Xu

stem, POS, syntactic patterns S SVM
(multi)

ECNU-SR-2,3 features like ECNU-SR-1, dif-
ferent prob. thresholds

SVM
(binary)

ECNU-SR-4 stem, POS, syntactic patterns,
hyponymy and meronymy rela-
tions

WN,
S

SVM
(multi)

ECNU-SR-5,6 features like ECNU-SR-4, dif-
ferent prob. thresholds

SVM
(binary)

ECNU-SR-7 majority vote of ECNU-1,2,4,5
FBK IRST-6C32 Fondazione Bruno

Kessler
Claudio Giu-
liano, Kateryna
Tymoshenko

3-word window context features
(word form, part of speech, or-
thography) + Cyc; parameter
estimation by optimization on
training set

Cyc SVM

FBK IRST-12C32 FBK IRST-6C32 + distance fea-
tures

FBK IRST-12VBC32 FBK IRST-12C32 + verbs
FBK IRST-6CA,
-12CA, -12VBCA

features as above, parameter es-
timation by cross-validation

FBK NK-RES1 Fondazione Bruno
Kessler

Matteo Negri,
Milen Kouylekov

collocations, glosses, semantic
relations of nominals + context
features

WN BN

FBK NK-RES 2,3,4 like FBK NK-RES1 with differ-
ent context windows and collo-
cation cutoffs

ISI Information Sci-
ences Institute,
University of
Southern Califor-
nia

Stephen Tratz features from different re-
sources, a noun compound
relation system, and various
feature related to capitalization,
affixes, closed-class words

WN,
RT, G

ME

ISTI-1,2 Istituto di sci-
enca e tecnologie
dell’informazione
“A. Faedo”

Andrea Esuli,
Diego Marcheg-
giani, Fabrizio
Sebastiani

Boosting-based classification.
Runs differ in their initializa-
tion.

WN 2S

JU Jadavpur Univer-
sity

Santanu Pal, Partha
Pakray, Dipankar
Das, Sivaji Bandy-
opadhyay

Verbs, nouns, and prepositions;
seed lists for semantic relations;
parse features and NEs

WN,
S

CRF

SEKA Hungarian
Academy of
Sciences

Eszter Simon, An-
dras Kornai

Levin and Roget classes, n-
grams; other grammatical and
formal features

RT,
LC

ME

TUD-base Technische Univer-
sität Darmstadt

György Szarvas,
Iryna Gurevych

word, POS n-grams, depen-
dency path, distance

S ME

TUD-wp TUD-base + ESA semantic re-
latedness scores

+WP

TUD-comb TUD-base + own semantic relat-
edness scores

+WP,WN

TUD-comb-threshold TUD-comb with higher thresh-
old for OTHER

UNITN University of
Trento

Fabio Celli punctuation, context words,
prepositional patterns, estima-
tion of semantic relation

– DR

UTD University of Texas
at Dallas

Bryan Rink, Sanda
Harabagiu

context wods, hypernyms, POS,
dependencies, distance, seman-
tic roles, Levin classes, para-
phrases

WN,
S, G,
PB/NB,
LC

SVM,
2S

Table 2: Participants of SemEval-2010 Task 8. Res: Resources used (WN: WordNet data; WP:
Wikipedia data; S: syntax; LC: Levin classes; G: Google n-grams, RT: Roget’s Thesaurus, PB/NB:
PropBank/NomBank). Class: Classification style (ME: Maximum Entropy; BN: Bayes Net; DR: Decision
Rules/Trees; CRF: Conditional Random Fields; 2S: two-step classification)



System TD1 TD2 TD3 TD4 Acc TD4 Rank Best Cat Worst Cat-9
Baseline 33.04 42.41 50.89 57.52 50.0 - MC (75.1) IA (28.0)
ECNU-SR-1 52.13 56.58 58.16 60.08 57.1

4

CE (79.7) IA (32.2)
ECNU-SR-2 46.24 47.99 69.83 72.59 67.1 CE (84.4) IA (52.2)
ECNU-SR-3 39.89 42.29 65.47 68.50 62.0 CE (83.4) IA (46.5)
ECNU-SR-4 67.95 70.58 72.99 74.82 70.5 CE (84.6) IA (61.4)
ECNU-SR-5 49.32 50.70 72.63 75.43 70.2 CE (85.1) IA (60.7)
ECNU-SR-6 42.88 45.54 68.87 72.19 65.8 CE (85.2) IA (56.7)
ECNU-SR-7 58.67 58.87 72.79 75.21 70.2 CE (86.1) IA (61.8)
FBK IRST-6C32 60.19 67.31 71.78 76.81 72.4

2

ED (82.6) IA (69.4)
FBK IRST-12C32 60.66 67.91 72.04 76.91 72.4 MC (84.2) IA (68.8)
FBK IRST-12VBC32 62.64 69.86 73.19 77.11 72.3 ED (85.9) PP (68.1)
FBK IRST-6CA 60.58 67.14 71.63 76.28 71.4 CE (82.3) IA (67.7)
FBK IRST-12CA 61.33 67.80 71.65 76.39 71.4 ED (81.8) IA (67.5)
FBK IRST-12VBCA 63.61 70.20 73.40 77.62 72.8 ED (86.5) IA (67.3)
FBK NK-RES1 55.71∗ 64.06∗ 67.80∗ 68.02 62.1

7

ED (77.6) IA (52.9)
FBK NK-RES2 54.27∗ 63.68∗ 67.08∗ 67.48 61.4 ED (77.4) PP (55.2)
FBK NK-RES3 54.25∗ 62.73∗ 66.11∗ 66.90 60.5 MC (76.7) IA (56.3)
FBK NK-RES4 44.11∗ 58.85∗ 63.06∗ 65.84 59.4 MC (76.1) IA/PP (58.0)
ISI 66.68 71.01 75.51 77.57 72.7 3 CE (87.6) IA (61.5)
ISTI-1 50.49∗ 55.80∗ 61.14∗ 68.42 63.2 6 ED (80.7) PP (53.8)
ISTI-2 50.69∗ 54.29∗ 59.77∗ 66.65 61.5 ED (80.2) IA (48.9)
JU 41.62∗ 44.98∗ 47.81∗ 52.16 50.2 9 CE (75.6) IA (27.8)
SEKA 51.81 56.34 61.10 66.33 61.9 8 CE (84.0) PP (43.7)
TUD-base 50.81 54.61 56.98 60.50 56.1

5

CE (80.7) IA (31.1)
TUD-wp 55.34 60.90 63.78 68.00 63.5 ED (82.9) IA (44.1)
TUD-comb 57.84 62.52 66.41 68.88 64.6 CE (83.8) IA (46.8)
TUD-comb-θ 58.35 62.45 66.86 69.23 65.4 CE (83.4) IA (46.9)
UNITN 16.57∗ 18.56∗ 22.45∗ 26.67 27.4 10 ED (46.4) PP (0)
UTD 73.08 77.02 79.93 82.19 77.9 1 CE (89.6) IA (68.5)

Table 3: F1-Score of all submitted systems on the test dataset as a function of training data: TD1=1000,
TD2=2000, TD3=4000, TD4=8000 training examples. Official results are calculated on TD4. The results
marked with ∗ were submitted after the deadline. The best-performing run for each participant is italicized.

As for the amount of training data, we see a sub-
stantial improvement for all systems between TD1
and TD4, with diminishing returns for the transi-
tion between TD3 and TD4 for many, but not all,
systems. Overall, the differences between systems
are smaller for TD4 than they are for TD1. The
spread between the top three systems is around 10%
at TD1, but below 5% at TD4. Still, there are clear
differences in the influence of training data size
even among systems with the same overall archi-
tecture. Notably, ECNU-SR-4 is the second-best
system at TD1 (67.95%), but gains only 7% from
the eightfold increase of the size of the training data.
At the same time, ECNU-SR-3 improves from less
than 40% to almost 69%. The difference between
the systems is that ECNU-SR-4 uses a multi-way
classifier including the class OTHER, while ECNU-
SR-3 uses binary classifiers and assigns OTHER

if no other relation was assigned with p>0.5. It
appears that these probability estimates for classes
are only reliable enough for TD3 and TD4.

The Influence of System Architecture. Almost
all systems used either MaxEnt or SVM classifiers,

with no clear advantage for either. Similarly, two
systems, UTD and ISTI (rank 1 and 6) split the task
into two classification steps (relation and direction),
but the 2nd- and 3rd-ranked systems do not. The
use of a sequence model such as a CRF did not
show a benefit either.

The systems use a variety of resources. Gener-
ally, richer feature sets lead to better performance
(although the differences are often small – compare
the different FBK IRST systems). This improve-
ment can be explained by the need for semantic
generalization from training to test data. This need
can be addressed using WordNet (contrast ECNU-1
to -3 with ECNU-4 to -6), the Google n-gram col-
lection (see ISI and UTD), or a “deep” semantic
resource (FBK IRST uses Cyc). Yet, most of these
resources are also included in the less successful
systems, so beneficial integration of knowledge
sources into semantic relation classification seems
to be difficult.

System Combination. The differences between
the systems suggest that it might be possible to
achieve improvements by building an ensemble



system. When we combine the top three systems
(UTD, FBK IRST-12VBCA, and ISI) by predict-
ing their majority vote, or OTHER if there was none,
we obtain a small improvement over the UTD sys-
tem with an F1-Score of 82.79%. A combination of
the top five systems using the same method shows
a worse performance, however (80.42%). This sug-
gests that the best system outperforms the rest by
a margin that cannot be compensated with system
combination, at least not with a crude majority vote.
We see a similar pattern among the ECNU systems,
where the ECNU-SR-7 combination system is out-
performed by ECNU-SR-5, presumably since it
incorporates the inferior ECNU-SR-1 system.

Relation-specific Analysis. We also analyze the
performance on individual relations, especially the
extremes. There are very stable patterns across all
systems. The best relation (presumably the eas-
iest to classify) is CE, far ahead of ED and MC.
Notably, the performance for the best relation is
75% or above for almost all systems, with compar-
atively small differences between the systems. The
hardest relation is generally IA, followed by PP.5

Here, the spread among the systems is much larger:
the highest-ranking systems outperform others on
the difficult relations. Recall was the main prob-
lem for both IA and PP: many examples of these
two relations are misclassified, most frequently as
OTHER. Even at TD4, these datasets seem to be
less homogeneous than the others. Intriguingly, PP
shows a very high inter-annotator agreement (Ta-
ble 1). Its difficulty may therefore be due not to
questionable annotation, but to genuine variability,
or at least the selection of difficult patterns by the
dataset creator. Conversely, MC, among the easiest
relations to model, shows only a modest IAA.

Difficult Instances. There were 152 examples
that are classified incorrectly by all systems. We
analyze them, looking for sources of errors. In ad-
dition to a handful of annotation errors and some
borderline cases, they are made up of instances
which illustrate the limits of current shallow mod-
eling approaches in that they require more lexical
knowledge and complex reasoning. A case in point:
The bottle carrier converts your <e1>bottle</e1>
into a <e2>canteen</e2>. This instance of
OTHER is misclassified either as CC (due to the

5The relation OTHER, which we ignore in the overall F1-
score, does even worse, often below 40%. This is to be ex-
pected, since the OTHER examples in our datasets are near
misses for other relations, thus making a very incoherent class.

nominals) or as ED (because of the preposition
into). Another example: [...] <e1>Rudders</e1>
are used by <e2>towboats</e2> and other ves-
sels that require a high degree of manoeuvrability.
This is an instance of CW misclassified as IA, prob-
ably on account of the verb use which is a frequent
indicator of an agentive relation.

5 Discussion and Conclusion

There is little doubt that 19-way classification is a
non-trivial challenge. It is even harder when the
domain is lexical semantics, with its idiosyncrasies,
and when the classes are not necessarily disjoint,
despite our best intentions. It speaks to the success
of the exercise that the participating systems’ per-
formance was generally high, well over an order
of magnitude above random guessing. This may
be due to the impressive array of tools and lexical-
semantic resources deployed by the participants.

Section 4 suggests a few ways of interpreting
and analyzing the results. Long-term lessons will
undoubtedly emerge from the workshop discussion.
One optimistic-pessimistic conclusion concerns the
size of the training data. The notable gain TD3→
TD4 suggests that even more data would be helpful,
but that is so much easier said than done: it took
the organizers well in excess of 1000 person-hours
to pin down the problem, hone the guidelines and
relation definitions, construct sufficient amounts of
trustworthy training data, and run the task.

References
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